### Monads Need Not Be Endofunctors

<u>Thorsten Altenkirch</u>, University of Nottingham James Chapman, Institute of Cybernetics, Tallinn Tarmo Uustalu, Institute of Cybernetics, Tallinn

ScotCats, Edinburgh, 21 May 2010

## Motivation

- Monads are the most successful pattern in functional programming and Type Theory.
- Useful for modelling effects (e.g. error, state, etc), but also other programming idioms (e.g. generalized syntactic structures).
- Monads, and constructions on monads (such as monad transformers) are key to reusable strutures.
- Frequently, we find structures that fail to be monads as if for the only reason that the underlying functor is not an endofunctor.
- E.g., untyped/typed lambda calculus syntax (over finite contexts), finite-dimensional vector spaces etc.
- Can/should one develop a theory of such structures?

### Example: Vector spaces

- Let  $\mathbb{F}$  be the skeletal category of finite sets  $(|\mathbb{F}| = \mathbb{N})$ .
- $J_{\mathrm{f}} \in \mathbb{F} \to \mathbf{Set}$  is the obvious embedding.
- Let  $(R, +, 0, \times, 1)$  be a semiring.
- We define

$$Vec \in |\mathbb{F}| \to |\mathbf{Set}|$$

$$Vec \ m =_{df} J_f \ m \to R$$

$$\eta_m \in J_f \ m \to \text{Vec } m$$

$$\eta_m \ i =_{df} \lambda j. \text{ if } i = j \text{ then } 1 \text{ else } 0$$

$$(-)^* \in (J_f \ m \to \text{Vec } n) \to (\text{Vec } m \to \text{Vec } n)$$

$$A^* \ \vec{a} =_{df} \lambda j. \sum_{i \in \underline{m}} \vec{a} \ i \times A \ i \ j$$

Check that:

$$k^* \circ \eta_X = k$$
  

$$\eta_X^* = \operatorname{id}_{\operatorname{Vec} X}$$
  

$$(l^* \circ k)^* = l^* \circ k^*$$

## Relative monads

- Given a category  $\mathbb{C}$  and another category  $\mathbb{J}$  with a functor  $J \in [\mathbb{J}, \mathbb{C}]$ .
- A relative monad is given by
  - an object function  $T \in |\mathbb{J}| \to |\mathbb{C}|$ ,
  - for any object  $X \in |\mathbb{J}|$ , a map  $\eta_X \in \mathbb{C}(\mathbb{J}X, \mathcal{T}X)$  (unit),
  - for any objects X, Y ∈ |J| and map k ∈ C(JX, TY), a map k\* ∈ C(TX, TY) (Kleisli extension)

satisfying

- for any  $X, Y \in |\mathbb{J}|$ ,  $k \in \mathbb{C}(\mathbb{J}X, TY)$ ,  $k^* \circ \eta_X = k$ ,
- for any  $X \in |\mathbb{J}|$ ,  $\eta_X^* = \operatorname{id}_{TX} \in \mathbb{C}(TX, TX)$ ,
- for any  $X, Y, Z \in |\mathbb{J}|$ ,  $k \in \mathbb{C}(\mathbb{J}X, TY)$ ,  $\ell \in \mathbb{C}(\mathbb{J}Y, TZ)$ ,  $(\ell^* \circ k)^* = \ell^* \circ k^* \in \mathbb{C}(TX, TZ)$ .
- T is functorial with T f = (η ∘ J f)\*; η and (−)\* are natural.

# Relative monads (ctd)

- Clearly T = Vec with  $\mathbb{J} = \mathbb{F}$  and  $J = J_{\text{f}}$  is an instance.
- Ordinary monads arise as as the special case where  $\mathbb{J} =_{df} \mathbb{C}$ ,  $J =_{df} Id_{\mathbb{C}}$ .
- Any monad (T, η, (−)\*) on C restricts to a relative monad (T<sup>b</sup>, η<sup>b</sup>, (−)\*<sup>b</sup>) on J defined by T<sup>b</sup>X =<sub>df</sub> T (JX), η<sup>b</sup><sub>X</sub> =<sub>df</sub> η<sub>JX</sub>, k<sup>\*b</sup> =<sub>df</sub> k\*.

## Example: Untyped lambda calculus syntax

- Define T as the initial algebra of F ∈ [𝔅, Set] → [𝔅, Set] defined by F G X =<sub>df</sub> J X + (G X × G X + G (1 + X)) (the terms of untyped lambda calculus).
- T is a relative monad, with  $\eta$  the inclusion of variables to terms and  $(-)^*$  substitution.

## Example: Typed lambda calculus syntax

- Let Ty be the set of types of typed lambda calculus (over some base types).
- Let F ↓ Ty be the category whose objects are pairs (Γ, ρ) where Γ ∈ |F| and ρ ∈ Γ → Ty and maps from (Γ, ρ) to (Γ', ρ') are maps f ∈ F(Γ, Γ') such that ρ = ρ' ∘ f (the contexts and context maps).
- Let  $J \in \mathbb{F} \downarrow \mathsf{Ty} \to [\mathsf{Ty}, \mathbf{Set}]$  be the natural embedding.
- *T* (the terms) can be defined as an initial algebra of a suitable endofunctor on [𝑘 ↓ Ty, [Ty, Set]].

• T is a relative monad.

## Example: Indexed Functors

- $\bullet\,$  Let U be the category of small sets.
- The functor  $J_U \in [U, Cat]$  views a small set as a category.
- IF ∈ [U, Cat] defined by IF A =<sub>df</sub> [[J<sub>U</sub> A, U], U] gives rise to a relative monad.
- The definitions of  $\eta$  and  $(-)^*$  correspond to the continuation monad (apart from the size issue).
- This showed up in our work on *indexed containers* (LICS 09), which also form a relative monad.

## Relative adjunctions

- Given two categories C, D together with a third category
   *J* and a functor *J* ∈ J → C.
- Given L ∈ [C, D], R ∈ [D, C]: L ⊣<sub>J</sub> R (L is a relative left adjoint to R), if

$$\mathbb{C}(JX, RY) \simeq \mathbb{D}(LX, Y)$$

• A relative adjunction gives rise to a relative monad  $T = R \cdot L$ .



## Kleisli and Eilenberg-Moore constructions

- Given a relative monad we can define its initial (KI(T)) and terminal (EM(T)) splitting as a relative adjunction.
- $|\mathbf{KI}(T)| = |\mathbb{J}|$  and  $\mathbf{KI}(T)(X, Y) =_{\mathrm{df}} \mathbb{C}(JX, TY).$
- Kleisli categories for the examples:

Vector spaces Finite dimensional vector spaces  $\lambda$  calculus (untyped/typed) contexts and substitutions. Indexed Functors Functors between different slices.

- To define EM(T) we define the notion of an EM-algebra without referring to μ.
- An EM-algebra is given by family of maps

$$a_X \in \mathbb{C}(JX, A) \to \mathbb{C}(TX, A)$$

such that  $a \rho \circ \eta = \rho$  and  $a(a \rho \circ k) = a \rho \circ k^*$ 

#### Relative Monads as monoids?

- Can we have a monoid form of relative monads?
- Here is a calculation in the end-coend calculus:

$$\begin{split} &\int_{X,Y\in|\mathbb{J}|} \mathbb{C}(JX,TY) \to \mathbb{C}(TX,TY) \\ &\cong \int_{Y\in|\mathbb{J}|} \mathbb{C}(\int^{X\in|\mathbb{J}|} \mathbb{C}(JX,TY) \bullet TX,TY) \\ &\cong \int_{Y\in|\mathbb{J}|} \mathbb{C}(\operatorname{Lan}_J T(TY),TY) \\ &\cong [\mathbb{J},\mathbb{C}](\operatorname{Lan}_J T \cdot T,T) \end{split}$$

• Assume henceforth that  $\operatorname{Lan}_J \in [\mathbb{J}, \mathbb{C}] \to [\mathbb{C}, \mathbb{C}]$  exists.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# $[\mathbb{J},\mathbb{C}]$ is lax monoidal

- We can define
  - for any objects F, G ∈ |[J, C]|, an object
     G ·<sup>J</sup> F ∈ |[J, C]| by G ·<sup>J</sup> F =<sub>df</sub> Lan<sub>J</sub> G · F.
- We can also define
  - for any object  $F \in |[\mathbb{J}, \mathbb{C}]|$ , a map  $\lambda_F \in [\mathbb{J}, \mathbb{C}](\operatorname{Lan}_J J \cdot F, F)$ ,
  - for any object  $F \in |[\mathbb{J}, \mathbb{C}]|$ , a map  $\rho_F \in [\mathbb{J}, \mathbb{C}](F, \operatorname{Lan}_J F \cdot J)$ ,
  - for any objects  $F, G, H \in |[\mathbb{J}, \mathbb{C}]|$ , a map  $\alpha_{H,G,F} \in [\mathbb{J}, \mathbb{C}](\operatorname{Lan}_{J}(\operatorname{Lan}_{J}H \cdot G) \cdot F, \operatorname{Lan}_{J}H \cdot \operatorname{Lan}_{J}G \cdot F).$
- $([\mathbb{J}, \mathbb{C}], J, \cdot^J, \lambda, \rho, \alpha)$  is a lax monoidal category, i.e.,  $\cdot^J$  is functorial,  $\lambda, \rho, \alpha$  are natural (however not generally isomorphisms) and satisfy certain coherence conditions.

### Relative monads = lax monoids

Relative monads on J are the same as lax monoids in the lax monoidal structure on [J, C], i.e., triples (T, η, μ) with T ∈ |[J, C]|, η ∈ [J, C](J, T) and μ ∈ [J, C](T · <sup>J</sup> T, T) such that



### Assume further conditions on J...

- Assume that, in addition to the existence of Lan<sub>J</sub>, J further satisfies these conditions:
  - J is fully faithful, i.e., for any X, Y ∈ |J|, there is an inverse to the canonical map
     J<sub>X,Y</sub> ∈ J(X, Y) → C(JX, JY) given by J<sub>X,Y</sub>f =<sub>df</sub> Jf,
  - J is dense, i.e., for any X, Y ∈ |ℂ|, there is an inverse to the canonical map K<sub>X,Y</sub> ∈ ℂ(X, Y) → [J<sup>op</sup>, Set](ℂ(J-,X), ℂ(J-,Y))

- given by K<sub>X,Y</sub> g f =<sub>df</sub> g ∘ f,
  For any F ∈ J → C, X ∈ |J|, Y ∈ |C|, there is an inverse to the canonical map L<sup>F</sup><sub>X Y</sub> ∈ Lan<sub>J</sub>(C(JX, F −)) Y → C(JX, Lan<sub>J</sub> F Y).
- The functors J ∈ 𝔽 → Set and J ∈ 𝒴 ↓ Ty → [Ty, Set] enjoy these properties.

# $[\mathbb{J},\mathbb{C}]$ is monoidal, relative monads = monoids

- Then ρ, λ, α have inverses definable in terms of J<sup>-1</sup>, K<sup>-1</sup>, L<sup>-1</sup>.
- Hence  $[\mathbb{J},\mathbb{C}]$  is (properly) monoidal.
- A relative monad T on J is a (proper) monoid in  $[\mathbb{J}, \mathbb{C}]$ .

### Relative monads extend to monads

- We also get that T extends to a monad on C (a monoid in the strict monoidal category ([C, C], Id, ·)).
- Define

• 
$$T^{\sharp} =_{df} \operatorname{Lan}_{J} T$$
,  
•  $\eta^{\sharp} =_{df} \operatorname{Id} \xrightarrow{\lambda_{ld}^{-1}} \operatorname{Lan}_{J} J \xrightarrow{\operatorname{Lan}_{J} \eta} \operatorname{Lan}_{J} T$ ,  
•  $\mu^{\sharp} =_{df}$   
Lan\_{J} T \cdot \operatorname{Lan}\_{J} T \xrightarrow{\alpha\_{T,T,ld}^{-1}} \operatorname{Lan}\_{J} (Lan\_{J} T \cdot T) \xrightarrow{\operatorname{Lan}\_{J} \mu} \operatorname{Lan}\_{J} T

- $(T^{\sharp}, \eta^{\sharp}, \mu^{\sharp})$  is a monad on  $\mathbb{C}$ .
- E.g., untyped lambda calculus syntax extends to a monad on Set, typed lambda calculus syntax to a monad on [Ty, Set].

## Relative monads extend to monads (ctd)

• Furthermore, the defining adjunction of Lan<sub>J</sub>,



lifts to an adjunction



# Summary

- No conditions on J
  - Monads restrict to relative monads
  - Huber's theorem, Kleisli, E-M constructions
- Lan<sub>J</sub> exists
  - $\bullet~[\mathbb{J},\mathbb{C}]$  lax monoidal, relative monads = lax monoids
- Further conditions on J
  - $\bullet~[\mathbb{J},\mathbb{C}]$  monoidal, relative monads = monoids
  - Relative monads extend to monads, coreflection

### Arrows

- Given a category  $\mathbb{J},$  a (weak) arrow on  $\mathbb{J}$  is given by
  - an object function  $R \in |\mathbb{J}| imes |\mathbb{J}| o \mathbf{Set}$ ,
  - for any objects  $X, Y \in |\mathbb{J}|$ , a function pure  $\in \mathbb{J}(X, Y) \to R(X, Y)$ ,
  - for any  $X, Y, Z \in |\mathbb{J}|$ , a function ( $\ll$ )  $\in R(Y, Z) \times R(X, Y) \rightarrow R(X, Z)$

satisfying

- pure  $(g \circ f) = pure g \ll pure f$ ,
- $r \ll \text{pure id} = r$ ,
- pure id  $\ll r = r$ ,
- $t \ll (s \ll r) = (t \ll s) \ll r$ .
- *R* extends to a functor J<sup>op</sup> × J → Set (an endoprofunctor on J); pure and ≪ are natural.

#### Arrows = relative monads on Yoneda

- Assume J is small. Let C =<sub>df</sub> [J<sup>op</sup>, Set], J Y X = J(X, Y) (the Yoneda embedding).
- $Lan_J$  exists, J is well-behaved.
- An arrow on J (a functor R ∈ J<sup>op</sup> × J → Set with structure) is the same as a relative monad on J (a functor T ∈ J → [J<sup>op</sup>, Set] with structure).
- Cf. Jacobs et al. (2006): Arrows on J are the same as monoids in the monoidal structure on [J<sup>op</sup> × J, Set] (the category of endoprofunctors on J).

## Conclusions

- Relative monads are a natural generalization of monads.
- They are smoothly formulated in Manes's style, the monoid form needs left Kan extensions.
- A large part of monad theory carries over with minimal adjustments. There is a clear relationship to ordinary monads.
- They cover important examples for programming, in particular, examples with size issues.

• They also subsume arrows.