Monads Need Not Be Endofunctors

Thorsten Altenkirch, University of Nottingham James Chapman, Institute of Cybernetics, Tallinn Tarmo Uustalu, Institute of Cybernetics, Tallinn

ScotCats, Edinburgh, 21 May 2010

Motivation

- Monads are the most successful pattern in functional programming and Type Theory.
- Useful for modelling effects (e.g. error, state, etc), but also other programming idioms (e.g. generalized syntactic structures).
- Monads, and constructions on monads (such as monad transformers) are key to reusable strutures.
- Frequently, we find structures that fail to be monads as if for the only reason that the underlying functor is not an endofunctor.
- E.g., untyped/typed lambda calculus syntax (over finite contexts), finite-dimensional vector spaces etc.
- Can/should one develop a theory of such structures?

Example: Vector spaces

- Let \mathbb{F} be the skeletal category of finite sets $(|\mathbb{F}|=\mathbb{N})$.
- $J_{\mathrm{f}} \in \mathbb{F} \rightarrow$ Set is the obvious embedding.
- Let $(R,+, 0, \times, 1)$ be a semiring.
- We define

$$
\begin{aligned}
& \text { Vec } \in|\mathbb{F}| \rightarrow \mid \text { Set } \mid \\
& \text { Vec } m={ }_{\mathrm{df}} J_{\mathrm{f}} m \rightarrow R \\
& \eta_{m} \in J_{\mathrm{f}} m \rightarrow \text { Vec } m \\
& \eta_{m} i==_{\mathrm{df}} \lambda j . \text { if } i=j \text { then } 1 \text { else } 0 \\
& (-)^{*} \in\left(J_{\mathrm{f}} m \rightarrow \operatorname{Vec} n\right) \rightarrow(\operatorname{Vec} m \rightarrow \operatorname{Vec} n) \\
& A^{*} \vec{a}={ }_{\mathrm{df}} \lambda j \cdot \sum_{i \in \underline{m}} \vec{a} i \times A_{i} i
\end{aligned}
$$

- Check that:

$$
\begin{aligned}
k^{*} \circ \eta_{X} & =k \\
\eta_{X}^{*} & =\mathrm{id}_{V \mathrm{Vc} X} \\
\left(I^{*} \circ k\right)^{*} & =l^{*} \circ k^{*}
\end{aligned}
$$

Relative monads

- Given a category \mathbb{C} and another category \mathbb{J} with a functor $J \in[\mathbb{J}, \mathbb{C}]$.
- A relative monad is given by
- an object function $T \in|\mathbb{J}| \rightarrow|\mathbb{C}|$,
- for any object $X \in|\mathbb{J}|$, a map $\eta_{X} \in \mathbb{C}(J X, T X)$ (unit),
- for any objects $X, Y \in|\mathbb{J}|$ and map $k \in \mathbb{C}(J X, T Y)$, a map $k^{*} \in \mathbb{C}(T X, T Y)$ (Kleisli extension)
satisfying
- for any $X, Y \in|\mathbb{J}|, k \in \mathbb{C}(J X, T Y), k^{*} \circ \eta_{X}=k$,
- for any $X \in|\mathbb{J}|, \eta_{X}^{*}=\operatorname{id}_{T X} \in \mathbb{C}(T X, T X)$,
- for any $X, Y, Z \in|\mathbb{J}|, k \in \mathbb{C}(J X, T Y)$,

$$
\ell \in \mathbb{C}(J Y, T Z),\left(\ell^{*} \circ k\right)^{*}=\ell^{*} \circ k^{*} \in \mathbb{C}(T X, T Z) \text {. }
$$

- T is functorial with $T f=(\eta \circ J f)^{*} ; \eta$ and $(-)^{*}$ are natural.

Relative monads (ctd)

- Clearly $T=$ Vec with $\mathbb{J}=\mathbb{F}$ and $J=J_{\mathrm{f}}$ is an instance.
- Ordinary monads arise as as the special case where $\mathbb{J}={ }_{\mathrm{df}} \mathbb{C}, J={ }_{\mathrm{df}} \mathrm{Id}_{\mathbb{C}}$.
- Any monad $\left(T, \eta,(-)^{*}\right)$ on \mathbb{C} restricts to a relative monad $\left(T^{b}, \eta^{b},(-)^{* b}\right)$ on J defined by $T^{b} X={ }_{\mathrm{df}} T(J X)$, $\eta_{X}^{b}={ }_{\mathrm{df}} \eta_{J X}, k^{* b}={ }_{\mathrm{df}} k^{*}$.

Example: Untyped lambda calculus syntax

- Define T as the initial algebra of $F \in[\mathbb{F}$, Set $] \rightarrow[\mathbb{F}$, Set $]$ defined by $F G X={ }_{\mathrm{df}} J X+(G X \times G X+G(1+X))$ (the terms of untyped lambda calculus).
- T is a relative monad, with η the inclusion of variables to terms and $(-)^{*}$ substitution.

Example: Typed lambda calculus syntax

- Let Ty be the set of types of typed lambda calculus (over some base types).
- Let $\mathbb{F} \downarrow$ Ty be the category whose objects are pairs (Γ, ρ) where $\Gamma \in|\mathbb{F}|$ and $\rho \in \Gamma \rightarrow$ Ty and maps from (Γ, ρ) to $\left(\Gamma^{\prime}, \rho^{\prime}\right)$ are maps $f \in \mathbb{F}\left(\Gamma, \Gamma^{\prime}\right)$ such that $\rho=\rho^{\prime} \circ f$ (the contexts and context maps).
- Let $J \in \mathbb{F} \downarrow$ Ty $\rightarrow[\mathrm{Ty}$, Set $]$ be the natural embedding.
- T (the terms) can be defined as an initial algebra of a suitable endofunctor on $[\mathbb{F} \downarrow \mathrm{Ty},[\mathrm{Ty}$, Set $]]$.
- T is a relative monad.

Example: Indexed Functors

- Let \mathbf{U} be the category of small sets.
- The functor $J_{\mathbf{U}} \in[\mathbf{U}, \mathbf{C a t}]$ views a small set as a category.
- IF $\in[\mathbf{U}, \mathbf{C a t}]$ defined by IF $A={ }_{\mathrm{df}}\left[\left[J_{\mathbf{U}} A, \mathbf{U}\right], \mathbf{U}\right]$ gives rise to a relative monad.
- The definitions of η and $(-)^{*}$ correspond to the continuation monad (apart from the size issue).
- This showed up in our work on indexed containers (LICS 09), which also form a relative monad.

Relative adjunctions

- Given two categories \mathbb{C}, \mathbb{D} together with a third category J and a functor $J \in \mathbb{J} \rightarrow \mathbb{C}$.
- Given $L \in[\mathbb{C}, \mathbb{D}], R \in[\mathbb{D}, \mathbb{C}]: L \dashv_{\jmath} R(L$ is a relative left adjoint to R), if

$$
\mathbb{C}(J X, R Y) \simeq \mathbb{D}(L X, Y)
$$

- A relative adjunction gives rise to a relative monad $T=R \cdot L$.

Kleisli and Eilenberg-Moore constructions

- Given a relative monad we can define its initial $(\mathbf{K I}(T))$ and terminal $(\mathbf{E M}(T))$ splitting as a relative adjunction.
- $|\mathbf{K I}(T)|=|\mathbb{J}|$ and $\mathbf{K I}(T)(X, Y)={ }_{\mathrm{df}} \mathbb{C}(J X, T Y)$.
- Kleisli categories for the examples:

Vector spaces Finite dimensional vector spaces λ calculus (untyped/typed) contexts and substitutions. Indexed Functors Functors between different slices.

- To define $\mathbf{E M}(T)$ we define the notion of an EM-algebra without referring to μ.
- An EM-algebra is given by family of maps

$$
a_{X} \in \mathbb{C}(J X, A) \rightarrow \mathbb{C}(T X, A)
$$

such that $a \rho \circ \eta=\rho$ and $a(a \rho \circ k)=a \rho \circ k^{*}$

Relative Monads as monoids?

- Can we have a monoid form of relative monads?
- Here is a calculation in the end-coend calculus:

$$
\begin{aligned}
& \int_{X, Y \in|J|} \mathbb{C}(J X, T Y) \rightarrow \mathbb{C}(T X, T Y) \\
& \cong \int_{Y \in|J|} \mathbb{C}\left(\int^{X \in|J|} \mathbb{C}(J X, T Y) \bullet T X, T Y\right) \\
& \cong \int_{Y \in|J|} \mathbb{C}(\operatorname{Lan} J T(T Y), T Y) \\
& \cong[\mathbb{C}, \mathbb{C}]\left(\operatorname{Lan}_{J} T \cdot T, T\right)
\end{aligned}
$$

- Assume henceforth that Lan $\mathcal{J}[\mathbb{J}, \mathbb{C}] \rightarrow[\mathbb{C}, \mathbb{C}]$ exists.

$[J, \mathbb{C}]$ is lax monoidal

- We can define
- for any objects $F, G \in|[\mathbb{J}, \mathbb{C}]|$, an object

$$
G \cdot{ }^{J} F \in|[J, \mathbb{C}]| \text { by } G \cdot{ }^{J} F==_{\mathrm{df}} \operatorname{Lan}_{J} G \cdot F
$$

- We can also define
- for any object $F \in|[\mathbb{J}, \mathbb{C}]|$, a map $\lambda_{F} \in[J, \mathbb{C}]\left(\operatorname{Lan}_{J} J \cdot F, F\right)$,
- for any object $F \in|[\mathbb{J}, \mathbb{C}]|$, a map

$$
\rho_{F} \in[\mathbb{J}, \mathbb{C}](F, \operatorname{Lan} F \cdot J)
$$

- for any objects $F, G, H \in|[\mathbb{J}, \mathbb{C}]|$, a map

$$
\alpha_{H, G, F} \in[\mathbb{J}, \mathbb{C}]\left(\operatorname{Lan}_{\jmath}\left(\operatorname{Lan}_{\jmath} H \cdot G\right) \cdot F, \operatorname{Lan}_{\jmath} H \cdot \operatorname{Lan}_{\jmath} G \cdot F\right) .
$$

- $\left([\mathbb{J}, \mathbb{C}], J, \cdot^{J}, \lambda, \rho, \alpha\right)$ is a lax monoidal category, i.e., \cdot^{J} is functorial, λ, ρ, α are natural (however not generally isomorphisms) and satisfy certain coherence conditions.

Relative monads $=$ lax monoids

- Relative monads on J are the same as lax monoids in the lax monoidal structure on [J, $\mathbb{C}]$,
i.e., triples (T, η, μ) with $T \in|[\mathbb{J}, \mathbb{C}]|, \eta \in[\mathbb{J}, \mathbb{C}](J, T)$ and $\mu \in[\mathbb{J}, \mathbb{C}](T \cdot J T, T)$ such that

$$
T \cdot{ }^{J} T \stackrel{T \cdot{ }_{\eta}}{\longleftarrow} T \cdot{ }^{J} J
$$

$$
{ }_{\mu}{ }_{T}
$$

Assume further conditions on J...

- Assume that, in addition to the existence of $L^{2}{ }_{J}$, J further satisfies these conditions:
- J is fully faithful, i.e., for any $X, Y \in|\mathbb{J}|$, there is an inverse to the canonical map

$$
J_{X, Y} \in \mathbb{J}(X, Y) \rightarrow \mathbb{C}(J X, J Y) \text { given by } J_{X, Y} f==_{\mathrm{df}} J f
$$

- J is dense, i.e., for any $X, Y \in|\mathbb{C}|$, there is an inverse to the canonical map
$K_{X, Y} \in \mathbb{C}(X, Y) \rightarrow\left[\mathbb{J o p}^{\text {op }}\right.$, Set $](\mathbb{C}(J-, X), \mathbb{C}(J-, Y))$ given by $K_{X, Y} g f={ }_{\mathrm{df}} g \circ f$,
- For any $F \in \mathbb{J} \rightarrow \mathbb{C}, X \in|\mathbb{J}|, Y \in|\mathbb{C}|$, there is an inverse to the canonical map

$$
L_{X, Y}^{F} \in \operatorname{Lan}_{J}(\mathbb{C}(J X, F-)) Y \rightarrow \mathbb{C}\left(J X, \operatorname{Lan}_{J} F Y\right)
$$

- The functors $J \in \mathbb{F} \rightarrow$ Set and $J \in \mathbb{F} \downarrow$ Ty $\rightarrow[$ Ty, Set $]$ enjoy these properties.

$[\mathbb{J}, \mathbb{C}]$ is monoidal, relative monads $=$ monoids

- Then ρ, λ, α have inverses definable in terms of J^{-1}, K^{-1}, L^{-1}.
- Hence $[\mathbb{J}, \mathbb{C}]$ is (properly) monoidal.
- A relative monad T on J is a (proper) monoid in $[\mathbb{J}, \mathbb{C}]$.

Relative monads extend to monads

- We also get that T extends to a monad on \mathbb{C} (a monoid in the strict monoidal category $([\mathbb{C}, \mathbb{C}], \operatorname{ld}, \cdot))$.
- Define
- $T^{\sharp}={ }_{\mathrm{df}} \operatorname{Lan} \boldsymbol{J}$,
- $\eta^{\sharp}=\mathrm{df}_{\mathrm{Id}} \xrightarrow{\lambda_{\text {ld }}^{-1}} \operatorname{Lan}_{J} J \xrightarrow{\text { Lan } \eta} \operatorname{Lan}_{J} T$,
- $\mu^{\sharp}={ }_{\mathrm{df}}$
$\operatorname{Lan}_{J} T \cdot \operatorname{Lan} \jmath T \xrightarrow{\alpha_{T, T, \text { ld }}^{-1}} \operatorname{Lan}_{J}\left(\operatorname{Lan}_{J} T \cdot T\right) \xrightarrow{\operatorname{Lan}_{J} \mu} \operatorname{Lan} \jmath T$
- $\left(T^{\sharp}, \eta^{\sharp}, \mu^{\sharp}\right)$ is a monad on \mathbb{C}.
- E.g., untyped lambda calculus syntax extends to a monad on Set, typed lambda calculus syntax to a monad on [Ty, Set].

Relative monads extend to monads (ctd)

- Furthermore, the defining adjunction of Lan ${ }_{J}$,

lifts to an adjunction

Summary

- No conditions on J
- Monads restrict to relative monads
- Huber's theorem, Kleisli, E-M constructions
- Lan」 exists
- $[\mathbb{J}, \mathbb{C}]$ lax monoidal, relative monads $=$ lax monoids
- Further conditions on J
- $[J, \mathbb{C}]$ monoidal, relative monads $=$ monoids
- Relative monads extend to monads, coreflection

Arrows

- Given a category \mathbb{J}, a (weak) arrow on \mathbb{J} is given by
- an object function $R \in|\mathbb{J}| \times|\mathbb{J}| \rightarrow$ Set,
- for any objects $X, Y \in|\mathbb{J}|$, a function pure $\in \mathbb{J}(X, Y) \rightarrow R(X, Y)$,
- for any $X, Y, Z \in|\mathbb{J}|$, a function $(\lll) \in R(Y, Z) \times R(X, Y) \rightarrow R(X, Z)$
satisfying
- pure $(g \circ f)=$ pure $g \lll$ pure f,
- $r \lll$ pureid $=r$,
- pureid $\ll r=r$,
- $t \lll(s \lll r)=(t \lll s) \lll r$.
- R extends to a functor $\mathbb{J}^{\text {op }} \times \mathbb{J} \rightarrow$ Set (an endoprofunctor on \mathbb{J}); pure and \lll are natural.

Arrows $=$ relative monads on Yoneda

- Assume \mathbb{J} is small. Let $\mathbb{C}={ }_{\mathrm{df}}\left[\mathbb{J}^{\mathrm{op}}\right.$, Set $], J Y X=\mathbb{J}(X, Y)$ (the Yoneda embedding).
- LanJ exists, J is well-behaved.
- An arrow on \mathbb{J} (a functor $R \in \mathbb{J}^{\text {op }} \times \mathbb{J} \rightarrow$ Set with structure) is the same as a relative monad on J (a functor $T \in \mathbb{J} \rightarrow\left[\mathbb{J}^{\mathrm{op}}\right.$, Set] with structure).
- Cf. Jacobs et al. (2006): Arrows on \mathbb{J} are the same as monoids in the monoidal structure on $\left[\mathbb{J}^{\mathrm{op}} \times \mathbb{J}\right.$, Set] (the category of endoprofunctors on \mathbb{J}).

Conclusions

- Relative monads are a natural generalization of monads.
- They are smoothly formulated in Manes's style, the monoid form needs left Kan extensions.
- A large part of monad theory carries over with minimal adjustments. There is a clear relationship to ordinary monads.
- They cover important examples for programming, in particular, examples with size issues.
- They also subsume arrows.

