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Ab Cats Alg Geom Moduli Derived Cats Triangulated Cats And Back Again

Abelian Categories

• Introduced by Grothedieck in 1950s to unify homological
algebra

• Associate abelian group type object to spaces via chain
complexes:

· · ·C i−1(X )
d i−1

−−−→ C i (X )
d i

−→ C i+1(X ) · · · ,

where d i ◦ d i−1 = 0.

• The cohomology is then H i (X ) =
ker d i

Im d i−1
, measures how

inexact the complex is.

• This process is functorial.
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Definition

An abelian category is a category A satisfying

(1) A is additive:

each set of morphisms is an abelian group (and
composition is bilinear), there is a biproduct and a zero object.

(2) A has all equalisers and all monics are equalisers, and dually.

Notes

• (2) tells us that all maps have kernels, cokernels and images
and that “monic+epic=isom”.

• Some conditions are redundant.

• Functors between abelian categories are exact if they preserve
the additive structure, kernels and cokernels.

• Examples: Ab, R−mod, Vectk .

• AbCat is the (lax 2-)category of abelian categories with exact
functors.

• Any abelian category A admits an exact full embedding in Ab.
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Some constructions in abelian categories

A pair of composable maps f : a→ b and g : b → c is exact at b
if Im(f ) = ker(g).

eg

0→ ker f → a
f−→ b → coker f → 0

is exact at all places.

We can define cohomology as before and it measures how a
complex fails to be exact.

Let A, B and C be complexes and suppose 0→ A→ B → C → 0
is exact (we say short exact) then there is a canonical map
H i (C )→ H i+1(A) such that the resulting sequence

· · · → H i (A)→ H i (B)→ H i (C )→ H i+1(A)→ H i+1(B)→ · · ·

is exact.
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Issues in Algebraic Geometry

• Categories of objects of interest: Var, Sch, Sch/S , Sch/k .

• A scheme is a locally ringed space which is locally spec of a
ring.

• Sch has terminal object spec Z and all pullbacks.

• Can also consider other morphisms: birational maps and
associated equivalence.

• Well developed theory of dimension.

• Schemes come with structure sheaves OX . Can consider
OX −mod. Restrict to finitely presented modules: Coh(X ).

• Coh(X ) is abelian.

• There are cohomology functors Coh(X )→ AbN with H0 = Γ,
the global sections functor.
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Extracting Geometrical Information

Example

Let X be a 2 dimensional (projective) variety. A curve on X can be
viewed as the zero set of an algebraic map s : OX → L, where L is
a suitable (locally-free) rank 1 OX -module.

Given some points Y ⊂ X , we can consider the sheaf OY as an
object of Coh(X ).

Then the restriction map L→ OY is epic and its kernel K has the
property that elements of H0(K ) which map to s correspond
precisely to incidence of Y on our curve.

Estimating the size of H0(K ) is then useful to determine incidence
properties.
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Invariants

Example

Dimension 1 projective varieties can be classified into type
according to a non-negative integer called its genus. Loosely, the
genus corresponds to the number of holes in the space:

More generally, we can find a range of numerical invariants and,
more generally, cohomology classes (characteristic classes) which
allow us to crudely classify both schemes and sheaves on schemes.
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Moduli Problems

• Consider an object M in SetSchop
of the form

M(S) = {objects over S under pullback}

• If such a functor is representable then there is a scheme M
and natural isomorphism M∼= Hom(−,M).

• This means there is some object E over M such that for all
schemes S and E ∈M(S), there is a map f : S → M such
that E = f ∗E and M is universal for such objects.

• eg. for a scheme X ,

MX ,c(S) = {coherent sheaves with fixed char class c on S×X}.

• But MX ,c is not representable.

• Partly fix by tweaking the moduli functor (to make M into a
sheaf in a suitable subcanonical topology on Sch).
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• The key for AG is the existence of a universal object. This is
weaker than asking that M be representable.

• For representability we have
Hom(Hom(−,S),M) ∼= Hom(S ,M) for any scheme S .

• Replace with Hom(M,Hom(−,S)) ∼= Hom(M,S).

Then M
corepresents M).

• This notion is strictly weaker than representability (we have a
map M→ Hom(−,M) which need not be an isomorphism).

• Need to add that M represents M when restricted to objects
of the form spec k for k algebraically closed.

• M is still universal

called a coarse moduli space.

• This still doesn’t exist for MX ,c in general.
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Two solutions

The Problem: A large group of automorphisms acts rather badly.

Two possible solutions:

1. Restrict the domain to objects where the action is better.

2. Extend the domain so that the action is better.

• Option 1 is the historical solution.

• In practice we attempt to construct the representing object,
eg using GIT.

• This results in a condition to impose (usually called a stability
condition).

• eg for torsion-free coherent sheaves on a curve, we say that E

is stable if
d(F )

r(F )
<

d(E )

r(E )
for all proper subsheaves F .
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But...

• While coarse moduli usually exist, M is not usually complete.

• This can usually be fixed by adding equiv classes of mildly
unstable objects.

• The resulting moduli spaces often have some nasty properties.

• We sometimes fix this by resolving the spaces.

• Still doesn’t capture all objects of interest.

• However, the set of spaces M are generally very useful.

• Now, stability conditions themselves have other applications
(see later)
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Option 2

• View M instead as a 2-functor Sch→ Grpoid.

• M is often a sheaf wrt suitable topologies. These are stacks.

• An object S of Sch can be viewed as the obvious stack
Sch→ Grpoid via Yoneda and the identity maps.

• In a very general setting, given a group G acting on a scheme
S , we can view S/G as a stack. Then MX ,c can be viewed as
a stack.

• Provides a better setting for generalities about geometric
objects related to schemes and is now widely used.

• There are still many technical difficulties (eg need for
algebraic stacks).
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Derived Categories

Definition

• The correct setting for homological algebra (introduced by
Grothedieck in the 1950s to unify a variety of homology
theories).

• Start with an abelian category A and first form C (A), the
category of (co-)complexes of objects of A.

• Define a morphism f of C (A) to be a quasi-isomorphism
(quis) if H i (f ) are isomorphisms for all i .

• Define the derived category D(A) of A to be the localization
C (A)/quis.

• D(A) is additive

but is not generally abelian.

• There is a fully faithful additive functor A→ D(A) given by
mapping and object a to the complex
· · · → 0→ a→ 0→ · · · centred on 0.
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• The localization functor factors through K (A), the category of
maps up to homotopy.

· · · // Ai
d i

A
//

hi

~~}}}}}}}}
f i

��

g i

��

Ai+1 //

hi+1

||zzzzzzzz
f i+1

��

g i+1

��

· · ·

· · · // B i
d i

B
// B i+1 // · · ·

d i−1
B hi + hi+1d i

A = f i − g i for all i .

• In fact, the quis class is localizing in K (A)

and
D(A) ∼= K (A)/quis.

• We can find a subcategory I of A such that K (I ) ∼= D(A).

• Useful to construct (derived) functors on D(A) and to
explicitly compute their cohomology.
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How far away is D(A) from being abelian?

• We certainly don’t have all kernels and cokernels.

• But given a map f : A→ B of complexes there is another
complex C and a monic map B → C and epic map C → A[1],
where A[1] means “shift left by 1”, given by A[1]⊕ B and

differentials

(
−dA[1] 0

f dB

)
.

• If f is the identity map A→ A then (easy exercise) C is
homotopic to 0.

• These induce an exact sequence

· · · → H i (A)→ H i (B)→ H i (C )→ H i+1(A)→ · · ·

• Applied to the cases A = a and B = b in A ⊂ D(A), C is a
twist of coker f ⊕ ker f [1].

• Giving 0→ ker f → a
f−→ b → coker f → 0.
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Triangulated Categories

• The idea of triangulated categories is to abstract the
categorical properties of the derived category

• Observe that D(A) is additive with an automorphism [1].

• There is a special set of diagrams of the form

A→ B → C → A[1]

repeating with shifts in both directions. We call such
diagrams triangles: C

��
�?
�?

A // B

__@@@@

• A map of triangles is just a commuting diagram of maps in
the obvious way.

• Observe that our special triangles have the property that if we
are given maps A→ A′ and B → B ′ commuting with f and f ′

then we have a map C → C ′ which gives a map of triangles.
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• A triangulated category is an additive category with
automorphism [1] which has a distinguished set ∆ of
triangles. These satisfy the following axioms

(1) the triangle a = a→ 0 is in ∆.
(2) any map a→ b can be completed to a triangle in ∆
(3) if a→ b → c → a[1] is in ∆ then so is b → c → a[1]→ b[1],

where one of the maps is minus the corresponding map in the
original triangle.

(4) any diagram

can
be completed to a map of triangles.

(5) any triangle isomorphic to a triangle in ∆ is in ∆.
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(6) Given two triangles in ∆ with a common vertex

a

��

b // c //

��

d // b[1]

e

��

a[1]

we can complete it to a commuting diagram with all rows and
columns in ∆, for which the composites c → e → c ′[1] and
c → d → c ′[1] agree. Called the octahedral axiom: “the
bottom of such an octahedron can be completed to an
octahedron”.
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we can complete it to a commuting diagram with all rows and
columns in ∆, for which the composites c → e → c ′[1] and
c → d → c ′[1] agree. Called the octahedral axiom: “the
bottom of such an octahedron can be completed to an
octahedron”.
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• Triangulated categories form a category with exact functors
(defined to preserve the distinguished triangles).

• Axiom (2) relates to existence of kernels and cokernels.

• Axiom (4) is what is left over of their universal property.

• Axiom (6) relates to the image/coimage of a map:

a // Im f //

��

ker f [1] //

��

a[1]

a f
// b //

��

c //

��

a[1]

coker f coker f

for a map f : a→ b of A ⊂ D(A).
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Definition

Suppose T is a triangulated category and A an abelian category. A
functor F : T → A is cohomological if it is additive and for any
triangle a→ b → c in ∆, F (a)→ F (b)→ F (C ) is exact.

• H0 : D(A)→ A is cohomological.

• Hom(B,−) and Hom(−,B) are cohomological.

• The functor category AbTop

is automatically abelian and the
Yoneda functor is cohomological.

• Define the full subcategory A(T ) of AbTop

to be those
functors which are of the form coker Hom(−, f ). Then
T → A(T ) is the universal cohomological (contravariant)
functor.
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And Back Again

• The special subcategory A of D(A) can be constructed as
follows.

• Define functors τ≤n and τ≥n, D(A)→ D(A) by truncating
complexes at position n:

· · · → An−2 → An−1 → ker dn → 0→ · · ·
· · · → 0→ coker dn → An+1 → An+2 → · · ·

These have the property that for all objects a of D(A), there
is a canonical distinguished triangle τ≤na→ a→ τ≥n+1a.

• Then if D≤n is the full subcategory of D(A) of complexes
with zero cohomology above n, τ≤n provides a right adjoint of
the inclusion D≤n ⊂ D(A).

• and D≥n+1 is the left orthogonal of D≤n

• Then A = D≤0 ∩ D≥0.
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More generally:

• Given an exact subcategory D ⊂ T such that D[1] ⊂ D and
for each object a of T there is a distinguished triangle
a′ → a→ a′′ with a′ in D and a′′ in D⊥. We call this a
t-structure on T .

• Define C = D ∩ D⊥[1], the core or heart of the t-structure.
Then C is abelian.

• The maps a→ a′ and a→ a′′ give well defined functors
τ≤0 : T → D and τ≥0 : T → D⊥[1] which are left (resp.
right) adjoint to the inclusions.

• Then H0
D : T → C defined by a 7→ τ≥0τ≤0a is cohomological.

• C gives us an abelian “viewport” into T .

• For example, ×2 : Z→ Z injects in Ab but there is a core in
D(Ab) for which is does not inject but surjects with kernel
Z2[−1].
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Spaces from Triangulated categories

• Consider a linear triangulated category T .

We assume various
finiteness conditions satisfied by D(Coh(X )).

• We can define a topological (metric) space Stab(T ) as the set
of pairs (Z ,P), where Z : K0(T )→ C is a linear map and
P : R→ sub T a path of full abelian subcategories of T .
These must satisfy:

• For a in P(φ), Z (a) = m(a)e iπφ and E = 0 iff m(a) = 0.
• ∀φ, P(φ+ 1) = P(φ)[1].
• ∀a 6= 0 in T , ∃φ1 > φ2 > · · · > φn and triangles

ai−1 → ai → bi with a0 = 0, an = a and bi in P(φi ).
• for φ1 > φ2, and ai in P(φi ), we have Hom(a1, a2) = 0.

• These are called Bridgeland stability conditions.



Ab Cats Alg Geom Moduli Derived Cats Triangulated Cats And Back Again

Spaces from Triangulated categories

• Consider a linear triangulated category T .

We assume various
finiteness conditions satisfied by D(Coh(X )).

• We can define a topological (metric) space Stab(T ) as the set
of pairs (Z ,P), where Z : K0(T )→ C is a linear map and
P : R→ sub T a path of full abelian subcategories of T .
These must satisfy:

• For a in P(φ), Z (a) = m(a)e iπφ and E = 0 iff m(a) = 0.
• ∀φ, P(φ+ 1) = P(φ)[1].
• ∀a 6= 0 in T , ∃φ1 > φ2 > · · · > φn and triangles

ai−1 → ai → bi with a0 = 0, an = a and bi in P(φi ).
• for φ1 > φ2, and ai in P(φi ), we have Hom(a1, a2) = 0.

• These are called Bridgeland stability conditions.



Ab Cats Alg Geom Moduli Derived Cats Triangulated Cats And Back Again

Spaces from Triangulated categories

• Consider a linear triangulated category T . We assume various
finiteness conditions satisfied by D(Coh(X )).

• We can define a topological (metric) space Stab(T ) as the set
of pairs (Z ,P), where Z : K0(T )→ C is a linear map and
P : R→ sub T a path of full abelian subcategories of T .
These must satisfy:

• For a in P(φ), Z (a) = m(a)e iπφ and E = 0 iff m(a) = 0.
• ∀φ, P(φ+ 1) = P(φ)[1].
• ∀a 6= 0 in T , ∃φ1 > φ2 > · · · > φn and triangles

ai−1 → ai → bi with a0 = 0, an = a and bi in P(φi ).
• for φ1 > φ2, and ai in P(φi ), we have Hom(a1, a2) = 0.

• These are called Bridgeland stability conditions.



Ab Cats Alg Geom Moduli Derived Cats Triangulated Cats And Back Again

Spaces from Triangulated categories

• Consider a linear triangulated category T . We assume various
finiteness conditions satisfied by D(Coh(X )).

• We can define a topological (metric) space Stab(T ) as the set
of pairs (Z ,P), where Z : K0(T )→ C is a linear map and
P : R→ sub T a path of full abelian subcategories of T .
These must satisfy:

• For a in P(φ), Z (a) = m(a)e iπφ and E = 0 iff m(a) = 0.
• ∀φ, P(φ+ 1) = P(φ)[1].
• ∀a 6= 0 in T , ∃φ1 > φ2 > · · · > φn and triangles

ai−1 → ai → bi with a0 = 0, an = a and bi in P(φi ).
• for φ1 > φ2, and ai in P(φi ), we have Hom(a1, a2) = 0.

• These are called Bridgeland stability conditions.



Ab Cats Alg Geom Moduli Derived Cats Triangulated Cats And Back Again

Spaces from Triangulated categories

• Consider a linear triangulated category T . We assume various
finiteness conditions satisfied by D(Coh(X )).

• We can define a topological (metric) space Stab(T ) as the set
of pairs (Z ,P), where Z : K0(T )→ C is a linear map and
P : R→ sub T a path of full abelian subcategories of T .
These must satisfy:

• For a in P(φ), Z (a) = m(a)e iπφ and E = 0 iff m(a) = 0.

• ∀φ, P(φ+ 1) = P(φ)[1].
• ∀a 6= 0 in T , ∃φ1 > φ2 > · · · > φn and triangles

ai−1 → ai → bi with a0 = 0, an = a and bi in P(φi ).
• for φ1 > φ2, and ai in P(φi ), we have Hom(a1, a2) = 0.

• These are called Bridgeland stability conditions.



Ab Cats Alg Geom Moduli Derived Cats Triangulated Cats And Back Again

Spaces from Triangulated categories

• Consider a linear triangulated category T . We assume various
finiteness conditions satisfied by D(Coh(X )).

• We can define a topological (metric) space Stab(T ) as the set
of pairs (Z ,P), where Z : K0(T )→ C is a linear map and
P : R→ sub T a path of full abelian subcategories of T .
These must satisfy:

• For a in P(φ), Z (a) = m(a)e iπφ and E = 0 iff m(a) = 0.
• ∀φ, P(φ+ 1) = P(φ)[1].

• ∀a 6= 0 in T , ∃φ1 > φ2 > · · · > φn and triangles
ai−1 → ai → bi with a0 = 0, an = a and bi in P(φi ).

• for φ1 > φ2, and ai in P(φi ), we have Hom(a1, a2) = 0.

• These are called Bridgeland stability conditions.



Ab Cats Alg Geom Moduli Derived Cats Triangulated Cats And Back Again

Spaces from Triangulated categories

• Consider a linear triangulated category T . We assume various
finiteness conditions satisfied by D(Coh(X )).

• We can define a topological (metric) space Stab(T ) as the set
of pairs (Z ,P), where Z : K0(T )→ C is a linear map and
P : R→ sub T a path of full abelian subcategories of T .
These must satisfy:

• For a in P(φ), Z (a) = m(a)e iπφ and E = 0 iff m(a) = 0.
• ∀φ, P(φ+ 1) = P(φ)[1].
• ∀a 6= 0 in T , ∃φ1 > φ2 > · · · > φn and triangles

ai−1 → ai → bi with a0 = 0, an = a and bi in P(φi ).

• for φ1 > φ2, and ai in P(φi ), we have Hom(a1, a2) = 0.

• These are called Bridgeland stability conditions.



Ab Cats Alg Geom Moduli Derived Cats Triangulated Cats And Back Again

Spaces from Triangulated categories

• Consider a linear triangulated category T . We assume various
finiteness conditions satisfied by D(Coh(X )).

• We can define a topological (metric) space Stab(T ) as the set
of pairs (Z ,P), where Z : K0(T )→ C is a linear map and
P : R→ sub T a path of full abelian subcategories of T .
These must satisfy:

• For a in P(φ), Z (a) = m(a)e iπφ and E = 0 iff m(a) = 0.
• ∀φ, P(φ+ 1) = P(φ)[1].
• ∀a 6= 0 in T , ∃φ1 > φ2 > · · · > φn and triangles

ai−1 → ai → bi with a0 = 0, an = a and bi in P(φi ).
• for φ1 > φ2, and ai in P(φi ), we have Hom(a1, a2) = 0.

• These are called Bridgeland stability conditions.



Ab Cats Alg Geom Moduli Derived Cats Triangulated Cats And Back Again

Spaces from Triangulated categories

• Consider a linear triangulated category T . We assume various
finiteness conditions satisfied by D(Coh(X )).

• We can define a topological (metric) space Stab(T ) as the set
of pairs (Z ,P), where Z : K0(T )→ C is a linear map and
P : R→ sub T a path of full abelian subcategories of T .
These must satisfy:

• For a in P(φ), Z (a) = m(a)e iπφ and E = 0 iff m(a) = 0.
• ∀φ, P(φ+ 1) = P(φ)[1].
• ∀a 6= 0 in T , ∃φ1 > φ2 > · · · > φn and triangles

ai−1 → ai → bi with a0 = 0, an = a and bi in P(φi ).
• for φ1 > φ2, and ai in P(φi ), we have Hom(a1, a2) = 0.

• These are called Bridgeland stability conditions.



Ab Cats Alg Geom Moduli Derived Cats Triangulated Cats And Back Again

• The ai s are unique (up to isomorphism) and so φi are also
unique. We let φ+ = φ1 and φ− = φn.

• We can extend P to a map of interval (x , y) of reals via the
full subcats of objects a s.t. x < φ−(a) ≤ φ+(a) < y .

• P((0, 1]) is the core of a bounded t-structure on T .

• Conversely, given a bounded t-structure with core C and a
linear map Z : K0(C )→ C, such that Z (c) = m(c)e iπφ(c)

with 0 < φ(c) ≤ 1 and m(c) > 0 if c 6= 0. We define c to be
semistable if for all proper monics a→ c in C φ(a) ≤ φ(c).
Then Z extends to (Z ,P) is a stability condition, where
P(φ) ⊂ C are the semistable objects of phase φ.

• We then have a continuously varying family of abelian
subcategories of T .

• For example, on a curve we can choose Z (a) = −d(a) + ir(a)
and then the standard t-structure is P((0, 1]).
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• We can extend P to a map of interval (x , y) of reals via the
full subcats of objects a s.t. x < φ−(a) ≤ φ+(a) < y .
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Concluding Remarks

• Recently category theory has provided essential tools for AG.

• Some tools already well developed (fibred categories, higher
category theory, Grothedieck toposes, abelian categories).

• Some tools required additional development (triangulated
categories, t-structures, stability conditions)

• The key additional feature is the need to measure objects (on
a real or integral scale)

• Powerful deformation arguments common in AG may see
applications in category theory.

THE END
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