

Triangulated Categories in Algebraic Geometry

Antony Maciocia

May 21, 2010

(4日) (個) (目) (目) (目) (の)

Issues in Algebraic Geometry

Moduli Problems

Issues in Algebraic Geometry

Moduli Problems

Derived Categories

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Abelian Categories

Issues in Algebraic Geometry

Moduli Problems

Derived Categories

Triangulated Categories

Issues in Algebraic Geometry

Moduli Problems

Derived Categories

Triangulated Categories

And Back Again

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

• Introduced by Grothedieck in 1950s to unify homological algebra

Ab Cats

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Abelian Categories

- Introduced by Grothedieck in 1950s to unify homological algebra
- Associate abelian group type object to spaces via co-chain complexes:

$$\cdots C^{i-1}(X) \xrightarrow{d^{i-1}} C^i(X) \xrightarrow{d^i} C^{i+1}(X) \cdots,$$

where $d^i \circ d^{i-1} = 0$.

Abelian Categories

- Introduced by Grothedieck in 1950s to unify homological algebra
- Associate abelian group type object to spaces via co-chain complexes:

$$\cdots C^{i-1}(X) \xrightarrow{d^{i-1}} C^i(X) \xrightarrow{d^i} C^{i+1}(X) \cdots,$$

where $d^i \circ d^{i-1} = 0$.

Ab Cats

• The cohomology is then $H^i(X) = \frac{\ker d^i}{\operatorname{Im} d^{i-1}}$, measures how inexact the complex is.

- Introduced by Grothedieck in 1950s to unify homological algebra
- Associate abelian group type object to spaces via co-chain complexes:

$$\cdots C^{i-1}(X) \xrightarrow{d^{i-1}} C^i(X) \xrightarrow{d^i} C^{i+1}(X) \cdots,$$

where $d^i \circ d^{i-1} = 0$.

Ab Cats

- The cohomology is then $H^{i}(X) = \frac{\ker d^{i}}{\operatorname{Im} d^{i-1}}$, measures how inexact the complex is.
- This process is functorial.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

And Back Again

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Definition

An abelian category is a category \underline{A} satisfying (1) \underline{A} is additive:

Definition

An abelian category is a category \underline{A} satisfying

(1) \underline{A} is additive: each set of morphisms is an abelian group (and composition is bilinear), there is a biproduct and a zero object.

Definition

An abelian category is a category \underline{A} satisfying

- (1) \underline{A} is additive: each set of morphisms is an abelian group (and composition is bilinear), there is a biproduct and a zero object.
- (2) \underline{A} has all equalisers and all monics are equalisers, and dually.

Definition

An abelian category is a category \underline{A} satisfying

- (1) \underline{A} is additive: each set of morphisms is an abelian group (and composition is bilinear), there is a biproduct and a zero object.
- (2) \underline{A} has all equalisers and all monics are equalisers, and dually.

Definition

An abelian category is a category \underline{A} satisfying

- <u>A</u> is additive: each set of morphisms is an abelian group (and composition is bilinear), there is a biproduct and a zero object.
- (2) \underline{A} has all equalisers and all monics are equalisers, and dually.

Notes

• (2) tells us that all maps have kernels, cokernels and images and that "monic+epic=isom".

Definition

An abelian category is a category \underline{A} satisfying

- (1) <u>A</u> is additive: each set of morphisms is an abelian group (and composition is bilinear), there is a biproduct and a zero object.
- (2) \underline{A} has all equalisers and all monics are equalisers, and dually.

- (2) tells us that all maps have kernels, cokernels and images and that "monic+epic=isom".
- Some conditions are redundant.

Definition

An abelian category is a category \underline{A} satisfying

- (1) \underline{A} is additive: each set of morphisms is an abelian group (and composition is bilinear), there is a biproduct and a zero object.
- (2) \underline{A} has all equalisers and all monics are equalisers, and dually.

- (2) tells us that all maps have kernels, cokernels and images and that "monic+epic=isom".
- Some conditions are redundant.
- Functors between abelian categories are exact if they preserve the additive structure, kernels and cokernels.

Definition

An abelian category is a category \underline{A} satisfying

- (1) \underline{A} is additive: each set of morphisms is an abelian group (and composition is bilinear), there is a biproduct and a zero object.
- (2) \underline{A} has all equalisers and all monics are equalisers, and dually.

- (2) tells us that all maps have kernels, cokernels and images and that "monic+epic=isom".
- Some conditions are redundant.
- Functors between abelian categories are exact if they preserve the additive structure, kernels and cokernels.
- Examples: <u>Ab</u>, <u>R-mod</u>, <u>Vect_k</u>.

Definition

An abelian category is a category \underline{A} satisfying

- (1) <u>A</u> is additive: each set of morphisms is an abelian group (and composition is bilinear), there is a biproduct and a zero object.
- (2) \underline{A} has all equalisers and all monics are equalisers, and dually.

- (2) tells us that all maps have kernels, cokernels and images and that "monic+epic=isom".
- Some conditions are redundant.
- Functors between abelian categories are exact if they preserve the additive structure, kernels and cokernels.
- Examples: <u>Ab</u>, <u>R-mod</u>, <u>Vect_k</u>.
- <u>AbCat</u> is the (lax 2-)category of abelian categories with exact functors.

Definition

An abelian category is a category \underline{A} satisfying

- (1) \underline{A} is additive: each set of morphisms is an abelian group (and composition is bilinear), there is a biproduct and a zero object.
- (2) <u>A</u> has all equalisers and all monics are equalisers, and dually.

- (2) tells us that all maps have kernels, cokernels and images and that "monic+epic=isom".
- Some conditions are redundant.
- Functors between abelian categories are exact if they preserve the additive structure, kernels and cokernels.
- Examples: <u>Ab</u>, <u>R-mod</u>, <u>Vect_k</u>.
- <u>AbCat</u> is the (lax 2-)category of abelian categories with exact functors.
- Any abelian category <u>A</u> admits an exact full embedding in <u>Ab</u>.

Some constructions in abelian categories

Some constructions in abelian categories

A pair of composable maps $f : a \to b$ and $g : b \to c$ is exact at b if Im(f) = ker(g).

eg

$$0 \to \ker f \to a \xrightarrow{f} b \to \operatorname{coker} f \to 0$$

is exact at all places.

Some constructions in abelian categories

A pair of composable maps $f : a \to b$ and $g : b \to c$ is exact at b if Im(f) = ker(g).

eg

$$0 \rightarrow \ker f \rightarrow a \xrightarrow{f} b \rightarrow \operatorname{coker} f \rightarrow 0$$

is exact at all places.

We can define cohomology as before and it measures how a complex fails to be exact.

Some constructions in abelian categories

A pair of composable maps $f : a \to b$ and $g : b \to c$ is exact at b if Im(f) = ker(g).

eg

 $0 \to \ker f \to a \xrightarrow{f} b \to \operatorname{coker} f \to 0$

is exact at all places.

We can define cohomology as before and it measures how a complex fails to be exact.

Let A, B and C be complexes and suppose $0 \to A \to B \to C \to 0$ is exact (we say short exact) then there is a canonical map $H^i(C) \to H^{i+1}(A)$ such that the resulting sequence

 $\cdots \rightarrow H^{i}(A) \rightarrow H^{i}(B) \rightarrow H^{i}(C) \rightarrow H^{i+1}(A) \rightarrow H^{i+1}(B) \rightarrow \cdots$

is exact.

Ab Cats	Alg Geom	Moduli	Derived Cats	Triangulated Cats	And Back Again
		Issues in J	Algebraic	Geometry	

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Issues in Algebraic Geometry

• Categories of objects of interest: <u>Var</u>, <u>Sch</u>, <u>Sch</u>/S, <u>Sch</u>/k.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Categories of objects of interest: <u>Var</u>, <u>Sch</u>, <u>Sch</u>/S, <u>Sch</u>/k.
- A scheme is a locally ringed space which is locally spec of a ring.

- Categories of objects of interest: <u>Var</u>, <u>Sch</u>, <u>Sch/S</u>, <u>Sch/k</u>.
- A scheme is a locally ringed space which is locally spec of a ring.
- $\underline{\mathrm{Sch}}$ has terminal object spec $\mathbb Z$ and all pullbacks.

- Categories of objects of interest: <u>Var</u>, <u>Sch</u>, <u>Sch/S</u>, <u>Sch/k</u>.
- A scheme is a locally ringed space which is locally spec of a ring.
- $\underline{\mathrm{Sch}}$ has terminal object spec $\mathbb Z$ and all pullbacks.
- Can also consider other morphisms: birational maps and associated equivalence.

- Categories of objects of interest: <u>Var</u>, <u>Sch</u>, <u>Sch/S</u>, <u>Sch/k</u>.
- A scheme is a locally ringed space which is locally spec of a ring.
- $\underline{\mathrm{Sch}}$ has terminal object spec $\mathbb Z$ and all pullbacks.
- Can also consider other morphisms: birational maps and associated equivalence.
- Well developed theory of dimension.

- Categories of objects of interest: <u>Var</u>, <u>Sch</u>, <u>Sch/S</u>, <u>Sch/k</u>.
- A scheme is a locally ringed space which is locally spec of a ring.
- $\underline{\mathrm{Sch}}$ has terminal object spec $\mathbb Z$ and all pullbacks.
- Can also consider other morphisms: birational maps and associated equivalence.
- Well developed theory of dimension.
- Schemes come with structure sheaves \mathcal{O}_X . Can consider $\underline{\mathcal{O}_X \text{mod}}$. Restrict to finitely presented modules: <u>Coh(X)</u>.

- Categories of objects of interest: <u>Var</u>, <u>Sch</u>, <u>Sch/S</u>, <u>Sch/k</u>.
- A scheme is a locally ringed space which is locally spec of a ring.
- $\underline{\mathrm{Sch}}$ has terminal object spec $\mathbb Z$ and all pullbacks.
- Can also consider other morphisms: birational maps and associated equivalence.
- Well developed theory of dimension.
- Schemes come with structure sheaves O_X. Can consider
 O_X -mod. Restrict to finitely presented modules: Coh(X).
- <u>Coh(X)</u> is abelian.

- Categories of objects of interest: <u>Var</u>, <u>Sch</u>, <u>Sch/S</u>, <u>Sch/k</u>.
- A scheme is a locally ringed space which is locally spec of a ring.
- $\underline{\mathrm{Sch}}$ has terminal object spec $\mathbb Z$ and all pullbacks.
- Can also consider other morphisms: birational maps and associated equivalence.
- Well developed theory of dimension.
- Schemes come with structure sheaves O_X. Can consider
 O_X -mod. Restrict to finitely presented modules: Coh(X).
- <u>Coh(X)</u> is abelian.
- There are cohomology functors $\underline{\operatorname{Coh}(X)} \to \underline{\operatorname{Ab}}^{\mathbb{N}}$ with $H^0 = \Gamma$, the global sections functor.

Extracting Geometrical Information

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → のへで
Example

Let X be a 2 dimensional (projective) variety. A curve on X can be viewed as the zero set of an algebraic map $s : \mathcal{O}_X \to L$, where L is a suitable (locally-free) rank 1 \mathcal{O}_X -module.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example

Let X be a 2 dimensional (projective) variety. A curve on X can be viewed as the zero set of an algebraic map $s : \mathcal{O}_X \to L$, where L is a suitable (locally-free) rank 1 \mathcal{O}_X -module.

Given some points $Y \subset X$, we can consider the sheaf \mathcal{O}_Y as an object of $\underline{Coh}(X)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example

Let X be a 2 dimensional (projective) variety. A curve on X can be viewed as the zero set of an algebraic map $s : \mathcal{O}_X \to L$, where L is a suitable (locally-free) rank 1 \mathcal{O}_X -module.

Given some points $Y \subset X$, we can consider the sheaf \mathcal{O}_Y as an object of $\underline{Coh}(X)$.

Then the restriction map $L \to \mathcal{O}_Y$ is epic and its kernel K has the property that elements of $H^0(K)$ which map to s correspond precisely to incidence of Y on our curve.

Example

Let X be a 2 dimensional (projective) variety. A curve on X can be viewed as the zero set of an algebraic map $s : \mathcal{O}_X \to L$, where L is a suitable (locally-free) rank 1 \mathcal{O}_X -module.

Given some points $Y \subset X$, we can consider the sheaf \mathcal{O}_Y as an object of $\underline{Coh}(X)$.

Then the restriction map $L \to \mathcal{O}_Y$ is epic and its kernel K has the property that elements of $H^0(K)$ which map to s correspond precisely to incidence of Y on our curve.

Estimating the size of $H^0(K)$ is then useful to determine incidence properties.

Ab Cats	Alg Geom	Moduli	Derived Cats	Triangulated Cats	And Back Again
			Invariants		

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Example

Dimension 1 projective varieties can be classified into type according to a non-negative integer called its genus. Loosely, the genus corresponds to the number of holes in the space:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example

Dimension 1 projective varieties can be classified into type according to a non-negative integer called its genus. Loosely, the genus corresponds to the number of holes in the space:

More generally, we can find a range of numerical invariants and, more generally, cohomology classes (characteristic classes) which allow us to crudely classify both schemes and sheaves on schemes.

Ab Cats	Alg Geom	Moduli	Derived Cats	Triangulated Cats	And Back Again
		Мо	duli Proble	ms	

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のみの

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Moduli Problems

- Consider an object ${\mathcal M}$ in $\underline{\operatorname{Set}}^{\operatorname{Sch}^{\operatorname{op}}}$ of the form

 $\mathcal{M}(S) = \{ \text{objects over } S \text{ under pullback} \}$

Moduli Problems

- Consider an object ${\mathcal M}$ in $\underline{\operatorname{Set}}^{\operatorname{Sch}^{\operatorname{op}}}$ of the form

 $\mathcal{M}(S) = \{ \text{objects over } S \text{ under pullback} \}$

 If such a functor is representable then there is a scheme M and natural isomorphism M ≅ Hom(−, M).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Moduli Problems

- Consider an object ${\mathcal M}$ in $\underline{\operatorname{Set}}^{\underline{\operatorname{Sch}}^{\operatorname{op}}}$ of the form

Moduli

 $\mathcal{M}(S) = \{ \text{objects over } S \text{ under pullback} \}$

- If such a functor is representable then there is a scheme M and natural isomorphism M ≅ Hom(−, M).
- This means there is some object E over M such that for all schemes S and E ∈ M(S), there is a map f : S → M such that E = f*E and M is universal for such objects.

Moduli Problems

- Consider an object ${\mathcal M}$ in $\underline{\operatorname{Set}}^{\underline{\operatorname{Sch}}^{\operatorname{op}}}$ of the form

Moduli

 $\mathcal{M}(S) = \{ \text{objects over } S \text{ under pullback} \}$

- If such a functor is representable then there is a scheme M and natural isomorphism M ≅ Hom(−, M).
- This means there is some object E over M such that for all schemes S and E ∈ M(S), there is a map f : S → M such that E = f*E and M is universal for such objects.
- eg. for a scheme X,

 $\mathcal{M}_{X,c}(S) = \{ \text{coherent sheaves with fixed char class } c \text{ on } S \times X \}.$

Moduli Problems

- Consider an object ${\mathcal M}$ in $\underline{\operatorname{Set}}^{\underline{\operatorname{Sch}}^{\operatorname{op}}}$ of the form

Moduli

 $\mathcal{M}(S) = \{ \text{objects over } S \text{ under pullback} \}$

- If such a functor is representable then there is a scheme M and natural isomorphism M ≅ Hom(−, M).
- This means there is some object 𝔅 over M such that for all schemes S and E ∈ M(S), there is a map f : S → M such that E = f*𝔅 and M is universal for such objects.
- eg. for a scheme X,

 $\mathcal{M}_{X,c}(S) = \{ \text{coherent sheaves with fixed char class } c \text{ on } S \times X \}.$

• But $\mathcal{M}_{X,c}$ is not representable.

Moduli Problems

- Consider an object ${\mathcal M}$ in $\underline{\operatorname{Set}}^{\underline{\operatorname{Sch}}^{\operatorname{op}}}$ of the form

Moduli

 $\mathcal{M}(S) = \{ \text{objects over } S \text{ under pullback} \}$

- If such a functor is representable then there is a scheme M and natural isomorphism M ≅ Hom(−, M).
- This means there is some object E over M such that for all schemes S and E ∈ M(S), there is a map f : S → M such that E = f*E and M is universal for such objects.
- eg. for a scheme X,

 $\mathcal{M}_{X,c}(S) = \{ \text{coherent sheaves with fixed char class } c \text{ on } S \times X \}.$

- But $\mathcal{M}_{X,c}$ is not representable.
- Partly fix by tweaking the moduli functor (to make *M* into a sheaf in a suitable subcanonical topology on <u>Sch</u>).

Ab Cats	Alg Geom	Moduli	Derived Cats	Triangulated Cats	And Back A

• The key for AG is the existence of a universal object. This is weaker than asking that ${\cal M}$ be representable.

Moduli

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The key for AG is the existence of a universal object. This is weaker than asking that ${\cal M}$ be representable.
- For representability we have $Hom(Hom(-, S), M) \cong Hom(S, M)$ for any scheme S.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- The key for AG is the existence of a universal object. This is weaker than asking that ${\cal M}$ be representable.
- For representability we have $Hom(Hom(-, S), M) \cong Hom(S, M)$ for any scheme S.
- Replace with $\operatorname{Hom}(\mathcal{M}, \operatorname{Hom}(-, S)) \cong \operatorname{Hom}(\mathcal{M}, S)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- The key for AG is the existence of a universal object. This is weaker than asking that ${\cal M}$ be representable.
- For representability we have $Hom(Hom(-, S), M) \cong Hom(S, M)$ for any scheme S.
- Replace with Hom(M, Hom(−, S)) ≅ Hom(M, S). Then M corepresents M).

Moduli

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The key for AG is the existence of a universal object. This is weaker than asking that ${\cal M}$ be representable.
- For representability we have $Hom(Hom(-, S), M) \cong Hom(S, M)$ for any scheme S.
- Replace with Hom(M, Hom(−, S)) ≅ Hom(M, S). Then M corepresents M).
- This notion is strictly weaker than representability (we have a map *M* → Hom(−, *M*) which need not be an isomorphism).

Moduli

- The key for AG is the existence of a universal object. This is weaker than asking that ${\cal M}$ be representable.
- For representability we have $Hom(Hom(-, S), M) \cong Hom(S, M)$ for any scheme S.
- Replace with Hom(M, Hom(−, S)) ≅ Hom(M, S). Then M corepresents M).
- This notion is strictly weaker than representability (we have a map $\mathcal{M} \to \operatorname{Hom}(-, M)$ which need not be an isomorphism).
- Need to add that *M* represents *M* when restricted to objects of the form spec *k* for *k* algebraically closed.

Moduli

- The key for AG is the existence of a universal object. This is weaker than asking that ${\cal M}$ be representable.
- For representability we have $Hom(Hom(-, S), M) \cong Hom(S, M)$ for any scheme S.
- Replace with Hom(M, Hom(−, S)) ≅ Hom(M, S). Then M corepresents M).
- This notion is strictly weaker than representability (we have a map *M* → Hom(−, *M*) which need not be an isomorphism).
- Need to add that *M* represents *M* when restricted to objects of the form spec *k* for *k* algebraically closed.
- *M* is still universal

Moduli

- The key for AG is the existence of a universal object. This is weaker than asking that ${\cal M}$ be representable.
- For representability we have $Hom(Hom(-, S), M) \cong Hom(S, M)$ for any scheme S.
- Replace with Hom(M, Hom(−, S)) ≅ Hom(M, S). Then M corepresents M).
- This notion is strictly weaker than representability (we have a map *M* → Hom(−, *M*) which need not be an isomorphism).
- Need to add that *M* represents *M* when restricted to objects of the form spec *k* for *k* algebraically closed.
- *M* is still universal called a coarse moduli space.

Moduli

- The key for AG is the existence of a universal object. This is weaker than asking that ${\cal M}$ be representable.
- For representability we have $Hom(Hom(-, S), M) \cong Hom(S, M)$ for any scheme S.
- Replace with Hom(M, Hom(−, S)) ≅ Hom(M, S). Then M corepresents M).
- This notion is strictly weaker than representability (we have a map *M* → Hom(−, *M*) which need not be an isomorphism).
- Need to add that *M* represents *M* when restricted to objects of the form spec *k* for *k* algebraically closed.
- *M* is still universal called a coarse moduli space.
- This still doesn't exist for $\mathcal{M}_{X,c}$ in general.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two solutions

The Problem: A large group of automorphisms acts

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two solutions

The Problem: A large group of automorphisms acts rather badly.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two solutions

The Problem: A large group of automorphisms acts rather badly. Two possible solutions:

1. Restrict the domain to objects where the action is better.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Two solutions

- 1. Restrict the domain to objects where the action is better.
- 2. Extend the domain so that the action is better.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Two solutions

- 1. Restrict the domain to objects where the action is better.
- 2. Extend the domain so that the action is better.

Two solutions

- 1. Restrict the domain to objects where the action is better.
- 2. Extend the domain so that the action is better.
- Option 1 is the historical solution.

Moduli

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Two solutions

- 1. Restrict the domain to objects where the action is better.
- 2. Extend the domain so that the action is better.
- Option 1 is the historical solution.
- In practice we attempt to construct the representing object, eg using GIT.

Two solutions

- 1. Restrict the domain to objects where the action is better.
- 2. Extend the domain so that the action is better.
- Option 1 is the historical solution.
- In practice we attempt to construct the representing object, eg using GIT.
- This results in a condition to impose (usually called a stability condition).

Moduli

Two solutions

- 1. Restrict the domain to objects where the action is better.
- 2. Extend the domain so that the action is better.
- Option 1 is the historical solution.
- In practice we attempt to construct the representing object, eg using GIT.
- This results in a condition to impose (usually called a stability condition).
- eg for torsion-free coherent sheaves on a curve, we say that E is stable if $\frac{d(F)}{r(F)} < \frac{d(E)}{r(E)}$ for all proper subsheaves F.

Ab Cats	Alg Geom	Moduli	Derived Cats	Triangulated Cats	And Back Again
			But		

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Ab Cats	Alg Geom	Moduli	Derived Cats	Triangulated Cats	And Back Again
			But		

• While coarse moduli usually exist, M is not usually complete.

Ab Cats	Alg Geom	Moduli	Derived Cats	Triangulated Cats	And Back Again
			But		

• While coarse moduli usually exist, M is not usually complete.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• This can usually be fixed by adding equiv classes of mildly unstable objects.
Ab Cats	Alg Geom	Moduli	Derived Cats	Triangulated Cats	And Back Again
			But		
	VA /I				

- While coarse moduli usually exist, *M* is not usually complete.
- This can usually be fixed by adding equiv classes of mildly unstable objects.
- The resulting moduli spaces often have some nasty properties.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ab Cats	Alg Geom	Moduli	Derived Cats	Triangulated Cats	And Back Again
			But		
•	While coars	se moduli u	sually exist, M	is not usually co	omplete.

- This can usually be fixed by adding equiv classes of mildly unstable objects.
- The resulting moduli spaces often have some nasty properties.

• We sometimes fix this by resolving the spaces.

Ab Cats	Alg Geom	Moduli	Derived Cats	Triangulated Cats	And Back Again
			But		
•	While coars	se moduli u	sually exist, M	is not usually co	omplete.

- This can usually be fixed by adding equiv classes of mildly unstable objects.
- The resulting moduli spaces often have some nasty properties.

- We sometimes fix this by resolving the spaces.
- Still doesn't capture all objects of interest.

Ab Cats	Alg Geom	Moduli	Derived Cats	Triangulated Cats	And Back Again
			But		
	• While coars	se moduli u	sually exist, M	is not usually co	omplete.

- This can usually be fixed by adding equiv classes of mildly
 - unstable objects.
- The resulting moduli spaces often have some nasty properties.

- We sometimes fix this by resolving the spaces.
- Still doesn't capture all objects of interest.
- However, the set of spaces M are generally very useful.

Ab Cats	Alg Geom	Moduli	Derived Cats	Triangulated Cats	And Back Again
			But		
	• While coars	se moduli u	sually exist, M	is not usually co	omplete.

- This can usually be fixed by adding equiv classes of mildly
 - unstable objects.
- The resulting moduli spaces often have some nasty properties.
- We sometimes fix this by resolving the spaces.
- Still doesn't capture all objects of interest.
- However, the set of spaces M are generally very useful.
- Now, stability conditions themselves have other applications (see later)

Ab Cats	Alg Geom	Moduli	Derived Cats	Triangulated Cats	And Back Again
			Option 2		

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Ab Cats	Alg Geom	Moduli	Derived Cats	Triangulated Cats	And Back Agair
			Option 2		

• View \mathcal{M} instead as a 2-functor $\underline{\mathrm{Sch}} \to \underline{\mathrm{Grpoid}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

Able	
AD CI	215

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- View \mathcal{M} instead as a 2-functor $\underline{Sch} \rightarrow \underline{Crpoid}$.
- ${\mathcal M}$ is often a sheaf wrt suitable topologies. These are stacks.

 <u> </u>	
1 2+0	
Vidis	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- View \mathcal{M} instead as a 2-functor $\underline{Sch} \rightarrow \underline{Crpoid}$.
- \mathcal{M} is often a sheaf wrt suitable topologies. These are stacks.
- An object S of Sch can be viewed as the obvious stack $\underline{Sch} \rightarrow \underline{Grpoid}$ via Yoneda and the identity maps.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- View \mathcal{M} instead as a 2-functor $\underline{Sch} \rightarrow \underline{Crpoid}$.
- \mathcal{M} is often a sheaf wrt suitable topologies. These are stacks.
- An object S of Sch can be viewed as the obvious stack $\underline{Sch} \rightarrow \underline{Grpoid}$ via Yoneda and the identity maps.
- In a very general setting, given a group G acting on a scheme S, we can view S/G as a stack. Then $\mathcal{M}_{X,c}$ can be viewed as a stack.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- View \mathcal{M} instead as a 2-functor $\underline{\operatorname{Sch}} \to \underline{\operatorname{Grpoid}}$.
- \mathcal{M} is often a sheaf wrt suitable topologies. These are stacks.
- An object S of Sch can be viewed as the obvious stack $\underline{Sch} \rightarrow \underline{Grpoid}$ via Yoneda and the identity maps.
- In a very general setting, given a group G acting on a scheme S, we can view S/G as a stack. Then $\mathcal{M}_{X,c}$ can be viewed as a stack.
- Provides a better setting for generalities about geometric objects related to schemes and is now widely used.

- View \mathcal{M} instead as a 2-functor $\underline{Sch} \rightarrow \underline{Crpoid}$.
- \mathcal{M} is often a sheaf wrt suitable topologies. These are stacks.
- An object S of Sch can be viewed as the obvious stack $\underline{Sch} \rightarrow \underline{Grpoid}$ via Yoneda and the identity maps.
- In a very general setting, given a group G acting on a scheme S, we can view S/G as a stack. Then $\mathcal{M}_{X,c}$ can be viewed as a stack.
- Provides a better setting for generalities about geometric objects related to schemes and is now widely used.
- There are still many technical difficulties (eg need for algebraic stacks).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

• The correct setting for homological algebra (introduced by Grothedieck in the 1950s to unify a variety of homology theories).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition

- The correct setting for homological algebra (introduced by Grothedieck in the 1950s to unify a variety of homology theories).
- Start with an abelian category <u>A</u> and first form <u>C(A)</u>, the category of (co-)complexes of objects of <u>A</u>.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition

- The correct setting for homological algebra (introduced by Grothedieck in the 1950s to unify a variety of homology theories).
- Start with an abelian category <u>A</u> and first form <u>C(A)</u>, the category of (co-)complexes of objects of <u>A</u>.
- Define a morphism f of <u>C(A)</u> to be a quasi-isomorphism (quis) if $H^i(f)$ are isomorphisms for all i.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition

- The correct setting for homological algebra (introduced by Grothedieck in the 1950s to unify a variety of homology theories).
- Start with an abelian category <u>A</u> and first form <u>C(A)</u>, the category of (co-)complexes of objects of <u>A</u>.
- Define a morphism f of $\underline{C(A)}$ to be a quasi-isomorphism (quis) if $H^{i}(f)$ are isomorphisms for all i.
- Define the derived category $\underline{D(A)}$ of A to be the localization $\underline{C(A)}/\text{quis.}$

Definition

- The correct setting for homological algebra (introduced by Grothedieck in the 1950s to unify a variety of homology theories).
- Start with an abelian category <u>A</u> and first form <u>C(A)</u>, the category of (co-)complexes of objects of <u>A</u>.
- Define a morphism f of $\underline{C(A)}$ to be a quasi-isomorphism (quis) if $H^{i}(f)$ are isomorphisms for all i.
- Define the derived category $\underline{D(A)}$ of A to be the localization $\underline{C(A)}/\text{quis.}$

<u>D(A)</u> is additive

Definition

- The correct setting for homological algebra (introduced by Grothedieck in the 1950s to unify a variety of homology theories).
- Start with an abelian category <u>A</u> and first form <u>C(A)</u>, the category of (co-)complexes of objects of <u>A</u>.
- Define a morphism f of $\underline{C(A)}$ to be a quasi-isomorphism (quis) if $H^{i}(f)$ are isomorphisms for all i.
- Define the derived category $\underline{D(A)}$ of A to be the localization $\underline{C(A)}/\text{quis.}$

• $\underline{D(A)}$ is additive but is not generally abelian.

Definition

- The correct setting for homological algebra (introduced by Grothedieck in the 1950s to unify a variety of homology theories).
- Start with an abelian category <u>A</u> and first form <u>C(A)</u>, the category of (co-)complexes of objects of <u>A</u>.
- Define a morphism f of $\underline{C(A)}$ to be a quasi-isomorphism (quis) if $H^i(f)$ are isomorphisms for all i.
- Define the derived category $\underline{D(A)}$ of A to be the localization $\underline{C(A)}/\text{quis.}$
- $\underline{D(A)}$ is additive but is not generally abelian.
- There is a fully faithful additive functor <u>A</u> → <u>D(A)</u> given by mapping and object a to the complex
 ... → 0 → a → 0 → ... centred on 0.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 The localization functor factors through <u>K(A)</u>, the category of maps up to homotopy.

$$d_B^{i-1}h^i + h^{i+1}d_A^i = f^i - g^i \text{ for all } i.$$

 The localization functor factors through <u>K(A)</u>, the category of maps up to homotopy.

$$d_B^{i-1}h^i + h^{i+1}d_A^i = f^i - g^i$$
 for all *i*.

• In fact, the quis class is localizing in $\underline{K(A)}$

 The localization functor factors through <u>K(A)</u>, the category of maps up to homotopy.

$$d_B^{i-1}h^i + h^{i+1}d_A^i = f^i - g^i$$
 for all i .

• In fact, the quis class is localizing in $\underline{K(A)}$ and $\underline{D(A)} \cong \underline{K(A)}/quis$.

• The localization functor factors through K(A), the category of maps up to homotopy.

$$d_B^{i-1}h^i + h^{i+1}d_A^i = f^i - g^i$$
 for all i .

- In fact, the quis class is localizing in K(A) and $D(A) \cong K(A)/quis.$
- We can find a subcategory <u>I</u> of <u>A</u> such that <u>K(I)</u> ≅ <u>D(A)</u>.

 The localization functor factors through <u>K(A)</u>, the category of maps up to homotopy.

$$d_B^{i-1}h^i + h^{i+1}d_A^i = f^i - g^i$$
 for all i .

- In fact, the quis class is localizing in $\underline{K(A)}$ and $\underline{D(A)} \cong \underline{K(A)}/quis$.
- We can find a subcategory \underline{I} of \underline{A} such that $\underline{K(I)} \cong \underline{D(A)}$.
- Useful to construct (derived) functors on <u>D(A)</u> and to explicitly compute their cohomology.

Ab Cats

N

Alg Geom

Derived Cats

Triangulated Cats

And Back Again

How far away is $\underline{D(A)}$ from being abelian?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How far away is $\underline{D(A)}$ from being abelian?

• We certainly don't have all kernels and cokernels.

Ab Cats

- We certainly don't have all kernels and cokernels.
- But given a map $f : A \to B$ of complexes there is another complex C and a monic map $B \to C$ and epic map $C \to A[1]$, where A[1] means "shift left by 1", given by $A[1] \oplus B$ and differentials $\begin{pmatrix} -d_A[1] & 0 \\ f & d_B \end{pmatrix}$.

- We certainly don't have all kernels and cokernels.
- But given a map $f : A \to B$ of complexes there is another complex C and a monic map $B \to C$ and epic map $C \to A[1]$, where A[1] means "shift left by 1", given by $A[1] \oplus B$ and differentials $\begin{pmatrix} -d_A[1] & 0 \\ f & d_B \end{pmatrix}$.
- If f is the identity map A → A then (easy exercise) C is homotopic to 0.

- We certainly don't have all kernels and cokernels.
- But given a map $f : A \to B$ of complexes there is another complex C and a monic map $B \to C$ and epic map $C \to A[1]$, where A[1] means "shift left by 1", given by $A[1] \oplus B$ and differentials $\begin{pmatrix} -d_A[1] & 0 \\ f & d_B \end{pmatrix}$.
- If f is the identity map A → A then (easy exercise) C is homotopic to 0.
- These induce an exact sequence

$$\cdots \rightarrow H^{i}(A) \rightarrow H^{i}(B) \rightarrow H^{i}(C) \rightarrow H^{i+1}(A) \rightarrow \cdots$$

How far away is $\underline{D(A)}$ from being abelian?

- We certainly don't have all kernels and cokernels.
- But given a map $f : A \to B$ of complexes there is another complex C and a monic map $B \to C$ and epic map $C \to A[1]$, where A[1] means "shift left by 1", given by $A[1] \oplus B$ and differentials $\begin{pmatrix} -d_A[1] & 0 \\ f & d_B \end{pmatrix}$.
- If f is the identity map A → A then (easy exercise) C is homotopic to 0.
- These induce an exact sequence

$$\cdots \rightarrow H^{i}(A) \rightarrow H^{i}(B) \rightarrow H^{i}(C) \rightarrow H^{i+1}(A) \rightarrow \cdots$$

Applied to the cases A = a and B = b in A ⊂ D(A), C is a twist of coker f ⊕ ker f[1].

- We certainly don't have all kernels and cokernels.
- But given a map $f : A \to B$ of complexes there is another complex C and a monic map $B \to C$ and epic map $C \to A[1]$, where A[1] means "shift left by 1", given by $A[1] \oplus B$ and differentials $\begin{pmatrix} -d_A[1] & 0 \\ f & d_B \end{pmatrix}$.
- If f is the identity map A → A then (easy exercise) C is homotopic to 0.
- These induce an exact sequence

$$\cdots \rightarrow H^{i}(A) \rightarrow H^{i}(B) \rightarrow H^{i}(C) \rightarrow H^{i+1}(A) \rightarrow \cdots$$

- Applied to the cases A = a and B = b in A ⊂ D(A), C is a twist of coker f ⊕ ker f[1].
- Giving $0 \rightarrow \ker f \rightarrow a \xrightarrow{f} b \rightarrow \operatorname{coker} f \rightarrow 0$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Triangulated Categories

• The idea of triangulated categories is to abstract the categorical properties of the derived category

Triangulated Categories

- The idea of triangulated categories is to abstract the categorical properties of the derived category
- Observe that <u>D(A)</u> is additive with an automorphism [1].

Triangulated Categories

- The idea of triangulated categories is to abstract the categorical properties of the derived category
- Observe that <u>D(A)</u> is additive with an automorphism [1].
- There is a special set of diagrams of the form

 $A \rightarrow B \rightarrow C \rightarrow A[1]$

repeating with shifts in both directions. We call such diagrams triangles: C
Triangulated Categories

- The idea of triangulated categories is to abstract the categorical properties of the derived category
- Observe that <u>D(A)</u> is additive with an automorphism [1].
- There is a special set of diagrams of the form

 $A \rightarrow B \rightarrow C \rightarrow A[1]$

repeating with shifts in both directions. We call such diagrams triangles: C

• A map of triangles is just a commuting diagram of maps in the obvious way.

Triangulated Categories

- The idea of triangulated categories is to abstract the categorical properties of the derived category
- Observe that <u>D(A)</u> is additive with an automorphism [1].
- There is a special set of diagrams of the form

 $A \rightarrow B \rightarrow C \rightarrow A[1]$

repeating with shifts in both directions. We call such diagrams triangles: $A \xrightarrow{C} B$

- A map of triangles is just a commuting diagram of maps in the obvious way.
- Observe that our special triangles have the property that if we are given maps $A \rightarrow A'$ and $B \rightarrow B'$ commuting with f and f' then we have a map $C \rightarrow C'$ which gives a map of triangles. ◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ / 圖 / のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• A triangulated category is an additive category with automorphism [1] which has a distinguished set Δ of triangles. These satisfy the following axioms

• A triangulated category is an additive category with automorphism [1] which has a distinguished set Δ of triangles. These satisfy the following axioms

(1) the triangle $a = a \rightarrow 0$ is in Δ .

- A triangulated category is an additive category with automorphism [1] which has a distinguished set Δ of triangles. These satisfy the following axioms
 - (1) the triangle $a = a \rightarrow 0$ is in Δ .
 - (2) any map $a \rightarrow b$ can be completed to a triangle in Δ

- A triangulated category is an additive category with automorphism [1] which has a distinguished set Δ of triangles. These satisfy the following axioms
 - (1) the triangle $a = a \rightarrow 0$ is in Δ .
 - (2) any map a
 ightarrow b can be completed to a triangle in Δ
 - (3) if $a \to b \to c \to a[1]$ is in Δ then so is $b \to c \to a[1] \to b[1]$,

where one of the maps is minus the corresponding map in the original triangle.

- A triangulated category is an additive category with automorphism [1] which has a distinguished set ∆ of triangles. These satisfy the following axioms
 - (1) the triangle $a = a \rightarrow 0$ is in Δ .
 - (2) any map $a \rightarrow b$ can be completed to a triangle in Δ
 - (3) if $a \to b \to c \to a[1]$ is in Δ then so is $b \to c \to a[1] \to b[1]$, where one of the maps is minus the corresponding map in the original triangle.
 - (4) any diagram

can be completed to a map of triangles.

- A triangulated category is an additive category with automorphism [1] which has a distinguished set Δ of triangles. These satisfy the following axioms
 - (1) the triangle $a = a \rightarrow 0$ is in Δ .
 - (2) any map $a \rightarrow b$ can be completed to a triangle in Δ
 - (3) if $a \to b \to c \to a[1]$ is in Δ then so is $b \to c \to a[1] \to b[1]$, where one of the maps is minus the corresponding map in the original triangle.
 - (4) any diagram

can be completed to a map of triangles.

• A triangulated category is an additive category with automorphism [1] which has a distinguished set Δ of triangles. These satisfy the following axioms

(1) the triangle
$$a = a \rightarrow 0$$
 is in Δ .

- (2) any map $a \rightarrow b$ can be completed to a triangle in Δ
- (3) if $a \to b \to c \to a[1]$ is in Δ then so is $b \to c \to a[1] \to b[1]$, where one of the maps is minus the corresponding map in the original triangle.
- (4) any diagram

can be completed to a map of triangles.

(5) any triangle isomorphic to a triangle in Δ is in Δ .

(6) Given two triangles in Δ with a common vertex

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(6) Given two triangles in Δ with a common vertex

we can complete it to a commuting diagram with all rows and columns in $\Delta,$

b Cats Alg Geom Moduli

(6) Given two triangles in Δ with a common vertex

we can complete it to a commuting diagram with all rows and columns in Δ , for which the composites $c \to e \to c'[1]$ and $c \to d \to c'[1]$ agree.

・ロト・日本・日本・日本・日本・日本・日本

(6) Given two triangles in Δ with a common vertex

we can complete it to a commuting diagram with all rows and columns in Δ , for which the composites $c \to e \to c'[1]$ and $c \to d \to c'[1]$ agree. Called the octahedral axiom: "the bottom of such an octahedron can be completed to an octahedron".

• Triangulated categories form a category with exact functors (defined to preserve the distinguished triangles).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Triangulated categories form a category with exact functors (defined to preserve the distinguished triangles).
- Axiom (2) relates to existence of kernels and cokernels.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- Triangulated categories form a category with exact functors (defined to preserve the distinguished triangles).
- Axiom (2) relates to existence of kernels and cokernels.
- Axiom (4) is what is left over of their universal property.

- Triangulated categories form a category with exact functors (defined to preserve the distinguished triangles).
- Axiom (2) relates to existence of kernels and cokernels.
- Axiom (4) is what is left over of their universal property.
- Axiom (6) relates to the image/coimage of a map:

for a map $f : a \to b$ of $\underline{A} \subset \underline{D(A)}$.

Definition

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition

Suppose \underline{T} is a triangulated category and \underline{A} an abelian category. A functor $F : \underline{T} \to \underline{A}$ is cohomological if it is additive and for any triangle $a \to b \to c$ in Δ , $F(a) \to F(b) \to F(C)$ is exact.

• $H^0: \underline{D(A)} \to \underline{A}$ is cohomological.

Definition

- $H^0: \underline{D(A)} \to \underline{A}$ is cohomological.
- Hom(B, -) and Hom(-, B) are cohomological.

Definition

- $H^0: \underline{D(A)} \to \underline{A}$ is cohomological.
- Hom(B, -) and Hom(-, B) are cohomological.
- The functor category <u>Ab</u>^{T^{op}} is automatically abelian and the Yoneda functor is cohomological.

Definition

- $H^0: \underline{D(A)} \to \underline{A}$ is cohomological.
- Hom(B, -) and Hom(-, B) are cohomological.
- The functor category <u>Ab</u>^{T^{op}} is automatically abelian and the Yoneda functor is cohomological.
- Define the full subcategory <u>A(T)</u> of <u>Ab</u>^{T^{op}} to be those functors which are of the form coker Hom(−, f). Then <u>T</u> → <u>A(T)</u> is the universal cohomological (contravariant) functor.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

And Back Again

• The special subcategory <u>A</u> of <u>D(A)</u> can be constructed as follows.

- The special subcategory <u>A</u> of <u>D(A)</u> can be constructed as follows.
- Define functors \(\tau\)≤n and \(\tau\)≥n, \(\D(A)\) → \(\D(A)\) by truncating complexes at position n:

$$\cdots \to A^{n-2} \to A^{n-1} \to \ker d^n \to 0 \to \cdots$$
$$\cdots \to 0 \to \operatorname{coker} d^n \to A^{n+1} \to A^{n+2} \to \cdots$$

These have the property that for all objects *a* of $\underline{D}(\underline{A})$, there is a canonical distinguished triangle $\tau_{\leq n}a \rightarrow a \rightarrow \tau_{\geq n+1}a$.

- The special subcategory <u>A</u> of <u>D(A)</u> can be constructed as follows.
- Define functors \(\tau\)≤n and \(\tau\)≥n, \(\D(A)\) → \(\D(A)\) by truncating complexes at position n:

$$\cdots \to A^{n-2} \to A^{n-1} \to \ker d^n \to 0 \to \cdots$$
$$\cdots \to 0 \to \operatorname{coker} d^n \to A^{n+1} \to A^{n+2} \to \cdots$$

These have the property that for all objects *a* of $\underline{D}(\underline{A})$, there is a canonical distinguished triangle $\tau_{\leq n}a \rightarrow a \rightarrow \tau_{\geq n+1}a$.

 Then if <u>D</u>^{≤n} is the full subcategory of <u>D(A)</u> of complexes with zero cohomology above n, τ_{≤n} provides a right adjoint of the inclusion <u>D</u>^{≤n} ⊂ <u>D(A)</u>.

- The special subcategory <u>A</u> of <u>D(A)</u> can be constructed as follows.
- Define functors \(\tau\)≤n and \(\tau\)≥n, \(\D(A)\) → \(\D(A)\) by truncating complexes at position n:

$$\cdots \to A^{n-2} \to A^{n-1} \to \ker d^n \to 0 \to \cdots$$
$$\cdots \to 0 \to \operatorname{coker} d^n \to A^{n+1} \to A^{n+2} \to \cdots$$

These have the property that for all objects *a* of $\underline{D}(\underline{A})$, there is a canonical distinguished triangle $\tau_{\leq n}a \rightarrow a \rightarrow \tau_{\geq n+1}a$.

- Then if <u>D</u>^{≤n} is the full subcategory of <u>D(A)</u> of complexes with zero cohomology above n, τ_{≤n} provides a right adjoint of the inclusion <u>D</u>^{≤n} ⊂ <u>D(A)</u>.
- and $\underline{D}^{\geq n+1}$ is the left orthogonal of $\underline{D}^{\leq n}$

- The special subcategory <u>A</u> of <u>D(A)</u> can be constructed as follows.
- Define functors \(\tau\)≤n and \(\tau\)≥n, \(\D(A)\) → \(\D(A)\) by truncating complexes at position n:

$$\cdots \to A^{n-2} \to A^{n-1} \to \ker d^n \to 0 \to \cdots$$
$$\cdots \to 0 \to \operatorname{coker} d^n \to A^{n+1} \to A^{n+2} \to \cdots$$

These have the property that for all objects *a* of $\underline{D}(\underline{A})$, there is a canonical distinguished triangle $\tau_{\leq n}a \rightarrow a \rightarrow \tau_{\geq n+1}a$.

- Then if <u>D</u>^{≤n} is the full subcategory of <u>D(A)</u> of complexes with zero cohomology above n, τ_{≤n} provides a right adjoint of the inclusion <u>D</u>^{≤n} ⊂ <u>D(A)</u>.
- and $\underline{D}^{\geq n+1}$ is the left orthogonal of $\underline{D}^{\leq n}$
- Then $\underline{A} = \underline{D}^{\leq 0} \cap \underline{D}^{\geq 0}$.

More generally:

• Given an exact subcategory $\underline{D} \subset \underline{T}$ such that $\underline{D}[1] \subset \underline{D}$ and for each object a of \underline{T} there is a distinguished triangle $a' \to a \to a''$ with a' in \underline{D} and a'' in \underline{D}^{\perp} . We call this a *t*-structure on \underline{T} .

More generally:

- Given an exact subcategory $\underline{D} \subset \underline{T}$ such that $\underline{D}[1] \subset \underline{D}$ and for each object a of \underline{T} there is a distinguished triangle $a' \to a \to a''$ with a' in \underline{D} and a'' in \underline{D}^{\perp} . We call this a *t*-structure on \underline{T} .
- Define $\underline{C} = \underline{D} \cap \underline{D}^{\perp}[1]$, the core or heart of the *t*-structure. Then \underline{C} is abelian.

- Given an exact subcategory <u>D</u> ⊂ <u>T</u> such that <u>D[1]</u> ⊂ <u>D</u> and for each object a of <u>T</u> there is a distinguished triangle a' → a → a'' with a' in <u>D</u> and a'' in <u>D</u>[⊥]. We call this a *t*-structure on <u>T</u>.
- Define $\underline{C} = \underline{D} \cap \underline{D}^{\perp}[1]$, the core or heart of the *t*-structure. Then \underline{C} is abelian.
- The maps $a \to a'$ and $a \to a''$ give well defined functors $\tau_{\leq 0} : \underline{T} \to \underline{D}$ and $\tau_{\geq 0} : \underline{T} \to \underline{D}^{\perp}[1]$ which are left (resp. right) adjoint to the inclusions.

- Given an exact subcategory <u>D</u> ⊂ <u>T</u> such that <u>D[1]</u> ⊂ <u>D</u> and for each object a of <u>T</u> there is a distinguished triangle a' → a → a'' with a' in <u>D</u> and a'' in <u>D</u>[⊥]. We call this a *t*-structure on <u>T</u>.
- Define $\underline{C} = \underline{D} \cap \underline{D}^{\perp}[1]$, the core or heart of the *t*-structure. Then \underline{C} is abelian.
- The maps $a \to a'$ and $a \to a''$ give well defined functors $\tau_{\leq 0} : \underline{T} \to \underline{D}$ and $\tau_{\geq 0} : \underline{T} \to \underline{D}^{\perp}[1]$ which are left (resp. right) adjoint to the inclusions.
- Then $H_D^0 : \underline{T} \to \underline{C}$ defined by $a \mapsto \tau_{\geq 0} \tau_{\leq 0} a$ is cohomological.

- Given an exact subcategory <u>D</u> ⊂ <u>T</u> such that <u>D[1]</u> ⊂ <u>D</u> and for each object a of <u>T</u> there is a distinguished triangle a' → a → a'' with a' in <u>D</u> and a'' in <u>D</u>[⊥]. We call this a *t*-structure on <u>T</u>.
- Define $\underline{C} = \underline{D} \cap \underline{D}^{\perp}[1]$, the core or heart of the *t*-structure. Then \underline{C} is abelian.
- The maps $a \to a'$ and $a \to a''$ give well defined functors $\tau_{\leq 0} : \underline{T} \to \underline{D}$ and $\tau_{\geq 0} : \underline{T} \to \underline{D}^{\perp}[1]$ which are left (resp. right) adjoint to the inclusions.
- Then $H_D^0 : \underline{T} \to \underline{C}$ defined by $a \mapsto \tau_{\geq 0} \tau_{\leq 0} a$ is cohomological.
- <u>C</u> gives us an abelian "viewport" into <u>T</u>.

- Given an exact subcategory <u>D</u> ⊂ <u>T</u> such that <u>D[1]</u> ⊂ <u>D</u> and for each object a of <u>T</u> there is a distinguished triangle a' → a → a'' with a' in <u>D</u> and a'' in <u>D</u>[⊥]. We call this a *t*-structure on <u>T</u>.
- Define $\underline{C} = \underline{D} \cap \underline{D}^{\perp}[1]$, the core or heart of the *t*-structure. Then \underline{C} is abelian.
- The maps $a \to a'$ and $a \to a''$ give well defined functors $\tau_{\leq 0} : \underline{T} \to \underline{D}$ and $\tau_{\geq 0} : \underline{T} \to \underline{D}^{\perp}[1]$ which are left (resp. right) adjoint to the inclusions.
- Then $H_D^0 : \underline{T} \to \underline{C}$ defined by $a \mapsto \tau_{\geq 0} \tau_{\leq 0} a$ is cohomological.
- <u>C</u> gives us an abelian "viewport" into <u>T</u>.
- For example, $\times 2 : \mathbb{Z} \to \mathbb{Z}$ injects in <u>Ab</u> but there is a core in <u>D(Ab)</u> for which is does not inject but surjects with kernel $\mathbb{Z}_2[-1]$.

Spaces from Triangulated categories

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Spaces from Triangulated categories

• Consider a linear triangulated category <u>T</u>.
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Spaces from Triangulated categories

Consider a linear triangulated category <u>T</u>. We assume various finiteness conditions satisfied by <u>D(Coh(X))</u>.

- Consider a linear triangulated category <u>T</u>. We assume various finiteness conditions satisfied by <u>D(Coh(X))</u>.
- We can define a topological (metric) space Stab(<u>T</u>) as the set of pairs (Z, P), where Z : K₀(<u>T</u>) → C is a linear map and P : R → sub <u>T</u> a path of full abelian subcategories of <u>T</u>. These must satisfy:

Geom

- Consider a linear triangulated category <u>T</u>. We assume various finiteness conditions satisfied by <u>D(Coh(X))</u>.
- We can define a topological (metric) space $\operatorname{Stab}(\underline{T})$ as the set of pairs (Z, P), where $Z : K_0(\underline{T}) \to \mathbb{C}$ is a linear map and $P : \mathbb{R} \to \operatorname{sub} \underline{T}$ a path of full abelian subcategories of \underline{T} . These must satisfy:
 - For a in $P(\phi)$, $Z(a) = m(a)e^{i\pi\phi}$ and E = 0 iff m(a) = 0.

Geom

- Consider a linear triangulated category <u>T</u>. We assume various finiteness conditions satisfied by <u>D(Coh(X))</u>.
- We can define a topological (metric) space $\operatorname{Stab}(\underline{T})$ as the set of pairs (Z, P), where $Z : K_0(\underline{T}) \to \mathbb{C}$ is a linear map and $P : \mathbb{R} \to \operatorname{sub} \underline{T}$ a path of full abelian subcategories of \underline{T} . These must satisfy:
 - For a in $P(\phi)$, $Z(a) = m(a)e^{i\pi\phi}$ and E = 0 iff m(a) = 0.

•
$$\forall \phi, P(\phi+1) = P(\phi)[1].$$

Geom

- Consider a linear triangulated category <u>T</u>. We assume various finiteness conditions satisfied by <u>D(Coh(X))</u>.
- We can define a topological (metric) space $\operatorname{Stab}(\underline{T})$ as the set of pairs (Z, P), where $Z : K_0(\underline{T}) \to \mathbb{C}$ is a linear map and $P : \mathbb{R} \to \operatorname{sub} \underline{T}$ a path of full abelian subcategories of \underline{T} . These must satisfy:
 - For a in $P(\phi)$, $Z(a) = m(a)e^{i\pi\phi}$ and E = 0 iff m(a) = 0.
 - $\forall \phi, \ P(\phi+1) = P(\phi)[1].$
 - $\forall a \neq 0 \text{ in } \underline{T}, \exists \phi_1 > \phi_2 > \cdots > \phi_n \text{ and triangles}$ $a_{i-1} \rightarrow a_i \rightarrow b_i \text{ with } a_0 = 0, a_n = a \text{ and } b_i \text{ in } P(\phi_i).$

Geom

- Consider a linear triangulated category <u>T</u>. We assume various finiteness conditions satisfied by <u>D(Coh(X))</u>.
- We can define a topological (metric) space $\operatorname{Stab}(\underline{T})$ as the set of pairs (Z, P), where $Z : K_0(\underline{T}) \to \mathbb{C}$ is a linear map and $P : \mathbb{R} \to \operatorname{sub} \underline{T}$ a path of full abelian subcategories of \underline{T} . These must satisfy:
 - For a in $P(\phi)$, $Z(a) = m(a)e^{i\pi\phi}$ and E = 0 iff m(a) = 0.
 - $\forall \phi, \ P(\phi+1) = P(\phi)[1].$
 - $\forall a \neq 0$ in \underline{T} , $\exists \phi_1 > \phi_2 > \cdots > \phi_n$ and triangles $a_{i-1} \rightarrow a_i \rightarrow b_i$ with $a_0 = 0$, $a_n = a$ and b_i in $P(\phi_i)$.
 - for $\phi_1 > \phi_2$, and a_i in $P(\phi_i)$, we have $Hom(a_1, a_2) = 0$.

Geom

- Consider a linear triangulated category <u>T</u>. We assume various finiteness conditions satisfied by <u>D(Coh(X))</u>.
- We can define a topological (metric) space Stab(<u>T</u>) as the set of pairs (Z, P), where Z : K₀(<u>T</u>) → C is a linear map and P : R → sub <u>T</u> a path of full abelian subcategories of <u>T</u>. These must satisfy:
 - For a in $P(\phi)$, $Z(a) = m(a)e^{i\pi\phi}$ and E = 0 iff m(a) = 0.
 - $\forall \phi, P(\phi + 1) = P(\phi)[1].$
 - $\forall a \neq 0$ in \underline{T} , $\exists \phi_1 > \phi_2 > \cdots > \phi_n$ and triangles $a_{i-1} \rightarrow a_i \rightarrow b_i$ with $a_0 = 0$, $a_n = a$ and b_i in $P(\phi_i)$.
 - for $\phi_1 > \phi_2$, and a_i in $P(\phi_i)$, we have $Hom(a_1, a_2) = 0$.
- These are called Bridgeland stability conditions.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

The a_is are unique (up to isomorphism) and so φ_i are also unique. We let φ⁺ = φ₁ and φ⁻ = φ_n.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The a_is are unique (up to isomorphism) and so φ_i are also unique. We let φ⁺ = φ₁ and φ⁻ = φ_n.
- We can extend P to a map of interval (x, y) of reals via the full subcats of objects a s.t. x < φ⁻(a) ≤ φ⁺(a) < y.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The a_is are unique (up to isomorphism) and so φ_i are also unique. We let φ⁺ = φ₁ and φ⁻ = φ_n.
- We can extend P to a map of interval (x, y) of reals via the full subcats of objects a s.t. x < φ⁻(a) ≤ φ⁺(a) < y.
- P((0,1]) is the core of a bounded *t*-structure on <u>T</u>.

- The a_is are unique (up to isomorphism) and so φ_i are also unique. We let φ⁺ = φ₁ and φ⁻ = φ_n.
- We can extend P to a map of interval (x, y) of reals via the full subcats of objects a s.t. x < φ⁻(a) ≤ φ⁺(a) < y.
- P((0,1]) is the core of a bounded *t*-structure on <u>T</u>.
- Conversely, given a bounded *t*-structure with core \underline{C} and a linear map $Z : K_0(\underline{C}) \to \mathbb{C}$, such that $Z(c) = m(c)e^{i\pi\phi(c)}$ with $0 < \phi(c) \le 1$ and m(c) > 0 if $c \ne 0$. We define *c* to be semistable if for all proper monics $a \to c$ in $\underline{C} \phi(a) \le \phi(c)$. Then *Z* extends to (Z, P) is a stability condition, where $P(\phi) \subset \underline{C}$ are the semistable objects of phase ϕ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The a_is are unique (up to isomorphism) and so φ_i are also unique. We let φ⁺ = φ₁ and φ⁻ = φ_n.
- We can extend P to a map of interval (x, y) of reals via the full subcats of objects a s.t. x < φ⁻(a) ≤ φ⁺(a) < y.
- P((0,1]) is the core of a bounded *t*-structure on <u>T</u>.
- Conversely, given a bounded *t*-structure with core <u>C</u> and a linear map Z : K₀(<u>C</u>) → C, such that Z(c) = m(c)e^{iπφ(c)} with 0 < φ(c) ≤ 1 and m(c) > 0 if c ≠ 0. We define c to be semistable if for all proper monics a → c in <u>C</u> φ(a) ≤ φ(c). Then Z extends to (Z, P) is a stability condition, where P(φ) ⊂ <u>C</u> are the semistable objects of phase φ.
- We then have a continuously varying family of abelian subcategories of <u>T</u>.

- The a_is are unique (up to isomorphism) and so φ_i are also unique. We let φ⁺ = φ₁ and φ⁻ = φ_n.
- We can extend P to a map of interval (x, y) of reals via the full subcats of objects a s.t. x < φ⁻(a) ≤ φ⁺(a) < y.
- P((0,1]) is the core of a bounded *t*-structure on <u>T</u>.
- Conversely, given a bounded *t*-structure with core <u>C</u> and a linear map Z : K₀(<u>C</u>) → C, such that Z(c) = m(c)e^{iπφ(c)} with 0 < φ(c) ≤ 1 and m(c) > 0 if c ≠ 0. We define c to be semistable if for all proper monics a → c in <u>C</u> φ(a) ≤ φ(c). Then Z extends to (Z, P) is a stability condition, where P(φ) ⊂ <u>C</u> are the semistable objects of phase φ.
- We then have a continuously varying family of abelian subcategories of <u>T</u>.
- For example, on a curve we can choose Z(a) = -d(a) + ir(a) and then the standard t-structure is P((0, 1]).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Concluding Remarks

• Recently category theory has provided essential tools for AG.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Recently category theory has provided essential tools for AG.
- Some tools already well developed (fibred categories, higher category theory, Grothedieck toposes, abelian categories).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Recently category theory has provided essential tools for AG.
- Some tools already well developed (fibred categories, higher category theory, Grothedieck toposes, abelian categories).
- Some tools required additional development (triangulated categories, *t*-structures, stability conditions)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Recently category theory has provided essential tools for AG.
- Some tools already well developed (fibred categories, higher category theory, Grothedieck toposes, abelian categories).
- Some tools required additional development (triangulated categories, *t*-structures, stability conditions)
- The key additional feature is the need to measure objects (on a real or integral scale)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Recently category theory has provided essential tools for AG.
- Some tools already well developed (fibred categories, higher category theory, Grothedieck toposes, abelian categories).
- Some tools required additional development (triangulated categories, *t*-structures, stability conditions)
- The key additional feature is the need to measure objects (on a real or integral scale)
- Powerful deformation arguments common in AG may see applications in category theory.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Concluding Remarks

- Recently category theory has provided essential tools for AG.
- Some tools already well developed (fibred categories, higher category theory, Grothedieck toposes, abelian categories).
- Some tools required additional development (triangulated categories, *t*-structures, stability conditions)
- The key additional feature is the need to measure objects (on a real or integral scale)
- Powerful deformation arguments common in AG may see applications in category theory.

THE END