Categorical Proof Theory of Modal Logics

Dirk Pattinson, Imperial College London

(joint work with Ana Sokolova, Salzburg)

Edinburgh, May 2010

A Wee Bit of Motivation

Idea. Systems are *spaces* together with *dynamics*, aka T-coalgebras

$$(C, \gamma: C \to TC)$$

where \mathbb{C} is a category of *spaces* and $T : \mathbb{C} \to \mathbb{C}$ determines dynamics.

Example.

- $\mathbb{C} = Meas$ (measurable spaces), T = probability distributions
- $\mathbb{C} = \mathsf{Fuzz}$ (fuzzy sets), T = 'fuzzy powerset'
- $\mathbb{C} = \mathsf{PPos}$ (posets with *p*-morphisms), T = 'powerset with E/M'
- $\mathbb{C} = \operatorname{Set}, T = \operatorname{`subsets}$ with labels'

Goal. *language* and *proofs* over T-coalgebras

General Idea.

- assume that $\mathbb C$ comes with a notion of logic
- extend the logic over $\mathbb C$ to $\mathsf{Coalg}(T)$

Standard Example. Propositional logic over $\mathbb{C} = Set$

where BA is the category of boolean algebras.

Logics via Lifting (where $T : Set \rightarrow Set$)

$$\mathsf{Coalg}(T)^{\mathrm{op}} \xrightarrow{\checkmark} \mathsf{Alg}(L)$$

for $L: \mathsf{BA} \to \mathsf{BA}$

Logics via Lifting

Languages for $T\text{-coalgebras:}\ (L,\delta)$ where $L:\mathsf{BA}\to\mathsf{BA}$ and $\delta:L2\to 2T$

Interpretation via algebraisation

$$\frac{\gamma: C \to TC}{2(\gamma) \circ \delta_C: L2C \to 2TC \to 2C}$$

turning a T-coalgebra into an L-algebra.

Interpretation via initiality

where F is the (carrier of) the initial L-algebra \approx formulas.

General Gist

Example.

- BA = formulas modulo (provable) equations
- L = dynamics modulo (provable) equations

Logics via Representation: Assume that $Alg(L) \cong Alg(\Sigma, E)$

• equational logic sound , complete if δ injective, expressive if δ surjective when interpreted over Coalg(T). (Kurz, Kupke, Jacobs, Sokolova)

Remark. Equational Logic 'hard-coded' into categrical setup

• makes it hard to show decidability, and not the only way of doing proofs!

Dual Adjunction mediates between 'spaces' and 'logics'

where \mathbb{C} : category of 'spaces' and \mathbb{A} : category of algebras and $S \dashv P$.

- think of $\mathbb A$ as coming with a natural notion of 'logic'.
- $\bullet\,$ will assume that $\mathbb{A}\subseteq \mathsf{Alg}(\Sigma)$ later

'Logical' Adjunctions

Examples.

with 2: contravariant powerset and Uf: ultrafilters

with Pf: prime filters and Up: upsets

with F: filters and $\Sigma : \sigma$ -algebras

Equational Logic over meet-semilattices:

$$a \wedge b = b \wedge a$$
 $a \wedge (b \wedge c) = (a \wedge b) \wedge c$

Sequent Calculi over Heyting algebras:

$$\frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \lor B} \qquad \frac{\Gamma, A \Rightarrow C \quad \Gamma, B \Rightarrow C}{\Gamma, A \lor B \Rightarrow C}$$

Calculus of Structures over Boolean algebras:

$$\frac{S\{\top\}}{S\{p \lor \overline{p}\}} \qquad \frac{S\{([R \lor U] \land T)\}}{S\{[(R \land T) \lor U]\}}$$

Mathematical Philosophy on Proofs in General

Proofs operate *inductively* on *structures* over *formulas*

- Equational Logic: pairs of formulas A = B
- Sequent Calculus: pairs of finite (multi) sets of formulas $\Gamma \Rightarrow \Delta$
- $\bullet\,$ Deep Inference: structures generated by $[\dots]$ and (\dots)

Slogan: Syntax and Proof live over Set.

Algebraic Setup. $\boldsymbol{\Sigma}$ algebraic signature that induces

where we write $H = U_{\Sigma} \circ F_{\Sigma}$ for Σ -formulas.

Proof Systems over a signature Σ are triples $\mathsf{Pf} = (\mathsf{St}, \eta, M)$ where

- St : Set \rightarrow Set (defining the *structures*)
- $\rho: H^2 \to \mathsf{St} \circ H$ (giving a *representation* of $A \leq B$)
- $M: \mathcal{P} \circ \mathsf{St} \circ H \to \mathcal{P} \circ \mathsf{St} \circ H$ monotone (defining *provability*)

Provable Judgements. Let $A, B \in H(V)$

$$\mathsf{Pf} \vdash A \le B \iff \rho(A, B) \in \mu M_V$$

where μM_V is the least fixpoint of $M_V : \mathcal{P} \circ \mathsf{St} \circ H(V) \to \mathcal{P} \circ \mathsf{St} \circ H(V)$.

Equational Logic.

- structures are $StX = X \times X$: pairs of formulas
- provability given by equational laws and axioms

Sequent Calculus.

- structures are $StX = \mathcal{P}_f(X) \times \mathcal{P}_f(X)$: finite sets of formulas
- provability given by sequent rules

Deep Inference.

- structures are inductive types (generated by (...) and [...])
- provability by applying rules deeply

Blanket Assumption. we have an inclusion functor

$$I: \mathbb{A} \hookrightarrow \mathsf{Alg}(\Sigma)$$

so that $\mathbb A$ is a category of algebras, and Σ contains $\wedge,\top.$

Interpretation. Given $\Omega \in \mathbb{A}$ and $\pi: V \to U_{\Sigma}\Omega$

 $\llbracket A \rrbracket_{(\Omega,\pi)} \in U_{\Sigma}\Omega \text{ given by adjoint transpose}$ $\frac{\pi: V \to U_{\Sigma}\Omega}{\llbracket \cdot \rrbracket_{(\Omega,\pi)}: F_{\Sigma}(V) \to \Omega}$

induced by $F_{\Sigma} \dashv U_{\Sigma}$.

(Inductive Extension of π to formulas $A \in H(V) = U_{\Sigma} \circ F_{\Sigma}(V)$)

In relation to proof systems

Derived Notions. Let $\Omega \in \mathbb{A}$ and $A, B \in H(V)$.

- $\Omega \models A \leq B \iff \forall \pi : V \to U_{\Sigma}\Omega\left(\llbracket A \rrbracket_{\pi} \land \llbracket B \rrbracket_{\pi} = \llbracket A \rrbracket_{\pi}\right)$
- $\bullet \ \mathbb{A} \models A \leq B \iff \forall \Omega \in \mathbb{A} \left(\Omega \models A \leq B \right)$

Semantics vs Proofs. Let $\mathsf{Pf} = (\mathsf{St}, \rho, M)$ be a proof system over Σ

Soundness of Pf over \mathbb{A}

 $\mathsf{Pf} \vdash A \leq B \text{ only if } \mathbb{A} \models A \leq B$

Completeness of Pf over \mathbb{A}

$$\mathbb{A} \models A \leq B \text{ only if } \mathsf{Pf} \vdash A \leq B$$

In the Examples. Soundness and completeness is well-known – we piggy-back.

Semantically. Add dynamics to the original picture

where $S \dashv P$ as before.

Coagebras for $T: \mathbb{C} \to \mathbb{C}$

giving rise to the category Coalg(T).

Intuition. $(C, \gamma: C \to TC)$ adds 'dynamics' γ on top of a 'space' C.

Examples.

 $\textbf{On}~\mathbb{C}=\mathsf{Set.}$

$$TX = \mathcal{P}(A \times X)$$

• $(C, \gamma: C \to TC)$ are labelled transition systems

 $\textbf{On}~\mathbb{C}=\text{Meas}.$

 $TX = \mathcal{M}X = \{ \text{ probability measures on } X \}$

•
$$(C, \gamma: C \to \mathcal{M}C)$$
 are Markov Processes

 $\textbf{On}~\mathbb{C}=\text{PPos.}$

$$T(X, \leq) = \mathcal{K}(X, \leq) = (\mathcal{P}(X), \leq^{EM})$$

• $(C, \gamma: C \to \mathcal{K}C)$ are frames for intuitionistic modal logic

Lifting of Syntax and Proofs

Goal. Lift the logic over \mathbb{A} to T-coalgebras.

Presentation Approach (Alexander Kurz et.al.) Find 'dual' $L : \mathbb{A} \to \mathbb{A}$

$$T \bigcirc \mathbb{C}^{\operatorname{op}} \underbrace{\overset{\boldsymbol{\mathcal{S}}}{\underbrace{S}}}_{P} \mathbb{A} \bigcirc L$$

Syntax given by $L : \mathbb{A} \to \mathbb{A}$, Semantics given by $\delta : LP \to PT$

where $(C, \gamma) \in \mathsf{Coalg}(T)$ and F is the initial algebra of formulas.

Assumptions. $\mathbb{A} = \mathsf{Alg}(\Sigma, E)$ and $\mathsf{Alg}(L) \cong \mathsf{Alg}(\Sigma_L, E_L)$ where

- $\Sigma_L = \Sigma + \text{modal operators}$
- E = E + modal identities

Example. $\mathsf{BA}\cong\mathsf{Alg}(\Sigma,E)$ and we take

$$L : \mathsf{BA} \to BA$$
$$\Omega \mapsto F_{(\Sigma, E)} \{ \Box a \mid a \in \Omega \} / \sim$$

where \sim generated by $\Box \top = \top$, $\Box(a \land b) = \Box a \land \Box b$.

If $TX = \mathcal{P}(X) : \mathsf{Set} \to \mathsf{Set}$, then

$$\delta_X(\Box a) = \{ b \subseteq X \mid b \subseteq a \}$$

defines the semantics of modal logic K.

Proof-Theoretic Approach

Observation. If $L : \mathbb{A} \to \mathbb{A}$, then

- no *a priori* notion of 'free syntax' and semantics
- equational reasoning 'built into' categorical / algebraic structure

Syntax in the Front Seat (assuming that Pf sound & complete over \mathbb{A})

together with an adjoint situation

where $\operatorname{Alg}(L) \cong \operatorname{Alg}(\Sigma + \Sigma_L)$: syntax *freely generated*.

Languages for Coalgebras

Languge given by $L: \mathrm{Alg}(\Sigma) \to \mathrm{Alg}(\Sigma)$ as before

Interpretation given by

 $\delta: L \circ I \circ P \to I \circ P \circ T$

where $I : \mathbb{A} \hookrightarrow \mathsf{Alg}(\Sigma)$ is the inclusion functor.

Semantics over $(C, \gamma : C \to TC) \in \mathsf{Coalg}(T)$ relative to $\pi : V \to U_{\Sigma}PC$:

Algebraisation
$$\Omega: LIPC \xrightarrow{\delta_C} IPTC \xrightarrow{IP\gamma} IPC \in \mathsf{Alg}(L)$$

 $\llbracket A \rrbracket_{(C,\pi)} \in U_{\Sigma}PC \text{ via adoint transpose}$ $\frac{\pi: V \to U_{\Sigma}PC = U_{\Sigma}U_{L}\Omega}{\llbracket \cdot \rrbracket_{(C,\pi)}: F_{L}F_{\Sigma}V \to \Omega}$

induced by $F_L \circ F_\Sigma \dashv U_\Sigma \circ U_L$ (standard inductive extension)

Extensions of Proof Systems

Conservative Extensions of $\mathsf{Pf}_{\Sigma} = (\mathsf{St}, \rho, M_{\Sigma})$ are naturality squares

where H_{Σ} and H_L are the Σ and L-formulas, respectively.

Call $Pf_L = (St, \rho, M_L)$ a *conservative extension* of Pf_{Σ} if diagram commutes.

Notes.

- same notion of structures (sequents, equations) in both proof systems
- M_L incorporates the reasoning over base category
- intuitvely: M_L arises from M_Σ by adding equations / rules.

Recall. Algebraic Characterisation of soundness an completeness

where soundness is automatic, and completeness if $\delta: LP \to PT$ injective.

Assumption. Pf_L conservative extension of Pf_{Σ} and

$$\operatorname{Alg}(L) \supseteq \operatorname{Alg}(\operatorname{Pf}_L) \cong \operatorname{Alg}(L^*) \quad \text{for } L^* : \mathbb{A} \to \mathbb{A}$$

where $Alg(Pf_L)$ is the (full) subcategory of *L*-algebras validating all provable judgements.

Intuition. Proof rules only act on one-step level, e.g.
$$\frac{A \rightarrow B}{\Box A \rightarrow \Box B}$$
.

Assume that

$$\operatorname{Alg}(L) \supseteq \operatorname{Alg}(\operatorname{Pf}_L) \cong \operatorname{Alg}(L^*) \quad \text{for } L^* : \mathbb{A} \to \mathbb{A}$$

Soundness of Pf_L over $\mathsf{Coalg}(T)$ if δ factors

$$LIP \xrightarrow{\rightarrow} IL^*P \xrightarrow{I\delta^*} IPT$$

for some $\delta^*: L^*P \to PT$.

Completeness of Pf_L over $\mathsf{Coalg}(T)$ if δ^* is injective.

(By importing corresponding results from equational setting)

 $\text{On }\mathbb{C}=\text{Set.}$

 $TX = \mathcal{P}(A \times X)$

 Completeness of equational and sequent proofs over transition systems (well-known)

 $\textbf{On}~\mathbb{C}=\text{Meas}.$

 $TX = \mathcal{M}X = \{ \text{ probability measures on } X \}$

• Completeness of probabilistic modal logic over measurable spaces (expected and partially known)

 $\textbf{On}~\mathbb{C}=\mathsf{PPos.}$

$$T(X, \leq) = \mathcal{K}(X, \leq) = (\mathcal{P}(X), \leq^{EM})$$

• Conjectured: completeness for intuitionistic modal logic

Syntax and Proof

• standard, formalised in set theory via inductive definitions

Semantics

• categorical over a space equipped with 'logical adjunction'

Glue provided by notion of proof system

• crucial: predicates over spaces carry algebraic structure

Element of Novelty.

- 'old' results but with respect to 'new' proof systems
- conjectured: new completeness of IK over intuitionistic frames