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Abstract. This paper aims to significantly impact the way we conceive of, reason

about, and construct software for economic game theory. We achieve this by building

an new and original model of economic games based upon the computer science idea of

compositionality: concretely we i) give a number of operators for building up complex and

irregular games from smaller and simpler games; and ii) show how the equilibria of these

complex games can be defined recursively from the equilibria of their simpler components.

We apply compositional reasoning to sophisticated games where agents must reason about

how their actions a↵ect future games and how those future games e↵ect the utility they

receive. This requires further originality — we augment the usual lexicon of games with a

new concept of coutility. This dual notion to utility arises because, in order for games to

accept utility, this utility must be generated by other games. A third source of originality

is the representation of our games as string diagrams so as to give a clear visual interface to

manipulate them. Our fourth, and final, source of originality is a categorical formalisation

of these intuitive string diagrams which guarantees our model is mathematically rigourous.

Keywords: Game theory, Economic equilibria, String diagrams, Monoidal categories, Se-

lection functions

1. Introduction

We must all grapple with this important question:

How can we ensure that our theories of the world scale from the small
examples in our classrooms or on our blackboards, to the huge and
complex systems that appear in the real world?

One answer — the brute force answer — is to simply be very, very good at ap-
plying our theories. For example in computer science, many researchers are
grappling with the phenomena of big data by building faster and faster com-
puters. The equivalent within economic game theory might be to represent
complex games as huge pay-o↵ matrices of actions and associated utilities
and use some of those very fast computers to compute the associated Nash
equilibria of these games. An alternative to brute force techniques, widely
regarded within computer science as being best practice, is compositonal-
ity where one sees complex systems as being built from smaller subsystems.
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Because these subsystems are smaller, they are easier to reason about. One
then combines properties of these subsystems into properties of the over-
all system. Compositionality also promotes reuse: if a particular system is
a subsystem of many other systems, then any results concerning that sys-
tem do not need to be regenerated whenever compositional reasoning takes
place on any super-system of that system: this further promotes e�cient
reasoning. Examples of compositional reasoning are numerous, e.g.

• Within logic, the truth of a formulae A ^B is computed from the truth
of A and B which, in turn, are computed recursively.

• Within programming languages, the e↵ect of executing a programme
p then q is computed by combining the e↵ect of executing p with the
e↵ect of executing q. These, in turn, are computed recursively.

• Within concurrency, Milner’s highly influential Communicating Sequen-
tial Processes proposes operators for building processes. As above, prop-
erties of processes are proved by combining properties of sub-processes.

Can the gains of compositionality within Computer Science be replicated
within economic game theory? After all, not all reasoning can be put in com-
positional form, especially if there is significant emergent behaviour present
in a large system which is not present in subsystems. And, such emergent
behaviour is certainly present within economic games. For example, if � is
an optimal strategy for a game G, then is � part of an optimal strategy
for G ⇤ H where H is another game and G ⇤ H is some super-game built
from G and H? Clearly the answer is not necessarily! More concretely, the
iterated prisoner’s dilemma has many equilibria (such as cooperative equi-
libria) that do not arise from repeatedly playing the Nash equilibrium of the
stage game. Indeed, the di�culty in constructing a compositional model of
economic game theory led one econometrician present at a recent talk on
this work to exclaim “This can’t be done!” while another described this as
“a conjuring trick” in that it seemed to achieve the impossible!

So, how do we achieve the impossible? Our approach to cutting this
particular Gordian knot is to observe that, at its essence, any compositional
model of game theory must model not just each game, but the interaction
of each game with all other games it might interact with. Of course, all
current models of economic games do not attempt this endeavour with good
reason — as just demonstrated, this interaction is non-trivial and a priori,
there is a huge number of such games - indeed a proper class! Our solution
— and the crucial technical insight underpinning our model — is that it
su�ces to replace the class of games which a given game might interact with



A Compositional Approach to Economic Game Theory 3

the utility functions of those games. Put simply, standard models of game
theory hardwire a specific utility function into the definition of a game while
the novelty of our model is that each game is parameterised by the space of
all possible utility functions. This is accomplished by embedding within each
game “ports” where interaction with other games takes place in the form
of sending the environment information about moves played and receiving
utility from the environment. This leads to a second innovation within this
paper: we introduce a new representation of games which complements the
usual representation of games via trees or pay-o↵ matrices. This new rep-
resentation of games uses string diagrams because they enable us to clearly
visualise the structure of complex games via the places where the ports of
one game are glued together with the ports of other games. For example,
a bimatrix game such as the Prisoner’s Dilemma can be represented as the
following string diagram

P1 P2

U

B B

R R

where the players are marked P1 and P2, the arrow out of each player rep-
resents their moves, and these are fed into U which computes utility and
then feeds that utility back to each player. Switching to string diagrams - as
demonstrated in the Prisoner’s Dilemma example - gives an intuitively clear
and simple presentation of the key components of a game and their inter-
action via the flow of information between them. Now, in a compositional
model, games are built by operators combining simpler games which we call
pregames. These pregames have the general form
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X

YR

S

G

where i) X is the type of the current state of the world; ii) Y is the type
of possible actions or moves; iii) R is the type of utilities or payo↵s; and
iv) S is the type of the coutility extruded back to the environment. This
concept of coutility is another of our contributions — coutility arises as, in a
closed system, the utility of one player must have been generated by another
player. For example, if I place a bet with a bookmaker and expect utility in
the form of winnings, those winnings will have to come from the bookmaker.
This we call the bookmakers coutility. Pregames also possess functions de-
scribing how moves are chosen, exactly how much coutility to extrude, and a
relation describing its equilibria. Crucially, the equilibria relation can be any
relation and need not be restricted to Nash equilibria. The scientific value of
these pregames is that they form a compositional model of economic games
in that we can provide operators for building complex pregames from sim-
pler pregames and, in particular, for defining the equilibria of these complex
pregames from the equilibria of their component pregames. Our final contri-
bution is a categorical interpretation of pregames and their string diagram
representations which ensures they have precise mathematical meanings and
thus that our reasoning about them is mathematically rigorous.

Related Work: The context of this paper begins with [12], which for the
first time approached game theory using ideas from program semantics. Nev-
ertheless, the game theory developed in that paper is no more compositional
than ordinary game theory. A key point of originality within our approach is
the use of continuations to allow players to consider the possible outcomes of
decisions and factor those possible outcomes into their decision making pro-
cess. Continuations are implicit in the literature on selection functions (see
[6] for an introduction). Pregames are also closely related to the ‘partially
defined games’ of [10].

The relationship between string diagrams and monoidal categories has
been developed extensively in quantum information theory [2] and bialgebra
[4], and also applied to distributional semantics in linguistics [5]. There are
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many variants of monoidal categories, each with its own associated string
language, surveyed in [15]. The language used in this paper is a fragment
of the one for compact closed categories (section 4.8 of loc. cit.). We use
a fragment because, within game theory, there is only a limited form of
backward-causality (arising from rational agents reasoning about potential
future values).

The paper is structured as follows: Section 2 introduces some of the
notation used in this paper while Section 3 demonstrates the feasibility of a
compositional model of game theory by considering a simple class on non-
dynamic games. Section 4 introduces pregames and their representation as
string diagrams, Section 5 defines the key operators of parallel and sequential
composition of pregames, Section 6 gives a rigorous mathematical foundation
for pregames and their representation as string diagrams, and Section 7
extends previous work to cover the infinite iteration of pregames. Finally,
Section 8 discusses the choices inherent within our compositional model and
directions for further research.

2. Preliminaries

We denoted by R the set of real numbers. We also denote by 1 the set
containing only the element ⇤ - when a function requires an input of type
1, we often elide that input to increase legibility. We use the �-calculus
notation �x.t to denote the function which takes x as input and returns the
value of t — this will of course usually depend upon x. If f is a function
in two variables, we often write f(�, x) and f(x,�) respectively for the
function in one variable obtained by instantiating the first and second inputs
respectively of f to be x. We also follow computer science notation and write
f x — as opposed to f(x) — for the application of a function f to an input
x. Composition of functions is written f � g and projections are denoted
⇡1 : A⇥B ! A and ⇡2 : A⇥B ! B. We denote by P the powerset functor
on sets. At the centre of game theory is the desire to maximise utility and
so we define, for any function f : A ! B (where B is a preordered set), the
set argmaxf of inputs where f attains a maximal value.

argmax f = {a 2 A | 8a0 2 A.fa � fa0}

We assume familiarity with basic category theory and final coalgebras re-
spectively as can be found in [?, ?]. Readers not familiar with these topics
can simply skip the technical details of Section 6 and Section 7 respectively.
Where we use final coalgebras, we give concrete descriptions of them.
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3. Simple Games, Compositionality and Nash Equilibria

To ensure accessibility of our methods to non-computer scientists, we begin
by treating simple games where players choose actions and utility is then
generated. Without loss of generality, we consider just two players

Definition 1 (Simple 2-player Game). A simple two-player game G consists
of a 5-tuple (Y1, Y2, R1, R2, k : Y1 ⇥ Y2 ! R1 ⇥R2), where Yi are the sets of
moves available to each player, Ri are the types of utility expected by each
players, and k computes the utility associated to each pair of moves. Let
k1 = ⇡1 � f and k2 = ⇡2 � f . Then, the set of Nash equilibria EG ✓ Y1 ⇥ Y2
is defined by

(y1, y2) 2 E i↵ y1 2 argmax k1(�, y2)

^ y2 2 argmax k2(y1,�)

This definition of Nash equilibrium is not compositional: it is not derived
from more primitive concepts but rather is postulated as being itself a prim-
itive concept whose myriad of di↵erent applications, and conceptual sim-
plicity, underpin its value. While of course accepting its usefulness, and
conceptual simplicity, we do believe it can be derived in a compositional
manner from the interaction of the first player with the second player. Sub-
stantiating this belief will show that a compositional model of economic game
theory is possible and what it might look like. First, consider the players:

Definition 2 (Simple Game). A simple game consists of a set Y of moves,
a set R of utilities and an equilibria function E : (Y ! R) ! PY . The set
of simple players with actions Y and utilties R is written SPRY

This definition leaves equilibria abstract - they may maximise utility from a
choice of move or, as in say the El Farrol Bar game, they may reflect other
criteria. (The functions E are precisely the multi-valued selection functions
[8].) Thus, an equilibrium y 2 Ek means that if the utility in the game is
given by the context k, then there is no move preferable to y. And, cru-
cially, the equilibria of the game are not given for a specific utility function,
but are given for every utility function! In computer science this is called
‘continuation passing style’. Now, recall the essence of compositionality is
to build new games from old in such a way that properties of the former can
be derived from those of the later. We now introduce such an operator

Definition 3 (Monoidal Product of Simple Games). Let G1 2 SPR1Y1 and
G2 2 SPR2Y2 be simple games. Their monoidal product is the simple game
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G1 ⌦G2 : SPR1⇥R2Y1 ⇥ Y2 with equilibrium function

(y1, y2) 2 EG1⌦G2k i↵ y1 2 E1(⇡1 � k(�, y2))

^ y2 2 E2(⇡2 � k(y1,�))

Although the Nash equilibria of a simple 2-player game appeared initially
to be a primitive and non-compositional concept, we can now show it arises
compositionally. The proof is by unwinding definitions.

Theorem 4. Let G = (Y1, Y2, R1, R2, k) be a simple 2-player game. Then
(y1, y2) 2 EG i↵ (y1, y2) 2 EG1⌦G2k where G1 and G2 are the simple games
G1 = (Y1, R1, argmax) and G2 = (Y2, R2, argmax).

Note that in the simple games G1 and G2, the ‘rational behaviour’ of the
players is to maximise (where ‘rational’ is taken to mean ‘playing according
to their equilibrium’). However the rational behaviour of players in G1 ⌦
G2 may not be globally maximising – this is precisely what the Prisoner’s
Dilemma illustrates. Thus maximising behaviour is not compositional, so the
generalisation from argmax to the equilibrium function E is essential. Also
notice how in Theorem 4 it is essential to not hardwiring a utility function
into a simple game but rather define the equilibria for all possible utility
functions. Finally, notice how the equilibria of G1 ⌦ G2 can be computed
compositionally from only the equilibria of G1 and G2, even if G1 and G2 are
highly complex games. That is, one need not delve into the definitions of G1

and G2 to see how they are built. In the rest of this paper, we generalise this
basic compositional model economic game theory to a more sophisticated
compositional model encompassing a much broader class of games.

4. Pregames

Section 3 defined a compositional model of economic game theory. That is,
we defined i) the notion of a simple game ii) an operator for building new
simple games from old; and iii) the equilibria for compound simple games
in terms of the equilibria of their component simple games. However, sim-
ple games possess limited structure and hence support limited operators —
this is a problem, as more operators enable more compositional reasoning!
Therefore, we introduce a more sophisticated compositional model which
finds a sweet spot of being expressive enough to model complex and highly
irregular games while retaining enough simplicity to continue to deliver con-
ceptual clarity. As motivation, consider me placing a bet with a bookmaker:
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• My state informs my actions, e.g. my wealth a↵ects the size of my bet.
Secondly, I have di↵erent strategies, e.g. high-risk, long-odds bets, or
low-risk, short-odds bets. Strategy and state are conceptually di↵erent
as I can choose my strategy but not my state. Together, a state and a
strategy determine the action taken, i.e. which bet I place. The envi-
ronment, i.e. the bookmaker, returns my winnings.

• The bookmaker also has a state: in this case, the bet placed. They too
have a number of strategies, e.g. to refuse the bet, to accept the bet, or
to lay the bet. Again, their state and strategy determine their action.
And, again, it is the environment that converts their actions into results
and hence utility. Finally, the bookmaker will return winnings to the
better — we call this coutility since it is the source of the better’s utility.

The above example motivates our more general definition:

Definition 5 (Pregame). Let X, Y , R and S be sets. A pregame G over
X,Y,R, S consists of the following data:

• A set ⌃G of strategy profiles

• A play function PG : ⌃G ! (X ! Y )

• A coutility function CG : ⌃G ! (X ⇥R ! S)

• An equilibrium function EG : X ⇥ (Y ! R) ! P⌃G .

For reasons that will become apparent later, we denote such a pregame
G : (X,S) ! (Y,R). If � 2 EG(x, k), then we imagine there is no better
strategy than � if we are in state x and k : Y ! R computes the utilities
arising from each action. We also represent pregames as string diagrams
containing ports where interaction with other games takes place.

X

YR

S

G

Example 6 (Prisoners Dilemma and Other Simple Games). Let M be the
set of moves in the Prisoners Dilemma game, i.e. M = {C,D}2. Define the
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pregame PD : (1,R⇥ R) ! (M,R⇥ R) with strategies ⌃
PD

= M and with
play function (eliding the unit type) choosing the strategy, i.e.

P
PD

m = m

Coutility is C
PD

m r = r, while

(�1,�2) 2 E
PD

k i↵ �1 2 argmax ⇡1 � k(�,�2)

^ �2 2 argmax ⇡2 � k(�1,�)

The Prisoners Dilemma is a simple game (see Defn. 2) and in fact all simple
games are pregames where X = S = 1, ⌃ = Y and P is the identity function.

We can also define a two round Prisoners Dilemma:

Example 7 (2-Round Prisoners Dilemma). Again, let M = {C,D}2 be
the set of moves in the Prisoners Dilemma game. We define a pregame
2PD : (1,R ⇥ R) ! (M ⇥ M,R ⇥ R) which represents two rounds of the
Prisoners Dilemma Game. The strategy set for the game ought to be a
move for the first round together with a function which gives a round 2
move for each round 1 moves. That is ⌃

2PD

= M ⇥ (M ! M). The play
function is

P
2PD

(�1,�2) = (�1,�2�1)

Coutility is similar to that above, while

(�1,�2) 2 E
2PD

k i↵ �1 2 E
PD

k(�,�2�) ^
8� 2 M. �2� 2 E

PD

k(�,�)

Note �2 must compute an optimal strategy for all round-1 plays — this
accords with the no-incredible-threats principle of subgame perfect equilib-
ria. Our definition of 2PD is compositional: subgame perfect equilibrium
for 2PD consist of a Nash equilibrium in the first round (for a particular
utility function defined using the second round strategies), together with a
Nash equilibrium in the second round for each first round play (with another
utility function defined by that first round play). We now show how we can
define operators that build complex pregames from simpler pregames.

5. Operators on Pregames

We introduce operators for building pregames. The first three build atomic
pregames while the last two build compound pregames from other pregames:
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Definition 8 (Players). A player who observes a state of type X, makes
a choice of type Y and optimises an outcome of type R is represented by a
pregame P : (X, 1) ! (Y,R), where the set of strategies is ⌃P = X ! Y ,
i.e. mappings from states to choices. The play function PP(�, x) = �(x)
applies the strategy to the state, while the coutility function is trivial. In
general, the equilibrium function can be varied in di↵erent examples to give
di↵erent goals to the player.

If the player does not make any observation then X = 1. In the two cases
X 6= 1 and X = 1, a player is represented by a string diagram as

X

YR

P

YR

P

(triangles traditionally denote components of string diagrams that have con-
nections on only one side). For an example of a classical, utility-maximising
player, take R = R with the equilibrium relation being given by

EP (x, k) = {� : X ! Y | �(x) 2 argmax k}

If X = 1, this simplifies to

EP (⇤, k) = argmax k

Definition 9 (Computations). A function f : X ! Y defines a two
pregames, a ‘covariant computation’ f : (X, 1) ! (Y, 1) and a ‘contravari-
ant computation’ f⇤ : (1, Y ) ! (1, X). These are used to represent aspects
of a game that are not players (more precisely, that cannot make strategic
choices), e.g. utility functions. In both cases we have ⌃ = 1, and define Ef

and Ef⇤ to always return {⇤}. In the covariant case, we set Pf (⇤, x) = fx,
while in the contravariant case we set Cf⇤(⇤, ⇤, x) = fx.

Covariant and contravariant computations are respectively drawn as
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X

Y X

Y

f f

An important example of a covariant computation is copying �X : (X, 1) !
(X ⇥ X, 1) arising from the function �X : X ! X ⇥ X which copies its
argument. Within games, this allows information to be used more than
once, for example both being observed by a player, and used as input to a
utility function.

X

X X

Our final basic constructor for pregames is the Teleological Counit which
mediates between the forward direction of information (chose strategy, play
move) and the backward flow of information (a process generates coutility
and passes it to a previous process as utility). More concretely, the teleo-
logical unit — in combination with a computation — allows us to specify a
particular utility function to be used in the pregame. Of course, this cur-
tails the possibility of interacting with other pregames by closing o↵ the
ports where that interaction can happen:

Definition 10 (Teleological counit). The pregame ⌧X : (X,X) ! (1, 1) is
given by ⌃⌧X = 1, C⌧X (⇤, x, ⇤) = x and with E⌧X always returning {⇤}.

We graphically represent the teleological counit by a cup

XX
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After introducing three basic operators for pregames, we now present two
compound operators — the monoidal product which generalises the similar
operator of Section 3, and sequential composition.

Definition 11 (Monoidal Product of Pregames). If G : (X1, R1) ! (Y1, S1)
and H : (X2, S2) ! (Y2, R2) are pregames, their monoidal product

G ⌦H : (X1 ⇥X2, S1 ⇥ S2) ! (Y1 ⇥ Y2, R1 ⇥R2)

is defined by

• ⌃G⌦H = ⌃G ⇥ ⌃H
• PG⌦H(�1,�2)(x1, x2) = (PG �1 x1, PH �2 x2)

• CG⌦H(�1,�2)((x1, x2), (r1, r2)) = (CG(�1(x1, r1), CH(�2)(x2, r2))
• (�1,�2) 2 EG⌦H ((x1, x2), k) i↵ �1 2 EG (x1, k1) and �2 2 EH (x2, k2)
where

k1(y1) = (⇡1 � k)(y1, PH(�2)(x2))

k2(y2) = (⇡2 � k)(PG(�1)(x1), y2)

Definition 12 (Sequential Composotion). Let G : (X,T ) ! (Y, S) and
H : (Y, S) ! (Z,R) be pregames. The composition H � G : (X,T ) ! (Z,R)
is defined by

• ⌃H�G = ⌃G ⇥ ⌃H
• PH�G(�1,�2) = PH(�2) � PG(�1)
• CH�G(�1,�2)(x, r) = CG(�1)(x,CH(�2)(PG(�1)(x), r)))
• (�1,�2) 2 EH�G(x, k) i↵

1. �1 2 EG(x, k0), where k0(y) = CH(�2)(y, k(PH(�2)(y))), and
2. �2 2 EH(PG(�01, x), k) for all �01 2 ⌃G

The definition of sequential composition highlights two fundamental points

• We promised to explain why we write G : (X,S)!(Y,R) if G has stateX,
moves Y , utility R and coutility S. When composing functions f :A ! B
and g :B ! C, the codomain of f must be the same as the domain of g
because we feed the output of f into the input of g. Similarly, in H � G,
we feed the output move G into the state of H, and the coutility of H
into the utility of G. Thus i) the type of moves of G and the states of H
must be the same; and ii) the type of utility of G and the coutility of H
must also be the same. Thus, the domain of a game contains its state
and coutility, while its codomain contains its moves and utility.
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• To treat the composition H � G correctly - as in the example of placing
a bet with a bookmaker - G can only get its utility once H has its own
utility. Technically, within the definition of equilibrium for a composed
system, G must be in equilibrium for a utility function which depends
upon what H feeds back to G. This ability of the future system H to feed
utility into a previous system G is exactly why we introduced the concept
of coutility. Formally, the definition of equilibrium in the composition
EH�G depends upon the existence of the coutility CH.

Example 13. A two-player context-dependent game is defined in [8] to con-
sist of the following data:

• Sets X, Y of choices for each player, and R of outcomes

• Multivalued selection functions " : (X ! R) ! PX, � : (Y ! R) ! PY

• An outcome function q : X ⇥ Y ! R

• A strategy profile is simply a pair (�1,�2) : X ⇥ Y . A strategy profile is
called a selection equilibrium if

�1 2 "(q(�,�2))

�2 2 �(q(�1,�))

Context dependent games generalise the simple games of Def 2 in that the
selection functions need not be argmax. For example, in [8] it is shown
that selection functions returning a set of fixpoints or non-fixpoints gives an
elegant model of coordination or di↵erentiation goals of players, respectively.
The selection equilibria of context dependent games can be characterised
compositionally.

Theorem 14. The selection equilibria of this game are precisely the equilib-
ria of the string diagram

P" P�

q

X Y

R R
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where q is the lifting of the outcome function as a covariant computation,
and P" and P� are players, whose equilibrium functions are respectively

EP"(⇤, k) = "k

EP�(⇤, k) = �k

Proof. The above string diagram is clearly definable within our grammar
of pregames, for example, by the expression

G = (⌧R ⌦ ⌧R) � (id⇤R ⌦(�R � q)⌦ id⇤R) � (P" ⌦ P�) : (1, 1) ! (1, 1)

Unwinding the definitions, we have

(�1,�2) 2 EG(⇤, ⇤)
() (�1,�2) 2 EP"⌦P�(⇤, k) ^ ⇤ 2 E(⌧R⌦⌧R)�(id⇤R ⌦(�R�q)⌦id⇤R)(⇤, ⇤)

The second term of this is found to be vacuously true, and so it is equivalent
to

() (�1,�2) 2 EP"⌦P�(⇤, k)
() �1 2 EP"(⇤, k1) ^ �2 2 EP�(⇤, k2)
() �1 2 "k1 ^ �2 2 �k2

It is straightforward but tedious to verify that, according to the above defi-
nitions, the continuations k, k1 and k2 are given as follows:

k(x, y) = C(⌧R⌦⌧R)�(id⇤R ⌦(�R�q)⌦id⇤R ⌦ id⇤R)(⇤)((x, y), ⇤)
= (q(x, y), q(x, y))

k1(x) = (⇡1 � k)(x, PP�(�2, ⇤)) = (⇡1 � k)(x,�2) = q(x,�2)

k2(y) = (⇡2 � k)(PP"(�1, ⇤), y) = (⇡2 � k)(�1, y) = q(�1, y)

Thus, we have proved that EG(⇤, ⇤) is exactly the set of (�1,�2) that satisfy
the conditions of a selection equilibrium.

Context dependent games and selection equilibria include ordinary normal
form games and Nash equilibria as a special case, by taking R = R2, and
the selection function " and � to be the argmax operators for the first and
second coordinates:

"(k) = {x 2 X | (⇡1 � k)(x) � (⇡1 � k)(x0) for all x0 2 X}
�(k) = {y 2 Y | (⇡2 � k)(y) � (⇡2 � k)(y0) for all y0 2 Y }

A second class of games that are subsumed by our grammar are generalised
sequential games, which subsume classical games of perfect information.
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Definition 15. A two-player sequential game is defined in [6] to consist of
the following data:

• Sets X, Y of choices for each player, and R of outcomes

• Multivalued quantifiers ' : (X ! R) ! PR,  : (Y ! R) ! PR

• An outcome function q : X ⇥ Y ! R

• A strategy profile for this game consists of a move �1 : X for the first
player and a contingent strategy �2 : X ! Y for the second player. A
strategy profile is called optimal if

q(�1,�2(�1)) 2 '�x.q(x,�2(x))

q(x,�2(x)) 2  �y.q(x, y) for all x 2 X

Note that the di↵erence between selection functions and quantifiers is rela-
tively unimportant: we could equally well define simultaneous games using
quantifiers, and sequential games using selection functions.

Theorem 16. Every optimal strategy profile for this game is an equilibrium
of the string diagram

P'

P 

q

X

X

Y

R

R
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where P" and P� are players with equilibrium functions

�1 2 EP'(⇤, k1) () k1(�1) 2 '(k1)

�2 2 EP (x, k2) () k2(�2(x)) 2  (k2)

Proof. Again, this string diagram falls within our grammar being given
algebraically by

(⌧R ⌦ ⌧R) � (id⇤R ⌦(((�R � q)⌦ id⇤R) � (idX ⌦P ) ��X)) �P' : (1, 1) ! (1, 1)

Unwinding the definition, we have

(�1,�2) 2 E(⌧R⌦⌧R)�(id⇤R ⌦(((�R�q)⌦id⇤R)�(idX ⌦P )��X))�P'(⇤, ⇤)
() (�1,�2) 2 E(id⇤R ⌦(((�R�q)⌦id⇤R)�(idX ⌦P )��X))�P'(⇤, idR⇥R)

() �1 2 EP'(⇤, k1) ^ 8�01 2 X. �2 2 EG(PP'(�
0
1)(⇤), idR⇥R)

where

G = id⇤R ⌦(((�R � q)⌦ id⇤R) � (idX ⌦P ) ��X) : (X,R) ! (R⇥R,R⇥R)

and
k1(x) = CG(�2)(x, idR⇥R(PG(�2)(x))) = q(x,�2(x))

The first condition is therefore equivalent to

q(�1,�2(�1)) 2 '(�x.q(x,�2(x)))

which is the first part of the definition of an optimal strategy.
Continuing, the second condition for a particular �01 2 X is

�2 2 EG(PP"(�
0
1)(⇤), idR⇥R) () �2 2 EG(�01, idR⇥R)

() �2 2 E((�R�q)⌦id⇤R)�(idX ⌦P )��X
(�01,⇡2)

() �2 2 E((�R�q)⌦id⇤R)�(idX ⌦P )((�
0
1,�

0
1),⇡2)

() �2 2 EidX ⌦P ((�
0
1,�

0
1), k2)

() �2 2 EP (�
0
1, k3)

where

k2(x, y) = C(�R�q)⌦id⇤R
(⇤)((x, y), (⇡2 � P(�R�q)⌦id⇤R

(⇤))(x, y)))
= q(x, y)

k3(y) = k2(�
0
1, y) = q(�01, y)
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Thus, the second condition is that for all �01 2 X,

k3(�2(�
0
1)) 2  (k3)

which is
q(�01,�2(�

0
1)) 2  (�y.q(�01, y))

which is the second part of the definition of an optimal strategy.

6. The Monoidal Category of Pregames

The mathematical treatment of pregames above delivers a bottom-up col-
lection of operators for defining complex pregames from simple pregames
and computing the equilibria of those complex games from their more sim-
ple components. Furthermore, pregames naturally posses a graphical form
as a string diagram showing the flow of information around the game. This
makes pregames easier to visualise and therefore comprehend. However, this
mathematical treatment is so far insu�cient for a number of reasons:

• Reasoning about string diagrams needs us to formally define diagrams
— this can be a very intricate and messy process. Category theory o↵ers
a treatment of string diagrams known as monoidal category theory which
has been successfully applied to a number of areas, eg network theory,
quantum physics, concurrency theory.

• We want our operators to capture fundamental structure. Category the-
ory is used to find fundamental structures across mathematics and com-
puter science, eg one such is the monoidal product which arises in both
simple games and pregames.

• To reason e↵ectively, we need to know when two di↵erent pregames are
the same, eg the associativity of composition or the distributivity of con-
tra variant computations over composition: (g � f)⇤ = f⇤ � g⇤. Category
theory gives canonical laws one can expect to hold between the canonical
operators that arise in category theory.

• Category theory provides universal properties for structuring and reason-
ing. A key example are final coalgebras which we use to model infinite
iteration of pregames.

For these reasons (and for others more related to future work), we introduce
a categorical model of pregames. The first guess is to take as objects pairs
of sets and define the morphisms from (X,S) to (Y,R) to be the pregames
(X,S) ! (Y,R). However this doesn’t quite work, e.g. composition would
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fail to be associative. The problem is that games which have isomorphic sets
of strategies ought really to be the same and hence we quotient pregames by
such isomorphisms. This is in tune with general categorical principles where
one allows objects to be isomorphic but asks morphisms to either be equal
or not. A similar approach underlies the construction of free cartesian closed
categories where one quotients well typed �-calculus terms by �⌘-equality.

Theorem 17. There is a category Pregame whose objects are pairs of sets
(X,S). Morphisms from (X,S) to (Y,R) are pregames (X,S) ! (Y,R) quo-
tiented by the relation which identifies two pregames if their sets of strategy
profiles are isomorphic and their play, coutility and equilibrium functions are
the same under this isomorphism.

Proof. To ensure readability, our proof treats pregames and we omit the
entirely trivial checks that our arguments preserve the equivalence relation
on pregames. On the other hand, since morphisms/pregames contain a lot
of data, we give the rest of the proof in some detail. The identity on the
object (X,S) is the pregame idX ⌦ id⇤S . More concretely, this is the pregame

• ⌃id(X,S)
= 1

• Pid(X,S)
(⇤) = idX

• Cid(X,S)
(⇤)(x, r) = r

• ⇤ 2 Eid(X,S)
(x, k) for every x and k

Left identity Let G : (X,S) ! (Y,R). We prove that id(Y,R) � G = G.
Then

• ⌃id(Y,R) � G = ⌃id(Y,R)
⇥ ⌃G = 1⇥ ⌃G = ⌃G

• Pid(Y,R) � G(�) = Pid(Y,R)
(⇤) � PG(�) = idY �PG(�) = PG(�)

• Cid(Y,R) � G(�)(x, r) = CG(�)(x,Cid(Y,R)
(⇤)(PG(�)(x), r)) = CG(�)(x, r)

• � 2 Eid(Y,R) � G(x, k) () � 2 EG(x, k0) ^ ⇤ 2 Eid(Y,R)
(PG(�)(x), k) ()

� 2 EG(x, k0) where

k0(y) = Cid(Y,R)
(⇤)(y, k(Pid(Y,R)

(⇤)(y))) = k(Pid(Y,R)
(⇤)(y)) = k(y)

Right identity We prove that G � idX,S = G. We have

• ⌃G�id(X,S)
= ⌃G ⇥ ⌃id(X,S)

= ⌃G ⇥ 1 = ⌃G
• PG�id(X,S)

(�) = PG(�) � Pid(X,S)
(⇤) = PG(�) � idX = PG(�)
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• CG�id(X,S)
(�)(x, r) = Cid(X,S)

(⇤)(x,CG(�)(Pid(X,S)
(⇤)(x), r)) =

CG(�)(Pid(X,S)
(⇤)(x), r) = CG(�)(x, r)

• � 2 EG�id(X,S)
(x, k) () ⇤ 2 Eid(X,S)

(x, k0) ^ � 2 EG(Pid(X,S)
(⇤)(x), k)

() � 2 EG(x, k)

Associativity Let G : (X,U) ! (Y, T ), H : (Y, T ) ! (Z, S) and I :
(Z, S) ! (W,R). We have

⌃(I�H)�G = ⌃G ⇥ ⌃I�H = ⌃G ⇥ ⌃H ⇥ ⌃I = ⌃H�G ⇥ ⌃I = ⌃I�(H�G)

For the play function we have

P(I�H)�G(�1,�2,�3) = PI�H(�2,�3) � PG(�1)

= PI(�3) � PH(�2) � PG(�1)
= PI(�3) � PH�G(�1,�2)
= PI�(H�G)(�1,�2,�3)

and for the coutility function have

C(I�H)�G(�1,�2,�3)(x, r)

= CG(�1)(x,CI�H(�2,�3)(PG(�1)(x), r))
= CG(�1)(x,CH(�2)(PG(�1)(x), CI(�3)(PH(�2)(PG(�1)(x), r))))
= CG(�1)(x,CH(�2)(PG(�1)(x), CI(�3)(PH�G(�1,�2)(x), r)))
= CH�G(�1,�2)(x,CI(�3)(PH�G(�1,�2)(x), r))
= CI�(H�G)(�1,�2,�3)(x, r)

For the equilibrium condition we have

(�1,�2,�3) 2 E(I�H)�G(x, k3)

() �1 2 EG(x, k1) ^ 8�01 2 ⌃G .(�2,�3) 2 EI�H(PG(�01)(x), k3)
() �1 2 EG(x, k1) ^ 8�01 2 ⌃G .[�2 2 EH(PG(�01)(x), k2)

^ 8�02 2 ⌃H.�3 2 EI(PH(�02)(PG(�01)(x)), k3)]
() �1 2 EG(x, k1) ^ [8�01 2 ⌃G .�2 2 EH(PG(�01)(x), k2)]

^ 8(�01,�02) 2 ⌃H�G .�3 2 EI(PH�G(�01,�
0
2)(x), k3)

() (�1,�2) 2 EH�G(x, k2)
^ 8(�01,�02) 2 ⌃H�G .�3 2 EI(PH�G(�01,�

0
2)(x), k3)

() (�1,�2,�3) 2 EI�(H�G)(x, k3)
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where

k1(y) = CI�H(�2,�3)(y, k3(PI�H(�2,�3)(x)))
= CI�H(�2,�3)(y, k3(PI(�3)(PH(�2)(x))))
= CH(�2)(y, CI(�3)(PH(�2)(y), k3(PI(�3)(PH(�2)(x)))))
= CH(�2)(y, k2(PH(�2)(x)))

k2(z) = CI(�3)(z, k3(PI(�3)(z)))

This completes the proof.

Theorem 17 demonstrates how our composition operator is a fundamental
algebraic operation. The same is true of our operation for putting games in
parallel.

Theorem 18. The category Pregame is symmetric monoidal.

Proof. The monoidal product acts on objects (X,R) and (X 0, R0) by taking
their product componentwise giving (X ⇥ X 0, R ⇥ R0). The action of the
monoidal product on morphisms is given by parallel composition. The unit
of this monoidal structure is (1, 1), while the symmetry is inherited from
that of the product on the category of sets. As the proof that this data does
indeed form a symmetric monoidal category is straightforward, containing
none of the detail of Theorem 17, we leave the proof as an exercise.

One final piece of categorical structure bears a striking resemblance to graph-
ical reasoning in a compact closed category:

Theorem 19. If f : X ! Y is a computation then ⌧Y � (f ⌦ id⇤Y ) = ⌧X �
(idX ⌦f⇤). In diagrams,

Y X

f =

Y X

f

Proof. Firstly note that we have

Pf⌦id⇤Y
(⇤)(x) = f(x) Cf⌦id⇤Y

(⇤)(x, y) = y

PidX ⌦f⇤(⇤)(x) = x CidX ⌦f⇤(⇤)(x, x0) = f(x0)
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We have ⌃⌧Y �(f⌦id⇤Y )
⇠= 1 ⇠= ⌃⌧X�(idX ⌦f⇤). Both play functions are the

unique function X ! 1. For the coutility function,

C⌧Y �(f⌦id⇤Y )(⇤)(x, ⇤) = f(x) = C⌧X�(idX ⌦f⇤)(⇤)(x, ⇤)

Finally for both cases we have ⇤ 2 E(x, ⇤) for all x.

7. Iteration

While we have so far demonstrated the possibility of a compositional theory
of Nash equilibria, more operators are needed to cover a compelling variety
of games. As there will likely never be a set of operators capturing all pos-
sible games, we seek a balance between i) the desire for more operators to
model more games; and ii) fewer (but perhaps better) operators to ensure
the collection of operators remains small and hence tractable. Obtaining
this balance is a substantial endeavour requiring a follow-up paper. Never-
theless we make a start here, primarily to showcase how compositional Nash
equilibria can be defined for games more sophisticated than those studied
already. To that end, we consider IPD - the Iterated Prisoners’ Dilemma.

Informally, IPD consists of playing PD infinitely often. Thus, one might con-
jecture IPD is defined recursively by the equation IPD = IPD�PD. However,
this is not quite right as the definition of composition means that a strategy
for IPD would consist of a strategy for PD and another strategy for IPD.
However, a strategy for IPD actually consists of a strategy for PD and - for
each move of PD - a strategy for IPD to be followed if that move were played.
Thus the correct definition is

Definition 20 (Infinite Iteration). Let G : (X,R) ! (Y,R) be a pregame
with strategies, play, coutility and equilibria given by ⌃G , PG , CG and EG
respectively. Further, let � : Y ! X be a function which updates state after
a move is played. Define the iterated pregame G!� : (X,R) ! (Y !, R), where
Y ! is the type of infinite lists over Y , as follows

⌃G! = ⌫Z. ⌃G ⇥ (Y ! Z)

PG!� (�, f) x = let y = PG � x in y : PG!� (f y) (� y)

CG!� (�, f) x r = let y = PG � x in CG � x (CG!� (k y) (� y) r)

(�, f) 2 EG!� x k i↵ � 2 EG x k0 ^ (8y 2 Y ) fy 2 EG!� (� y) k

where k0 y = CG!� (fy) (�y) (k(y : PG!� (fy) (�y))
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The above definition is somewhat complex and hence needs explanation.
First note that ⌫Z. ⌃G⇥ (Y ! Z) is a final coalgebra that denotes the set of
infinite depth trees with nodes labelled by an element of ⌃G and where each
node has Y -children. As a result, an element of ⌃G!� can be written uniquely

as a pair (�, f) where � 2 ⌃G and f : Y ! ⌃G!� maps each element of Y to
its associated child-tree. Next, note that the symbol : is the ‘cons’ operator
which takes a stream of data an a piece of data and adds the data to the
front of the stream. The play function of G!� is defined by computing the
first move and then adding that to the recursive computation of subsequent
moves. Note how the coutility function is similar to the coutility function
for composition reflecting how coutility from subsequent moves played later
in the game is fed into the coutility function for the first move. Finally, a
strategy is in equilibrium i↵ the strategy to be played in the first game is
in equilibrium for the one-step game, and - for each potential move - the
associated strategies for the remaining subgame are also in equilibrium.

As an example, we apply the above definition to the Prisoners Dilemma,
thereby producing the Iterated Prisoners Dilemma. Recalling the Prisoners
Dilemma PD is a pregame PD : (1, S) ! (M,S) where M = {C,D}2 and
S = R2. The strategies, play, coplay and utility functions are all given
in Example 6. Applying our iteration combinator with the (unique) state
function � : M ! 1, we get the Iterated Prisoners Dilemma IPD = PD

!
� as

follows:

Example 21. The Iterated Prisoners Dilemma is the game IPD : (1,R ⇥
R) ! (M!,R2) with strategies, play, coutility and equilibria given - once
again after removing any unit types - by

⌃
IPD

= ⌫Z. M ⇥ (M ! Z)

P
IPD

(�, f) = � : P
IPD

(f�)

(�, f) 2 E
IPD

k i↵ � 2 E
PD

(k(P
IPD

(�, f)))

^
(8� 2 M)f� 2 E

IPD

k

with the trivial coutility function.

Note that the strategies ⌃
IPD

consist of infinite depth trees whose nodes
are labelled by elements of M and each node has M -children. The element
at each node describes the strategy to be used in the first round and each
child describes the strategy to be used if the corresponding move were to
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have been played. These are precisely the pure strategies for the ordinary
iterated prisoner’s dilemma. If we choose k : M! ! R2 to be a utility
function for the iterated prisoner’s dilemma (perhaps given by a discounted
sum, but perhaps not) then E

IPD

k exactly characterises those strategies in
⌃
IPD

that are subgame-perfect equilibria of the iterated prisoner’s dilemma.
Intuitively, the condition says that i) the first move is a Nash equilibrium of
the one-shot game PD but, crucially, for a utility function that incorporates
information about future moves via P

IPD

; and ii) for every potential first
move, the associated subsequent strategy for the remaining subgame (which
is still an infinitely repeated game) is also in equilibrium. Formally, for
each k, the equilibirum predicate E

IPD

k is a coalgebraic predicate [?] which
therefore supports the following reasoning principle called coinduction

Theorem 22. Let Q ✓ ⌃
IPD

and k : M! ! R2. Further, if

8(�, f) 2 Q. � 2 E
PD

(k(P
IPD

(�, f))) ^ (8� 2 M)f� 2 Q

then Q ✓ E
IPD

k.

We can use the above theorem to show certain strategies are in E
IPD

for
various utility functions. The point is not that the result below is anything
but obvious, but rather to demonstrate the nature of the coinductive proof
technique to econometricians who may not be familiar with it.

Example 23. Define � : ⌃
IPD

by �0 = ((D,D),�m.�). That is � is the
strategy in which both players defect upon their first turn and no matter
what moves are played, decide to defect forever after. Further, define k :
M ! R⇥ R to be the utility function for PD defined by

k(C,C) = (�1,�1) k(D,C) = (0,�4)

k(C,D) = (�4, 0) k(D,D) = (�3,�3)

Such a k is a classic utility function for which the only Nash equilibria are for
both players to defect. Now, lets define a utility function k! : M! ! R⇥R
for IPD by discounting: k!(m : ms) = km�k!ms where � is componentwise
addition. To show � 2 E

IPD

we use the above theorem with Q = {�}. Thus,
we need to show

(D,D) 2 E
PD

((k�)� k!d!) ^ � 2 Q

where d! = (D,D) : d! is the sequence of plays where both players keep on
defecting. The first subgoal is clear as one can easily check that the only
equilibria of the Prisoners Dilemma with utility function (k�)� k!d! is for
both players to defect. The second subgoal is true by assumption.
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We conclude with a question of utility. We were asked by friends “What
questions could your work help those interested in economic game theory
solve”. Such questions are always di�cult for a paper aiming at concepts
and ideas, but nevertheless, we ask readers the following questions

1. Can you develop a model of equilibria in iterated games that does not
insist that the utility of an iterated game is obtained by discounting?
The above work infact is exactly such a model as nowhere do we assume
discounting. This is in the tradition of best scientific practice where one
ought not to make assumptions (here discounting) unless one need to.

2. Lets say we want to enter some software in a tournament for games
playing Iterated Prisoners Dilemma. We would thus have to play the
iterated Prisoners’ Dilemma over an over again. Can you formalise that
game, the associated strategies, moves and equilibria? With out work,
it is simply the iterated version of the iterated prisoners dilemma, i.e.
IIPD = IPD

! = (PD!)!. It is thus simply a matter of reading o↵ the
right definitions from our formulas above.

3. Can you find conditions for a general class of iterated games which ensure
repeating a strategy which is in equilibria for each state game is in equi-
librium for the iterated variant of the stage game? Our work suggests
exactly such a generic answer.

8. Conclusions and Future Research

We finish the paper with a discussion about what we have achieved and what
we intend to do in the future.

Achievements: This paper’s most significant contribution is a new way to
think about economic games using the idea of compositionality from com-
puter science. This involved the development of a new model of economic
games which had several original features: i) games do not come with a spe-
cific utility function; ii) games can reason about how current actions e↵ect
future utility via the new concept of coutility; iii) games posses a clear visual
interface as string diagrams; and iv) have a fully rigorous treatment within
monoidal category theory. The compositionality of this model is demon-
strated by the operators that can be defined on arbitrary games and used to
build, reason about and even implement larger games from smaller games.
Before discussing future work, we analyse decisions implicitly taken is the
design of our model and their validity.
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• To facilitate accessibility of our paper we chose to work internally to
the category of sets as opposed to internally to an ambient symmetric
monoidal category. The choice between clarity and mathematical so-
phistication is important - and we believe we have it right - but is not
inherently a scientific one but rather a subjective matter of presentation.

• We made pregames the morphisms of a category to highlight the in-
puts and outputs of games which was a prerequisite to formalising the
idea of coutility. This also enabled a string diagram interpretation of
pregames thereby giving rigour to our pregame constructors and relating
them to constructions on string diagrams. However, ought we to have
made pregames the objects of a category? Certainly making pregames
objects would have enabled universal properties to have been developed
for pregame operators. Actually, both perspectives are valid. Just as the
category of sets, relations and relation preserving morphisms is naturally
a 2-category, so the category of pregames is naturally a 2-category. For
this paper, the 2-dimensional structure was not relevant so we focussed on
the 1-dimensional structure of pregames. As commented below, in future
work we will need to turn to the 2-dimensional structure of pregames.

Future Work: The potential applications of a compositional, graphical
game theory are numerous, especially in economics, and this paper also
raises some interesting theoretical questions. We conclude by broadly giving
some future research directions and questions:

• Possibly the most important theoretical concepts missing from this pa-
per are incomplete information games, which are ubiquitous in economic
applications. This requires the 2-dimensional structure of pre-games al-
luded to above. Examples of such games show that delicate choices need
to be made about whether data should be treated covariantly, contravari-
antly or relationally. Nevertheless, we have initial thoughts and hope to
progress them soon.

• Another important aspect of game theory that cannot be modelled by
the operators above is the ability of a pregame to depend on a previous
move. Influence diagrams also su↵er from this problem. For example
in a market entry game a firm decides whether to enter a new market,
and then subsequently a particular game is played only if the market
was entered. This is also commonly used with the ‘moves of nature’ in
the standard approach to incomplete information. Our approach will
be to use dependent types and fibred monoidal categories to underpin
dependently typed string diagrams.
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• Computer support is vital. The first author has developed a Haskell
implementation, but it is extremely awkward because the Haskell type
system does not unify types like X ⇠ 1 ⇥ X and X ⇠ 1 ! X, and so
the user must manually track these isomorphisms. As an intermediate
step, a code generator for a domain specific language similar to Haskell’s
arrows [11] would be useful. Unfortunately, for technical reasons it does
not seem to be possible to use GHC’s built-in arrow preprocessor. Ulti-
mately a graphical interface would be invaluable for these ideas to become
accessible to working economists.

• As a by-product of obtaining a compositional theory, we have the ability
to model preferences of agents which are extremely di↵erent to utility
maximisation or preference relations. This extends a line of work begun
in [8], which uses fixpoint selection functions to model coordination and
di↵erentiation. Obvious next steps include modelling bounded rational-
ity [14] and social concerns.

• As described above, a potentially very powerful dimension is to vary the
underlying category from Sets to another category. The use of ordinary
(possibilistic) nondeterminism in game theory is explored in [12, 3, 7]
and [9, chapter 9], and work in progress by the author suggests that
the order structure on possibilistic strategies is important. We also have
experimental evidence that correlated equilibria [1] appear as a special
case by using a commutative monad transformer stack in which a reader
monad gives players read-only access to a shared randomising device.
This is strong evidence that side e↵ects in the sense of programming
languages can also be a unifying idea in game theory.

• Using noncommutative side-e↵ects is potentially even more rewarding.
In this case, the category of pregames may be premonoidal. A major aim
is to use strategies with mutable states to model learning, and individual
rationality relations to specify that a strategy can be subjectively rational
with respect to the current epistemic state, for example using methods
of epistemic game theory [13].

References

[1] Aumann, Robert, ‘Subjectivity and correlation in randomized strategies’, Journal

of mathematical economics, 1 (1974), 67–96.

[2] Baez, John, and Mike Stay, ‘Physics, topology, logic and computation: a Rosetta

stone’, in Bob Coecke, (ed.), New structures for physics, Springer, 2010, pp. 95–172.

[3] Blumensath, Achim, and Viktor Winschel, ‘A coalgebraic framework for games

in economics’, , 2013. Working paper.



A Compositional Approach to Economic Game Theory 27

[4] Bonchi, Filippo, Pawel Sobocinski, and Fabio Zanasi, ‘Interacting bialgebras are

Frobenius’, in Proceedings of FoSSaCS 2014, vol. 8412, Springer, 2014, pp. 351–365.

[5] Coecke, Bob, Edward Grefenstette, andMehrnoosh Sadrzadeh, ‘Lambek vs.

Lambek: functorial vector space semantics and string diagrams for Lambek calculus’,

Annals of pure and applied logic, (2013).
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