
void readFile() {
FILE *b;
char c;

b = fopen("Yorick", "r");
c = fgetc(b);
while (!feof(b)) { putchar(c); c = fgetc(b); }
fclose(b); }













programming to an interface

data State = Open | Closed

fopen :: FilePath → State
fgetc :: () → Maybe Char
fclose :: () → ()

I’ve hidden the FILE* variable naming the resource, and given a
command-response interface.



a program is a strategy tree

nodes are commands
edges cover responses
values delivered at leaves



Strategy trees as data

data Strategy x
= Return x -- value returned at leaf
| FOpen FilePath (State → Strategy x)
| FGetC () (Maybe Char → Strategy x)
| FClose () (() → Strategy x)

One constructor per command, carrying arguments and a callback.



A Kleisli Category

Return :: x → Strategy x

(>>>) :: (x → Strategy y) → (y → Strategy z) →
(x → Strategy {-grafting... -} z)

Composition grafts the second strategy to the leaves of the first.
The interface determines the strategy type, which has the
structure of a monad.



commands as monadic operations

fopen :: FilePath → Strategy State
fopen f = FOpen f Return

fgetc :: () → Strategy (Maybe Char)
fgetc v = FGetC v Return

fclose :: () → Strategy ()
fclose v = FClose v Return

We can implement a monad homomorphism or device driver

runStrategy :: Strategy x → IO x

which actually talks to the world.



the general picture (Plotkin-Power)

data (:>>:) c r x = c :& (r → x)
-- how to make an x by command-response

data (:+:) f g x = L (f x)
| R (g x)

-- offer a choice of commands

data f :∗ x = Return x
| Do (f (f :∗ x))

-- build f -noded trees

Our example becomes

type Interface = ((FilePath :>>: State) :+:
(() :>>: Maybe Char) :+:
(() :>>: ())

)

and Strategy x = Interface :∗ x



what’s missing?

No model of reality.
No checking that action makes sense with respect to state.
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spot the problem



less diabolical



Atkey’s ‘parametrized’ monads
Idea: index by initial and final final states of type i , modelling the
world. Equip a type

M :: { i } → { i } → ∗ → ∗

with

return :: x → M { i } { i } x
(>>>) :: (x → M { i } { j } y) → (y → M { j } {k } z) →

(x → M { i } {k } z)

Grafting with dominoes!

We might have

malloc :: () → M {n} {Suc n} ()
free :: () → M {Suc n} {n} ()
get :: Var {n} → M {n} {n} Val
set :: (Var {n},Val) → M {n} {n} ()
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what if space doesn’t go on forever?

How can we model a malloc which might fail?
We can’t predict the outcome state.
Best available bet, a control operator:

ifmalloc :: M {Suc i } { j } x {-plan for success -} →
M { i } { j } x {-backup plan -} →
M { i } { j } x

We’ve stepped outside the generic command-response setup.



what’s missing?

The Devil
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consider indexed sets

p :: { i } → ∗

where the index type i represents the state of the world
(heap size, Open or Closed, etc)

p is like a predicate, but...
...some value

v :: p { i }

represents concrete evidence that p holds for i .

By inspecting v at run-time, we might get the goods on i .





Two useful kinds of evidence (1)

data (:=) :: ∗ → { i } → { i } → ∗ where
V :: a → (a := {k }) {k }

(a := {k }) is pronounced ”a at key k”

It means “I have an a and the state is k.”.
If you have some v :: (a := {k }) { i }, then you know i is k.
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Two useful kinds of evidence (2)

Singletons reify the typing judgment, and act as a run-time witness
of the state.

(::State) :: {State} → ∗

{Open} :: (::State) {Open}
{Closed} :: (::State) {Closed}

If you have some v :: (::State) { i }, then case analysis on v will tell
you whether i is Open or Closed.
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what are the morphisms?

type p :→ q = ∀ i · p { i } → q { i }

Index-respecting functions!

Predicate implication!

The usual polymorphic identity and composition are the identity
and composition. We have a category of i-indexed Haskell types.
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what are the monads?

Consider

M :: ({ i } → ∗) → ({ i } → ∗)

A ‘predicate transformer’.
M p { i } is a strategy for reaching some state satisfying p, starting
in state i .

A Kleisli arrow
f :: p :→ M q

is a Hoare triple!



what are the monads?

Consider

M :: ({ i } → ∗) → ({ i } → ∗)

A ‘predicate transformer’.

M p { i } is a strategy for reaching some state satisfying p, starting
in state i .

A Kleisli arrow
f :: p :→ M q

is a Hoare triple!



what are the monads?

Consider

M :: ({ i } → ∗) → ({ i } → ∗)

A ‘predicate transformer’.
M p { i } is a strategy for reaching some state satisfying p, starting
in state i .

A Kleisli arrow
f :: p :→ M q

is a Hoare triple!



what are the monads?

Consider

M :: ({ i } → ∗) → ({ i } → ∗)

A ‘predicate transformer’.
M p { i } is a strategy for reaching some state satisfying p, starting
in state i .

return :: p :→ M p
(>>>) :: (p :→ M q) → (q :→ M r) →

(p :→ M {-grafting -} r)

A Kleisli arrow
f :: p :→ M q

is a Hoare triple!



what are the monads?

Consider

M :: ({ i } → ∗) → ({ i } → ∗)

A ‘predicate transformer’.
M p { i } is a strategy for reaching some state satisfying p, starting
in state i .

skip :: p :→ M p
; :: (p :→ M q) → (q :→ M r) →

(p :→ M {-grafting -} r)

A Kleisli arrow
f :: p :→ M q

is a Hoare triple!



Variations on the theme of ‘bind’ (a.k.a. ‘let’)

Demonic bind

(?>=) :: M p { i } → (p :→ M q) → M q { i }
p ?>= f = (id >>> f ) p

You choose i , but the devil chooses j .

(=>=) :: M (a := { j }) { i } → (a → M q { j }) → M q { i }

If p is some a := { j }, we don’t need to quantify over an unknown
state.
If all predicates are (:=), we get the behaviour of Atkey’s
parametrized monads.
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Demonstration.



conclusions

Monads on indexed sets allow us to model outrageous fortune.

Instead of using Hoare Logic as ‘logical superstructure’ for
reasoning, yank it across the Curry-Howard correspondence and
use it as ‘logical infrastructure’ for programming.


