
The Gentle Art of Levitation

James Chapman
Institute of Cybernetics, Tallinn

University of Technology
james@cs.ioc.ee

Pierre-Évariste Dagand
Conor McBride

University of Strathclyde
{dagand,conor}@cis.strath.ac.uk

Peter Morris
University of Nottingham

pwm@cs.nott.ac.uk

Abstract
We present a closed dependent type theory whose inductive types
are given not by a scheme for generative declarations, but by encod-
ing in a universe. Each inductive datatype arises by interpreting its
description—a first-class value in a datatype of descriptions. More-
over, the latter itself has a description. Datatype-generic program-
ming thus becomes ordinary programming. We show some of the
resulting generic operations and deploy them in particular, useful
ways on the datatype of datatype descriptions itself. Simulations in
existing systems suggest that this apparently self-supporting setup
is achievable without paradox or infinite regress.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Language
Constructs and Features]: Data types and structures

General Terms Design, Languages, Theory

1. Introduction
Dependent datatypes, such as the ubiquitous vectors (lists indexed
by length) express relative notions of data validity. They allow us
to function in a complex world with a higher standard of basic
hygiene than is practical with the context-free datatypes of ML-
like languages. Dependent type systems, as found in Agda [Norell
2007], Coq [The Coq Development Team], Epigram [McBride and
McKinna 2004], and contemporary Haskell [Cheney and Hinze
2003; Xi et al. 2003], are beginning to make themselves useful.
As with rope, the engineering benefits of type indexing sometimes
outweigh the difficulties you can arrange with enough of it.

The blessing of expressing just the right type for the job can
also be a curse. Where once we might have had a small collection
of basic datatypes and a large library, we now must cope with a
cornucopia of finely confected structures, subtly designed, subtly
different. The basic vector equipment is much like that for lists, but
we implement it separately, often retyping the same code. The Agda
standard library [Danielsson 2010], for example, sports a writhing
mass of list-like structures, including vectors, bounded-length lists,
difference lists, reflexive-transitive closures—the list is petrifying.
Here, we seek equipment to tame this gorgon’s head with reflection.

The business of belonging to a datatype is itself a notion rel-
ative to the type’s declaration. Most typed functional languages,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

including those with dependent types, feature a datatype declara-
tion construct, external to and extending the language for defining
values and programs. However, dependent type systems also allow
us to reflect types as the image of a function from a set of ‘codes’—
a universe construction [Martin-Löf 1984]. Computing with codes,
we expose operations on and relationships between the types they
reflect. Here, we adopt the universe as our guiding design principle.
We abolish the datatype declaration construct, by reflecting it as a
datatype of datatype descriptions which, moreover, describes itself.
This apparently self-supporting construction is a trick, of course,
but we shall show the art of it. We contribute

• a closed type theory, extensible only definitionally, nonetheless
equipped with a universe of inductive families of datatypes;
• a self-encoding of the universe codes as a datatype in the

universe—datatype generic programming is just programming;
• a bidirectional type propagation mechanism to conceal artefacts

of the encoding, restoring a convenient presentation of data;
• examples of generic operations and constructions over our uni-

verse, notably the free monad construction;
• datatype generic programming delivered directly, not via some

isomorphic model or ‘view’ of declared types.

We study two universes as a means to explore this novel way
to equip a programming language with its datatypes. We warm up
with a universe of simple datatypes, just sufficient to describe itself.
Once we have learned this art, we scale up to indexed datatypes, en-
compassing the inductive families [Dybjer 1991; Luo 1994] found
in Coq and Epigram, and delivering experiments in generic pro-
gramming with applications to the datatype of codes itself.

We aim to deliver proof of concept, showing that a closed the-
ory with a self-encoding universe of datatypes can be made practi-
cable, but we are sure there are bigger and better universes waiting
for a similar treatment. Benke, Dybjer and Jansson [Benke et al.
2003] provide a useful survey of the possibilities, including exten-
sion to inductive-recursive definition, whose closed-form presenta-
tion [Dybjer and Setzer 1999, 2000] is both an inspiration for the
present enterprise, and a direction for future study.

The work of Morris, Altenkirch and Ghani [Morris 2007; Mor-
ris and Altenkirch 2009; Morris et al. 2009] on (indexed) containers
has informed our style of encoding and the equipment we choose to
develop, but the details here reflect pragmatic concerns about inten-
sional properties which demand care in practice. We have thus been
able to implement our work as the basis for datatypes in the Epi-
gram 2 prototype [Brady et al.]. We have also developed a stratified
model of our coding scheme in Agda and Coq1.

1 This model is available at
http://personal.cis.strath.ac.uk/~dagand/levitate.tar.gz

2. The Type Theory
One challenge in writing this paper is to extricate our account of
datatypes from what else is new in Epigram 2. In fact, we demand
relatively little from the setup, so we shall start with a ‘vanilla’
theory and add just what we need. The reader accustomed to de-
pendent types will recognise the basis of her favourite system; for
those less familiar, we try to keep the presentation self-contained.

2.1 Base theory
We adopt a traditional presentation for our type theory, with three
mutually defined systems of judgments: context validity, typing,
and equality, with the following forms:

Γ ` VALID Γ is a valid context, giving types to variables
Γ ` t :T term t has type T in context Γ

Γ ` s≡ t :T s and t are equal at type T in context Γ

The rules are formulated to ensure that the following ‘sanity
checks’ hold by induction on derivations

Γ ` t :T ⇒ Γ ` VALID ∧ Γ ` T : SET
Γ ` s≡ t :T⇒ Γ ` s :T ∧ Γ ` t :T

and that judgments J are preserved by well-typed instantiation.

Γ;x :S;∆ ` J ⇒ Γ ` s :S ⇒ Γ;∆[s/x] ` J[s/x]

We specify equality as a judgment, leaving open the details of
its implementation, requiring only a congruence including ordinary
computation (β-rules), decided, e.g., by testing α-equivalence of
β-normal forms [Adams 2006]. Coquand and Abel feature promi-
nently in a literature of richer equalities, involving η-expansion,
proof-irrelevance and other attractions [Abel et al.; Coquand 1996].
Agda and Epigram 2 support such features, Coq currently does not,
but they are surplus to requirements here.

Context validity ensures that variables inhabit well-formed sets.

` VALID
Γ ` S : SET

Γ;x :S ` VALID
x 6∈ Γ

The basic typing rules for tuples and functions are also standard,
save that we locally adopt SET : SET for presentational purposes.
Usual techniques to resolve this typical ambiguity apply [Courant
2002; Harper and Pollack; Luo 1994]. A formal treatment of strat-
ification for our system is a matter of ongoing work.

Γ;x :S;∆ ` VALID
Γ;x :S;∆ ` x :S

Γ ` s :S Γ ` S≡ T : SET
Γ ` s :T

Γ ` VALID
Γ ` SET : SET

Γ ` VALID
Γ ` 1 : SET

Γ ` VALID
Γ ` [] :1

Γ ` S : SET Γ;x :S ` T : SET
Γ ` (x :S)×T : SET

Γ ` s :S Γ;x :S ` T : SET Γ ` t :T[s/x]
Γ ` [s, t]x.T :(x :S)×T

Γ ` p :(x :S)×T
Γ ` π0 p :S

Γ ` p :(x :S)×T
Γ ` π1 p :T[π0 p/x]

Γ ` S : SET Γ;x :S ` T : SET
Γ ` (x :S)→T : SET

Γ ` S : SET
Γ;x :S ` t :T

Γ ` λSx. t :(x :S)→T

Γ ` f :(x :S)→T
Γ ` s :S

Γ ` f s :T[s/x]

Notation. We subscript information needed for type synthesis but
not type checking, e.g., the domain of a λ-abstraction, and suppress
it informally where clear. Square brackets denote tuples, with a
LISP-like right-nesting convention: [a b] abbreviates [a, [b, []]].

The judgmental equality comprises the computational rules be-
low, closed under reflexivity, symmetry, transitivity and structural
congruence, even under binders. We omit the mundane rules which
ensure these closure properties for reasons of space.

Γ ` S : SET Γ;x :S ` t :T
Γ ` s :S

Γ ` (λSx. t) s≡ t[s/x] :T[s/x]

Γ ` s :S Γ;x :S ` T : SET
Γ;s :S ` t :T[s/x]

Γ ` π0 ([s, t]x.T)≡ s :S

Γ ` s :S Γ;x :S ` T : SET
Γ;s :S ` t :T[s/x]
Γ ` π1 ([s, t]x.T)≡ t :T[s/x]

Given a suitable stratification of SET, the computation rules yield
a terminating evaluation procedure, ensuring the decidability of
equality and thence type checking.

2.2 Finite enumerations of tags
It is time for our first example of a universe. You might want to offer
a choice of named constructors in your datatypes: we shall equip
you with sets of tags to choose from. Our plan is to implement (by
extending the theory, or by encoding) the signature

En : SET #(E :En) : SET

where some value E : En in the ‘enumeration universe’ describes a
type of tag choices #E. We shall need some tags—valid identifiers,
marked to indicate that they are data, not variables scoped and
substitutable—so we hardwire these rules:

Γ ` VALID
Γ ` Tag : SET

Γ ` VALID
Γ ` ’s :Tag

s a valid identifier

Let us describe enumerations as lists of tags, with signature:

nE :En cE (t :Tag) (E :En) :En

What are the values in #E? Formally, we represent the choice of a
tag as a numerical index into E, via new rules:

Γ ` VALID
Γ ` 0:#(cE t E)

Γ ` n :#E
Γ ` 1+n :#(cE t E)

However, we expect that in practice, you might rather refer to these
values by tag, and we shall ensure that this is possible in due course.

Enumerations come with further machinery. Each #E needs an
eliminator, allowing us to branch according to a tag choice. For-
mally, whenever we need such new computational facilities, we add
primitive operators to the type theory and extend the judgmental
equality with their computational behavior. However, for compact-
ness and readability, we shall write these operators as functional
programs (much as we model them in Agda).

We first define the ‘small product’ π operator:

π : (E :En)(P :#E→SET)→SET
π nE P 7→ 1
π (cE t E) P 7→ P 0×π Eλx.P (1+x)

This builds a right-nested tuple type, packing a Pi value for each i in
the given domain. The step case exposes our notational convention
that binders scope rightwards as far as possible. These tuples are
‘jump tables’, tabulating dependently typed functions. We give this
functional interpretation—the eliminator we need—by the switch
operator, which, unsurprisingly, iterates projection:

switch : (E :En)(P :#E→SET)→π E P→(x :#E)→P x
switch (cE t E)P b 0 7→ π0 b
switch (cE t E)P b (1+x) 7→ switch E (λx.P(1+x)) (π1 b) x

The π and switch operators deliver dependent elimination for
finite enumerations, but are rather awkward to use directly. We do

Γ exprEx . term ∈ type

Γ SET 3 T . T ′ Γ T ′ 3 t . t ′
Γ (t :T) . t ′ ∈ T ′

Γ;x :S;∆ ` VALID
Γ;x :S;∆ x . x ∈ S

Γ f . f ′ ∈ (x :S)→T
Γ S 3 s . s′

Γ f s . f ′ s′ ∈ T[s′/x]

Γ p . p′ ∈ (x :S)×T
Γ π0 p . π0 p′ ∈ S

Γ p . p′ ∈ (x :S)×T
Γ π1 p . π1 p′ ∈ T[π0 p′/x]

Figure 1. Type synthesis

not write the range for a λ-abstraction, so it is galling to supply
P for functions defined by switch. Let us therefore find a way to
recover the tedious details of the encoding from types.

2.3 Type propagation
Our approach to tidying the coding cruft is deeply rooted in
the bidirectional presentation of type checking from Pierce and
Turner [Pierce and Turner 1998]. They divide type inference into
two communicating components. In type synthesis, types are pulled
out of terms. A typical example is a variable in the context:

Γ;x :S;∆ ` VALID
Γ;x :S;∆ ` x :S

Because the context stores the type of the variable, we can extract
the type whenever the variable is used.

On the other hand, in the type checking phase, types are pushed
into terms. We are handed a type together with a term, our task
consists of checking that the type admits the term. In doing so, we
can and should use the information provided by the type. Therefore,
we can relax our requirements on the term. Consider λ-abstraction:

Γ ` S : SET Γ;x :S ` t :T
Γ ` λSx. t :(x :S)→T

The official rules require an annotation specifying the domain.
However, in type checking, the Π-type we push in determines the
domain, so we can drop the annotation.

We adapt this idea, yielding a type propagation system, whose
purpose is to elaborate compact expressions into the terms of
our underlying type theory, much as in the definition of Epi-
gram 1 [McBride and McKinna 2004]. We divide expressions into
two syntactic categories: exprIn into which types are pushed, and
exprEx from which types are extracted. In the bidirectional spirit,
the exprIn are subject to type checking, while the exprEx—variables
and elimination forms—admit type synthesis. We embed exprEx
into exprIn, demanding that the synthesised type coincides with
the type proposed. The other direction—only necessary to apply
abstractions or project from pairs—takes a type annotation.

Type synthesis (Fig. 1) is the source of types. It follows the
exprEx syntax, delivering both the elaborated term and its type.
Terms and expressions never mix: e.g., for application, we instan-
tiate the range with the term delivered by checking the argument
expression. Hardwired operators are checked as variables.

Dually, type checking judgments (Fig. 2) are sinks for types.
From an exprIn and a type pushed into it, they elaborate a low-
level term, extracting information from the type. Note that we
inductively ensure the following ‘sanity checks’:

Γ e . t ∈ T ⇒ Γ ` t : T
Γ T 3 e . t⇒ Γ ` t : T

Γ type 3 exprIn . term

Γ s . s′ ∈ S Γ SET 3 S≡ T
Γ T 3 s . s′

Γ ` VALID
Γ SET 3 SET . SET

Γ SET 3 S . S′ Γ;x :S′ SET 3 T . T ′
Γ SET 3 (x :S)→T . (x :S′)→T ′

Γ;x :S T 3 t . t′
Γ (x :S)→T 3 λx. t . λSx. t′

Γ SET 3 S . S′ Γ;x :S′ SET 3 T . T ′
Γ SET 3 (x :S)×T . (x :S′)×T ′

Γ S 3 s . s′ Γ T[s′/x] 3 t . t′

Γ (x :S)×T 3 [s, t] . [s′, t′]x.T

Γ (x :S)→(y :T)→U[[x,y]x.T /p] 3 f . f ′

Γ (p :(x :S)×T)→U 3 ∧f . λ((x:S)×T)p. f ′ (π0 p) (π1 p)

Γ ` VALID
Γ SET 3 1 . 1

Γ ` VALID
Γ 1 3 [] . []

Γ ` VALID
Γ En 3 [] . nE

Γ En 3 E . E′
Γ En 3 [’t,E] . cE ’t E′

Γ ` E :En
Γ #(cE ’t E) 3 ’t . 0

Γ #E 3 ’t . n ’t 6= ’t0
Γ #(cE ’t0 E) 3 ’t . 1+n

Γ ` E :En
Γ #(cE ’t E) 3 0 . 0

Γ #E 3 n . n′
Γ #(cE ’t0 E) 3 1+n . 1+n′

Γ π E (λ#E x.T) 3
[
~t
]
. t′

Γ (x :#E)→T 3
[
~t
]
. switch E (λ#E x.T) t′

Figure 2. Type checking

Canonical set-formers are checked: we could exploit SET : SET
to give them synthesis rules, but this would prejudice our future
stratification plans. Note that abstraction and pairing are free of
annotation, as promised. Most of the propagation rules are unre-
markably structural: we have omitted some mundane rules which
just follow the pattern, e.g., for Tag.

However, we also add abbreviations. We write ∧f , pronounced
‘uncurry f ’ for the function which takes a pair and feeds it to f one
component at a time, letting us name them individually. Now, for
the finite enumerations, we go to work.

Firstly, we present the codes for enumerations as right-nested
tuples which, by our LISP convention, we write as unpunctuated
lists of tags [’t0 . . . ’tn]. Secondly, we can denote an element by its
name: the type pushed in allows us to recover the numerical index.
We retain the numerical forms to facilitate generic operations and
ensure that shadowing is punished fittingly, not fatally. Finally, we
express functions from enumerations as tuples. Any tuple-form,
[] or [_,_], is accepted by the function space—the generalised
product—if it is accepted by the small product. Propagation fills
in the appeal to switch, copying the range information.

Our interactive development tools also perform the reverse
transformation for intelligible output. The encoding of any spe-
cific enumeration is thus hidden by these translations. Only, and
rightly, in enumeration-generic programs is the encoding exposed.

Our type propagation mechanism does no constraint solving,
just copying, so it is just the thin end of the elaboration wedge.
It can afford us this ‘assembly language’ level of civilisation as

En universe specifies not only the representation of the low-level
values in each set as bounded numbers, but also the presentation
of these values as high-level tags. To encode only the former,
we should merely need the size of enumerations, but we extract
more work from these types by making them more informative. We
have also, en passant, distinguished enumerations which have the
same cardinality but describe distinct notions: #[’red ’blue] is not
#[’green ’orange].

3. A Universe of Inductive Datatypes
In this section, we describe an implementation of inductive types,
as we know them from ML-like languages. By working with fa-
miliar datatypes, we hope to focus on the delivery mechanism,
warming up gently to the indexed datatypes we really want. Dy-
bjer and Setzer’s closed formulation of induction-recursion [Dyb-
jer and Setzer 1999], but without the ‘-recursion’. An impredicative
Church-style encoding of datatypes is not adequate for dependently
typed programming, as although such encodings present data as
non-dependent eliminators, they do not support dependent induc-
tion [Geuvers 2001]. Whilst the λ-calculus captures all that data
can do, it cannot ultimately delimit all that data can be.

3.1 The power of Σ

In dependently typed languages, Σ-types can be interpreted as two
different generalisations. This duality is reflected in the notation
we can find in the literature. The notation Σx:A(B x) stresses that
Σ-types are ‘dependent sums’, generalising sums over arbitrary
arities, where simply typed languages have finite sums.

On the other hand, our choice, (x :A)×(Bx), emphasises that Σ-
types generalise products, with the type of the second component
depending on the value of the first. Simply typed languages do not
express such relative validity.

In ML-like languages, datatypes are presented as a sum-of-
products. A datatype is defined by a finite sum of constructors, each
carrying a product of arguments. To embrace these datatypes, we
have to capture this grammar. With dependent types, the notion of
sum-of-products translates into sigmas-of-sigmas.

3.2 The universe of descriptions
While sigmas-of-sigmas can give a semantics for the sum-of-
products structure in each node of the tree-like values in a datatype,
we need to account for the recursive structure which ties these
nodes together. We do this by constructing a universe [Martin-Löf
1984]. Universes are ubiquitous in dependently typed program-
ming [Benke et al. 2003; Oury and Swierstra 2008], but here we
take them as the foundation of our notion of datatypes.

To add inductive types to our type theory, we build a universe of
datatype descriptions by implementing the signature presented in
Figure 3, with codes mimicking the grammar of datatype declara-
tions. We can read a description D : Descn as a ‘pattern functor’ on
SETn, with JDK its action on an object, X, soon to be instantiated
recursively. The superscripts indicate the SET-levels at which we
expect these objects in a stratified system. This is but an informal
notation, to give a flavour of the stratified presentation. Note that
the functors so described are strictly positive, by construction.

Descriptions are sequential structures ending in ’1, indicating
the empty tuple. To build sigmas-of-sigmas, we provide a ’Σ code,
interpreted as a Σ-type. To request a recursive component, we have
’ind×D, where D describes the rest of the node. These codes give
us sigmas-of-sigmas with recursive places. An equivalent, more
algebraic presentation could be given, as illustrated in Section 5.

We admit to being a little coy, writing of ‘implementing a
signature’ without clarifying how. A viable approach would simply
be to extend the theory with constants for the constructors and an

Descn : SETn+1

’1 : Descn

’Σ (S : SETn) (D :S→Descn) : Descn

’ind× (D :Descn) : Descn

J_ K : Descn→SETn→SETn

J’1K X 7→1
J’Σ S DK X 7→ (s :S)×JDsKX
J’ind×DKX 7→X×JDKX

Figure 3. Universe of Descriptions

operator for JDK . In Section 4, you will see what we do instead.
Meanwhile, let us gain some intuition by developing examples.

3.3 Examples
We begin with the natural numbers, now working in the high-level
expression language of Section 2.3, exploiting type propagation.

NatD : Descn

NatD 7→ ’Σ #[’zero ’suc] [’1 (’ind× ’1)]

Let us explain its construction. First, we use ’Σ to give a choice
between the ’zero and ’suc constructors. What follows depends
on this choice, so we write the function computing the rest of the
description in tuple notation. In the ’zero case, we reach the end of
the description. In the ’suc case, we attach one recursive argument
and close the description. Translating the Σ to a binary sum, we
have effectively described the functor:

NatD Z 7→ 1+Z

Correspondingly, we can see the injections to the sum:

[’zero] : JNatDKZ [’suc (z :Z)] : JNatDKZ

The pattern functor for lists needs but a small change:

ListD : SETn→Descn

ListD X 7→ ’Σ #[’nil ’cons] [’1 (’Σ X λ_. ’ind× ’1)]

The ’suc constructor becomes ’cons, taking an X followed by a
recursive argument. This code describes the following functor:

ListD X Z 7→ 1+X×Z

Of course, we are not limited to one recursive argument. Here
are the node-labelled binary trees:

TreeD : SETn→Descn

TreeD X 7→ ’Σ #[’leaf ’node]
[’1 (’ind× (’Σ X λ_. ’ind× ’1))]

Again, we are one evolutionary step away from ListD. However,
instead of a single call to the induction code, we add another. The
interpretation of this code corresponds to the following functor:

TreeD X Z 7→ 1+Z×X×Z

From the examples above, we observe that datatypes are defined
by a ’Σ whose first argument enumerates the constructors. We
call codes fitting this pattern tagged descriptions. Again, this is
a clear reminder of the sum-of-products style. Any description
can be forced into this style with a singleton constructor set. We
characterise tagged descriptions thus:

TagDescn : SETn+1

TagDescn 7→ (E :En)×(π Eλ_.Descn)

de : TagDescn→Descn

de 7→ ∧λE.λD. ’Σ #E (switch E (λ_.Descn)D)

It is not such a stretch to expect that the familiar datatype declara-
tion might desugar to the definitions of a tagged description.

3.4 The least fixpoint
So far, we have built pattern functors with our Desc universe. Being
polynomial functors, they all admit a least fixpoint, which we now
construct by tying the knot: the element type abstracted by the
functor is now instantiated recursively:

Γ ` D :Descn

Γ ` µD : SETn
Γ ` D :Descn Γ ` d :JDK (µD)

Γ ` con d :µD

Tagged descriptions are very common, so we abbreviate:

µ+ : TagDescn→SETn µ+ T 7→ µ(de T)

We can now build datatypes and their elements, e.g.:

Nat 7→ µ+ [[’zero ’suc], [’1 (’ind× ’1)]] : SETn

con [’zero] : Nat con [’suc (n :Nat)] : Nat

But how shall we compute with our data? We should expect an
elimination principle. Following a categorical intuition, we might
provide the ‘fold’, or ‘iterator’, or ‘catamorphism’:

cata : (D :Descn)(T : SETn)→(JDKT→T)→µD→T

However, iteration is inadequate for dependent computation. We
need induction to write functions whose type depends on inductive
data. Following Benke et al. [2003], we adopt the following:

ind : (D :Descn)(P :µD→SETk)→
((d :JDK (µD))→All D (µD)P d→P(con d))→
(x :µD)→Px

indDPm(con d) 7→ md (all D (µD)P (indDPm)d)

Here, All D X P d states that P :X→SETk holds for every subobject
x : X in D, and all D X P p d is a ‘dependent map’, applying some
p : (x : X)→Px to each x contained in d. The definition (including
an extra case, introduced soon) is in Figure 4.2 So, ind is our first
operation generic over descriptions, albeit hardwired. Any datatype
we define comes with induction.

Note that the very same functors JDK also admit greatest fix-
points: we have indeed implemented coinductive types this way,
but that is another story.

3.5 Extending type propagation
We now have low level machinery to build and manipulate induc-
tive types. Let us apply cosmetic surgery to reduce the syntactic
overhead. We extend type checking of expressions:

Γ #E 3 ’c . n Γ JD nK (µ(’Σ #E D)) 3
[
~t
]
. t′

Γ µ(’Σ #E D) 3 ’c~t . con [n, t′]

Here ’c~t denotes a tag ‘applied’ to a sequence of arguments, and[
~t
]

that sequence’s repackaging as a right-nested tuple. Now we can
just write data directly.

’zero : Nat ’suc (n :Nat) : Nat

Once again, the type explains the legible presentation, as well as
the low-level representation.

We may also simplify appeals to induction by type propagation,
as we have done with functions from pairs and enumerations.

Γ (d :JDK (µD))→All D (µD) (λµDx.P)d→P[con d/x]
3 f . f ′

Γ (x :µD)→P 3	f . ind D (λµDx.P) f ′

2 To pass the termination checker, we had to inline the definition of all into
ind in our Agda model. A simulation argument shows that the definition
presented here terminates if the inlined version does. Hence, although not
directly structural, this definition is indeed terminating.

This abbreviation is no substitute for the dependent pattern match-
ing to which we are entitled in a high-level language built on top
of this theory [Goguen et al. 2006]. It does at least make ‘assembly
language’ programming mercifully brief, albeit hieroglyphic.

plus : Nat→Nat→Nat
plus 7→	∧[(λ_.λ_.λy.y) (λ_.∧λh.λ_.λy. ’suc (h y))]

This concludes our introduction to the universe of datatype
descriptions. We have encoded sum-of-products datatypes from the
simply-typed world as data and equipped them with computation.
We have also made sure to hide the details by type propagation.

4. Levitating the Universe of Descriptions
In this section, we will fulfil our promises and show how we im-
plement the signatures, first for the enumerations, and then for the
codes of the Descn universe. Persuading these programs to per-
form was a perilous pedagogical peregrination for the protagonist.
Our method was indeed to hardwire constants implementing the
signatures specified above, in the first instance, but then attempt to
replace them, step by step, with definitions: “Is 2+2 still 4?”, “No,
it’s a loop!”. But we did find a way, so now we hope to convey to
you the dizzy feeling of levitation, without the falling.

4.1 Implementing finite enumerations
In Section 2.2, we specified the finite sets of tags. We are going
to implement (at every universe level) the En type former and its
constructors. Recall:

En : SETn nE :En cE (t :Tag) (E :En) :En

The nE and cE constructors are just the ‘nil’ and ‘cons’ or ordinary
lists, with elements from Tag. Therefore, we implement:

En 7→ µ(ListD Tag) nE 7→ ’nil cE t E 7→ ’cons t E

Let us consider the consequences. We find that the type theory
does not need a special type former En, or special constructors nE
and cE. Moreover, the π E P operator, computing tuple types of
Ps by recursion on E need not be hardwired: we can just use the
generic ind operator, as we would for any ordinary program.

Note, however, that the universe decoder #E is hardwired, as are
the primitive 0 and 1+ that we use for low-level values, and indeed
the switch operator. We cannot dispose of data altogether! We have,
however, gained the ordinariness of the enumeration codes, and
hence of generic programs which manipulate them. Our next step
is similar: we are going to condense the entire naming scheme of
datatypes into itself.

4.2 Implementing descriptions
The set of codes, Desc, is already some sort of datatype; as with
En, we ought to be able to describe it, coding of Descn in Descn+1,
spiralling upwards. Hence, this code would be a first-class citizen,
born with the generic equipment of datatypes.

4.2.1 First attempt
Our first attempt gets stuck quite quickly:

DescDn : Descn+1

DescDn 7→ de

’1
’Σ
’ind×

 ,
’1

’Σ SETn λS. {?}
’ind× ’1

Let us explain where we stand. Much as we have done so far,
we first offer a constructor choice from ’1, ’Σ, and ’ind×. You
may notice that the ‘tagged’ notation we have used for the Descn

constructors now fits the facts: these were actually the tags we are
defining. For ’1, we immediately reach the end of the description.

All : (D :Descn)(X : SETn)(P :X→SETk)
(xs :JDKX)→SETk

All ’1 X P [] 7→ 1
All (’Σ S D) X P [s,d] 7→ All (D s)X P d
All (’ind×D) X P [x,d] 7→ P x×All D X P d
All (’hind×H D)X P [f ,d] 7→ ((h :H)→P (f h))×All D X P d

all : (D :Descn)(X : SETn)(P :X→SETk)
(p :(x :X)→P x)(xs :JDKX)→All D X P xs

all ’1 X P p [] 7→ []
all (’Σ S D) X P p [s,d] 7→ all (D s)X P p d
all (’ind×D) X P p [x,d] 7→ [p x,all D X P p d]
all (’hind×H D)X P p [f ,d] 7→ [λh.p (f h),all D X P p d]

Figure 4. Defining and collecting inductive hypotheses

For ’ind×, there is a single recursive argument. Describing ’Σ is
problematic. Recall the specification of ’Σ:

’Σ (S : SETn) (D :S→Descn) : Descn

So, we first pack a SETn, S, as well we might when working in
Descn+1. We should then like a recursive argument indexed by S,
but that is an exponential, and our presentation so far delivers only
sums-of-products. To code our universe, we must first enlarge it!

4.2.2 Second attempt
In order to capture a notion of higher-order induction, we add a
code ’hind× that takes an indexing set H. This amounts to give a
recursive subobject for each element of H.

’hind× (H : SETn) (D :Descn) : Descn

J’hind×H DKX 7→ (H→X)×JDKX

Note that up to isomorphism, ’ind× is subsumed by ’hind× 1.
However, the apparent duplication has some value. Unlike its coun-
terpart, ’ind× is first-order: we prefer not to demand dummy func-
tions from 1 in ordinary data, e.g. ’suc(λ_.n). It is naïve to imagine
that up to isomorphism, any representation of data will do. First-
order representations are finitary by construction, and thus admit
a richer, componentwise decidable equality than functions may in
general possess.3

We are now able to describe our universe of datatypes:

DescDn : Descn+1

DescDn 7→ de

’1

’Σ
’ind×
’hind×

 ,
’1

’Σ SETn λS. ’hind×S ’1
’ind× ’1
’Σ SETn λ_. ’ind× ’1

The ’1 and ’ind× cases remain unchanged, as expected. We success-
fully describe the ’Σ case via the higher-order induction, branching
on S. The ’hind× case just packs a SETn with a recursive argument.

At a first glance, we have achieved our goal. We have described
the codes of the universe of descriptions. The fixpoint of JDescDnK
is a datatype just like Descn, in SETn+1. Might we be so bold as
to take Descn 7→ µDescDn as the levitating definition? If we do, we
shall come down with a bump! To complete our levitation, just as
in the magic trick, requires hidden assistance. Let us explain the
problem and reveal the ‘invisible cable’ which fixes it.

4.2.3 Final move
The definition Descn 7→ µDescDn is circular, but the offensive
recursion is concealed by a prestidigitation.

3 E.g., extensionally, there is one function in #[]→Nat; intensionally, there
is a countable infinitude which it is dangerous to identify definitionally.

Expanding de− and propagating types as in Figure 2 reveals
the awful truth:

Descn 7→ µ(’Σ #[’1 ’Σ ’ind× ’hind×]
switch [’1 ’Σ ’ind× ’hind×] (λ_.Descn+1)’1

’Σ SETn λS. ’hind×S ’1
’ind× ’1
’Σ SETn λ_. ’ind× ’1

)
The recursion shows up only because we must specify the return
type of the general-purpose switch, and it is computing a Descn+1!
Although type propagation allows us to hide this detail when defin-
ing a function, we cannot readily suppress this information and
check types when switch is fully applied.

We are too close to give up now. If only we did not need to
supply that return type, especially when we know what it must be!
We eliminate the recursion by specialising switch:

switchD : (E :En)→(π Eλ_.Descm)→#E→Descm

The magician’s art rests here, in this extension. We conceal it
behind a type propagation rule for switchD which we apply with
higher priority than for switch in general.

Γ π Eλ#E x.Descm 3
[
~t
]
. t′

Γ #E→Descm 3
[
~t
]
. switchD E t′

As a consequence, our definition above now propagates without in-
troducing recursion. Of course, by pasting together the declaration
of Descn and its internal copy, we have made it appear in its own
type. Hardwired as a trusted fait accompli, this creates no regress,
although one must assume the definition to recheck it.

Our Agda model does not formalise the switchD construction.
Instead, we exhibit the isomorphism between declared and encoded
descriptions. Here, switchD lets us collapse this isomorphism, op-
erationally identifying defined and coded descriptions.

There are other ways to achieve a sufficient specialisation to
avoid a recursive code, e.g., extending Descn with specialised codes
for finite sums and products, pushing the switch into the interpreta-
tion of codes, rather than the code itself. Here, we prefer not to add
codes to Descn which are otherwise unmotivated.

We have levitated Desc at every level. Beyond its pedagogical
value, this exercise has several practical outcomes. First, it con-
firms that each Desc universe is just plain data. As any piece of
data, it can therefore be inspected and manipulated. Moreover, it
is expressed in a Desc universe. As a consequence, it is equipped,
for free, with an induction principle. So, our ability to inspect and
program with Desc is not restricted to a meta-language: we have
the necessary equipment to program with data, so we can program
over datatypes. Generic programming is just programming.

4.3 The generic catamorphism
In Section 3.4, we hardwired a dependent induction principle, but
sometimes, iteration suffices. Let us construct the catamorphism.

We proceed by induction on the data in µD: the non-dependent
return type T is readily propagated. Given a node xs and the in-

duction hypotheses, the method ought to build an element of T .
Provided that we know how to make an element of JDKT , this step
will be performed by the algebra f . Let us take a look at this jigsaw:

cata : (D :Desc)(T : SET)→(JDKT→T)→µD→T
cata D T f 7→	λxs.λhs. f {?}

The hole remains: we have xs : JDK µD and hs : All D µD (λ_.T) xs
to hand, and we need a JDK T . Now, xs has the right shape, but
its components have the wrong type. However, for each such
component, hs holds the corresponding value in T . We need
a function to replace the former with the latter: this pattern
matching sketch yields an induction on D. We fill the hole with
replace D (µD)T xs hs.

replace : (D :Desc)(X,Y : SET)
(xs :JDKX)→All D X (λ_.Y) xs→JDKY

replace ’1 X Y [] [] 7→ []
replace (’Σ S D) X Y [s,d] d′ 7→ [s, replace (D s)X Y d d′]
replace (’ind×D) X Y [x,d] [y,d′] 7→ [y, replace D X Y d d′]
replace (’hind×H D)X Y [f ,d] [g,d′] 7→ [g, replace D X Y d d′]

We have shown how to derive a generic operation, cata, from a
pre-existing generic operation, ind, by manipulating descriptions as
data: the catamorphism is just a function taking each Desc value to
a datatype specific operation. This is polytypic programming, as in
PolyP [Jansson and Jeuring 1997], made ordinary.

4.4 The generic free monad
In this section, we try a more ambitious generic operation. Given
a functor—a signature of operations represented as a tagged
description—we build its free monad, extending the signature with
variables and substitution. Let us recall this construction in, say,
Haskell. Given a functor f, the free monad over f is given thus:

data FreeMonad f x = Var x | Op (f (FreeMonad f x))

Provided f is an instance of Functor, we may take Var for return
and use f’s fmap to define »= as substitution.

Being an inductive type, FreeMonad arises by a pattern functor:

FreeMonadD F X Z 7→ X +F Z

Our construction takes the functor as a tagged description, and
given a set X of variables, computes the tagged description of the
free monad pattern functor.

_∗ : TagDesc→SET→TagDesc
[E,D]∗ X 7→ [[’var ,E], [’Σ X ’1,D]]

We simply add a constructor, ’var, making its arguments ’Σ X ’1—
just an element of X. E and D stay put, leaving the other construc-
tors unchanged. Unfolding the interpretation of this definition, we
find an extended sum, corresponding to the X+ in FreeMonadD.
Taking the fixpoint ties the knot and we have our data.

Now we need the operations. As expected, λx. ’var x plays the
rôle of return, making variables terms. Meanwhile, bind is indeed
substitution, which we now implement generically, making use of
cata. Let us write the type, and start filling in the blanks:

subst : (D :TagDesc)(X,Y : SET)→(X→µ+ (D∗Y))→
µ+ (D∗X)→µ+ (D∗Y)

subst D X Y σ 7→ cata (de (D∗X)) (µ+ (D∗Y)) {?}
We are left with implementing the algebra of the catamorphism. Its
role is to catch appearances of ’var x and replace them by σ x. This
corresponds to the following definition:

apply : (D :TagDesc)(X,Y : SET)→(X→µ+ (D∗Y))→
Jde (D∗X)K (µ+ (D∗Y))→µ+ (D∗Y)

apply D X Y σ [’var x] 7→ σ x
apply D X Y σ [c,xs] 7→ con [c,xs]

Object Role Status
En Build finite sets Levitated

Desc Describe pattern functors Levitated
J_K Interpret descriptions Hardwired

µ, con Define, inhabit fixpoints Hardwired
ind, All, all Induction principle Hardwired

Table 1. Summary of constructions on Descriptions

We complete the hole with applyDX Y σ. Every tagged descrip-
tion can be seen as a signature of operations: we can uniformly
add a notion of variable, building a new type from an old one, then
providing the substitution structure.

4.5 Skyhooks all the way up?
In this section, we have seen how to levitate descriptions. Although
our theory, as presented here, takes SET : SET, our annotations
indicate how a stratified theory could code each level from above.
We do not rely on the paradoxical nature of SET : SET to flatten the
hierarchy of descriptions and fit large inside small. We shall now
be more precise about what we have done.

Let us first clarify the status of the implementation. The kit for
making datatypes is presented in Table 1. For each operation, we
describe its role and its status, making clear which components are
self-described and which ones are actually implemented.

In a stratified system, the ‘self-encoded’ nature of Desc appears
only in a set polymorphic sense: the principal type of the encoded
description generalises to the type of Desc itself. We encode this
much in our set polymorphic model in Agda and in our Coq model,
crucially relying on typical ambiguity [Harper and Pollack]. We
step outside current technology only to replace the declared Desc
with its encoding.

Even this last step, we can approximate within a standard pred-
icative hierarchy. Fix a top level, perhaps 42. We may start by
declaring Desc42 : SET43. We can then construct DescD41 : Desc42

and thus acquire an encoded Desc41. Although Desc41 is en-
coded, not declared, it includes the relevant descriptions, includ-
ing DescD40. We can thus build the tower of descriptions down to
Desc0, encoding every level below the top. Description of descrip-
tions forms a ‘spiral’, rather than a circle. We have modelled this
process exactly in Agda, without any appeal to dependent pattern
matching, induction-recursion, or set polymorphism. All it takes to
build such a sawn-off model of encodings is inductive definition
and a cumulative predicative hierarchy of set levels.

5. A Universe of Inductive Families
So far, we have explored the realm of inductive types, building
on intuition from ML-like datatypes, using type dependency as a
descriptive tool in Desc and its interpretation. Let us now make
dependent types the object as well as the means of our study.

Dependent datatypes provide a way to work at higher level
of precision a priori, reducing the sources of failure we might
otherwise need to manage. For the perennial example, consider
vectors—lists indexed by length. By making length explicit in the
type, we can prevent hazardous operations (the type of ‘head’
demands vectors of length ’suc n) and offer stronger guarantees
(pointwise addition of n-vectors yields an n-vector).

However, these datatypes are not individually inductive. For
instance, we have to define the whole family of vectors mutually,
in one go. In dependently typed languages, the basic grammar of
datatypes is that of inductive families. To capture this grammar, we
must account for indexing.

5.1 The universe of indexed descriptions
We presented the Desc universe as a grammar of strictly positive
endofunctors on SET and developed inductive types by taking a
fixpoint. To describe inductive families indexed by some I : SET,
we play a similar game with endofunctors on the category SETI ,
families of sets X,Y : I→SET for objects, and for morphisms,
families of functions in X →̇Y , defined pointwise:

X →̇Y 7→ (i : I)→X i→Y i

An indexed functor in SETI→SETJ has the flavour of a device
driver, characterising ‘responses’ to a given request in J where we
may in turn make ‘subrequests’ at indices chosen from I. When
we use indexed functors to define inductive families of datatypes,
I and J coincide: we explain how to make a node fit a given index,
including subnodes at chosen indices. E.g., if we are asked for a
vector of length 3, we choose to ask in turn for a tail of length 2.

To code up valid notions of response to a given request, we
introduce IDesc and its interpretation:

IDesc (I : SET) : SET

J_K :(I:SET)→ IDesc I→(I→SET)→SET

An IDesc I specifies just one response, but a request-to-response
function, R : I→ IDesc I, yields a strictly positive endofunctor

λX.λi.JR iKI X : SETI→SETI

whose fixpoint we then take:

Γ ` I : SET Γ ` R : I→ IDesc I
Γ ` µIR : I→SET

Γ ` I : SET Γ ` R : I→ IDesc I
Γ ` i : I Γ ` x :JR iKI (µIR)

Γ ` con x :µIR i

We define the IDesc grammar in Figure 6, delivering only
strictly positive families. As well as indexing our descriptions, we
have refactored a little, adopting a more compositional algebra of
codes, where Desc is biased towards the right-nested tuples. We
now have ’var i for recursive ‘subrequests’ at a chosen index i, with
tupling by right-associative ’× and higher-order branching by ’Π .
Upgrade your old Desc to a trivially indexed IDesc 1 as follows!

upgrade : Desc → IDesc 1
upgrade ’1 7→ ’k 1
upgrade (’Σ S D) 7→ ’Σ Sλs.upgrade (D s)
upgrade (’ind×D) 7→ ’var [] ’×upgrade D
upgrade (’hind×H D) 7→ (’Π H λ_. ’var []) ’×upgrade D

To deliver induction for indexed datatypes, we need the ‘holds
everywhere’ machinery. We present AllI and allI in Figure 5, with
a twist—where Desc admits the all construction, IDesc is closed
under it! The AllI operator for a description indexed on I is strictly
positive in turn, and has a description indexed on some (i : I)×X i.
Induction on indexed descriptions is then hardwired thus:

indI : (I:SET)→(R : I→ IDesc I)(P :((i : I)×µIR i)→SET)→
((i : I)(xs :JR iKI (µIR))→
JAllI(R i) (µIR) xsK P→P [i,con xs])→
(i : I)(x :µIR i)→P [i,x]

indI R P m i (con xs) 7→ m i xs (allIR i (µIR)P (∧λi.λxs. indI R P m) xs)

The generic catamorphism, cataI, is constructed from indI as before.
Its type becomes more elaborated, to deal with the indexing:

cataI :(I : SET)(R : I→ IDesc I)
(T : I→SET)→((i : I)→JR iK T→T i)→µIR→̇T

IDesc (I : SET) : SET
’var (i : I) : IDesc I
’k (A : SET) : IDesc I
(D : IDesc I) ’×(D : IDesc I) : IDesc I
’Σ (S : SET) (D :S→ IDesc I) : IDesc I
’Π (S : SET) (D :S→ IDesc I) : IDesc I
J_ K :(I:SET)→ IDesc I→(I→SET)→SET

J’var iKI X 7→ X i
J’k KKI X 7→ K
JD ’×D′KI X 7→ JDKI X×JD′KI X
J’Σ S DKI X 7→ (s :S)×JD sKI X
J’Π S DKI X 7→ (s :S)→JD sKI X

Figure 6. Universe of indexed descriptions

5.2 Examples
Natural numbers: For basic reassurance, we upgrade NatD:

upgrade NatD : IDesc 1
upgrade NatD 7→ ’Σ (#[’zero ’suc]) [(’k 1) (’var [] ’× ’k 1)]

Note that trailing 1’s keep our right-nested, []-terminated tuple
structure, and with it our elaboration machinery. We can sim-
ilarly upgrade any inductive type. Moreover, IDesc I can now
code a bunch of mutually inductive types, if I enumerates the
bunch [Paulin-Mohring 1996; Yakushev et al. 2009].

Indexed descriptions: Note that IDesc I is a plain inductive type,
parametrised by I, but indexed trivially.

IDescD : (I : SET)→ IDesc 1
IDescD I 7→ ’Σ

#

’var

’k
’×
’Σ
’Π

(’k I ’× ’k 1)
(’k SET ’× ’k 1)
(’var [] ’× ’var [] ’× ’k 1)
(’Σ SET λS.(’Π Sλ_. ’var [])’× ’k 1)
(’Σ SET λS.(’Π Sλ_. ’var [])’× ’k 1)

Therefore, this universe is self-describing and can be levitated.

As before, we rely on a special purpose switchID operator to build
the finite function [. . .] without mentioning IDesc.

Vectors: So far, our examples live in IDesc 1, with no interesting
indexing. Let us at least have vectors. Recall that the constructors
’vnil and ’vcons are defined only for ’zero and ’suc respectively:

data Vec (X : SET) : (i :Nat)→SET where
’vnil : Vec X ’zero
’vcons : (n:Nat)→X→Vec X n→Vec X (’suc n)

One way to code constrained datatypes is to appeal to a suitable
notion of propositional equality == on indices. The constraints are
expressed as ‘Henry Ford’ equations in the datatype. For vectors:

VecD : SET→Nat→ IDesc Nat
VecD X i 7→ ’Σ

#

[
’vnil

’vcons

] [
(’k (’zero == i))

(’Σ Natλn. ’k X ’× ’var n ’× ’k (’suc n == i))

]
You may choose ’vnil for any index you like as long as it is ’zero;

in the ’vcons case, the length of the tail is given explicitly, and the
index i must be one more. Our previous 1-terminated tuple types
can now be seen as the trivial case of constraint-terminated tuple
types, with elaboration supplying the witnesses when trivial.

In this paper, we remain anxiously agnostic about propositional
equality. Any will do, according to conviction; many variations are
popular. The homogeneous identity type used in Coq is ill-suited to
dependent types, but its heterogeneous variant (forming equations

AllI : (I:SET)→(D : IDesc I)(X : I→SET)→
JDKI X→ IDesc ((i : I)×X i)

AllI (’var i) X x 7→ ’var [i,x]
AllI (’k K) X k 7→ ’k 1
AllI (D ’×D′)X [d,d′] 7→ AllID X d ’×AllID′ X d′
AllI (’Σ S D) X [s,d] 7→ AllI(D s)X d
AllI (’Π S D) X f 7→ ’Π Sλs.AllI(D s)X (f s)

allI : (I:SET)→(D : IDesc I)(X : I→SET)(P :((i : I)×X i)→SET)→
((x :(i : I)×X i)→P x)→(xs :JDKI X)→JAllID X xsK P

allI (’var i) X P p x 7→ p [i,x]
allI (’k K) X P p k 7→ []
allI (D ’×D′)X P p [d,d′] 7→ [allID X P p d,allID′ X P p d′]
allI (’Σ S D) X P p [s,d] 7→ allI(D s)X P p d
allI (’Π S D) X P p f 7→ λa.allI(D a)X P p (f a)

Figure 5. Indexed induction predicates

regardless of type) allows the translation of pattern matching with
structural recursion to indI [Goguen et al. 2006]. The extensional
equality of Altenkirch et al. [2007] also sustains the translation.

However, sometimes, the equations are redundant. Looking
back at Vec, we find that the equations constrain the choice of
constructor and stored tail index retrospectively. But inductive fam-
ilies need not store their indices [Brady et al. 2003]! If we analyse
the incoming index, we can tidy our description of Vec as follows:

VecD (X : SET) : Nat→ IDesc Nat
VecD X ’zero 7→ ’k 1
VecD X (’suc n) 7→ ’k X ’× ’var n

The constructors and equations have simply disappeared. A similar
example is Fin (bounded numbers), specified by:

data Fin : (n :Nat)→SET where
’fz : (n:Nat)→Fin (’suc n)
’fs : (n:Nat)→Fin n→Fin (’suc n)

In this case, we can eliminate equations but not constructors, since
both ’fz and ’fs both target ’suc:

FinD : Nat→ IDesc Nat
FinD ’zero 7→ ’Σ #[] []
FinD (’suc n) 7→ ’Σ #[’fz ’fs] [(’k 1) (’var n)]

This technique of extracting information by case analysis on
indices applies to descriptions exactly where Brady’s ‘forcing’ and
‘detagging’ optimisations apply in compilation. They eliminate just
those constructors, indices and constraints which are redundant
even in open computation. In closed computation, where proofs
can be trusted, all constraints are dropped.

Tagged indexed descriptions: Let us reflect this index analysis
technique. We can divide a description of tagged indexed data in
two: first, the constructors that do not depend on the index; then,
the constructors that do. The non-dependent part mirrors the defi-
nition for non-indexed descriptions. The index-dependent part sim-
ply indexes the choice of constructors by I. Hence, by inspecting
the index, it is possible to vary the ‘menu’ of constructors.

TagIDesc I 7→ AlwaysD I× IndexedD I
AlwaysD I 7→ (E :En)×(i : I)→π Eλ_. IDesc I
IndexedD I 7→ (F : I→En)×(i : I)→π (F i)λ_. IDesc I

In the case of a tagged Vec, for instance, for the index ’zero, we
would only propose the constructor ’nil. Similarly, for ’suc n, we
would only propose the constructor ’cons.

We write de D i to denote the IDesc I computed from the tagged
indexed description D at index i. Its expansion is similar to the
definition of de for tagged descriptions, except that it must also
append the two parts. We again write µ+I D for µI(de D) .

Typed expressions: We are going to define a syntax for a small
language with two types, natural numbers and booleans:

Ty 7→ #[’nat ’bool]

This language has values, conditional expression, addition and
comparison. Informally, their types are:

’val : Val ty→ ty
’cond : ’bool→ ty→ ty→ ty

’plus : ’nat→ ’nat→ ’nat
’le : ’nat→ ’nat→ ’bool

The function Val interprets object language types in the host lan-
guage, so that arguments to ’val fit their expected type.

Val : Ty→SET
Val ’nat 7→ Nat
Val ’bool 7→ Bool

We take Nat and Bool to represent natural numbers and Booleans in
the host language, equipped with addition +H and comparison≤H.

We express our syntax as a tagged indexed description, indexing
over object language types Ty. We note that some constructors are
always available, namely ’val and ’cond. On the other hand, ’plus
and ’le constructors are index-dependent, with ’plus available just
when building a ’nat, ’le just for ’bool. The code, below, reflects
this intuition, with the first component uniformly offering ’val and
’cond, the second selectively offering ’plus or ’le.

ExprD : TagIDesc Ty
ExprD 7→ [ExprAD,ExprID]

ExprAD : AlwaysD Ty

ExprAD 7→
[[

’val
’cond

]
, λty.

[
’k (Val ty) ’× ’k 1
’var ’bool ’× ’var ty ’× ’var ty ’× ’k 1

]]
ExprID : IndexedD Ty

ExprID 7→
[[

[’plus]
[’le]

]
, λ_. [’var ’nat ’× ’var ’nat ’× ’k 1]

]
Given the syntax, let us supply the semantics. We implement an

evaluator as a catamorphism:

eval⇓ : (ty :Ty)→µ+Ty ExprD ty→Val ty
eval⇓ ty term 7→ cataITy (de ExprD)Val eval↓ ty term

To finish the job, we must supply the algebra which implements a
single step of evaluation, given subexpressions evaluated already.

eval↓ : (ty :Ty)→J(de ExprD) tyKTy Val→Val ty
eval↓ _ (’val x) 7→ x
eval↓ _ (’cond ’true x _) 7→ x
eval↓ _ (’cond ’false _ y) 7→ y
eval↓ ’nat (’plus x y) 7→ x+H y
eval↓ ’bool (’le x y) 7→ x≤H y

Hence, we have a type-safe syntax and a tagless interpreter for
our language, in the spirit of Augustsson and Carlsson [1999], with
help from the generic catamorphism. However, so far, we are only
able to define and manipulate closed terms. Adding variables, it
is possible to build and manipulate open terms, that is, terms in a
context. We shall get this representation, for free, thanks to the free
indexed monad construction.

5.3 Free indexed monad
In Section 4.4, we have built a free monad operation for simple
descriptions. The process is similar in the indexed world. Namely,
given an indexed functor, we derive the indexed functor coding its
free monad:

_∗ : (I:SET)→(R :TagIDesc I)(X : I→SET)→TagIDesc I
[E,F]∗I R 7→

[
[’cons ’var (π0 E),λi. [’k (R i),(π1 E) i]],F

]
Just as in the universe of descriptions, this construction comes

with an obvious return and a substitution operation, the bind. Its
definition is the following:

substI : (I:SET)→(X,Y : I→SET)→(R :TagIDesc I)
(X →̇µ+I (R∗I Y))→µ+I (R∗I X)→̇µ+I (R∗I Y)

substI X Y R σ i t 7→
cataII (de R∗ X) (µ+Y (R∗ Y)) (applyI R X Y σ) i t

where applyI is defined as follows:

applyI : (I:SET)→(R :TagIDesc I)(X,Y : I→SET)→
(X →̇µ+I (R∗I Y))→
Jde R∗I XKI µ+I (R∗I Y)→̇µ+I (R∗I Y)

applyI R X Y σ i [’var,x] 7→ σ i x
applyI R X Y σ i [c,ys] 7→ con [c,ys]

The subscripted types corresponds to implicit arguments that
can be automatically inferred, hence do not have to be typed in. Let
us now consider two examples of free indexed monads.

Typed expressions: In the previous section, we presented a lan-
guage of closed arithmetic expressions. Using the free monad con-
struction, we are going to extend this construction to open terms.
An open term is defined with respect to a context, represented by a
snoc-list of types:

Context : SET
[] : Context
snoc : Context→Ty→Context

An environment realises the context, packing a value for each type:

Env : Context→SET
Env [] 7→ 1
Env (snoc G S) 7→ Env G×Val S

In this setting, we define type variables, Var by:

Var : Context→Ty→SET
Var [] T 7→ []
Var (snoc G S) T 7→ (Var G T)+(S == T)

While Val maps the type to the corresponding host type, Var indexes
a value in the context, obtaining a proof that the types match. The
lookup function precisely follow this semantics:

lookup : (G :Context)→Env G→(T :Ty)→Var G T→Val T
lookup (snoc G .T) [g, t] T (right refl) 7→ t
lookup (snoc G S) [g, t] T (left x) 7→ lookup G g T x

Consequently, taking the free monad of ExprD by Var G, we
obtain the language of open terms in a context G:

openTm G 7→ ExprD∗Ty (Var G)

In this setting, the language of closed terms corresponds to the free
monad assigning an empty set of values to variables

closeTm 7→ ExprD∗Ty Empty where Empty : Ty→SET
Empty _ 7→ #[]

Allowing variables from an empty set is much like forbidding
variables, so closeTm and ExprD describe isomorphic datatypes.

Correspondingly, you can update an old ExprD to a shiny closeTm:

update : µ+Ty ExprD→̇µ+Ty closeTm
update ty tm 7→ cataITy (de ExprD) (µ+Ty closeTm)

(λ_.λ[tag, tm].con [1+tag, tm]) ty tm

The other direction of the isomorphism is straightforward, the ’var
case being impossible. Therefore, we are entitled to reuse the eval⇓
function to define the semantics of closeTm.

Now we would like to give a semantics to the open term lan-
guage. We proceed in two steps: first, we substitute variables by
their value in the context; then, we evaluate the resulting closed
term. Thanks to eval⇓, the second problem is already solved. Let
us focus on substituting variables from the context. Again, we can
subdivide this problem: first, discharging a single variable from the
context; then, applying this discharge function on every variables
in the term.

The discharge function is relative to the required type and a
context of the right type. Its action is to map values to themselves,
and variables to their value in context. This corresponds to the
following function:

discharge : (G :Context)→Env G→Var G →̇µ+Ty closeTm
discharge G g ty v 7→ con [’val, lookup G g ty v]

We are now left with applying discharge over all variables of
the term. We simply have to fill in the right arguments to substI, the
type guiding us:

substExpr : (G :Context)→
(Var G →̇µ+Ty closeTm)→̇
µ+Ty (openTm G)→̇µ+Ty closeTm

substExpr G ty g σ tm 7→ substITy (Var G)Empty ExprD σ ty tm

Hence completing our implementation of the open terms inter-
preter. Without much effort, we have described the syntax of a well-
typed language, together with its semantics.

Indexed descriptions: An interesting instance of free monad is
IDesc itself. Indeed, ’var is nothing but the return. The remaining
constructors form the carrier functor, trivially indexed by 1. The
signature functor is described as follow:

IDescDSig : AlwaysD 1

IDescDSig 7→

[’k ’× ’Σ ’Π],

λ_.

 ’k SET
’var [] ’× ’var []
’Σ SET (λS. ’Π S (λ_. ’var []))
’Σ SET (λS. ’Π S (λ_. ’var []))

We get IDesc I by extending the signature with variables from I:

IDescD : (I : SET)→TagIDesc 1
IDescD I 7→ [IDescDSig, [λ_. [],λ_. []]]∗1 λ_. I

The fact that indexed descriptions are closed under substitution
is potentially of considerable utility, if we can exploit this fact:

JσDKJ X 7→ JDKI λi.JσiKJ X where σ : I→ IDesc J

By observing that a description can be decomposed via substitu-
tion, we split its meaning into a superstructure of substructures,
e.g. a ‘database containing salaries’, ready for traversal operations
preserving the former and targeting the latter.

6. Discussion
In this paper, we have presented a universe of datatypes for a de-
pendent type theory. We started from an unremarkable type theory
with dependent functions and tuples, but relying on few other as-
sumptions, especially where propositional equality is concerned.
We added finite enumeration sufficient to account for constructor

choice, and then we built coding systems, first (as a learning ex-
perience) for simple ML-like inductive types, then for the indexed
inductive families which dependently typed programmers in Agda,
Coq and Epigram take for granted. We adopt a bidirectional type
propagation mechanism to conceal artifacts of the encoding, giving
a familiar and practicable constructor-based presentation to data.

Crucially to our approach, we ensure that the codes describing
datatypes inhabit a datatype with a code. In a stratified setting, we
avoid paradox by ensuring that this type of codes lives uniformly
one level above the types the codes describe. The adoption of or-
dinary data to describe types admits datatype-generic operations
implemented just by ordinary programming. In working this way,
we make considerable use of type equality modulo open computa-
tion, silently specialising the types of generic operations as far as
the datatype code for any given usage is known.

6.1 Related work in Generic Programming
Generic programming is a vast topic. We refer our reader to Gar-
cia et al. [2003] for a broad overview of generic programming in
various languages. For Haskell alone, there is a myriad of propos-
als: Hinze et al. [2007] and Rodriguez et al. [2008] provide useful
comparative surveys.

Our approach follows the polytypic programming style, as initi-
ated by PolyP [Jansson and Jeuring 1997]. Indeed, we build generic
functions by induction on pattern functors, exploiting type-level
computation to avoid the preprocessing phase: our datatypes are,
natively, nothing but codes.

We have the type-indexed datatypes of Generic Haskell [Hinze
et al. 2002] for free. From one datatype, we can compute others
and equip them with relevant structure: the free monad construc-
tion provides one example. Our approach to encoding datatypes as
data also sustains generic views [Holdermans et al. 2006], allowing
us to rebias the presentation of datatypes conveniently. Tagged de-
scriptions, giving us a sum-of-sigmas view, are a natural example.

Unlike Generic Haskell, we do not support polykinded pro-
gramming [Hinze 2000]. Our descriptions are limited to endo-
functors on SETI . Whilst indexing is known to be sufficient to
encode a large class of higher-kinded datatypes [Altenkirch and
McBride 2002], we should rather hope to work in a more com-
positional style. We are free to write higher-order programs ma-
nipulating codes, but is not yet clear whether that is sufficient to
deliver abstraction at higher kinds. Similarly, it will be interesting
to see whether arity-generic programming [Weirich and Casingh-
ino 2010] arises just by computing with our codes, or whether a
richer abstraction is called for.

The Scrap Your Boilerplate [Lämmel and Peyton Jones 2003]
(SYB) approach to generic programming offers a way to construct
generic functions, based on dynamic type-testing via the Typeable
type class. SYB cannot compute types from codes, but its dy-
namic character does allow a more flexible ad hoc approach to
generic data traversal. By maintaining the correspondence between
codes and types whilst supporting arbitrary inspection of codes, we
pursue the same flexibility statically. The substitutive character of
IDesc may allow us to observe and exploit ad hoc substructural re-
lationships in data, but again, further work is needed if we are to
make a proper comparison.

6.2 Generic Programming with Dependent Types
Generic programming is not new to dependent types. Altenkirch
and McBride [2002] developed a universe of polykinded types in
Lego; Norell [2002] gave a formalisation of polytypic program-
ming in Alfa, a precursor to Agda; Verbruggen et al. [2008, 2009]
provided a framework for polytypic programming in the Coq the-
orem prover. However, these works aim at modelling PolyP or
Generic Haskell in a dependently-typed setting for the purpose of

proving correctness properties of Haskell code. Our approach is
different in that we aim at building a foundation for datatypes, in a
dependently-typed system, for a dependently-typed system.

Closer to us is the work of Benke et al. [2003]. This seminal
work introduced the usage of universes for developing generic
programs. Our universes share similarities to theirs: our universe
of descriptions is similar to their universe of iterated induction, and
our universe of indexed descriptions is equivalent to their universe
of finitary indexed induction. This is not surprising, as we share the
same source of inspiration, namely induction-recursion.

However, we feel ready to offer a more radical prospectus. Their
approach is generative: each universe extends the base type theory
with both type formers and elimination rules. Thanks to levitation,
we rely only on a generic induction and a specialised switchD, clos-
ing the type theory. We explore programming with codes, but also
how to conceal the encoding when writing ‘ordinary’ programs.

6.3 Metatheoretical Status
The SET : SET approach we have taken in this paper is convenient
from an experimental perspective, and it has allowed us to focus
primarily on the encoding of universes, leaving the question of
stratification (and with it, consistency, totality, and decidability of
type checking) to one side. However, we must surely face up to the
latter, especially since we have taken up the habit of constructing
‘the set of all sets’. A proper account requires a concrete proposal
for a system of stratified universes which allows us to make ‘level-
polymorphic’ constructions, and we are actively pursuing such a
proposal. We hope soon to have something to prove.

In the meantime, we can gain some confidence by systemati-
cally embedding predicative fragments of our theory within sys-
tems which already offer a universe hierarchy. We can, at the very
least, confirm that in UTT-style theories with conventional induc-
tive families of types [Luo 1994], as found in Coq (and in Agda
if one avoids experimental extensions), we build the tower of uni-
verses we propose, cut off at an arbitrary height. It is correspond-
ingly clear that some such system can be made to work, or else that
other, longer-standing tools are troubled.

A metatheoretical issue open at time of writing concerns the
size of the index set I in IDesc I. Both Agda and recent versions
of Coq allow inductive families with large indices, effectively al-
lowing ‘higher-kind’ fixpoints on SETSET and more. They retain
the safeguard that the types of substructures must be as small as
the inductively defined superstructure. This liberalisation allows us
large index sets in our models, but whilst it offers no obvious route
to paradox by smuggling a large universe inside a small type, it is
not yet known to be safe. We can restrict I as necessary to avoid
paradox, provided 1, used to index IDesc itself, is ‘small’.

6.4 Further Work
Apart from the need to nail down a stratified version of the system
and its metatheory, we face plenty of further problems and oppor-
tunities. Although we have certainly covered Luo’s criteria for in-
ductive families [Luo 1994], there are several dimensions in which
to consider expanding our universe.

Firstly, we seek to encompass inductive-recursive datatype fam-
ilies [Dybjer and Setzer 2001], allowing us to interleave the defini-
tion and interpretation of data in intricate and powerful ways. This
interleaving seems particularly useful when reflecting the syntax of
dependent type systems.

Secondly, we should very much like to extend our universe
with a codes for internal fixpoints, as in [Morris et al. 2004]. The
external knot-tying approach we have taken here makes types like
‘trees with lists of subtrees’ more trouble than they should be.
Moreover, if we allow the alternation of least and greatest fixpoints,

we should expect to gain types which are not readily encoded with
one external µ.

Thirdly, it would be fascinating to extend our universe with ded-
icated support for syntax with binding, not least because a universe
with internal fixpoints has such a syntax. Harper and Licata have
demonstrated the potential for and of such an encoding [Licata and
Harper 2009], boldly encoding the invalid definitions along with
the valid. A more conservative strategy might be to offer improved
support for datatypes indexed by an extensible context of free vari-
ables, with the associated free monad structure avoiding capture as
shown by Altenkirch and Reus [1999].

Lastly, we must ask how our new presentation of datatypes
should affect the tools we use to build software. It is not enough
to change the game: we must enable better play. If datatypes are
data, what is design?

Acknowledgments
We are grateful to José Pedro Magalhães for his helpful comments
on a draft of this paper. We are also grateful to the Agda team,
without which levitation would have been a much more perilous
exercise. J. Chapman was supported by the Estonian Centre of
Excellence in Computer Science, EXCS, financed by the European
Regional Development Fund. P.-É. Dagand, C. McBride and P.
Morris are supported by the Engineering and Physical Sciences
Research Council, Grants EP/G034699/1 and EP/G034109/1.

References
A. Abel, T. Coquand, and M. Pagano. A modular type-checking algorithm

for type theory with singleton types and proof irrelevance. In TLCA.

R. Adams. Pure type systems with judgemental equality. JFP, 2006.

T. Altenkirch and C. McBride. Generic programming within dependently
typed programming. In Generic Programming, 2002.

T. Altenkirch and B. Reus. Monadic presentations of lambda terms using
generalized inductive types. In Computer Science Logic. 1999.

T. Altenkirch, C. McBride, and W. Swierstra. Observational equality, now!
In PLPV, 2007.

L. Augustsson and M. Carlsson. An exercise in dependent types: A
well-typed interpreter. Available at http://www.cs.chalmers.se/
~augustss/cayenne/interp.ps, 1999.

M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and
proofs in dependent type theory. Nordic Journal of Computing, 2003.

E. Brady, J. Chapman, P.-E. Dagand, A. Gundry, C. McBride, P. Morris, and
U. Norell. An Epigram implementation.

E. Brady, C. McBride, and J. McKinna. Inductive families need not store
their indices. In TYPES, 2003.

J. Cheney and R. Hinze. First-class phantom types. Technical report,
Cornell University, 2003.

T. Coquand. An algorithm for type-checking dependent types. SCP, 1996.

J. Courant. Explicit universes for the calculus of constructions. In TPHOLs,
2002.

N. A. Danielsson. The Agda standard library, 2010.

P. Dybjer. Inductive sets and families in Martin-Löf’s type theory. In
Logical Frameworks. 1991.

P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive
definitions. In TLCA, 1999.

P. Dybjer and A. Setzer. Induction-recursion and initial algebras. In Annals
of Pure and Applied Logic, 2000.

P. Dybjer and A. Setzer. Indexed induction-recursion. In Proof Theory in
Computer Science. 2001.

R. Garcia, J. Jarvi, A. Lumsdaine, J. Siek, and J. Willcock. A comparative
study of language support for generic programming. In OOPSLA, 2003.

H. Geuvers. Induction is not derivable in second order dependent type
theory. In TLCA, 2001.

H. Goguen, C. McBride, and J. McKinna. Eliminating dependent pattern
matching. In Algebra, Meaning and Computation. 2006.

R. Harper and R. Pollack. Type checking with universes. In TAPSOFT’89.
R. Hinze. Polytypic values possess polykinded types. In MPC. 2000.
R. Hinze, J. Jeuring, and A. Löh. Type-indexed data types. In MPC, 2002.
R. Hinze, J. Jeuring, and A. Löh. Comparing approaches to generic pro-

gramming in Haskell. In Datatype-Generic Programming. 2007.
S. Holdermans, J. Jeuring, A. Löh, and A. Rodriguez. Generic views on

data types. In MPC. 2006.
P. Jansson and J. Jeuring. PolyP—a polytypic programming language

extension. In POPL, 1997.
R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design

pattern for generic programming. In TLDI, 2003.
D. R. Licata and R. Harper. A universe of binding and computation. In

ICFP, 2009.
Z. Luo. Computation and Reasoning. Oxford University Press, 1994.
P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis·Napoli, 1984.
C. McBride and J. McKinna. The view from the left. JFP, 2004.
P. Morris. Constructing Universes for Generic Programming. PhD thesis,

University of Nottingham, 2007.
P. Morris and T. Altenkirch. Indexed containers. In LICS, 2009.
P. Morris, T. Altenkirch, and C. McBride. Exploring the regular tree types.

In TYPES, 2004.
P. Morris, T. Altenkirch, and N. Ghani. A universe of strictly positive

families. IJCS, 2009.
U. Norell. Functional generic programming and type theory. Master’s

thesis, Chalmers University of Technology, 2002.
U. Norell. Towards a practical programming language based on dependent

type theory. PhD thesis, Chalmers University of Technology, 2007.
N. Oury and W. Swierstra. The power of Pi. In ICFP, 2008.
C. Paulin-Mohring. Définitions inductives en théorie des types d’ordre

supérieur. thèse d’habilitation, ENS Lyon, 1996.
B. C. Pierce and D. N. Turner. Local type inference. In POPL, 1998.
A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C.

d. S. Oliveira. Comparing libraries for generic programming in Haskell.
In Haskell Symposium, 2008.

The Coq Development Team. The Coq Proof Assistant Reference Manual.
W. Verbruggen, E. de Vries, and A. Hughes. Polytypic programming in

Coq. In WGP, 2008.
W. Verbruggen, E. de Vries, and A. Hughes. Polytypic properties and proofs

in Coq. In WGP, 2009.
S. Weirich and C. Casinghino. Arity-generic datatype-generic program-

ming. In PLPV, 2010.
H. Xi, C. Chen, and G. Chen. Guarded recursive datatype constructors. In

POPL, 2003.
A. R. Yakushev, S. Holdermans, A. Löh, and J. Jeuring. Generic program-

ming with fixed points for mutually recursive datatypes. In ICFP, 2009.

