
ZU064-05-FPR Ornament 9 August 2010 12:0

Under consideration for publication in J. Functional Programming 1

Ornamental Algebras, Algebraic Ornaments

CONOR McBRIDE
Department of Computer and Information Sciences

University of Strathclyde
Glasgow, Scotland

(e-mail: conor@cis.strath.ac.uk)

Abstract

This paper re-examines the presentation of datatypes in dependently typed languages, addressing in
particular the issue of what it means for one datatype to be in various ways more informative than
another. Informal human observations like ‘lists are natural numbers with extra labels’ and ‘vectors
are lists indexed by length’ are expressed in a first class language of ornaments—presentations of
fancy new types based on plain old ones.

Each ornament adds information, so it comes with a forgetful function from fancy data back to
plain, expressible as the fold of its ornamental algebra: lists built from numbers acquire the ‘length’
algebra. Conversely, each algebra for a datatype induces a way to index it—an algebraic ornament.
The length algebra for lists induces the construction of the paradigmatic dependent vector types.

Dependent types thus provide not only a new ‘axis of diversity’—indexing—for data structures,
but also new abstractions to manage and exploit that diversity. In the new programming (2), coinci-
dence is replaced by consequence.

1 Introduction

If it’s not a strange question, where do datatypes come from? Most programming languages
allow us to declare datatypes — that is to say, datatypes come from thin air. Programs
involving the data thus circumscribed subsequently become admissible, and if we are
fortunate, we may find that some of these programs are amongst those that we happen
to want. What an outrageous coincidence!

In dependently typed programming languages, the possible variations of datatypes are
still more dense and subtle, and the coincidences all the more outrageous. For example, if
I have list types,

data List (X :Set) : Set where

[] : ListX
:: : X →ListX →ListX

I might become frustrated by error cases in my attempts to define zip.

zip : ∀{X Y}→ListX →ListY →List (X ×Y)
zip [] [] = []
zip [] (y :: ys) = ?
zip (x :: xs) [] = ?
zip (x :: xs) (y :: ys) = (x,y) :: zip xs ys

ZU064-05-FPR Ornament 9 August 2010 12:0

2 Conor McBride

Perhaps it will occur to me to declare vectors instead.

data Vec (X :Set) : Nat→Set where

[] : VecX zero

:: : ∀{n}→X →VecX n→VecX (sucn)

As it happens, simple unification constraints on indices rule out the error cases and allow
us stronger guarantees about the valid cases:

zip : ∀{n X Y}→VecX n→VecY n→Vec (X ×Y)n
zip [] [] = []
zip (x :: xs) (y :: ys) = (x,y) :: zip xs ys

These vectors may look a little strange, but perhaps they are in some way related to lists.
Do you think it might be so? Could we perhaps write functions to convert between the two

vecList : ∀{n X}→VecX n→ListX
listVec : ∀{X}→ (xs :ListX)→VecX (f xs)

for a suitable f : ∀{X}→ListX →Nat? What might f be? I know a function in the library
with the right type: perhaps length will do.

But I am being deliberately obtuse. Let us rather be acute. These vectors were conceived
as a fancy version of lists, so we should not be surprised that there is a forgetful function
which discards the additional indexing. Further, the purpose of indexing vectors is to
expose length in types, so it is not a surprise that this index can be computed by the length

function. Indeed, it took an act self-censorship not to introduce vectors to you in prose,
‘Vectors are lists indexed by their length.’, but rather just to declare them to you, as I might
to a computer.

In this paper, I show how one might express this prose introduction to a computer,
constructing the vectors from the definition of length in such a way as to guarantee their
relationship with lists. The key is to make the definitions of datatypes first-class citizens of
the programming language by establishing a datatype of datatype descriptions. This gives
us the means to frame the question of what it is for one datatype to be a ‘fancy version’ of
another. I shall introduce the notion of an ornament on a datatype, combining refinement
of indexing and annotation with additional data. Ornaments, too, are first-class citizens —
we can and will compute them systematically.

This technology allows us not only to express vectors as an ornament on lists, but lists
themselves as an ornament on numbers. Moreover, the former can be seen as a consequence
of the latter.

2 Describing Datatypes

In order to manipulate inductive (tree-like) datatypes, we shall need to represent their
descriptions as data, then interpret those descriptions as types. That is, we must construct
what Martin-Löf calls a universe. The techniques involved here are certainly not new:
we can follow the recipe from Peter Dybjer and Anton Setzer’s coding of induction-
recursion (1), suitably adapted to the present purpose.

Let us start with plain unindexed first-order data structures, just to get the idea. You can
interpret a Plain description as a format, or a program for reading a record corresponding

ZU064-05-FPR Ornament 9 August 2010 12:0

Ornamental Algebras, Algebraic Ornaments 3

to one node of the tree.

data PlainDesc : Set1 where

arg : (A :Set)→ (A→PlainDesc)→PlainDesc — read field in A; continue, given its value
rec :PlainDesc→PlainDesc — read a recursive subnode; continue regardless
ret :PlainDesc — stop reading

Note that arg behaves like a binding operator, so I shall sometimes write it as one,

arg x :X .D sugars arg X (λx.D)

Let us have an example description: if we have a two element enumeration to act as a set
of tags, we may describe the natural numbers. See how the dependency built into the arg

construct allows us to treat ‘constructor choice’ as just another argument.

NatPlain : PlainDesc

NatPlain 7→ arg c :{zz,ss}.case cof

zz 7→ ret

ss 7→ rec ret

If we know the type R of recursive subnodes, we can interpret a description D as the
record type which describes a D-node. We may then take a fixpoint, PlainDataD, instanti-
ating R with PlainDataD itself.

J·K : PlainDesc→Set→Set

Jarg A DKR 7→ (a :A)× JD aKR
JrecDKR 7→ R× JDKR
JretKR 7→ 1

data PlainData (D :PlainDesc) : Set where

〈·〉 : JDK (PlainDataD)→PlainDataD

If we work through our natural number example, we find

Nat : Set

Nat 7→ PlainDataNatPlain

zero : Nat

zero 7→ 〈zz,?〉
suc : Nat→Nat

sucn 7→ 〈ss,n,?〉

JNatPlainKNat ≡ (c :{zz,ss})×case cof

zz 7→1

ss 7→Nat×1

Now, let us add indexing, giving a type which describes inductive definitions in I→Set.
All that changes is that we must specify an index anytime we ask for a subnode or deliver
a node.

data Desc (I :Set) : Set1 where

arg : (A :Set)→ (A → Desc I)→Desc I — read field in A; continue, given its value
rec : I→Desc I→Desc I — read an indexed subnode; continue regardless
ret : I→Desc I — stop reading and return the node’s index

ZU064-05-FPR Ornament 9 August 2010 12:0

4 Conor McBride

We may readily port our plain example, indexing with 1 and inserting trivial indices
where required:

NatDesc : Desc1

NatDesc 7→ arg c :{zz,ss}.case cof

zz 7→ ret?

ss 7→ rec? (ret?)

When we interpret descriptions, we’re given the indexed family of recursive subnodes
R : I→Set, and we must deliver an I→Set. In effect we receive an index which the node
must return. Hence, let us interpret the ret construct with an equality constraint.

J·K : Desc I→ (I→Set)→ I→Set

Jarg A DKR i 7→ (a :A)× JD aKR i
Jrech DKR i 7→ R h× JDKR i
JretoKR i 7→ o = i

data Data (D :Desc I) : I→Set where

〈 〉 : JDK (DataD i)→DataD i

Our example becomes

Nat : Set

Nat 7→ DataNatDesc?

zero : Nat

zero 7→ 〈zz, refl〉
suc : Nat→Nat

sucn 7→ 〈ss,n, refl〉

However, we can also define nontrivial indexed structures, like the vectors:

VecDesc : Set→DescNat

VecDescX 7→ arg c :{zz,ss}.case cof

zz 7→ ret zero

ss 7→arg :X .arg n :Nat. recn (ret (sucn))

Vec : Set→Nat→Set

VecX n 7→ Data (VecDescX)n

nil : VecX zero

nil 7→ 〈zz, refl〉
consn : X →VecX n→VecX (sucn)
consn x xs 7→ 〈ss,x,n,xs, refl〉

3 Map and Fold with Indexed Algebras

In this section, I shall lift the standard treatment of map and fold to indexed data structures,
and then show how to implement them for the indexed datatypes described by Desc I.

When presenting an inductive datatype as the least fixpoint

in : F (µF)→µF

of a suitable functor F : Set→Set, we provide the action of F on functions, lifting opera-
tions on elements uniformly to operations on structures

mapF : (X →Y)→F X →F Y

ZU064-05-FPR Ornament 9 August 2010 12:0

Ornamental Algebras, Algebraic Ornaments 5

and are rewarded with an iteration operator

foldF : (F X →X)→µF →X
foldF φ (inds) 7→ φ (map f (foldF φ)ds)

everywhere replacing in by φ . We can think of F as a signature, describing how to build
expressions from subexpressions, and µF as the syntactic datatype of expressions so gen-
erated. A function φ : F X →X explains how to implement each expression-form in the
signature for values drawn from X — we say that φ is an F-algebra with carrier X . If
we know how to implement the signature, then we can evaluate expressions: that is exactly
what foldF does, first using mapF to evaluate the subexpressions, then applying φ to deliver
the value of the whole.

We can play the same game with our functors on I →Set. We must first say what the
arrows are — functions which respect indexing:

· ⊆ · : (I→Set)→ (I→Set)→Set

X ⊆ Y 7→ (i : I)→X i→Y i

Let us now equip all our descriptions with functorial actions:

map : Desc I→ (X ⊆ Y)→ JDKX ⊆ JDKY
map (arg A D) f i (a,d) 7→ a,map (D a) f i d
map (rech D) f i (x,d) 7→ f h x,mapD f i d
map (reto) f i q 7→ q

Let us abbreviate the type of JDK-algebras still further, to eliminate the repetition of the
carrier.

Alg : Desc I→ (I→Set)→SetAlg D X 7→ JDKX ⊆ X

Now, the iterator will take any index-respecting algebra and perform index-respecting
evaluation of indexed expressions:

fold : Desc I→ (Alg D X)→DataD ⊆ X
foldD φ i 〈ds〉 7→ φ i (mapD (foldD φ) i ds)

Lots of popular operations can be expressed as folds. For example, addition. . .

·+ · : Nat→Nat→Nat

x+ y 7→ foldNatDesc (adda y) x

adda : Nat→AlgNatDesc (λ .Nat)
adda y (zz, refl) 7→ y
adda y (ss,sum, refl) 7→ suc sum

. . . and vector concatenation — note the careful abstraction of m to yield the carrier of the
algebra

·++n
m · : VecX m→VecX n→VecX (m+n)

xs++n
m ys 7→ foldVecDesc (concan ys)m xs

concan : VecX n→Alg (VecDescX) (λm.VecX (m+n)))
concan ys zero (zz, refl) 7→ ys
concan ys (sucm) (ss,x,m,conc, refl) 7→ consm+n x conc

ZU064-05-FPR Ornament 9 August 2010 12:0

6 Conor McBride

4 Ornaments and their Algebras

The point of this paper is to explore systematic transformations of datatypes and the com-
putational structure thus induced. In this section, I shall introduce the idea of ornamenting
an indexed data structure, combining the business of decorating a datatype with extra
stored information with that of refining a datatype with a more subtle index structure.

Suppose we have some description D : Desc I of an I-indexed family of datatypes. Now
suppose we come up with a more informative index set J, together with some function
e : J → I which erases this richer information. Let us consider how we might develop a
description D′ : DescJ which is richer than D in an e-respecting way, so that we can always
erase bits of a Data D′ j to get an unadorned Data D (e j). For example, if we start with a
plain 1-indexed family, then e can only be !, the terminal arrow which always returns ?.

How are we to build such a D′ from D? Certainly, wherever D mentions indices i : I,
D′ will need an index j such that e j = i. It will help to define the inverse image of e, as
follows:

data InvJ (e :J→ I) : I→Set where

inv : (j :J)→ Inv e (e j)

That is to say, inv j : Invei if and only if e j and i are definitionally equal. Notice that InvJ !?
is just a copy of J, because ! j is always ? — if there is no structure to respect, then we may
choose whatever we like.

Now, let us see if we can give a language for ornamenting a given description. The
first three constructors just follow the structure of descriptions making sure that every I-
index is assigned a corresponding J-index, but the fourth does something more curious
— it permits us to insert new non-recursive fields into the datatype upon which subse-
quent ornamentation may depend. This will prove important, because we may need more
information in order to decide which J-indices to choose than was present in the original
I-indexed structure.

data OrnJ (e :J→ I) : Desc I→Set where

argA : ((a :A)→OrnJ e (D a))→OrnJ e (arg A D)
rec : InvJ e h→OrnJ e D→OrnJ e (rech D)
ret : InvJ e o→OrnJ e (reto)
new : (A :Set)→ ((a :A)→OrnJ e D)→OrnJ e D

Here, I treat arg as an untyped binding operator — the type comes from the original
description — and new as a binding operator. I overload constructor names to connect
values with the indices to which they correspond.

For a simple but crucial example, let us ornament the natural numbers to get the type of
lists. This ornament is a simple decoration without refinement: a list is a natural number
with decorated successors!

ListOrn : Set→Orn1 !NatDesc

ListOrnX 7→ arg a.caseaof

zz 7→ ret (inv ?)
ss 7→new :X . rec (inv ?) (ret (inv ?))

ZU064-05-FPR Ornament 9 August 2010 12:0

Ornamental Algebras, Algebraic Ornaments 7

Of course, from every ornament we can extract the new description:

orn : OrnJ e D→Desc J
orn (argA O) 7→ arg a :A.orn (O a)
orn (rec (inv j)O) 7→ rec j (ornO)
orn (ret (inv j)) 7→ ret j
orn (new A O) 7→ arg a :A.orn (O a)

Let us just check our example:

orn (ListOrnX) ≡ arg c :{zz,ss}.case cof

zz 7→ ret?

ss 7→arg :X . rec? (ret?)

As we might hope, we now have a ‘nil’ and a ‘cons’.

Ornamental Algebras

What use is it to construct lists from numbers in this way? By presenting lists as an
ornament on the numbers, we have ensured that lists carry at least as much information as
numbers. Correspondingly, there must be an operation which erases this extra information
and reveals for each list its inner number. In effect, we have made length an intrinsic
property of lists.

More generally, for every ornament O : OrnJ e D, we get a forgetful map

|·|O : (j :J)→Data (ornO) j→DataD (e j)

which rubs out the new information and restores the less informative index. As you might
expect, |·|ListOrnX is just the length function.

How shall we implement the forgetful map? As the fold of an algebra, of course! Let us
take

|·|O 7→ fold (ornO) χO

where O’s ornamental algebra χO is defined as follows

χO : Alg (ornO) (DataD◦ e)
χO j os 7→ 〈eraseO j os〉where

erase : OrnJ e D→ JornOK (R◦ e) ⊆ (JDKR)◦ e
erase (arg O) j (a,os) 7→ (a,erase (O a) j os)
erase (rec (inv h)O) j (r,os) 7→ (r,eraseO j os)
erase (ret (inv j)) j refl 7→ refl

erase (new A O) j (a,os) 7→ erase (O a) j os

The work is actually done by the erase function, which is happy to work with any R :
I→Set describing the recursive objects: its main job is to remove those elements from the
record given by orn O which correspond to the uses of new in O. However, we are also
satisfying the index constraints — where we have an (R ◦ e) h on the left, we deliver an
R (e h) on the right, and in the ret case, unifying the js on the left ensures that the equation
we must prove on the right is simply e j = e j.

ZU064-05-FPR Ornament 9 August 2010 12:0

8 Conor McBride

Somehow, erasure of the new is all we may reasonably expect ‘for free’ from an arbitrary
ornament — it is what we paid for. However, what we now have is a language of ornaments,
allowing us not only to interpret them, but also to generate them in systematic ways. By
constructing ornaments to a purpose, we have still more to gain.

5 Algebraic Ornaments

An algebra φ describes a structural method to interpret data, giving rise to a fold φ oper-
ation, applying the method recursively. Unsurprisingly, the resulting tree of calls to φ has
the same structure as the original data — that is the point, after all. But what if that were,
before all, the point? Suppose we wanted to fix the result of foldφ in advance, representing
only those data which would deliver the answer we wanted. We should need the data to fit
with a tree of φ calls which delivers that answer. Can we restrict our data to exactly that?
Of course we can, if we index by the answer.

Starting from a description D : Desc I, every JDK-algebra φ : Alg D J yields an algebraic
ornament. This is indexed over pairs in (i : I)× J i whose first component must coincide
with the original I-index — so the erasure map is just fst — but whose second component
is computed by φ . We can compute this ornament by inspecting D, requesting a new J-
value for each recursive object and steadily building a record of arguments for φ so that we
can compute and return a J-index for the whole node.

algo : (D :Desc I)→Alg D J→Orn(i:I)×J i fstD
algo (arg A D)φ 7→ arg a.algo (D a) (λ i ds.φ i (a,ds))
algo (rech D) φ 7→ new j :J h. rec (inv (h, j)) (algoD (λ i ds.φ i (j,ds)))
algo (reto) φ 7→ ret (inv (o,φ o refl))

References

Dybjer, P., Setzer, A.: A Finite Axiomatization of Inductive-Recursive Definitions, TLCA (J.-Y.
Girard, Ed.), 1581, Springer, 1999, ISBN 3-540-65763-0.

McBride, C., McKinna, J.: The View From The Left, JFP, 2004.

