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Abstract. Those who want to conceal the content of their communica-
tions can do so by replacing words that might trigger attention by other
words or locutions that seem more ordinary. We address the problem of dis-
covering such substitutions when the original and substitute words have the
same natural frequency. We construct a number of measures, all of which
search for local discontinuities in properties such as string and bag-of-words
frequency. Each of these measures individually is a weak detector. How-
ever, we show that combining them produces a detector that is reasonably
effective.

1 Motivation

Terrorists and criminals must be aware of the possibility of interception whenever
they communicate by phone or email. In particular, terrorists must be aware of
systems such as Echelon [3] that examine a very large number of messages and
select some for further analysis based on a watchlist of significant words.

Given that it may not be possible to evade some examination of their mes-
sages, terrorists and criminals have two defensive strategies: encryption and ob-
fuscation. The problems with encryption are that it draws immediate attention
to messages and so permits at least meta-analysis; and it may be that there
are backdoors to commonly available encryption methods. Obfuscation tries to
hide messages in the background of the vast number of other messages, replac-
ing words that might trigger attention by other innocent-sounding words or
locutions. For example, al Qaeda, for a time, used the word ‘wedding’ to mean
‘attack’.

When a word is replaced by a word of substantially different natural fre-
quency, Skillicorn [10] showed that a different kind of potentially detectable
signature is created. This is because most collections of messages represent an
agglomeration of conversations, and conversations are always about something.
Rare topics only appear in rare conversations. When a word substitution occurs,
a rare topic begins to appear more frequently than it ‘should’. An increase in
both the frequency difference between original and substituted words and the fre-
quency of messages that contain the substitution both increase the detectability
of the presence of a substitution.



However, substitution by a word of approximately similar frequency is possi-
ble, given either a predefined codebook or access to a frequency-ranked word list
(on the internet perhaps). In this paper, we address the detection of messages
in which a word has been replaced by a word of similar frequency.

Consider the sentence “the attack will be tomorrow”. Using the al Qaeda sub-
stitution, we get “the wedding will be tomorrow” which is designedly a natural-
sounding sentence. However, ‘attack’ is the 1072nd most common English word
according to the site www.wordcount.org/main.php, while ‘wedding’ is the 2912th
most common, so the substantial frequency difference might make this substitu-
tion detectable using the approach described above. On the other hand, if the
word ‘attack’ is replaced by the word ‘complex’ which has similar frequency,
than any human will be able to detect that the sentence “the complex will be
tomorrow” is extremely unusual. However, detecting this kind of substitution au-
tomatically using software has not been attempted, except in a very preliminary
way [4].

The contribution of this paper is to show that a number of techniques using
only syntactic properties such as word frequencies can detect such word sub-
stitutions, although only weakly. Most techniques are either good at detecting
substitutions with a high false positive rate, or have a low false positive rate
but do not detect substitutions well. However, combining the best of these tech-
niques produces a detector whose detection rate, on an individual sentence basis,
is close to 82% with a false positive rate of only 20%.

2 Related Work

The problem of detecting a word that is somehow out of context occurs in
a number of settings. For example, speech recognition algorithms model the
expected next word, and back up to a different interpretation when the next
word becomes sufficiently unlikely [1]. This problem differs from the problem
addressed here because of the strong left context that is used to decide on how
unlikely the next word is, and the limited amount of resources that can be applied
to detection because of the near-realtime performance requirement.

Detecting words out of context can also be used to detect (and correct)
misspellings [5]. This problem differs from the problem addressed here because
the misspelled words are nonsense, and often nonsense predictably transformed
from the correctly spelled word, for example by letter reversal.

Detecting words out of context has also been applied to the problem of spam
detection. For example, SpamAssassin uses rules that will detect words such
as ‘V!agra’. The problem is similar to detecting misspellings, except that the
transformations have properties that preserve certain visual qualities rather than
reflecting lexical formation errors. Lee and Ng [7] detect word-level manipulations
typical of spam using Hidden Markov Models. As part of this work, they address
the question of whether an email contains examples of obfuscation at all. They
expected this to be simpler than the problem they set out to address – recovering
the text that had been obfuscated – but remark that detecting obfuscation at



all is ‘surprisingly difficult’ [7, Section 5] and achieve prediction accuracies of
around 70% using word-level features.

The task of detecting replacements can be considered as the task of detecting
words that are “out of context,” which means surrounded by the words with
which they typically do not co-occur. The task of detecting typical co-occurrences
of words in the specific contexts was considered in [8, 9].

3 Strategies

We wish to detect places where word substitutions have occurred, without any
access to direct semantic information. The techniques we use are all based on
the intuition that a substitution creates a local ‘bump’ in the frequencies of
substrings or sentences containing the substitute.

An obvious starting point might be the 2-gram (or n-gram) frequencies of
adjacent pairs (or n-tuples) of words in the sentence. A 2-gram that contain
the substituted word might have lower frequency than expected. There are two
problems with this simple idea. First, what is the expected frequency, given that
we don’t know what the original word was? Second, Ferrer i Cancho and Solé
[6] have shown that the graph of English word adjacencies has a small world
property. In other words, most rare words are surrounded by common words,
and the pairwise frequencies of pairs that include rare words do not differ much
from the rare word single-word frequencies. This can be seen in the example
sentence above: there is nothing unusual about the fragment “the complex will
be”; it is not until the word ‘tomorrow’ is appended that the sentence becomes
unusual. It is the pair of non-stopwords (complex, tomorrow) whose frequency
is significant, and these may be separated by many stopwords.

We determine frequencies by querying large repositories such as Google. Such
repositories implicitly contain information about the frequencies of fragments of
text, of bags of words, and of sets of words with stopwords deleted. However, it
is not always possible to get this implicit information directly, which forces us
to use subtle measures to obtain the scores we want.

We concentrate on nouns, since these represent the most likely targets of
substitution, there is more information available about their frequencies than
about other parts of speech, and there are fewer variant forms in English than
for verbs.

3.1 k-gram frequencies

In measuring a sentence for potential substitutions, we consider each noun in
sequence. In our initial work we considered the region surrounding each noun
extending to the left until the first non-stopword was encountered, and extending
to the right until the first non-stopword was encountered. For example, in the
sentence “A nine mile walk is no joke”, the region surrounding ‘walk’ is “mile
walk is no joke”. However, we discovered that, in real, informal text, these regions
are long enough that there are typically no instances of them, even at Google.



This is partly because they are long enough to capture author idiosyncrasies,
partly because of the grammatical oddities of informal text, and partly because
texts in limited domains also tend to use limited vocabulary, such as technical
terms which are not well represented in general-purpose repositories.

However, what we call the left k-gram, the text from the considered noun left-
wards up to and including the first non-stopword; and the right k-gram, the text
from the considered noun rightwards up to and including the first non-stopword,
seem to produce more useful fragments. In the example sentence above, the left
k-gram of ‘walk’ is “mile walk” (f = 50 at Google) and the right k-gram is
“walk is no joke” (f = 876,000). Intuitively, each of these fragments considered
separately is more natural, and so more likely, than the complete k-gram above
(f = 33). Surprisingly, the left and right k-grams detect substantially different
properties of sentences, presumably because word order is important in English,
both to convey meaning and style (observe the different frequencies above).

3.2 Sentence oddity

Sentence oddity measures are designed to measure the frequency of an entire
sentence. Because most sentences do not appear verbatim even once in a large
text repository, obtaining such frequencies comes at the expense of ignoring the
order of the sentence words.

In general, if a word is discarded from a bag of words, the frequency of the
smaller bag should be greater than that of the original bag. However, if the
bag of words was a sentence with the word order ignored, and the discarded
word was meaningful in the context of the sentence, then we might expect that
the difference in frequency might be moderate. If the discarded word was not
meaningful in the context of the sentence, then the difference in frequency might
be much greater. Hence we define sentence oddity as:

sentence oddity =
frequency of bag of words with word discarded

frequency of entire bag of words

The more unusual the discarded word was in the context of its sentence, the
greater we expect the sentence oddity to be.

3.3 Semantic oddity

If a word is a substitution, then we expect that word not to fit into the context
well. If the substituted word is, in turn, replaced by a related word, the frequency
of the resulting sentence will change, and this change will reflect something about
how unusual the original substitution was. This requires a way to find related
words, which is fundamentally a semantic issue, but there are sources of such
words, for example Wordnet.

The hypernym of a noun is the word immediately above it in the ordinary
ontology of meanings; for example, the hypernym of ‘car’ is ‘motor vehicle’.
We had expected that, when a normal word is replaced by its hypernym, the



frequency of the resulting sentence would stay the same or increase; while when
a substituted word is replaced by its hypernym the frequency of the resulting
sentence would decrease.

This turns out to be exactly wrong – the actual behavior is the other way
around, and considerably more subtle. The hypernym of a word has its own
hypernym, and original word also has a hyponym, a more specialized word, so
that there are a chain of hypernyms and hyponyms passing through any given
noun. The place on this chain that best represents the entire chain is called
the class word. An example of a chain is (from the bottom): “broodmare, mare,
horse, equine, odd-toed ungulate, hoofed mammal, mammal, vertebrate”. Here
the class word is ‘horse’. What happens when a word is replaced by its hypernym
depends on where in such a chain the word appears. If the word is below the class
word, then the hypernym is probably more common, and the frequency of the
new sentence greater; if the word is above the class word, then the hypernym is
probably more technical and less common, and the frequency of the new sentence
is smaller. For example, the hypernym of ‘rabbit’ is the biological term ‘leporid’,
which is unlikely to be used in ordinary sentences.

In fact, the chain of hypernyms for many words exhibits an oscillating struc-
ture, moving from technical terms to common terms and then back to technical
terms, and so on. For example, a chain containing ‘attack” is (from the bottom):
“foray, incursion, attack, operation, activity, act, event” in which ‘attack’ and
‘act’ are simpler words than the others. Another chain is “comprehension, under-
standing, knowing, higher cognitive process, process, cognition”, in which ‘un-
derstanding’, ‘knowing, and ‘process’ are ordinary words while the other words
in the chain are more technical.

In ordinary informal text, the nouns in use are likely to be close to the
appropriate class words – using non-class words tends to sound pompous. Sub-
stitution by a hypernym is likely to produce a more technical sentence, with
a lower frequency. If the noun under consideration is already a substitution,
however, it is less likely to be a simple word. Substitution by a hypernym may
produce a less technical sentence with a greater frequency. The chain containing
‘complex’ is: “hybrid, complex, whole, concept, idea, mental object”. In our ex-
ample sentence, “the complex is tomorrow”, replacement produces “the whole
is tomorrow” which is a much more common bag of words.

We define the hypernym oddity to be:

hypernym oddity = fH − f

where f is the frequency of a sentence, regarded as a bag of words; and fH is
the frequency of a bag of words in which the noun under consideration has been
replaced by its hypernym. We expect this measure to be close to zero or negative
for ordinary sentences, but positive for sentences that contain a substitution.

These three strategies, looking for frequencies of exact substrings of the sen-
tence under consideration, looking for changes in frequency between the entire
sentence and the sentence without the word under consideration, and looking
for changes in frequency when the word under consideration is replaced by its



hypernym (or other related words) can all suggest when a substitution has oc-
curred. In the next section, we describe the exact measures we have used in our
experiments.

4 Techniques

4.1 Usable frequency data

In order to be able to measure the frequencies of sentences, sentence fragments,
and bags of words, we must use data about some repository of text. The choice
of repository makes a great deal of difference, since the better the match between
the repository and the style of text in which substitutions may have occurred,
the more accurate the prediction of substitutions will be. It is well known, for
example, that perplexity, which measures a one-sided 2-gram frequency, is con-
siderably reduced in sets of documents from a particular domain.

We use Google as the source of frequency data, on the grounds that it indexes
a very large number of English documents, and so provides a good picture of
frequencies of English text. That said, it is surprising how often an apparently
ordinary phrase occurs zero times in Google’s document collection.

There are also particular idiosyncrasies of Google’s techniques that have some
impact on our results. First, the frequencies returned via the Google API and via
the Google web interface are substantially different; the API frequency values
are used in all programs here. Second, the Google index is updated every 10
days or so, but this is not easily detectable, so frequencies may be counted from
different instantiations of the index (large frequencies are rounded so this makes
little difference, except for rare strings). Third, the way Google handles stop
words is not transparent, and makes it impossible to invoke exactly the searches
we might have wished. For example, “chase the dog” occurs 9,580 times whereas
“chase dog” occurs 709 times, so quoted string searches clearly do not ignore
stopwords. On the other hand, the bag of words search {chase the dog} occurs
6,510,000 times while {chase dog} occurs only 6,490,000 times, which seems
counterintuitive. Fourth, the order of words seems to be significant, even in bag-
of-word searches. For example, searches for {natural language processing} and
{natural processing language} consistently produce different frequencies.

We use the number of pages returned by Google as a surrogate for word
frequency. This fails to take into account intraword frequencies within each in-
dividual document. It also fails to take into account whether two words appear,
say, adjacently or at opposite ends of a given returned document, which we
might expect to be relevant information about their relationship. We have ex-
perimented with using locality information of this kind, but it does not improve
performance.

4.2 Usable semantic data

The only semantic information we use is the hypernyms of nouns being consid-
ered. We get this information from Wordnet (wordnet.princeton.edu). In general,



a word can have several hypernyms, so we collect the entire set and use them
as described below. For example, the direct hypernyms of ‘complex’ are ‘whole’,
‘compound’, ‘feeling’, and ‘structure’, derived from the different meanings of
‘complex’.

4.3 Experimental data

In order to evaluate measures to detect substitutions, we need sets of reasonable
sentences to use as data. Standard grammatical sentences, for example from news
articles, do not make good test data because the kinds of sentences intercepted
from email and (even more so) from speech will not necessarily be complete or
formal grammatical sentences.

A large set of emails was made public as the result of the prosecution of the
Enron corporation. This set of emails was collected over three and a half years
and contains emails from and to a large set of individuals who never imagined
that they would be made public. This set of emails is therefore a good surrogate
for the kinds of texts that might be collected by systems such as Echelon, and
we use it as a source of informal, and so realistic, sentences.

Enron emails contain many strings that are not English words, for example
words in other languages, acronyms, and highly technical terms relating to en-
ergy. We use the British National Corpus (BNC) [2] to discard strings that do
not appear to be English words, and also as our source for the frequencies of
English words.

We extracted all strings ending with periods as possible sentences, except
when the BNC corpus indicated the possibility of periods as integral parts of
words, e.g. ‘Mr.’. Sentences with fewer than 5 words or more than 15 words were
discarded, leaving a total of 712,662 candidate sentences. A random sample of
3000 sentences were drawn from this set.

We detected the first noun in each sentence, and replaced it with an adjacent
word in the BNC frequency ranking for nouns. Sentences for which the selected
noun either did not have a hypernym known to Wordnet, or occurred with zero
frequency at Google were discarded.

The resulting set of sentences still contained sentences that did not make
good test examples because they contained unusual word use (i.e., they were too
informal), because they contained typos at the level of words, or because they
used technical vocabulary for which Google frequencies were too low (f < 10)
to be useful. To remove such sentences, we computed the sentence oddity for
each original sentence and for the sentence derived from it by substitution. This
measure should increase when a substitution is inserted; when it did not, we
discarded the pair of sentences, since this means that the original sentence was
more unusual that the one containing the substitution. This reduced the available
set of sentences by approximately a further 25%. Of course, this means that the
set of sentences is biased towards successful detection using sentence oddity, so
the further results using this measure are included for interest only.

Our test set is therefore a set of 1108 sentences from the Enron corpus,
and a set of 1108 sentences derived from them by substituting a word of equal



frequency. The original set of sentences is useful because it lets us measure
the false positive rate of the various measures. Also using a set in which the
only difference is the occurrence of a substitution guarantees that performance
differences do not arise from other features of the sentences.

For each measure defined below, we train a decision tree on the measured
values for original sentences and sentences containing substitutions to learn the
best boundary between the two classes. For all of these measures, there is con-
siderable overlap between the measured values for the two classes (that is, there
are many examples on the wrong side of the boundary), reflecting the complex
possibilities for informal English sentences. It is therefore not surprising that the
error rates of each individual measure are quite high.

4.4 Experiments

We applied the measures described previously to the sentence set.
For the family of k-gram measures, we compute the left k-gram frequency,

the right k-gram frequency, and the average of these two measures.
There are often several hypernyms for a given word. We had observed, in

previous work [4], that trying to choose a single hypernym could lead to poor
results. We compute the hypernym oddities for all of the possible hypernyms
of the noun under consideration, and compute: the minimum hypernym oddity
over all hypernyms, the maximum hypernym oddity over all hypernyms, and the
average hypernym oddity over all hypernyms.

5 Results

Even though we have used sentence oddity to select the set of sentences used as
data, it is still reasonable to see how well this measure separates original and
substituted sentences. The decision tree trained on both sets of sentences choose
the boundary sentence oddity > 2.5 to predict sentences with substitutions. In
other words, removing a substituted word from a sentence typically makes the
frequency of the remaining bag of words more the double.

Figure 1 summarizes the performance of the various measures on the sentence
dataset. In general, each of these techniques makes errors on different sentences,
and so combining measures produces better results than using each measure
alone. This is clear for the k-gram measures: the average k-gram measure has a
much lower false positive rate than either of its two components; but the right
k-gram detects substitutions very strongly. Notice that the left k-gram measure
detects substitutions only weakly – this suggests that adapting techniques from
speech recognition is not likely to work well for this problem. The three hypernym
measures also show divergent properties: the minimum hypernym measure does
not detect sentences with substitutions well, but has a low false positive rate.
The boundaries for all of these measures were determined automatically using a
decision tree, but it is clear that there is some scope for altering these boundaries
to get better substitution detection at the expense of higher false positive rates



Detection False
Rate Positive

Measure (%) Rate Boundary score
(%)

Sentence oddity 71 20 2.5
Left k-gram 51 28 461
Right k-gram 89 48 722
Average k-gram 51 13 418
Minimum hypernym 40 15 10
Maximum hypernym 68 31 10
Average hypernym 59 22 0
Combined 82 20 see Figure 2

Fig. 1. Detection performance results

(and vice versa). However, it is not clear how to do this in a principled way, that
is other than by trial and error.

A decision tree was trained using all of the measures as attributes. The
resulting decision tree is shown in Figure 2. It is clear from the Table that the
combined tree uses only the sentence oddity, average and right k-gram measures
and minimum hypernym semantic oddity; but that these measures make their
errors on different sentences, so that the overall accuracies are higher than those
of the component measures. The high false positive rate is a problem, given
that ordinary sentences are much more likely in intercepts than sentences with
substitutions.

It might be argued that the decision tree above performs well because the
training sentences were selected so that this measure behaves appropriately.
Figure 3 shows a combined decision tree in which only the k-gram and hypernym
measures are used. The performance is only slight worse (accuracy for sentences
containing a substitution 78% and false positive rate 22%).

The performance results and the boundaries were computed for smaller sets
of sentences and were remarkably stable as the size of the dataset grew.

6 Conclusions

We have tested how word substitutions within textual communication can be
detected. Our technique allows us to automatically flag suspicious messages,
so that they can be further investigated, either by a more sophisticated data-
mining techniques or manually. The task of detecting substitutions is becoming
important since terrorists, criminals, spies and other adversarial parties may use
substitution in order to avoid being flagged because of the use of certain words
(e.g. ‘bomb’, ‘explosives’, ‘attack’, etc.). Our technique extends prior work, which
was not able to detect substitutions when a word is replaced by another word



SO <= 2.48

| KGRAM_AVG <= 4271.5

| | SO <= 1.27: 0

| | SO > 1.27

| | | KGRAM_R <= 623: 1

| | | KGRAM_R > 623

| | | | Hyp_MIN <= 5000: 0

| | | | Hyp_MIN > 5000: 1

| KGRAM_AVG > 4271.5: 0

SO > 2.48

| KGRAM_R <= 1380: 1

| KGRAM_R > 1380

| | KGRAM_R <= 173000: 0

| | KGRAM_R > 173000: 1

Fig. 2. Structure of the decision tree, combining measures (0 – normal sentence, 1 –
sentence containing a substitution; SO – sentence oddity, KGRAM – k-gram, Hyp –
Hypernym)

KGRAM_R <= 722

| Hyp_AVG <= 0

| | KGRAM_AVG <= 332: 1

| | KGRAM_AVG > 332: 0

| Hyp_AVG > 0: 1

KGRAM_R > 722

| KGRAM_L <= 15

| | Hyp_AVG <= -151

| | | Hyp_MIN <= -1889000: 1

| | | Hyp_MIN > -1889000: 0

| | Hyp_AVG > -151: 1

| KGRAM_L > 15: 0

Fig. 3. Decision tree, without sentence oddity measures (0 – normal sentence, 1 –
sentence containing a substitution; KGRAM – k-grams, Hyp – Hypernym)

with similar frequency of use. This is because our approach is grounded in the se-
mantics of word usage rather than in the frequency ranks. We mine the necessary
semantic information from World Wide Web through analyzing the frequency of
use of specially constructed phrases obtained by transforming sentences from a
message or communication. We have been able to demonstrate empirically that
such detection is possible and, when several indicators are combined into one
model, can be performed with practically useful accuracy.

Since our model is the first formulation of the task of substitution detection
through semantic relationships, we were able only to investigate a simple heuris-
tic model. We are leaving for future research the creation of a more fine-grained
model (e.g. based on popular language models) and testing with a wider variety



of test sets. It will be also interesting to investigate how the correlation between
substitutions can be exploited to increase the accuracy and even to guess what
original words were obfuscated.
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