

Understanding Object-Oriented Frameworks

Submitted to the Department of
Computer and Information Sciences,

University of Strathclyde,
Glasgow.

For the degree of doctor of philosophy.

By Douglas Samuel Kirk
August 2005

The copyright of this thesis belongs to the author under the terms of the United Kingdom
Copyright Acts as qualified by the University of Strathclyde Regulation 3.49. Due

acknowledgement must always be made of the use of any material contained in, or derived
from, this thesis.

© Copyright 2005

 ii

Abstract

Frameworks are an attractive form of reuse due to the reductions in cost and time they can
provide to software projects. Despite their benefits the size and complexity of most
frameworks makes understanding how to use them difficult, lessening their appeal. In
addition documentation to support framework reuse often lacks experimental validation and
there is a poor understanding of what artefacts must be documented to increase the
effectiveness of documentation techniques.

This thesis describes an empirical investigation into framework documentation. Its aim is to
identify the major problems of reuse and the impact of current documentation techniques on
these problems. A qualitative approach is employed and four major reuse problems are
identified as barriers to reuse: understanding the functionality of components; understanding
the interactions between components; the mapping from the problem domain to the
framework implementation and understanding the architectural assumptions in the
framework design.

The effectiveness of current forms of documentation is evaluated using these problem
categories and, as a result, the extension of two existing forms of documentation are
suggested, namely a pattern language and a set of micro architectures. An in-depth,
qualitative analysis of both techniques evaluates the strengths and weaknesses of their
support for framework understanding, whilst confirming the significance of the four problem
categories. The analysis shows that the pattern language developed in this thesis has some
capability to support mapping type problems although it was often overridden by developers’
previous knowledge to the detriment of the solution. The micro architecture notation provides
support for simple interaction and functionality queries but was not able to address large
scale interaction problems within the framework.

The thesis concludes that the combination of a pattern language and micro architecture
documentation can provide useful support for framework reuse but both require modification
to become more effective. The thesis also concludes that the evaluation of framework
documentation is an essential activity for the advancement of framework comprehension. It
serves as an example to encourage other researchers to perform more evaluation of
framework documentation in the future.

 iii

Acknowledgements

This has been the hardest thing I have ever done. That seems a rather pathetic thing to say

given that this is only a PhD thesis but it is true. It wasn’t hard in a day to day sense – in fact

I was surprised how straightforward and enjoyable the work proved to be. Instead it was hard

because it seemed endless. I am delighted that I have now finally managed to complete this

work and although it is not perfect I am content with what I have achieved.

The thesis would never have been completed if it wasn’t for the love, help and support

offered by many people over the course of the past few years. Primarily I have to thank my

two supervisors Murray and Marc. They have always believed in me and in my capability to

do this task. From day one they have always taken my thoughts and ideas seriously (even

when not deserved) and offered constructive advice and criticism which has taken me to this

point. Most importantly I believe they have helped me to change my attitude to learning from

merely doing enough to get a pass, to trying my very best to learn all I can. I hope I haven’t

caused you too much stress during this time. Thank you both.

I would like to thank EPSRC for funding this research and also the participants who took part

in the experimental studies. Without them this work would not have been possible. Thank

you very much. I also want to thank my wife, Fi. She has always believed in me and made

many sacrifices so that I would have the time to work on my thesis. Her love and moral

support kept me going and are a large contribution to the existence of this thesis. She has

also given me a beautiful son called Ben. Darling I love you. Thank you so much for being in

my life. I would also like to thank my Mum and Dad for encouraging my interest in computing

and providing much love and support. Finally I would like to thank the staff of the Department

of Computer and Information Sciences, University of Strathclyde. I am very grateful for the

wonderful, supporting environment which they have provided. I would also like to specifically

thank my fellow EFoCSers Neil, Michael and Matt for all their advice, encouragement and

friendship during this time. I would like to add a special thank you to Dr Ian Ferguson for help

with financial support during the final months of this thesis and also to Dr Al Dunsmore for

showing me the ropes when I was still a ‘green’ first year.

Doug Kirk

23 / 5 / 2005

 iv

Publications

Technical Reports

Kirk, Douglas. 2001. Patterns For HotDraw. Technical Report (EFoCS-38-2001). University

of Strathclyde, UK.

Kirk, Douglas. 2001. Identifying The Problems of Large Scale Reuse: A Personal Case
Study. Technical Report (EFoCS-41-2001). University of Strathclyde, UK.

Kirk, Douglas. 2001. Understanding Object Oriented Frameworks: An Exploratory Case
Study. Technical Report (EFoCS-42-2001). University of Strathclyde, UK.

Kirk, Douglas. 2001. Framework Reuse: Process, Problems and Documentation.

Technical Report (EFoCS-43-2001). University of Strathclyde, UK.

Kirk, Douglas. 2002. JHotDraw Pattern Language. Technical Report (EFoCS-47-2002).

University of Strathclyde, UK.

Kirk, Douglas. 2002. Evaluation of a Pattern Language for JHotDraw. Technical Report

(EFoCS-48-2002). University of Strathclyde, UK.

Kirk, Douglas, Marc Roper and Murray Wood. 2002. On the Creation of Pattern
Languages for Framework Reuse. Technical Report (EFoCS-49-2002). University of

Strathclyde, UK.

Publications

Kirk, Douglas, Marc Roper and Murray Wood. 2002. Defining the Problems of Framework

Reuse. In the Proceedings of the 2002 Computer Software and Applications Conference

held in Oxford, UK, August, 2002, 623-626 and 282-283. IEEE Computer Society. .

Kirk, Douglas, Marc Roper and Murray Wood. 2005. Identifying and Addressing Problems in

Framework Reuse. In the proceedings of the 2005 International Workshop on Program

Comprehension held in St. Louis, Missouri, USA. May, 2005 77-86. IEEE Computer Society.

 v

Contents

1 Understanding object-oriented frameworks....................................... 1
1.1. Introduction ... 1
1.2. The importance of software reuse .. 1
1.3. The reuse of object-oriented frameworks ... 4
1.4. Describing frameworks ... 8
1.5. Product line architectures ... 9
1.6. Thesis outline.. 10

2 Framework documentation techniques .. 13
2.1. Introduction ... 13
2.2. Source code.. 13
2.3. Micro architectures ... 16
2.4. Macro-architectures .. 20
2.5. Hotspots.. 24
2.6. Examples .. 27
2.7. Prescriptive documentation .. 32
2.8. Conclusions .. 38

3 Identifying framework reuse problems... 40
3.1. Introduction ... 40
3.2. Experimental design ... 40
3.3. The pattern language.. 42
3.4. Data collection .. 47
3.5. Threats to validity.. 52
3.6. Analysis... 54
3.7. Problem categories... 56
3.8. Questionnaire ... 66
3.9. Documentation review .. 71
3.10. Conclusions .. 78

4 Documentation for framework reuse .. 80
4.1. Introduction ... 80
4.2. The pattern language.. 81
4.3. The problems of interaction and functionality ... 85
4.4. Conclusions .. 97

5 Evaluating framework documentation.. 99
5.1. Introduction ... 99
5.2. Experimental design ... 100
5.3. Threats to validity.. 103

 vi

5.4. Data .. 105
5.5. Analysis... 113
5.6. Detailed observations ... 118
5.7. Researcher interference and reliability ... 126
5.8. Results .. 129
5.9. Conclusions .. 133

6 Conclusions .. 135
6.1. Lessons learned ... 137
6.2. Future work... 139
6.3. Other documentation techniques.. 141
6.4. Conclusions .. 143

References.. 145

Appendices

Appendix A ……………………………………………………………………..154

Appendix B ……………………………………………………………………..364

Appendix C ……………………………………………………………………..489

 vii

1 Understanding object-oriented frameworks

1.1. Introduction

Object oriented frameworks are large scale software applications that are designed for

reuse. Recent studies (Fayad, Schmidt and Johnson 1999) (Moser and Nierstrasz 1996)

suggest that frameworks can achieve significant levels of reuse and cause large reductions

in development effort and time to market on software projects. Such benefits place object

oriented frameworks in a prime position to replace bespoke application development as the

mainstay of modern software development. Despite their utility, frameworks are complicated

structures to learn and the effort and time spent gaining an understanding of how to use a

framework often outweighs its potential benefit (Gamma et al 1994) (Johnson and Foote

1988). This thesis investigates why frameworks are so difficult to reuse and also how

documentation techniques can be improved to help shorten this learning curve.

1.2. The importance of software reuse

Software reuse has been a goal of the software industry for the last forty years (Mcllroy

1968). It is widely accepted within the community that reuse is an important step in the

maturity of software development as an engineering discipline (Pressman 1994) (Meyer

1997), (Somerville 2001). Yet despite this opinion software reuse has had little impact upon

how we build software today, with most development projects still building a significant

proportion of their code from scratch.

1.2.1 Motivations for reuse

Software reuse provides several benefits to developers: it reduces cost, time and effort and it

can also improve the quality of the software that is created (Pressman 1994). Reuse

improves software quality because it is often the more experienced developers or domain

experts who are asked to write reusable code (Meyer 1997). Their expertise helps to ensure

that the correct design and implementation is chosen for each reusable component. Quality

is also preserved because the components have a lifespan out-with any one project. Errors

in a component are detected and removed as that component is reused across projects

helping to improve its quality over time.

 1

Reuse reduces the cost of application development even though reusable code may take

longer to write than ordinary software. It can achieve this because reusable code only has to

be written once and the cost of its creation can be amortised across many different projects.

Reusing software also helps to reduce the time taken to bring an application to market.

When reusing code there is less software to write as existing parts can be assembled

together to create the required functionality. This allows applications to be created in less

time than developing solutions from scratch.

1.2.2 Limited uptake of reuse

The advantages of reuse are clear: it allows you to build software, faster, at less cost and

with better quality than traditional software development. Yet software reuse is still not a

common activity. Why isn’t more software being reused? There are many possible reasons

for the lack of adoption, including: the unavailability of suitable code libraries, lack of

confidence in the quality of the reusable code and differences in opinion about the context of

reuse.

A simple practical barrier that can prevent software reuse is the lack of reusable

components. If suitable libraries do not exist then the developer has no option but to create

the required material. Perversely in many cases the opposite can also be a problem. The

availability of too much reusable code can make it difficult to select the relevant class from a

range of alternatives. Even when a class can be found other factors can limit its reusability: It

might be prohibitively priced or have been written in a different language from the host

system or for a different hardware platform in each case rendering the software useless to a

potential re-user.

Software reuse also requires a certain amount of trust to be effective. Developers reusing a

software library have to trust that it has been constructed correctly and that it features a

suitable set of functionality to properly meet their application’s needs. This trust is required

because library developers often do not supply source code to third parties making it difficult

for re-users to make alterations or corrections to the code. Developers also have to accept

that reusing other people’s abstractions may introduce some inefficiency into their design.

Reusable code has to cater to a wide audience and hence tends to support a broader and

more general set of features than a specific solution might implement. For some this

compromise is hard to accept and they would prefer to create their own solution rather than

reuse code. Commentators in the literature have dubbed this inability to trust other peoples

code as the ‘not invented here’ syndrome (e.g. Meyer 1997).

 2

A less obvious inhibitor to code reuse is the difficulty of reusing abstractions across different

reuse contexts. This occurs because even in a highly modular paradigm, like object

orientation, reusable code is not completely isolated from the remaining code within the

program. Instead separation is achieved by programming to interfaces (Meyer 1997). These

divide the system into its constituent parts but at the same time create dependencies

between the interfaces. Such dependencies can become a problem during reuse because

they define an expectation about how a component should be reused. When a component is

inserted into a new context those assumptions, expressed in its interface, may no longer

hold true and the component might not be able to operate correctly in its new environment.

To illustrate this point, consider a Person component. In a banking system this class might

consist of a person’s name, address and account number hidden behind a suitable interface,

in a medical system the same component might have to contain information about height,

weight, prescribed medication, etc. and have a correspondingly different interface. The

concept of a Person is used very differently by these two scenarios and there is no one

definition that is suitable for both. This is a problem for re-users as it limits the applicability of

classes to domains similar to their original target. It can also be difficult to infer from a

component alone what its intended domain may be. This problem also extends to the non

functional properties of a component. For example the runtime performance of code that is

suitable in one context may not be appropriate even for a similar context because its

performance requirements are different. These problems reduce the opportunities for code

reuse in object-oriented systems.

This is the reality of code reuse for many software developers today. Finding appropriate

code to reuse, having confidence in its quality, assessing its performance and being aware

of its limitations are all significant issues that hamper their ability to reuse code. Developers

cannot simply pick up a piece of software and understand how to reuse it and so they don’t.

In many situations reuse has become something analogous to creating software

documentation. It is something that everyone wants and can see the benefits of but few

people are actually prepared to do! Object-oriented frameworks were created to address

some of these problems while preserving the benefits of software reuse.

 3

1.3. The reuse of object-oriented frameworks

An object-oriented framework is a special type of software system which has been created to

be highly flexible in order to support a wide range of specific applications. It provides an

incomplete implementation of an application, sometimes called a code skeleton, which

developers reuse to gain a head start when developing their own applications. Frameworks

can also provide class libraries to provide code that anticipates common application

requirements. This further reduces the amount of effort required by application developers to

fill out the partial application. There is compelling evidence which suggests that the use of

such frameworks can make a significant improvement to the amount of reuse that occurs

and to the corresponding befits that are achieved by the development process (Moser and

Nierstrasz 1996).

1.3.1 Framework skeleton

The code skeleton of a framework defines the range of applications that a framework can

support. It describes the architectural core of an application which includes gaps, or areas of

flexibility, that can be fleshed out later to create a complete application. A typical framework

skeleton is constructed from a collection of interfaces and abstract classes, which together

specify the structural and behavioural relationships that the framework supports.

Frameworks also frequently employ design patterns (Gamma et al. 1994) within the skeleton

to create its flexible areas. Framework developers talk about the framework having a

domain. This acts as a boundary allowing developers to decide whether a particular type of

application can be created from a given framework skeleton.

1.3.2 Framework class libraries

A framework usually supports its code skeleton by supplying a number of class libraries

which contain ready made abstractions to flesh out the gaps within the skeleton. These

abstractions often provide common behaviour with respect to the framework domain and can

be reused directly within applications or serve as a starting point for users to define their own

abstractions via sub-classing.

1.3.3 Types of framework

Frameworks can be divided into a number of different types. Some frameworks are known

as black box frameworks while others are described as white box (Roberts and Johnson

1996). The colour refers to the amount of control the application developer has over

 4

framework customisation. With a white box framework the developer has complete access to

the framework source code. They can understand the implementation details of the

framework and can modify and extend parts of the framework in their customisations. In a

black box framework modifications are much more restricted, typically source code is not

available and developers must reuse the components that are provided with the framework

to configure it for different circumstances. Some critics have argued that white box and black

box frameworks lie at either end of a continuum and seldom occur in practice. They argue

that most framework customisation occurs somewhere in between these two extremes. The

term grey box has been used to describe such frameworks (Johnson and Foote 1988).

Another distinction that can be drawn amongst object-oriented frameworks regards the role

of the framework within a system. Some frameworks control all aspects of an application. For

example a call centre framework will enable the creation of a number of call centre

applications. Such frameworks are commonly known as application frameworks. Other

frameworks known as utility frameworks are more constrained, specialising in only one

aspect of an application. For example graphical user interfaces such as Swing/AWT (Sun

Microsystems 2005b) or .Net Windows Forms (Microsoft 2005c) focus on the user interface

of an application and ignore the rest of the system. Another form of framework is known as

an infrastructural framework. Such systems define services which other applications can

make use of during execution. They include systems such as CORBA (OMG 2005a), which

define an architecture for distributed and platform independent code sharing.

The different types of framework all have their place within software reuse. Each may be

expected to differ in terms of the problems they cause re-users and the requirements they

have for documentation. This thesis does not have the scope to address all types of

frameworks equally. Instead it focuses only upon a white box application framework, the

insights gathered in this context being representative of the fundamental problems that apply

to all types of framework. The results of this thesis can be used as a platform for future

investigations to consider the unique needs of each alternative framework type.

1.3.4 The growth in popularity of frameworks

Frameworks first became popular with the Smalltalk object-oriented language during the

eighties (Johnson and Foote 1988). For example, a small framework called Model View

Controller (MVC) (Krasner and Pope 1988) was often used to create user interfaces for

Smalltalk applications. MVC splits the elements of a user interface into three logical

components: a model, a view and a controller. The model captures the state of the system,

 5

the view displays a representation of the model and the controller allows a user to modify the

model’s state. It also defines the relationships between the components such that a model

never knows what views are dependent upon it. A model can have multiple views and each

view creates a set of controllers that can alter the model. The popularity of the MVC

framework has led to it transcending its framework roots to become an architectural pattern

(Buchsman et al. 1996) that is widely advocated for the construction of graphical user

interfaces across object-oriented languages. The origin of frameworks within the graphical

user interface community (e.g. (Krasner and Pope 1988), (MacApp 1984), (Wienand,

Gamma and Marty 1988)) initially caused some developers to believe that frameworks were

only useful for developing user interfaces but gradually their more general applicability was

realised and their use has spread to a much wider range of application domains. A large

number of third party application frameworks new exist. These address a wide range of

domains, including network communications (Schmidt 2005), graph modelling (White, et al.

2005), drawing editors (Gamma and Eggenschwiler 2005), (Vlissides 1990), call centre

applications (Graham Technology 2005) and network management (Cisco Systems 2005).

Recently more mainstream object oriented languages such as Java and C# have also

promoted software frameworks. Both languages come with extensive combinations of class

libraries and frameworks that address common programming activities. For example

database access (ADO.Net (Microsoft 2005a), JDBC (Sun Microsystems 2005d)), user

interface design (.Net Windows Forms, Swing/AWT) and the creation of web services

(ASP.Net (Microsoft 2005b), Java Server Pages (Sun Microsystems 2005c)). Today

frameworks have become commonplace and they are frequently used in the construction of

modern software applications.

1.3.5 Discovery costs

The learning curve associated with reusable code can be considered as a cost of learning to

use that product. Such costs are sometimes labelled discovery costs (Mancl, Opdyke and

Fraser 2002). Frameworks can be argued to help such discovery costs because they

embody assumptions about a domain which represents the wisdom of the developers who

created the framework. This can help other developers to jumpstart their problem solving

within a domain by using the design clues embedded within the framework code. A relatively

recent panel at the OOPLSA conference (Fraser 1997) were asked to what extent they felt

that the technologies of patterns and frameworks helped to mitigate discovery costs. A range

of interesting opinions were expressed by the panellists. In general the majority believed that

both technologies had the potential to help with discovery costs for a domain but only after

their own initial learning curve had been traversed

 6

In particular frameworks were noted as having considerable learning curves and of being

helpful only for more experienced framework re-users (in other words those who have

already scaled the learning curve). Concerns were also expressed that discovery costs

would only be improved by a framework if it correctly predicted the variability that was

required by a particular problem (the framework design has to be flexible enough to allow a

solution to be created). Despite these concerns there was considerable enthusiasm for the

idea that frameworks codify domain knowledge and help to transfer design experience onto

subsequent users. This was argued as most keenly felt during the design stages of a project

where a framework can help provide a shared language for team members to communicate

about a design.

1.3.6 The difficulty in reusing frameworks

Despite their growing popularity object-oriented frameworks are difficult to reuse (Bosch et

al. 1999). This limits the community who are prepared to learn how to use them and it can

result in frameworks being reused inappropriately by confused application developers.

An obvious obstacle to reuse is the amount of material that must be understood before a

framework can be successfully instantiated. Many frameworks are large, often containing

hundreds or thousands of classes, and they are often incomplete, containing abstract

classes and using design patterns to create flexibility. This places a considerable burden on

potential re-users as they have to absorb a lot of information about the behaviour of the

framework and its scope for modification before it can be reused. In addition, whether they

are developing with a framework or not, developers have to learn about the application’s

domain (Bosch et al. 1999). This provides the language used to describe the abstractions

and range of functionality they can expect the system to provide. Becoming familiar with this

vocabulary places an additional challenge for framework developers making reuse even

harder to achieve.

Developers must also understand and accept the design rationale used to create parts of the

framework (Beck and Johnson 1994). This can be difficult because often the need for

flexibility results in unintuitive relationships within the framework. Another problem can arise

when developers attempt to reuse combinations of frameworks together. Often application

frameworks expect to be reused in isolation and dictate through their class skeleton the main

flow of control of the application. This is known as the inversion of control principle (Fayad

and Schmidt 1997). Inverted control causes problems when several such frameworks are

 7

used together or in conjunction with an application because their main control loops compete

against each other preventing the frameworks from operating correctly. This situation

requires careful mediation by the application developer in order to resolve the conflict

(Mattsson, Bosch and Fayad 1999).

1.4. Describing frameworks

Understanding object-oriented frameworks is a difficult problem. The solution may lie in

improving the quality of support provided by software documentation. It has the potential to

describe both the implementation of the software and to explain how it should be used. Many

forms of documentation have been proposed in the literature including source code browsers

(Robitaille, Schauer and Keller 2000), JavaDoc (Sun Micro-Systems 2005), UML diagrams

(OMG 2005b), design patterns (Gamma et al. 1994), pattern languages (Johnson 1992),

(Lajoie and Keller 1994) and example based learning (Shull, Lanubile and Basili 2000). The

number and diversity of approaches suggested in the literature is encouraging as it suggests

that there is much to describe about object frameworks. The abundance of techniques is

also a problem as it can be difficult to select an appropriate subset of techniques with which

to document a framework. In part this is because available documentation lacks a critical

appraisal of its utility and in part because there is a lack of understanding about what

information framework re-users actually require. This thesis addresses both of these issues.

There is currently little culture of evaluation amongst the proponents of framework

documentation. New techniques are proposed in the literature with little evidence to support

how well they have performed during reuse. The lack of evaluation has created a situation

where numerous techniques exist but nobody knows which, if any, are useful. Such

ignorance is stifling progress in framework documentation as researchers have no common

understanding about where to best devote their research effort when attempting to address

framework reuse problems. It also prevents techniques being adopted by framework

developers as there is no incentive for them to subscribe to a particular form of

documentation without some prior evidence of its utility.

Researchers also lack an understanding of the range problems that occur during framework

reuse. Existing techniques have been proposed from opinion, or the experience of a few

developers. Documentation is also often taken from other areas and reapplied within the

context of framework reuse (Butler and Dénommée 1997). Such approaches do not consider

the entire gamut of problems that occur during reuse. Instead each technique addresses a

 8

small subset of problems while ignoring the others. Existing approaches have little regard for

how such a fragmented understanding will fit together. A more complete understanding of

reuse problems would allow an investment in features that users actually need. It could also

allow more effective combinations of documentation to be proposed, as techniques could be

selected to minimise the redundant overlap of material.

1.5. Product line architectures

Software product lines are an alternative form of large scale reuse (SEI 2005) (Bosch 2001).

A product line is a set of related applications which share a common set of design artefacts.

This includes a range of material from domain models, test cases and documentation

through to software architectures, design patterns and reusable code. The assumption

behind product lines is that a company is often called upon to develop many similar versions

of a software product. By explicitly designing their product to be a reusable asset they can

make the transition between versions of the product easier to achieve and maximise the

reuse of assets between applications.

Product lines differ from frameworks in a number of significant ways. Primarily they address

a narrower application scope than a framework. While a framework addresses a domain of

applications a product line might only address variations to one type of application in that

domain. However, this more precise focus can help to promote greater reuse of assets and

make more accurate predictions about cost and time scale of development. Product lines are

also more holistic in the scope of their reuse. A framework provides reusable source code

but a product line provides more. It typically includes design assets such as architectural

models and test cases as well as reusable code. Finally the deployment of product lines

differs from frameworks. Frameworks are typically developed by one team of developers and

reused by another. There is a clear separation between those responsible for the framework

code and those responsible for the application. In a product line architecture it is more likely

that one group of people will be responsible for the creation and deployment of the product

architecture. Separate teams might exist for individual application products but they will be

contained in the one organisation and communication between those groups is likely to be

better than in a framework situation. This makes it possible for each application to be

adapted to its context and for common changes to filter back into the product line

architecture.

 9

Ultimately both frameworks and product lines provide support for large scale software reuse.

Product lines provide greater infrastructural support but are more restrictive than object

oriented frameworks in the applications they can produce. Frameworks are also more

independent and distributable that product lines which can enable then to reach a wider

audience of potential re-users.

1.6. Thesis outline

This thesis investigates and identifies the key problems of framework reuse. It does this by

recording users as they worked with an application framework and constructing a profile of

what information was required in order to reuse the framework code. The thesis evaluates

many popular forms of framework documentation to determine how well they fare against the

identified reuse requirements. It also investigates improvements to some existing forms of

documentation and develops new techniques in order to provide more comprehensive

support for framework reuse problems. The proposed documentation is evaluated to

determine its utility.

1.6.1 Contribution to knowledge

This thesis contributes to knowledge in the following ways:

• Identifies key problems of framework reuse: It identifies a set of problems that occur

during framework reuse. This provides a basis for evaluating documentation and also

helps to identify combinations of documentation that might offer suitable support for

framework reuse.

• Evaluates framework documentation: It evaluates many common forms of framework

documentation. This identifies the relative merits of common approaches and provides

insights into user reaction and opinion about using different types of documentation.

• Improves existing forms of documentation: It investigates alterations to existing

forms of documentation that specifically address the identified problems. The modified

approaches are described and evaluated to identify their strengths and weaknesses.

• Provides guidance for future evaluations: It provides guidance for the empirical

evaluation of framework documentation. The thesis describes a number of qualitative

approaches to documentation evaluation. This will help researchers performing similar

work in the future.

 10

1.6.2 Thesis Assumptions

This thesis makes some global assumptions about how frameworks are used and how the

difficulty in understanding them should be addressed. This section enumerates those

assumptions.

For the purposes of this thesis a framework is assumed to be a stable core suitable for a

wide range of applications. This represents an ideal framework, one where the core of the

design is fixed and end developers customise details to create a final design. Such designs

are arguably more suited to documentation because the central core will be highly similar

across implementations. The notion of stability is not true for every framework. Some are

created and used in a more pragmatic fashion where approximate suitability for a problem

leads to the framework being deployed but being heavily modified during the implementation.

The findings of this work may not be as relevant to such situations.

This thesis also makes the assumption that improvements to comprehension are most likely

to be discovered by leveraging documentation to teach users about a framework. Other

approaches to reducing the difficulty of learning frameworks are possible, for example

constraining the size and scope to make them easier to understand or utilising code

generators to remove the need to work with source code. While such techniques deserve

proper investigation this work contends that documentation is an obvious approach to the

problem which is relatively easy to implement and likely to make substantial improvements to

comprehension. This work therefore focuses on documentation but some of its findings, for

example the problems that developers experience during frameworks reuse, will likely have

general significance to all comprehension approaches.

1.6.3 Thesis structure

The remainder of this thesis is structured as follows:

• Chapter 2 presents a review of the literature, highlighting the different forms of

documentation that have been proposed for framework reuse. It also summarises the

limited attempts at evaluation that have been performed in this field.

• Chapter 3 presents an observational study that identifies the key categories of problems

that arise reusing an object-oriented framework. The study captures the problems

experienced by a number of framework re-users as they attempt to reuse an application

framework. The study also collects anecdotal evidence about the capabilities of existing

forms of documentation and the developers’ perception of them.

 11

• Chapter 4 presents the creation of two new forms of framework documentation. This

chapter extends an existing technique and explores the development of a novel form of

documentation to provide better support for the documentation requirements identified

earlier in the thesis.

• Chapter 5 presents a detailed qualitative evaluation of the proposed documentation. A

protocol analysis is performed on a number of framework re-users equipped with the

new documentation. This analysis yields a detailed account of their thoughts and actions

during the course of framework development. Analysing this material provides insights

into how the documentation has been used and whether it provided the support

expected.

• The thesis concludes by discussing the implications of this work for future forms of

framework documentation. It also provides practical advice for developers wishing to

perform similar types of qualitative study and closes with a discussion about what

research questions remain open and require further research in the future.

 12

2 Framework documentation techniques

2.1. Introduction

There are many different types of documentation which claim to provide support for

framework reuse. However, there is a scarcity of evidence to justify their selection and to

evaluate their utility as framework documentation. This review critiques the available

approaches, categorises them by type and identifies, where available, evidence to support

their utility.

The review is organised into six categories of framework documentation (source code, micro

architectures, macro architectures, hotspots, examples, and prescriptive techniques). The

categories describe the major features that documentation might illustrate. In some cases

these are general qualities that apply to any software system (e.g. source code); in other

cases they apply specifically to features found within object-oriented frameworks (e.g.

hotspots). The individual techniques discussed in this review are assigned to one of these

categories. The categorisation is not intended to be exhaustive as it only characterises

features found in existing forms of framework documentation. Future forms of documentation

may exploit different aspects of the software and deserve new categories to describe them,

nor are the categorisations strictly orthogonal. Documentation is pigeon-holed according to

its dominant characteristic. It is quite possible that some documentation types apply across

multiple categories but this review considers only the primary contributions of each form of

documentation.

This review shows that there are a great number of promising techniques available to

address framework reuse. In the majority of these cases, it also shows that there has been

little justification provided for their creation. The review also highlights the lack of available

evidence to identify useful forms of framework documentation. It concludes that the

uncertainty about the capabilities of documentation is preventing future research from

improving upon its quality and effectiveness for supporting framework reuse.

2.2. Source code

A framework is defined by its source code. This makes understanding the code an important

part of understanding the framework. Source code is written primarily to be understood by a

 13

machine which can cause it to become verbose and pedantic for humans to understand.

Frameworks also tend to be large pieces of software, featuring hundreds or thousands of

classes which are contained in a number of files. This can make it difficult for developers to

find areas of the source code that are relevant to their task and to remember details about its

behaviour. Lajoie and Keller emphasise the importance of source code in framework

comprehension (Lajoie and Keller 1994). They claim that source code is the ultimate

reference for framework knowledge, “If one wants to thoroughly understand a class and/or

method, code inspection still remains the most precise and sure way”. They also call for

source code to be more tightly integrated with other forms of documentation to encourage

traversal from the documentation into source code and back again.

Other researchers have suggested the use of tools to help make working with source code

more manageable. Robitaille, Schauer, and Keller describe a tool called SPOOL which helps

users to navigate through large collections of code (Robitaille, Schauer and Keller 2000).

The SPOOL tool (Figure 1) was designed to assist with the navigation of large amounts of

source code. Robitaille et al. argue that the volume of information within source code and its

distribution across multiple files is a critical barrier to program comprehension. SPOOL is an

enhanced source code browser that allows developers to query structural relationships

within the code. Users can ask which classes call a method, inherit from a class or are

composed together. Responses to queries are displayed both graphically via a UML-like

class diagram and also as a list of classes. Queries can also be composed together to create

more complicated questions (e.g. find all classes that inherit from class A and implement

interface B). The authors claim that chaining queries together in this manner allows the user

to understand the system at a higher level of abstraction than by merely browsing the code.

Products similar to SPOOL are beginning to become popular in other areas of software

development. Tools such as Together (IBM 2004), SNiFF (WindRiver 2005) and Eclipse

(Eclipse 2005) are improving the ability of developers to navigate through large amounts of

source code and to quickly locate relevant information within code.

As a mechanism to assist framework reuse source code browsers such as SPOOL appear to

offer useful but incomplete support for framework problems. One particular weakness of

such tools is that they are unable to offer any information beyond that already present within

the code. It cannot, for example, offer advice about how components of a framework ought

to be used. The strength of source code browsers lies in the ease with which a user can

move between files and can produce views of related classes. This allows developers to

maintain their train of thought while reading code across multiple files and also allows them

to gather an accurate understanding of what material is available within the framework’s

class libraries.

 14

Figure 1: SPOOL Source code browser (Robitaille, Schauer and Keller 2000)

An alternative view of source code is provided by Sun’s JavaDoc tool. It emphasizes

structural details, augmented with explanatory comments, to help users identify and

understand parts of the source code. (Sun Microsystems 2005a). JavaDoc generates

information for Java programs formatted as a set of HTML web pages. By default the tool will

automatically extract class signatures and inheritance information from the source code. The

tool also extracts specially formatted comments within the source code to provide

explanations about the role of each class and the functionality offered by its methods.

JavaDoc's advantage over some other forms of documentation is the relatively low amount

of effort that is required to create the documentation and to keep it up to date. It also takes

advantage of hyperlinks to relate classes together (for example one can view information

about super classes and jump to their definition with a single click) this can make navigation

through the class structures of a framework very easy to perform. The disadvantage of

JavaDoc is that its main contribution arguably comes from the additional comments created

by a developer. If these are missing or of poor quality then the resulting impact of the

documentation is equally poor. Creating JavaDoc to a consistently high standard also

increases its cost and makes it more difficult to produce. Nevertheless the benefits of

JavaDoc, despite its reputation for variable quality, are such that it has become a common

source of documentation and similar tools are available for several other mainstream

languages (e.g. C++, C#, Perl).

 15

Tool support provides assistance for the navigation of source code and limited support for its

comprehension. Both the SPOOL and JavaDoc tools can help the user to navigate around

the collection of classes that comprise a framework. They can also help the developer to

gain an understanding of the static structure of the framework and the interfaces supported

by its classes. Understanding the dynamic behaviour of a framework is not so well

supported. JavaDoc provides some opportunity for comments to be used to explain the

framework’s functionality. However, there is no control over the content of the comments and

these can vary considerably in their quality, sometimes providing good insight into a class or

method, other times stating little more than the obvious. It seems likely that where such tools

are available they will have a positive effective upon a developer’s ability to understand and

navigate through framework code.

2.3. Micro architectures

Object oriented frameworks feature a lot of internal communication between the classes that

comprise the framework. Such communication is seen by many researchers to be a

significant factor in the comprehension of large software systems (Booch 1994), (Lajoie and

Keller 1994), (Gamma et al. 1994). This has resulted in a number of documentation

techniques which attempt specifically to describe the interactions of software. This thesis

considers such techniques collectively as micro architectures, i.e. small parts of a larger

system.

Helm et al, describe a technique that encapsulates inter class communication (Helm, Holland

and Gangopadhyay 1990). Their technique creates a structure called a contract which

describes the communication protocol between classes (Figure 2). Contracts are described

in a formal notation and comprise four sections: type obligations which describe the

interfaces of collaborating participants (for example in Figure 2 Subject must support calls to

SetValue and Notify); causal obligations which describe the sequence of invocations

between participating classes (e.g. in the figure Update -> Draw implies that calls to update

will result in a subsequent call to draw); invariants which must be upheld by the contract and

finally an instantiation section which describes the preconditions that must be true before the

contract is valid. Each contract is composed of a series of interactions which complete some

function within an application (whilst omitting any interactions which are superfluous to that

functionality). This relates the behaviour of the source code to the behaviour of the

application domain making it easier to identify which parts of the source code are

responsible for a particular functionality.

 16

Helm

objec

sugg

defin

they

“Fram

refer

(Vliss

claim

unde

frame

make

relati

the o

unde

the s

Contract SubjectView

 Subject supports[

 value: Value

 SetValue(val:Value) delta value{value = val}; Notify() →
 GetValue(): Value → return value

 Notify() (|| v: v → ∈ Views : v → Update())

 AttachView(v:View) → {v ∈ Views}

 DetachView(v:View) → {v ∉ Views}

]

Views : Set(View) where each View supports [

Update()→Draw()

Draw() Subject GetValue() {View reflects Subject.value} → →
SetSubject(s:Subject) → {Subject = s}

]

Invariant

 Subject.SetValue(val) → (∀ v : v ∈ Views : v reflects Subject.value)

Instantiation

 (|| v : v ∈ Views : (Subject AttachView(v) || v SetSubject(Subject))) → →
End Contract

Figure 2: An interaction contract (Helm, Holland and Gangopadhyay 1990)

 et al. argue that contracts are an orthogonal structure to classes in the description of

t-oriented systems. They name their approach “interaction oriented design” and

est that collaborations should be defined first, before being factored into class

itions. Helm et al claim their approach is relevant to all object-oriented applications, but

also realise it has specific value to object-oriented frameworks commenting

eworks define solutions in terms of interaction between abstract classes”. They also

to their experience of the Interviews (Linton, Vlissides and Calder 1989) and Unidraw

ides 1990) frameworks, where they describe specific framework problems that they

 would have been prevented if the system had been documented in contract form (e.g.

rstanding the relationship between a scene and its contents in the Interviews

work). Contracts raise the profile of interactions within an object-oriented system. This

s interactions easier to identify and understand while having the additional benefit of

ng the behaviour of the source code to the high level behaviour of the application. On

ther hand, the formal notation of the contracts makes them somewhat awkward to

rstand and the ability to identify which interactions to document appears to be critical to

uccess of this technique.

17

Design patterns (Gamma, et al 1994), are primarily intended to support forward engineering,

but they can also be used to document existing software. Patterns describe good solutions to

commonly occurring problems in object-oriented design. For example the Observer pattern

describes a mechanism to allow dependencies between classes without the classes involved

explicitly knowing about each other, making it easier to alter classes while maintaining the

relationship between them. Design patterns do not represent an actual implementation;

instead they describe an generic solution, abstracted from several different examples. Thus

patterns focus on communicating the design principles behind the source code rather than

providing an implementation to copy blindly. As documentation this can help a user to

understand how a section of the system is organised and provide an idealised notion of the

interaction that occurs within a section of code.

Patterns have a close relationship with software frameworks. Apparently design patterns

were originally discovered through Gamma et al.’s experience of developing object-oriented

frameworks. They noticed that the requirement to create flexibility within frameworks often

resulted in repeated arrangements of source code. These recurring sections of code

eventually became what are now known as design patterns. This is significant for framework

documentation because it implies that frameworks tend to have a large number of design

patterns embedded within them. Therefore teaching users about design patterns ought to

have a beneficial effect upon their ability to understand the structures that exist within

framework code. This may be limited by the abstract nature of pattern descriptions which

could make them difficult to recognise within the concrete implementations of a framework.

Lajoie and Keller similarly believe that interactions are important aspects of framework

documentation (Lajoie 1993), (Lajoie and Keller 1994). They decompose framework

interactions into units they call micro-architectures (to be contrasted with the more generic

use of the term to classify all of the techniques in this section) which are described using a

combination of design patterns (Gamma et al 1994) and contracts (Helm, Holland and

Gangopadhyay 1990). Lajoie and Keller claim that understanding the framework in terms of

such groupings is the principal difference which separates novice framework re-users from

more experienced developers. They further argue that design patterns describe micro

architectures in an abstract manner to “ensure wide applicability”. Because of this design

patterns “are difficult to understand in isolation” and contracts must be used as an

intermediate representation to help re-users understand how a design pattern operates

within the implementation provided by a framework. Lajoie and Keller also observe that there

is not always a design pattern for every micro-architecture in a framework. In such cases

 18

they suggest that contracts be used on their own to help users understand the behaviour of

the micro architecture. Unfortunately, Lajoie and Keller do not provide many examples of

their approach and it is not clear from their description how the set of micro architectures

used to describe a framework ought to be identified.

Lange and Nakamura describe a tool called Program Explorer which helps to identify

occurrences of design patterns within framework code (Lange and Nakamura 1995). They

argue that detecting design patterns is critical to framework understanding because it allows

a lot of detail to be ignored without compromising the significant behaviour of the framework.

Their tool combines a mixture of static and dynamic information to assist in the detection of

patterns. Example applications are used to identify functionality of interest within the

framework. The example application is then executed within the tool and the functionality of

interest is exercised in the application. The resulting dynamic trace contains information

about which classes of the framework are involved with the given functionality.

Lange and Nakamura point out that the dynamic trace for even a simple piece of functionality

can be very large and difficult to understand. They provide an example to identify the code

behind a slider mechanism in the Interviews framework. The resulting trace “creates more

than 3000 objects” and contains “at least twenty thousand events” making it overwhelmingly

large. To combat the scale of information Lange and Nakamura suggest filtering the

information using knowledge of design patterns. In their approach the developer anticipates

the existence of a design pattern within the system and uses knowledge about the structure

and naming conventions of the pattern to filter the dynamic information, searching for

relevant interactions.

They illustrate how their tool can be used to identify the Observer pattern in the slider

example. Lange and Nakamura admit that their approach is ultimately one of trial and error,

as design patterns are used as a hypothesis to identify areas of functionality within the

example application. However, exploration of an example in this manner does allow a

developer to gain familiarity with small areas of the system without becoming overwhelmed

by extraneous detail. Perhaps a larger problem with their approach is the manual effort

involved on the part of the user. They have to be familiar with a range of design patterns

before they can use the tool, they have to be able to predict which patterns are likely to

underpin functionality within the framework and they also have to overcome differences in

naming methods and classes when searching for the patterns within the trace information.

This high level of knowledge and involvement required beforehand excludes a significant

number of developers from being able to use the tool to understand a framework.

 19

Micro architecture approaches to framework documentation may help to address the large

scale of object-oriented frameworks. By decomposing the framework into smaller

subsections they facilitate the comprehension of the entire framework as each section can

be understood in isolation from the others. They also help to relate the functionality of the

framework to the structures which define that functionality within the source code, helping

the developer identify the capabilities a framework offers and where to locate modifications

within the source code. One weakness of micro architecture approaches is the lack of

guidance to help identify meaningful subsections of a framework to describe.

2.4. Macro-architectures

Recently, considerable attention has been focused on describing software systems in terms

of their architectural structure. This demand for a higher-level view of the system is

appealing for framework comprehension. It presents the foundation of a mental model which

subsequent investigation can fill out. Bass, Clements and Kazman provide the following

definition of software architecture “The software architecture of a program or computing

system, is the structure or structures of the system which comprise software components,

the externally visible properties of those components and the relationships among them”

(Bass, Clements and Kazman 1998).

Beck and Johnson use a collection of design patterns to explain a framework's architecture

and justify its implementation (Beck and Johnson 1994). They argue that existing

documentation focuses too much on the ‘how’ and not enough on the ‘why’ of design and

they propose a modified form of design pattern (emphasising the motivation for a pattern) to

address this. They define an architecture as “the way the parts work together to make the

whole” and claim that frameworks are themselves a form of architectural documentation –

the architecture being expressed as source code. The patterns are also adapted to describe

implementation details for a framework making them less abstract and easier to understand.

Beck and Johnson point out that the description provided by design patterns is only a

rationalisation of the design and does not represent the actual development process. They

argue that this kind of knowledge is similar to the mental model of a framework held by

experienced developers. They claim that novice users can use their documentation as a

replacement for experience helping them to understand and maintain the architectural

relationships within the framework. Design patterns cannot address all aspects of a

framework and this raises questions about the completeness of their approach. It may be

possible that important aspects of the framework architecture go unreported by this

 20

technique simply because they are not related to a design pattern. Nevertheless this form of

documentation does help to identify the location of patterns within a framework and

describes the motivations behind their selection. Such information is likely to be helpful to

developers seeking to uphold the design principles within a framework. This approach to

documentation is further illustrated in the work of Odenthal and Quibledly-Cirkel (Odenthal

and Quibledly-Cirkel 1997) and again by Beck this time with Gamma in (Beck and Gamma

1999).

Richner and Ducasse describe an approach to architectural documentation which uses a

mixture of static and dynamic information to provide insight into the interactions that occur

across a framework (Richner and Ducasse 1999). They argue that a predefined set of

architectural views is too restricting and that a developer ought to be able to query the

system to dynamically generate views as required. Their proposed approach uses a logic

language to define a set of static and a set of dynamic facts about a program based on its

syntax (i.e. what inheritance looks like, what a method invocation looks like). An execution

trace of the program is produced which captures details of method invocations in a log file.

The code and the execution trace of the system are then parsed and a database of facts

created (which class is related to which, what methods a class has invoked, etc). The tool

then allows queries to be written which extract information from the database and display it

as a series of graphs (e.g. Figure 3).

Figure 3: Graph of creation invocations from the HotDraw framework

(Richner and Ducasse 1999)

 21

Interestingly their technique can be used to represent information at different levels of

granularity by abstracting information about low level events into more general

categorisations (e.g. specific subclasses are abstracted to the roots of their hierarchies and

only the interactions between these high level entities are shown). This allows a user to

move between different views of the system depending on the queries they wish to answer.

Richner and Ducasse suggest starting with interactions between components and working

down to interaction between objects. This 'top down' approach is key to their strategy and

they believe that developers are led from the coarse grained information to ask further

queries which recursively descend through different layers of abstraction until the details are

resolved. This approach would appear to place a lot of responsibility on the shoulders of the

re-user. They must interpret each diagram and from that decide what query they want to

make next. It is not clear whether developers are actually able to formulate successful

queries in practice. There are also concerns about the dynamic information used to generate

parts of their views. If the execution trace used is unrepresentative of normal operation then

the information within the diagram may be incomplete or misleading in its description.

Buhr suggests another form of documentation to describe interactions at an architectural

level (Buhr 1996). He proposes a notation called a use case map (UCM), which illustrates

graphically how a use case flows through the components of a system (Figure 4). This

differs from a conventional sequence diagram by focusing on the gross level communication

between parts of a system rather than individual method invocations. Use case map

diagrams contain hierarchies of boxes, which are used to represent the components of the

system. These are most often classes but Buhr also describes a larger unit, which he calls a

team, that conceptually relates clusters of classes together (perhaps reminiscent of micro

architectures). The interaction between parts of the system caused by the use case is

illustrated as a line that zigzags through the components in the map indicating interacting

components. The line can split apart into multiple lines or merge together to indicate

concurrency within the system. The final element of significance on a use case map is a

short textual description, which provides insight into the actions that occur at various

positions along the line. These are annotated on the diagram with a number, which is

referenced in the textual description. Buhr shows that several different traces can be

juxtaposed together onto a single diagram to illustrate how different use cases exercise the

system.

 22

Figure 4: A use case map for HotDraw (Buhr 1996)

Buhr claims that use case maps allow re-users to stand back from the mass of

implementation details to see the larger picture behind the application. He argues that this is

beneficial because this coarse grained view is less subject to change than an understanding

based on detailed interactions and that it helps identify important interactions which are

usually lost within the detail. He points out that UCMs are not capable of explaining the

complete behaviour of a system as they do not support enough knowledge of fine grained

interactions. Use case maps appear to be accessible and easy to interpret. The major

weakness of this approach is that it relies upon a set of use cases to illustrate completely the

range of functionality on offer. Such information is difficult to provide for a framework as it

can only describe use cases via instantiated applications which in turn can not completely

illustrate the range of functionality supported by a framework.

 23

Macro architectures encompass a variety of different types of documentation. From the

pattern like descriptions of Beck and Johnson to the dynamically created graphs of Richner

et al. there is considerable variation in the approaches that have been suggested. Other

techniques such as use case maps suggest an overlap between architectural descriptions

and software visualisations. In general the approaches all share a desire to communicate an

overview or overarching description of the system being documented. Such approaches

appear particularly relevant during early phases of framework reuse where there is a

particular need to gain an initial familiarity with the structures of a framework.

2.5. Hotspots

Frameworks are abstract applications. They require developers to fill in the blanks during

reuse to create concrete applications. This has led some researchers to consider

documentation which seeks to describe the points of flexibility and customisation that exist

within a framework. Pree coined the term ‘hotspots’ to describe these abstract areas of a

framework “A framework defines a high-level language with which applications within a

domain are created through specialisation. Specialisation takes place at points of predefined

refinement that we call hotspots” (Pree 1999). Pree goes on to describe a number of

patterns which he claims illustrate the possible modifications that can be made to a

framework via a hotspot. He calls these patterns ‘meta-patterns’ which are variations of the

Template pattern described in (Gamma et al. 1994). The meta-patterns describe two

categories of modification, “unification”, which is essentially modification via inheritance, and

“separation”, which is modification via composition. Pree suggests that hotspots are difficult

to create within a framework and that they emerge over time as a framework matures.

Pree’s hotspot viewpoint is not shared by all framework developers. Codenie, De Hodt,

Steyaert and Vercammen disagree with the scope of information required to make a

modification to a framework (Codenie et al. 1997). They argue that it is not sufficient simply

to know where to make a modification, there is also a need to understand the impact of a

change upon the existing system. They illustrate their argument with an example of an

inheritance modification. They suggest a modification to a collection class to notify another

class whenever an item is added into the collection. The modification is made by overriding

an AddItem method of the collection but this creates a problem with another method of the

class, AddItems, which adds multiple elements to the collection at one time (and for

efficiency reasons does not call AddItem when adding to the collection). If the developer

does not modify both methods (which Codenie et al. argue may easily be overlooked) the

notification will not occur correctly. The above problem could have been identified easily

through inspection of the source code but Codenie et al. argue that “…in practice inspecting

 24

the code to reuse a class is undesirable; this kind of analysis should be feasible at the

design level”. Instead they propose a notation called a reuse contract which they claim helps

to describe the intra-hierarchical dependencies between subclasses in a framework.

A reuse contract describes the dependencies between methods in a class and between

subclasses in a hierarchy (Steyaert et al 1996). They are textual descriptions similar to class

interfaces that are associated with a framework class. Contracts are divided into two

sections which list the abstract and concrete methods that are defined within the associated

class (Figure 5). The concrete methods also list the methods that they call within the class

(no inter class behaviour is described). Reuse contracts do not describe all of the methods

belonging to a class including only those methods which are considered part of the design

rather than the implementation (the categorisation of each method is at the discretion of the

documentation writer). Steyaert et al. recommend that implementation methods be removed

from the class interface to prevent the possibility of naming conflicts with future subclasses

(i.e. by creating inner classes to model implementation detail). Contracts can also be

extended using three different operators (and their reverse operators), concretisation,

extension and refinement (reverse operators: abstraction, cancellation and coarsening).

These operators are used to describe explicitly how subclasses modify their parent classes

within the framework. Steyaert et al. argue that such information can help to describe the

intentions of each subclass allowing developers to detect conflicts when a subclass breaks

an existing contract. Steyaert et al.’s work suggests that framework modifications may at

times be more wide ranging in their scope than previously considered by other descriptions.

Reuse contracts appear to provide a detailed understanding of framework hierarchies which

may help to preserve the existing architecture and avoid unexpected interactions between

framework code and new modifications.

Reuse Contract DragableView

is an extension of View

 Abstract

 Draw

 Concrete

 Update {Draw}

 Drag {Draw}

End Reuse Contract

Figure 5: A reuse contract (Steyaert et al 1996)

 25

Fontoura, Pree and Rumpe describe another approach to hotspot documentation using an

extension of UML called UML-F (Fontoura, Pree and Rumpe 2000). This documentation

modifies standard UML by the inclusion of a set of tags which indicate variation points

(hotspots) within a design. Fontoura et al describe three types of variation points which can

apply to class diagrams: variable methods, extensible classes and extensible interfaces.

Variable methods are denoted with a {variable} tag which is inserted next to the method

name. This indicates that the method is open for modification via sub-classing or

composition. Extensible classes, denoted with an {extensible} tag, indicate that subclasses

can add new methods to an interface within the framework and extensible interfaces, marked

with an {incomplete} tag, indicate hierarchies where new implementations can be added to

increase the options available to re-users. All of these variation points can be further

quantified by the addition of a {static} or {dynamic} tag which indicates whether a

modification is required to apply at compile time or runtime. Finally OCL (object constraint

language) comments can be added to a diagram to define instantiation restrictions which

supply additional constraints onto the type of modification that can occur (i.e. to specify that

an attribute of a class will not be modified by any new method added via an {extensible} tag).

An example of their notation can be seen in Figure 6.

Figure 6: A UML-F class diagram (Fontoura, Pree and Rumpe 2000)

Fontoura et al see a critical role of their work as reducing the amount of code that re-users

have to be exposed to during a modification. “It is quite cumbersome that framework users

today often need to browse the framework code, which generally have complex and large

class hierarchies, to try to identify the variation points”. Despite this it could be argued that

the suggested tags present information that is already obvious to a re-user, as most

hierarchies in a framework are meant to be extended, methods to be overridden and

interfaces widened. The benefit of not having to search through lots of code for this

information is merely a by-product of using UML. Perhaps the strongest contribution of this

 26

work is the inclusion of OCL constraints upon potential modifications. These appear to offer

some support to preserve the architectural relationships of the framework.

Hotspots are a phenomenon of framework development. They identify areas of the

framework that are intended to change and dictate the types of change that are possible.

Researchers appear to disagree on how these areas of a framework ought to be described.

Pree et al. seem to favour a more laissez-faire approach, being content to identify potential

hotspots, while Steyaert et al. wish to formalise the contract between the framework and the

application code. Further work is required to identify exactly what role hotspots play during

reuse and what form of support will be most effective.

2.6. Examples

Examples are an effective and widely used learning strategy in many areas of education. It is

therefore unsurprising to find them recommended as a form of documentation to explain

framework reuse. Examples illustrate a framework’s capabilities. They can show the scope

of modifications that are possible with a framework and can illustrate best practice in the

manner in which modifications are implemented. Johnson considers examples to be an

important part of framework documentation (Johnson 1992). He cites many frameworks that

use examples to assist re-users, (i.e. MVC, MacApp and UniDraw) and claims that examples

play a “key role” in framework documentation. Johnson believes that “Studying examples is a

time honoured way of learning a framework” as he argues that they illustrate the flow of

control, the capabilities and the design of object-oriented frameworks. He attributes the

effectiveness of examples to their description of concrete structures as opposed to the less

tangible abstract behaviour offered by a framework alone.

Schneider and Repenning believe that well designed example applications can help address

the lack of explicit design performed by framework re-users (Schneider and Repenning

1995). They also claim that current example applications are encouraging framework re-

users to implement cosmetic features of the framework before more important functionality.

This, they argue, damages the design of the application as its core functionality has to be

retrofitted into a design already complete with cosmetic and often inappropriate details.

Schneider and Repenning also argue that a stronger focus is required upon the design

process of framework reuse and they propose a risk-based approach to address this

problem.

 27

In their approach modifications with the greatest risk to success are performed first to reduce

the cost of failure when a modification cannot be achieved. To support this idea they claim

that a specific form of example application, called a paradigmatic application, should be used

to illustrate the important underlying mechanisms of a framework. Paradigmatic applications

are concrete examples of framework customisation that differ from traditional examples in

their focus on what Schneider and Repenning refer to as “abstract reusable mechanisms”

(useful combinations of primitive framework functionality). Each paradigmatic application

defines one such reusable area within a concrete example and a set of alternative

descriptions (or shallow analogies) that sketch out how that example could be implemented

in a number of different applications. For example they describe one abstract reusable

mechanism as “propagating agents through a discrete space constrained by conductors” and

illustrate this mechanism in an example application of electricity flowing through a circuit.

They then provide analogies for the flow of traffic, water and money in different application

contexts.

Schneider and Repenning argue that their approach marks a clear distinction between the

abstract framework code and the concrete application code, making it easier for re-users to

adapt the example to their own application requirements. Finally they suggest that the

shallow analogies should be presented in a form of textual overview that accompanies the

example code. A limitation of this approach is the apparent difficulty in identifying good

abstract reusable mechanisms to document with examples. Schneider and Repenning do

not offer any explicit guidance but they do suggest that experience of several applications

within the framework domain is important in order to detect the common modifications that

occur within a framework.

Gangopadhyay and Mitra (Gangopadhyay and Mitra 1995) also advocate an example driven

approach to framework learning. They describe a special type of example called an

exemplar which they claim can help teach users about the architecture of a framework. An

exemplar is an example application which instantiates at least one concrete class for every

abstract class within the framework. Gangopadhyay and Mitra describe how exemplars can

be used to support a top down learning process for framework comprehension. They argue

that the exemplar should be understood as a complete entity before a user narrows in on the

area they wish to modify. This they claim allows a user to better understand the

responsibilities and relationships within the framework. Once an area of the exemplar has

been identified for modification the user then has to search for an alternative class within the

hierarchies of the framework. If an appropriate class can be found it can be reused directly

otherwise a new class has to be created to fit the requirement.

 28

They support their approach with a tool, called Objchart, which displays class diagram and

sequence diagram information for an executing exemplar. It allows a user to click on a

method of interest in the class diagram to view a sequence diagram illustrating its behaviour.

It also allows users to view class hierarchies of available framework components.

Gangopadhyay and Mitra argue that their approach is more flexible than prescriptive

techniques (addressed later) claiming, “Our use of an exemplar is akin to adapting a

template. However, we believe that our approach to understanding through active

exploration gives the re-user a fundamental understanding of the relevant dependencies,

which is not achievable through predefined or prescriptive steps”.

While it is true that their approach describes a logical and methodical approach to framework

modification, its assumption that modifications will neatly fit into the existing modularity of the

framework seems somewhat limiting. It seems likely that framework re-users (especially in

white box frameworks) will require greater flexibility to go outside the existing constraints of

the system when making their modifications. It is also uncertain how their approach will scale

to accommodate larger frameworks (the example they use is a small framework containing

only six key classes). Understanding the exemplar in a large framework would not be a

straightforward task and many modifications would be required to transform it into the

required application.

Michail and Notkin present a tool which compares example applications to determine the

similarities in how they have exploited the underlying software framework (Michail and Notkin

1998). Their tool, CodeWeb, calculates ‘reuse boundaries’ between example applications

and the framework code. A reuse boundary (Figure 7) is a class diagram which is comprised

of classes from the framework which are directly used by the example application (either via

inheritance or via composition). Michail and Notkin claim that this approach focuses a re-

user’s attention onto the “important aspects of a library that are applicable to most

applications independent of their purpose”. The tool can present boundaries formed from

the intersection of multiple example applications and can show details of how each example

application has made use of the framework classes. In the figure the larger view shows the

reuse boundary for two example applications, while the two small panes underneath show

the original applications. This approach presents a useful way in which to display example

applications, as it enables users to easily compare examples to see how different types of

framework modification have been made. This technique is heavily dependant on the

diversity of examples that can be compared. Examples with a lot in common presumably

 29

teach the re-user less about how the framework can be used. Finding a good set of

examples which exhibit such diversity would appear to be difficult.

Figure 7: Reuse boundary from ET++ (Michail and Notkin 1998)

Frameworks often illustrate their capabilities through a number of example applications that

are provided with the framework. Some researchers have argued that careful selection of

which examples to include could increase their utility. Dénommée argues that collections of

examples need to be constructed carefully to maximise their pedagogical benefits

(Dénommée 1998). He believes that examples should focus on the introduction of one

framework concept at a time and should be graded so that easy, generally applicable

concepts are introduced before more complicated modifications. He observes that current

examples are often used to illustrate too many features of an application framework at one

time. This reduces their effectiveness because the examples can become too complicated to

understand. Dénommée claims that by grading the examples the re-user will be better able

to identify the new functionality and then imitate it. Dénommée’s work echoes the argument

of Sparks, Benner and Faris who also claim that frameworks should be documented with a

series of examples to illustrate the frameworks capabilities (Sparks, Benner and Faris 1996).

Dénommée has not produced any examples of such documentation for discussion and given

the apparent effort required to create a set of examples, there are concerns about the

feasibility of this approach. Graded examples may also have difficultly scaling to address the

wide range of functionality that is possible with many frameworks.

 30

Shull, Lanubile and Basili present an evaluation of the role that examples play in framework

reuse (Shull, Lanubile and Basili 2000). Their study compared two approaches to framework

documentation: an example based and a hierarchical approach. The example based

documentation consisted of a set of example applications and a suggested reading order

which emphasised examples that were considered to be of particular importance, while the

hierarchical technique focused on describing the role of the abstract classes in the

framework, guiding developers through increasingly concrete levels of the framework

hierarchies until all details were described. The comparison between the two techniques took

place in an academic environment using groups of students as participants. Their

conclusions are presented as a set of hypothesis for further investigation rather than as

concrete findings.

Shull et al. present evidence to suggest that examples are an effective framework learning

strategy. They claim that this is especially so for people beginning to learn a framework,

citing the fact that all the participants in the study eventually moved over to an example

based approach including those who had originally been taught the hierarchical technique.

Their findings suggest that examples are not a perfect form of documentation. They report

that subjects occasionally had problems finding functionality of interest within the examples

(especially when the functionality was a small part of the example) and that the subjects

were confused by inconsistencies between approaches taken by different example

applications. They also conclude that example based documentation may prevent

developers from going beyond the presented functionality suggesting that examples do not

provide enough details of the framework’s construction.

Shull et al. also report a temptation, from the subjects, to take more elaborate functionality

from an example than was required, compromising the architectural integrity of their design.

Shull et al. draw comparisons between this finding and the work of Schneider and

Repenning discussed earlier (Schneider and Repenning 1995), suggesting that examples

can have the potential to harm framework reuse by encouraging trivial modifications to be

done before the major functionality of the application is addressed.

Shull’s report appears to present a duality about the role of examples as documentation. On

one hand they appear accessible and easy to use, they lead developers to functionality and

they can be used as a predefined starting point to be customised into the desired application.

On the other hand, their benefits must be balanced against the evidence that they do not

teach details of the frameworks design, that they can overcomplicate an application and that

they can lead re-users astray.

 31

Examples appear to be widely accepted in the framework literature as a documentation

technique. They help to resolve the abstract information within a framework by providing a

concrete illustration of a framework’s capabilities but in doing so run the risk of only

presenting a narrow subset of possible modifications to the user. Examples are not a

particularly expensive documentation to create and often frameworks come supplied with a

number of examples to illustrate their capabilities. This review has suggested that to get the

most out of example applications they ought to be carefully constructed to introduce one

concept at a time and be ordered in terms of their difficulty. This may increase the cost of

examples as a larger number are required and more care must be taken in their design.

Shull et al.’s evaluation suggests that examples do have a role to play in reuse but also

identifies further concerns about an example based approach. They report that examples do

not teach users about the wider architecture of the system and that they can encourage

developers to create more elaborate applications than they actually require.

2.7. Prescriptive documentation

Prescriptive documentation differs from other approaches in that it focuses on the activities

that the re-user should perform to customise a framework rather than details about its

structure. This allows prescriptive documentation to capture the actions of more experienced

framework users and convey them to novice users, hopefully helping them to create effective

modifications to a framework.

Cookbooks are a prescriptive technique and are one of the earliest forms of framework

documentation. Their origins can be traced back to the Model View Controller (MVC)

description provided by Krasner and Pope (Krasner and Pope 1988). This illustrated how the

MVC framework ought to be used when creating Smalltalk applications. Cookbooks are

effectively compilations of examples that illustrate common reuse tasks within the

framework. They differ from examples by not describing complete applications, instead

featuring small fragments of code, and by providing a textual explanation of the purpose of

the code and when it should be used. When a cookbook has support for a modification it can

be a very effective documentation technique but when a modification is not described

developers may be left with little support to guide them.

Pattern languages are a documentation technique for solving design problems that was

originally proposed by the architect Christopher Alexander in the context of civil architecture

 32

and design (Alexander et al. 1977). The motivation for this work stemmed from the opinion

that modern alternatives to architectural design were creating cold, uncaring and ineffective

structures that were generally unappreciated or even harmful to society. Alexander notes

that successful designs have a form of objective truth about them, in general people agree

strongly when a structure works well regardless of its style or cosmetic properties.

Furthermore Alexander and his co-workers noted that it was possible to derive an

abstraction of the key relationships that caused a design to work well, these relationships

often being derived from empirical observation. Alexander’s pattern language consists of

approximately 250 patterns divided into three layers – Towns, Buildings and Construction –

partially ordered by the scale of problem they address.

As an example the patterns in the Building section describe patterns such as the appropriate

number of stories in a building, appropriate orientation for a building and creating useful

rooms for different purposes. The language does not provide a definitive, static instruction

set for construction rather it is general and flexible to allow tailoring for specific needs in

particular domains. Another characteristic of a well-constructed Alexandrian pattern

language is that of ‘generativity’. “Each pattern is a rule which describes what you have to do

to generate the entity which it defines” (Alexander 1979). Alexander’s work has been a major

influence on the ‘pattern’ community and has ultimately led to the development of pattern

languages for a large range of software engineering design processes, including user-

interface design (Borchers 2001), relational database development (Brown and Whitenack

1996), as well as the documentation of object-oriented frameworks.

In the case of frameworks, a pattern language aims to interweave a system of ‘patterns’ into

an explicit route-map through the framework architecture. The properties of generality and

flexibility are also highly relevant, since object-oriented frameworks are likely to be tailored to

applications that are not anticipated by the original framework designer. Finally, the

generative characteristic of pattern languages is attractive in that it implies the production of

a solution.

Johnson was the first person to identify the potential of pattern languages as effective

documentation for frameworks (Johnson 1992). Johnson identified three fundamental

problems that, in his opinion, limited the potential of frameworks for large-scale reuse:

identifying the purpose of the framework, understanding how to use its parts and

understanding its design. He claims that, although pattern languages effectively address how

to use the framework, they can also be extended to address all three of these issues.

Johnson has produced an example pattern language for HotDraw (a Smalltalk framework for

 33

creating semantic drawing editors). This language is considerably smaller than Alexander’s

consisting of ten heavily inter-related patterns (an example of which can be seen in Figure
8). Johnson interprets Alexander’s work as describing common cases of construction.

Similarly Johnson’s patterns describe stereotypical modifications rather than more esoteric

adaptations of the HotDraw framework. Johnson’s language is ordered in the sequence that

decisions are to be made when developing using the framework and the patterns themselves

contain only the essential information required to instantiate that part of the framework.

Pattern 4: Complex Figures

Some figures have a visual presentation with internal structure. For example, they may
have attributes that are displayed by other figures. It should be possible to compose them
from simpler figures.

Complicated figures like PERTEvent can be thought of as being composed of simpler
figures. For example, a PERTEvent is a RectangleFigure with several TextFigures for the
title, the duration, and the ending date. Complex figures like PERTEvent are subclasses of
CompositeFigure.

A CompositeFigure is a figure with other figures as components, and it displays itself by
displaying its components. It has a bounding box that is independent of the bounding box
of its components, and it will display its components only if they are inside of its
bounding box. The selection tool and text tool will operation on its components when the
left shift key is pressed. Custom tools can operate directly on the components, if you want.

In general, a figure should be a subclass of CompositeFigure whenever one of its
attributes will be edited directly by a tool. The most common example is that an attribute
is a string, and must be edited with the text tool. Instead of storing the text attribute in an
instance variable, store it in a TextFigure. Do this by first ensuring that the attribute is
read and written only by a pair of accessing methods. Instead of a string-valued instance
variable, make a TextFigure-valued instance variable, and make the string’s accessing
methods read and write it from the TextFigure. This can be generalized for any kind of
attribute that is represented by another figure. The attribute should be stored in the
component figure, changes to the attribute result in changes to the figure, and changes to
the figure result in changes to the attribute. If changes to one component might effect
others then constraints should be used. (See Constraints (5)). The initialize method of the
complex figure must create the figure representing the attribute and add it to the complex
figure. It may also need to create constraints. PERTEvent is a good example.

Complex figures should be a subclass of CompositeFigure, and figures that display one of
its aspects should be a component of it

To enforce constraints between the components of a complex figure, see Constraints (5).

Figure 8: An illustration of Johnson's patterns (Johnson 1992)

Of special importance in Johnson’s framework is the introductory pattern. This represents a

clear starting point in the pattern language providing a high-level overview of the framework,

 34

its vocabulary and its capabilities. This first pattern acts as a starting point for searches via

links to the key sub-problems that must be solved when using the framework.

There are a number of other key comparisons between Johnson’s and Alexander’s pattern

languages: Johnson's patterns describe specific details about a framework whilst

Alexander's patterns focus on generic qualities true of a range of buildings. Johnson also

has more emphasis on guidance, activities that the framework re-user must do, whereas

Alexander is concerned with describing the key relationships between entities in his domain

that resolve a problem. Alexander’s patterns are derived from observation and empirical

evidence – they are solutions to problems that have been shown to work. Johnson’s patterns

lack this empirical evidence but are based on significant experience and deep

understanding. Alexander’s descriptions of the problems that the pattern seeks to address

are described in greater depth than in Johnson's patterns. Johnson’s language is

understandably smaller, has fewer links and also has dead ends (patterns with no links). His

patterns appear to be coarser than Alexander's, where Alexander has a general pattern that

is subdivided into lots of specific sub patterns; Johnson tends to provide a single more

general pattern that handles the variation internally. Johnson has an explicit starting point

and path through the language, whereas in Alexander’s patterns the user jumps around as

needed. Both use examples to illustrate points but perhaps for different reasons, Johnson to

illustrate potential solutions, Alexander to illustrate potential problems.

Lajoie and Keller extend Johnson’s work based on the observation that developers require

more detailed knowledge of the framework design (Lajoie and Keller 1994). They have

proposed a multi-document refinement that integrates a micro architecture documentation

(described earlier) with a pattern language. Furthermore they propose linkage from the

framework source code back to the pattern language to support understanding both in a top-

down and bottom up manner. Figure 9 contains an illustration of their approach. Lajoie and

Keller have not yet provided a complete example of their proposed pattern language and

there is a lack of guidance on how such a language should be constructed.

 35

Motif:DRAW New Graphical Shape

Situation

There are a variety of graphical shapes that can be incorporated in a graphic editor. Here we describe those
shapes and how one goes about integrating them in an application.

Situation Discussion

Each graphical shape is a subclass of Shape. There are already subclasses of shape for the simple objects
(LineShape, BoxShape, OvalShape, PolyShape, ImageShape, DynShape, PictureShape, TextShape), and
these may in turn be subclassed to create more complicated shapes (RegionShape, BezierShape, ArcShape,
RcBoxShape, Connection, DynShape2). The minimum required to define a subclass of Shape includes the
definition of the methods Draw, Outline and GetImage.

Each application developed from DRAW will have a class draw whose constructor is responsible for setting up a
palette of shapes. When adding a new shape, you are required to update the palette correspondingly. To do so,
an image item (bitmap), to be displayed as the selection button, must be created and included in the new class’s
implementation, for example,

Static short BoxImage()={

#include ‘‘images/BoxShape.im’’

};

The new shape class must then be added to the list of shapes in the palette, i.e. added to a collection called
prototypes. This is performed in the constructor of the class draw.

prototypes->Add(new BoxShape);

Most shapes will additionally define stretching functionality, input/output capabilities, selection handles, etc.

References

• Graphical shapes may depend on each other – see design pattern Observer.

• Stretching capabilities – see motif: Graphical Shapes Stretching Capabilities.

• Graphical shapes may be connected – see design pattern: Connection and/or contract: Connection.

• Complicated graphical shapes – see motif: Subclassing Simple Shapes

END – Motif:DRAW Graphical Shape

Figure 9: A Lajoie style pattern (Lajoie 1993)

Meusel, Czarnecki and Köpf also extend Johnson’s work by proposing a more algorithmic

format for the patterns in a pattern language (Meusel, Czarnecki and Köpf 1997). They

propose a three-layered language that aims to address Johnson’s three framework reuse

categories (purpose, how to use and detailed design). The first layer defines the purpose of

the framework and provides special patterns called catalogue patterns. These are intended

to describe a framework's capabilities in order that a developer can determine the

applicability of the framework. The second layer describes how to use the parts of the

framework and consists of application patterns. These are similar to Johnson’s but have a

strict format, as opposed to Johnson’s free-form narrative, with sections for problem

 36

description, context and solution. Again the solution is more prescriptive than Johnson’s and

is expressed as a numbered list of actions and as a flowchart. The individual steps inform

the developer of the actions that they must perform (e.g. subclass this class, override this

method). In some cases a step will reference other patterns that provide a required service

or reference an example that completes the generic steps in the pattern with specific

information. The third layer addresses design documentation. This is less specific and may

include descriptions of design patterns or architectural overviews. Supplementary to this is a

glossary that describes framework vocabulary and a set of tutorials based on examples that

show the range of framework capabilities. The more prescriptive nature of the patterns

makes them easier for re-users to implement but it also reduces the scope of problem that

each pattern can address. This makes the language behave more like a cookbook, requiring

more patterns to be produced to provide enough coverage of possible modifications.

Finally, Froeh

closely resem

to use the fr

describe the s

(Figure 10).

what actions

of a hook are

which framew

reader must

the framewor

proposed by

each of Joh

Name: Select Existing Tools
Requirement:

The application needs a particular tool or set of tools which is already
provided as a part of HotDraw.

Type: Enable a Feature, Multi-Option
Area: Tools
Uses: Incorporate Tools
Participants:

ExistingTools set of (toolclass, toolName,description),
ChosenTools sequence of (toolClass, toolName)

Changes:
repeat as needed

choose t from ExistingTools
ChosenTools add (t.toolClass, t.toolName)

Incorporate Tools[ChosenTools]
Constraints:

SelectionTool is required for movement of figures using the mouse
Set(BringToFrontTool, SendToBackTool)

Figure 10: Illustration of a hook

lich, Hoover, Liu and Sorenson describe a documentation called hooks that

bles a pattern language structure (Froehlich et al. 1997). Hooks focus on how

amework and omit any details about the framework design. Individual hooks

equence of steps that must be performed to customise a part of the framework

Hooks are comprised of a set number of fields which describe its purpose or

are required to implement the hook in an application. The most important parts

 the participants, changes and constraints fields. The participants field identifies

ork classes are involved in the hook. Changes describe a list of actions that the

perform to implement the hook, and constraints outline important invariants of

k that must be maintained by all modifications. Hooks differ from the patterns

other researchers in terms of scale. Typically there are eight to ten hooks for

nson’s patterns, each describing separate features that a developer may

37

customise. This level of description ties hooks closely to the code they describe. Hooks

appear related to the idea of framework hotspots (Pree 1994) as they describe predefined

areas that are intended to change whilst the rest of the framework remains fixed.

Some researchers have also been inspired to encapsulate a pattern language within a tool.

Both the FRED (Hakala et al. 1998) and SmartDoc (Ortigosa, Campo and Salomon 1998)

tools present guidance on what modifications are possible based on the current state of the

application and partially automate some modifications. Although such tools are appealing,

there are concerns that they distance the re-user from the process of selecting a modification

and result in a poor understanding of the framework code. This is arguably not important if

the tools are adequate for all framework modifications but this seems a rather demanding

requirement. It may be the case that such tools, rather than teaching new developers how to

use a framework, might be more effective in supporting experienced re-users by automating

the generation of tedious sections of framework code.

Prescriptive approaches to framework documentation can deliver important information to re-

users of a framework. They provide support by telling the user what to do in a particular

circumstance. There is little discussion in the literature to suggest how the range of

circumstances which require support can be identified. From this review it can be seen that

there appears to be general agreement on the advantages of pattern language-based

documentation, but there is also great variety in their application. Further there is a disturbing

lack of evaluation of the actual strengths and weaknesses of different pattern formats, and

no guidance on how to create the pattern languages described. It also appears to be

generally accepted by the framework community, for example Lajoie (Lajoie 1993) and

Fontoura et al. (Fontoura, Pree and Rumpe 2000), that prescriptive documentation must be

augmented with additional support to provide insight into the structural and behavioural

aspects of the framework, which are often overlooked by such documentation.

2.8. Conclusions

This review has identified and compared many different approaches to framework

documentation. It has categorised the documentation into six major themes: source code,

micro architectures, macro architectures, examples, hotspots and prescriptive techniques,

which describe the major contribution of each document type. A surprising variety and

number of documentation approaches exist but in each case they appear to have been

suggested with little evidence to justify their selection. This is frustrating because it prevents

researchers from drawing conclusions about how complete the coverage of relevant types of

 38

documentation has been and it prevents a systematic narrowing of scope onto a few likely

candidate techniques. Documentation techniques also lack thorough evaluation of their

utility. This review can identify only one significant evaluation of framework documentation

(Shull, Lanubile and Basili 2000). Many more are needed. Research cannot hope to make

reliable suggestions about which techniques to use, nor can it comment on details of format

and content to make future documentation more effective without an understanding of the

capabilities and usefulness of existing documentation. This thesis attempts to address these

limitations, firstly by identifying the problems that occur during framework reuse and

secondly by evaluating documentation techniques against those problems to identify

effective documentation support for frameworks.

 39

3 Identifying framework reuse problems

3.1. Introduction

There is currently little understanding of the problems that developers experience during

framework reuse due to a lack of evaluation. Without this information documentation cannot

be properly designed to address the needs of re-users. Instead current techniques are based

on guesswork and opinion which limits their ability to provide effective support. This lack of

insight into framework reuse problems makes it difficult to advocate a technique or

combination of techniques with which to describe object-oriented frameworks. The lack of

knowledge also frustrates research as there is no indication of which problems are being

over addressed or which are being ignored by existing documentation.

This chapter investigates framework reuse in order to characterise the problems that

framework documentation must address. It does this through observation of several

framework reuse efforts which record the problems that developers face when modifying a

framework. It generalises these problems to identify the types of information that

documentation must support. This study will also collect insight into the assistance provided

by existing forms of documentation by soliciting developer opinion about their utility.

Identifying framework problems in this manner and understanding the capabilities of current

documentation allows existing support for reuse to be compared and improved. It also

suggests how combinations of documentation can be used to address reuse problems and

may assist the development of new forms of documentation that are better informed by

reuse problems.

3.2. Experimental design

This study has collected evidence of reuse problems from three different scenarios: an

individual developer, a class of software architecture students and a group of project

students. Each group performed a framework modification task and a variety of data

collection techniques were used to capture the reuse problems they experienced. The tasks

all used a single framework, JHotDraw, as a basis for the modifications.

 40

3.2.1 JHotDraw Framework

The JHotDraw application framework (Gamma and Eggenschwiler 1998) is implemented in

Java and is a good example of a mature, well designed and well documented object-oriented

framework. It is a remake of an earlier Smalltalk implementation (Beck and Cunningham

2005). A variety of other implementations of HotDraw exist and they are used both

industrially (RoleModel Software 1996) and as a test bed for documentation research

(Johnson 1992), (Richner and Ducasse 1999) and (Meusel, Czarnecki and Köpf 1997).

Figure 11: JavaDraw. A JHotDraw application (Gamma and Eggenschwiler 1998)

JHotDraw has been designed for the creation of semantic drawing editors. It provides

support for a range of applications from simple paint programs (Figure 11) to more complex

applications that have rules about how their elements can be used and altered (for example

a UML diagramming tool or a Petri Net tool). The framework provides support for the

creation of geometric and user defined shapes, editing those shapes, creating behavioural

constraints in the editor and animation. JHotDraw is comprised of approximately 120 classes

and features object-oriented concepts such as abstract classes, interfaces and design

patterns. It has proved to be a rich environment for application development with sufficient

depth and complexity for developers to experience a range of reuse problems during its

modification. JHotDraw was also selected for this study because of its documentation

support. It comes with implementations of many different documentation techniques,

including:

 41

• The framework source code.

• JavaDoc listings.

• A set of design pattlets (brief design pattern descriptions).

• A class diagram, showing the high level design of JHotDraw.

• A set of four example applications.

This documentation was used to support each of the reuse tasks (described below) and was

augmented in the two student studies with additional material created by the author. The

additional material includes:

• A pattern language.

• A set of practical exercises, which teach key parts of the framework.

• The ad-hoc mentoring and support that was offered by the teachers of the software

architecture class.

The pattern language was modified from an existing pattern language (Johnson 1992) that

addressed a Smalltalk implementation of HotDraw. The practical exercises were created

from the application developed during the individual developer study. The application was

divided into separate tasks each introducing one new aspect of the framework at a time.

3.3. The pattern language

A pattern language describes how to solve design problems within a domain. It presents a

decomposition of the design of the framework into a collection of design problems which can

be understood independently from the whole. Each sub-problem is described by a “pattern”

that identifies the requirements that must be considered in solving the sub-problem and

proposes a solution that resolves them. A language is formed by creating relationships

between patterns (perhaps indicating problems which occur together, or identifying

contrasting solutions). A fundamental property of patterns in a pattern language is that they

do not attempt to provide complete solutions; each outlines a generic process or solution that

can be tailored to the unique needs of individual situations. This provides scope for the

designer to adapt the design to meet the needs of a particular environment.

Several different implementations of patterns have been suggested to tackle the problems of

framework reuse (Chapter 2). These languages combine knowledge of the anticipated

modifications to the framework with guidance about how such tasks should be carried out

 42

but vary in the format and scale of information provided. The lack of agreement about which

structures to include in a pattern language is frustrating and the lack of evaluation of existing

approaches prevents a direct comparison between techniques. There is also a lack of

guidance for the creation of pattern languages, which makes it hard to reproduce the

structures described in the literature for other frameworks.

Johnson describes a pattern language for the older Smalltalk version of HotDraw (Johnson

1992). This pattern language was the first to be applied to software frameworks and closely

mimics the work of Alexander (Alexander 1977). Initial unfamiliarity with the structure of

JHotDraw prompted the decision to create a literal translation of Johnson’s existing patterns

for JHotDraw. This was only partially achievable; some patterns were removed as they did

not seem relevant and all patterns required considerable effort to translate. Also, there was

no way of identifying any important new concepts in JHotDraw due to a lack of experience

with the framework. The language generated was relatively small with eight patterns

compared to Johnson’s original ten (Figure 13). The complete language is available in

Appendix B.

Figure 12: Overview of pattern language

 43

3

T

re

w

d

re

c

fo

th

a

m

Defining Drawing Elements

There are an infinite variety of primitive figures that can be included in a drawing. Thus, there needs to be a
way to make new figures for each application. Each kind of drawing element is a subclass of Figure. In
HotDraw there are four strategies to figure creation. The relative strengths and weaknesses of each are
explained below.

1. Use existing classes: HotDraw is supplied with default implementations for many common
figures, such as EllipseFigure, RectangleFigure, and LineFigure. These may be reused ‘as is’ in
new applications, this saves developers the time and effort required to create such elements
themselves but reduces the knowledge the developer has about how that figure is implemented
(important in efficiency and robustness arguments).

2. Subclass existing classes: Often the default implementations of Figure are ‘almost but not
quite’ what is required by an application. In such circumstances it makes sense to customise the
existing figure to fit the applications needs. This saves time compared with starting from scratch
and provides insight into the organisation of that figure but sub classing will increase the number
of classes in the system and carries the responsibility of ensuring that the original intent of that
inheritance hierarchy is maintained.

3. Composition: An alternative to sub classing, composition can be used in situations where the
new functionality required can be created by arranging several pre existing figures together. e.g.
A text label could be defined as a rectangle with a text object inside. To facilitate this kind of
creation HotDraw provides a subclass of Figure called CompositeFigure that essentially acts as a
collection of figures. Composition frees the developer from class details, can reuse existing tools
and allows dynamic configuration (new arrangements of figures can be constructed while the
program runs). Against it, composition doesn’t provide as much freedom as sub classing (it can
only compose what is available) and it can be difficult to debug due to its dynamic nature.

4. Custom figure: The ultimate amount of creative freedom comes from sub classing Figure or
AbstractFigure. The choice of which class to choose depends on which is closest to the needs of
the application. If the required Figure is very unusual then it may be required to subclass from
Figure, but this should be avoided were possible due to the large number of abstract methods
that require a definition. Instead it’s much more usual to subclass AbstractFigure which only
requires four methods to be defined, basicMoveBy, basicDisplayBox, displayBox, and handles.
This approach provides almost total control over how a figure is implemented however it comes
at the cost of requiring an understanding of how the interface of Figure is used by the HotDraw
framework.

Each drawing element in a HotDraw application is a subclass of Figure. Figures can be used directly or
customised by sub classing or composition. In extreme cases a custom figure may be created by sub
classing from the Figure class directly.

• To let the user change the attributes of a figure, see Changing drawing element attributes.
• To enforce constraints between different figures, see Constraints.
Figure 13: A pattern from the JHotDraw pattern language

.3.1 The three studies

he individual developer (the author) created an Orrery application with the framework and

corded his experiences in a logbook. An Orrery is a mechanical model of the solar system,

hich illustrates a group of planets and their orbits. This was realised in JHotDraw as a two

imensional representation, with planets modelled as circles and gravity relationships

presented as lines connecting orbiting planets together. The application allowed users to

reate and position planets and then connect them together using gravity relationships to

rm a model solar system. This model could then be animated showing the planets moving

rough their respective orbits. Each planet also had a mass, which, when the planet was

nimated, altered the speed of its orbit. The application was not intended to be an accurate

odel, for example the gravity relationships were not governed by the mass of the planet nor

44

did adjacent planets affect the orbits of their neighbours. Rather it was designed to be fun to

use and to demonstrate many of the features supported by the framework. The study was

the developer’s first exposure to the framework and took approximately 80 hours to

complete.

Figure 14: The Orrery application

The class-based study used students from the Honours level Software Architecture class at

the University of Strathclyde in Glasgow. The class teaches design patterns, software

architecture and object-oriented frameworks. All seventy-seven members of the class

participated in the study. The students recreated the Orrery application from the individual

study through a series of practical exercises. The original application was divided into five

tasks: to create a default editing application, to create a representation for a planet, to create

a tool to add planets in the editor, to create a representation for gravity constraints and a tool

to add them between planets and finally to animate orbiting planets (Appendix A). After this

the students were challenged to produce a suitable modification to the Orrery as part of their

class assessment. Students were responsible for the design and implementation of their own

modification deciding what functionality to implement and what constituted an acceptable

implementation. This proved to be an effective approach with the students providing a wide

range of imaginative and effective alterations. The ideas they suggested included dynamic

lighting caused by a sun, creating black holes and adding rockets that flew between planets.

Students reported their problems in a class newsgroup and also in an assessed coursework

report. The students were given a 2 week period to create their modification to the Orrery

(including the practical exercises this gave them a 7 week exposure to the framework) and

 45

data was collected both during development (via a newsgroup) and at the end of the

assessment (from the students coursework reports).

The project students consisted of four final year Honours students who chose to perform a

framework modification as part of their final year project. The four students each chose a

project from a list of suggestions (Appendix A). The suggestions described the basic idea of

each of the applications but the students had the freedom to decide what functionality was

appropriate to their application and how that functionality should be implemented. The

students’ experiences were collected in voluntary interviews that occurred at the end of their

projects (all four students agreed to take part). Each project had a duration of approximately

6 months.

The first project student created a golf hole designer. This application provided functionality

to create a number of different types of surface (fairway, green, rough, etc) and position

them to create a golf hole. The user could then add detail to the hole by placing streams,

paths, buildings and trees onto the design. The application placed constraints on what could

be considered a valid golf hole. For example, each hole had to have only one green and one

tee area, flags could not be positioned outside of the green and buildings were not allowed

on the fairway. The editor also calculated the par for each hole that was created, measuring

the distance from the tee to the flag.

The second student created a UML class diagram editor. The editor contained tools for

creating classes and interfaces, adding methods to classes and creating relationships, such

as inheritance or composition between classes. The application could generate a code

skeleton from a diagram and it also contained a collection of design pattern templates that

could be added to the diagram with a single click.

The remaining two students created track editor applications. One created a model railway

editor the other a Scalextric™ racetrack editor. Both applications allowed the user to create a

track from a set of smaller segments. These were added individually to the diagram and

could then be connected together to form a track. The applications also allowed users to

create vehicles, which could be animated to make them travel around the track and prevent

users from joining incompatible pieces of track together. The railway application featured a

constraint that prevented trains colliding, while cars in the Scalextric™ application would fall

off the track if they took a corner at high speed. Figure 15 illustrates some of the

applications produced by the project students.

 46

Figure 15: Some of the applications created by project students

The choice of participants and scenarios across all three studies was largely opportunistic;

they were the people that were available and able to participate in the study. They all had

similar levels of software engineering experience, that of a final year or recent graduate, and

were representative of the kind of people who might be asked to modify frameworks in

industry. In each case the participants were given a lot of control over the design and

implementation of their applications. They decided what functionality to include, how it

should operate and when it could be considered complete. This helped motivate the

participants and further promoted the diversity of content and hence problems that were

experienced during development.

3.4. Data collection

Using a variety of data capture techniques helped ensure that an accurate view of reuse

problems was presented from the studies. This section describes the approaches used and

describes the amount and nature of data collected by each technique.

3.4.1 Individual developer study

Observations about the task were recorded in a notebook during development. The

developer would pause every few minutes while working and write down what he had been

thinking and doing. This record of his thoughts and actions showed how problems had

occurred, what solutions had been proposed, which solutions had been attempted and

whether or not they had been successful. It also recorded the developer’s knowledge and

 47

understanding of the framework and how this had developed during the task. At the end of

the task the developer’s observations totalled twenty-eight A4 pages of text. (The logbook is

available in Appendix A)

The logbook was not a perfect method of data capture. Occasionally the developer would

forget to record important details about his actions. In particular the developer tended to

focus on what he was doing rather than why, making it hard to determine his intentions in

some areas of the logbook. Also the developer often forgot to attribute information to a

particular form of documentation making it difficult to identify the support offered by

documentation in this task.

How do you find centre of drawing? <Looking in drawing JavaDoc – Wrong!>

Pt AbstractFigure.center() [drawing inherits from this]

[Opens StandardDrawing SC]

[Opens EllipseFigure SC]

How do you add shape @ position on the drawing? 3:44

No obvious add functionality, may need to set figure locator

<Locator suggests that it works in conjunction with handles>

Just have to use brute force method (place it directly)

Figure.basicDisplayBox(Pt, Pt) <-(still hasn’t worked!) 3:57

Turns out that AbstractFigure.center returns (0,0) for the Drawing. 4:11

And displaybox() also returns (0,0,0,0) – why? And how can I find the centre?

< -> DisplayBox is the union of all figures>

Figure 16: Extract from developer logbook

The excerpt from the developer’s logbook (Figure 16) describes his attempts to find a way to

position a figure in the centre of the application. The developer found a method called centre

in the application’s Drawing class that appeared to provide the midpoint of the Drawing.

When called the centre method positioned the figure at the top left hand corner of the

Drawing rather than in the middle. By debugging the code, the developer found that the

centre method returned a value of (0, 0), which would correspond with the top left hand

corner. On closer inspection the problem was found to lie in the definition of the Drawing’s

size. The developer had assumed that a drawing had a fixed width and height (and therefore

a midpoint). The source code revealed that the drawing did not have a fixed size at all.

Instead it calculated its size as the smallest bounding box that would surround its current

contents (for an empty drawing this resulted in a zero sized boundary and hence a zero

 48

value for the centre). Realising that the centre method was not going to provide a solution

the developer had to abandon that approach.

3.4.2 Software architecture students

The newsgroup was set up as a forum for the class lecturers to communicate details about

the class and to monitor the problems student developers were having with the framework. It

also served as a self-help service, where students could appeal to their classmates for help

on particular topics. This kind of community atmosphere was encouraged in order to prevent

students feeling overwhelmed with the complexity of the framework. Although not originally

intended as a source for data in the study it rapidly became clear that the newsgroup would

be a valuable source as many postings described succinctly the problems that were

occurring. Often postings would also include information about solutions already attempted

or the amount of time spent on a problem, which helped to provide a context to understand

the problem discussed. One negative aspect of a newsgroup is that it may hide the scale of

particular problems (i.e. if one person posts a problem and it gets answered then anyone

else with the same problem, or who would have had that problem in the future, will now have

a solution). Another concern is that encouraging a sense of community amongst students

may increase the chances of them talking about problems together outside of the

newsgroup. This probably did occur but was limited by the heterogeneous nature of the

students’ modifications.

Subject: Border on drag

Date: Mon, xx Nov 2000 xx:xx:xx +0000

From: xxxx xxxx

Organization: Department of Computer Science, University of Strathclyde

Newsgroups: strath.cs.ugrad.sw-architecture

How would you draw the border on selection and remove it on deselection.

I can sub class selection tool, and draw the border round an ellipse,

but how to combine the two?

Figure 17: Posting from software architecture newsgroup

In Figure 17, a posting from the Software Architecture newsgroup, a student describes a

problem about how to make an alteration to the framework. In this case the developer wants

to modify the selection behaviour of the application to make it draw a rectangle around

figures that have been selected. Parts of the solution are apparent, the developer is thinking

of changing the selection tool, and already knows how to make the border appear around a

 49

figure but the developer doesn’t know how to combine this knowledge together to create the

desired modification (The postings from the newsgroup are available in Appendix A).

The coursework reports were also used as a form of data collection in this study. The class

required students to describe the modification they had attempted, the problems they faced

and what use they had made of the available documentation. The reports were a rich source

of information as the students described many problems and experiences that they had

encountered during the task. Finding the descriptions within each report was difficult

because students scattered them throughout the text, even though each report had a

designated section to describe reuse problems. This meant that the remainder of the report

also had to be searched to check for any other problems that may have been included. (The

coursework reports are not included in the Appendices for ethical reasons)

“Some of HotDraw's menus supplied by DrawApplication aren't really
appropriate for the simulation, but it wasn't clear how to disable them.
Overriding the methods to add entries is mentioned in the documentation but
not how to remove entries. Overriding them with empty methods causes
exceptions to be thrown in the frameworks classes and a crash, so the
menus were left in place”.

Figure 18: Extract from a student's coursework report

Figure 18 is an account from the coursework reports in which a student describes a problem

caused by turning off part of the existing framework. In this example the student wished to

remove some of the menus that come pre-supplied in JHotDraw and which were no longer

relevant to the application. The location of the menus in JHotDraw was found and the

modification made to remove them. Later, when the developer executed the application to

check the modification, it unexpectedly crashed, the error apparently being caused by the

removal of the menu code.

3.4.3 Project students

The four project students were invited to take part in an interview at the end of their

application development. The interview questions were informed by experience gathered

from the previous individual and software architecture studies and covered topics such as

how the students had used the framework, what problems they had encountered and how

they felt documentation had supported them during reuse (the question template is available

in Appendix A). An interview is a flexible technique which allows the interviewer to follow up

interesting responses with additional questions. This is a surprisingly difficult skill to master

and the interviewer occasionally found himself asking leading questions whenever the

 50

interview strayed from the anticipated path. The interviews were tape-recorded and were

later transcribed into a written account (Appendix A). This was a time consuming and

frustrating process because the sound quality of the tapes was not always clear. Fortunately

the relatively short amount of data to transcribe prevented the task from becoming

overwhelming.

DK: Can you think of anything specific in your project? [Student asks for clarification]
Having two options and having to choose one basically?

Student: The thing that comes to mind was the flag, creating the flag… that you had the
choice of just like a rectangle figure then just redrawing what it looks like in the display
box or going about it with a composite figure that consists of like a triangle figure and
then just a line. I think the second way is how I would… you know… composite figure but
that sort of opens itself as well just because it doesn’t specify the layout so it was difficult
just sort of laying out the figures so that it would draw it properly on the screen when you
clicked the mouse. There were a few occasions that I thought I had done it and you
would try it and place it somewhere then maybe drag it someplace else and it would just
go up to top corner. I think I actually ended up looking at… was it Pert, the Pert
application had an example of that and composite figure specified the layout for the
figures inside that. I think I maybe used a good bit of that.

Figure 19: Extract from a project student interview

In Figure 19 a project student describes the problem of having to choose between two

different ways to create a modification. The student wants to add a flag to the golf hole

design application but can see two possible approaches to model the flag. In one approach

the student could create a new figure, perhaps by sub classing an existing figure in the

framework, and alter its appearance so that it looks like a flag. An alternative would be to use

the existing composite figure class that would allow a combination of a line figure and a

triangle figure to be positioned to create the flag. The problem for the student is to decide

which approach to use. One gets the feeling that he would rather use the composite figure

(he talks about it more) but has had problems getting the composite to work properly in the

past and is tempted by the easier, although less elegant solution of creating a new figure.

Together the three studies collected a large amount of data about framework reuse. 28

pages of text were recorded in the individual developer’s logbook. Approximately 770 pages

of text were collected from the software architecture coursework reports and the class

newsgroup contained 216 postings, which covered approximately 83 pages of A4 paper. The

project student interviews totalled a further 33 pages of text. This data had to be searched

for problems. In total 209 problems were collected from the data. 59 of these problems were

derived from the individual study, 35 from the project students and 115 problems from the

architecture class.

 51

3.5. Threats to validity

This section considers the factors which may impinge upon the results of this study. Internal

threats are those which compromise the findings for this study, external threats compromise

the ability of findings from this study to generalise to the wider framework population. In each

case the threat to validity is described and the steps taken to limit this effect are explained.

3.5.1 Internal threats

• Data capture relies on the developer to recognise problems: Identifying and

describing problems relies on the developer detecting that a problem has occurred and

capturing it in suitable detail so that it can be understood and analysed. This places a

great deal of responsibility on the developer to identify and describe problems correctly.

There is a risk that the developer may overlook problems or describe them poorly. These

factors must be weighed against the difficulty of detecting problems through other

mechanisms which would be more invasive and might disrupt the developer during the

task.

• Time between problems occurring and being recorded: There is a risk that the time

between experiencing a problem and reporting it will lead to inaccuracies in the

description of the problem. In the worst case this might lead to problems being forgotten

altogether. For this reason a variety of approaches were used to capture data. These

varied in terms of their intrusiveness and also in terms of the time delay in capturing

problems. Some techniques like the coursework reports and the interviews were

relatively passive approaches to data collection but they occurred after the development

had been completed and memories had degraded. In contrast techniques like the

newsgroup and the logbook required more involvement from the developer but resulted

in problems being captured much closer to their occurrence in the task. This is not to say

that the former techniques were less effective, indeed the contrast in recording problems

as they happen and from the perspective of the complete system, undoubtedly helped to

capture different insights about the framework problems and also about the use of

documentation.

• Problem identification relies on the experience of the analyst: Recognising a

problem from a developer account and extracting information germane to its

comprehension and eventual classification is dependant upon the judgement of the

analyst. There is a risk that the inexperience of the analyst in both qualitative analysis

 52

and framework reuse could lead to problems being overlooked or incorrectly attributed

during the analysis.

• Individual problems were hard to identify: Problems were described in natural

language and were often recorded amongst other insights about the framework. It was

quite difficult to identify and separate problems from the collection of data. In part

because of the amount of data that had to be processed (more than 800 pages of A4

text) but also because of the difficulty in identifying where one problem stopped and

another began. A liberal approach to problem identification was taken where anything

remotely suspicious was included as a problem with the knowledge that any false

positives could be removed later on.

3.5.2 External threats

• Results are limited to one framework: The different reuse tasks all occur within the

same framework. This prevents the study from distinguishing which problems are

caused generally by frameworks and which are caused specifically by JHotDraw.

Studying multiple frameworks was impractical because the documentation and set of

tasks would have had to be adapted to investigate a different framework and this would

have been impossible in the given timescale.

• JHotDraw may not be representative of industrial frameworks: There is a risk that

JHotDraw might be unrepresentative of the frameworks commonly found in industry.

However, JHotDraw has been designed by experienced framework designers, having

evolved from an earlier well respected framework (Johnson 1992), and it continues to be

actively developed (Kaiser 2005). It is also well respected by the framework community

as it is used frequently as a testbed to develop new forms of documentation. Its

popularity in this community suggests that it is representative of best practice.

• Participants may not represent industrial developers: The participants were all

drawn from an academic background. This might limit the generalisation of the results

because they might differ in their approach and motivation from industrial framework re-

users. It is difficult to gain access to real world developers and academic participants

should provide a reasonable approximation to the real thing. This is especially so in this

case as only final year students were solicited.

 53

3.6. Analysis

The study collected information about a large number of framework reuse problems. This

information is overwhelming in both its detail and volume, making it difficult to draw useful

lessons from which to improve framework documentation. In order to be useful the data had

to be reduced and concentrated to identify the general types of problems that occurred

during reuse.

3.6.1 Cluster analysis

A data clustering process was used to reduce the problems into their generic types. Cluster

analysis (Miles and Huberman 1994) is a technique in which related data is positioned on a

grid. Items which have a lot in common are positioned close together and those which don’t

are placed far apart. As data is positioned on the grid clusters begin to emerge where similar

items have been placed together. Such clusters can then be analysed by looking at the

properties that the data have in common and using those properties to create a name and

definition for that cluster. The process is iterative and often large clusters will form and then

be split apart as finer subdivisions are spotted. Also, sometimes initially unrelated clusters

can merge together as they are found to share a common property. Eventually after a period

of time the clusters should begin to settle down to form a stable representation of the data.

The clustering was performed manually and can be differentiated from automatic statistical

approaches to clustering as it addressed patterns within the semantics of the data rather

than merely identifying syntactic similarities.

The 209 problem descriptions collected from the reuse scenarios were used as data for the

cluster analysis. The problems were collated into a numbered list before being cut out and

placed into a cardboard box. The problems were then drawn randomly from the box (to

prevent any ordering effect) and assigned to a position on a whiteboard. The clustering was

performed as a group activity with the author and his two PhD supervisors taking part. Each

problem that was pulled from the box would be read aloud and then its specific qualities

debated until it could be assigned to a position on the board. In some cases the debate

revealed that a problem was actually a composition of a number of smaller problems: when

this occurred the problem would be spilt apart and assigned separately. There were also

cases where supposed problems were found not to be an actual problem or where problems

were stated so vaguely as to be unassignable. In these cases a separate cluster was

created to hold the ‘spoilt’ problems.

 54

Following this process clusters began to appear and as they were identified names were

assigned and written beside them on the whiteboard. After processing about half of the

problems fourteen categories had been identified (Partial understanding, Unexpected

behaviour, Impact/Choice, Where to put?, How to?, Integrity, Where to go?, Why not here?,

Search for, Delocalisation, Why here, Mismatch, Composite figure and the Spoilt column).

Some of the clusters seemed quite stable and well supported but others were less well

defined and had only a handful of entries. Figure 20 shows a photograph of the white board

in this state. At this point the clustering was paused and a review of the clusters was

performed. The evidence for each cluster was reconsidered and some clusters were merged

and reorganised to create a more substantial clustering. Initially the clusters were reduced

down to a set of five (Functionality, Searching, Interactions, Mapping and Architecture), after

a while this was further reduced down to four as the Searching cluster was recognised as a

combination of problems from both the Interactions and Functionality clusters and was

redistributed accordingly. The remaining four clusters appeared to be stable and well

supported by the evidence but to test the validity of the reorganisation the remaining

problems were analysed to check that they did not contradict the existing clusters. The

remaining problems were found to be compatible, resulting in a final classification of four

general types of reuse problem: Mapping, Interactions, Functionality and Architecture.

Figure 20: Initial clustering of reuse problems*

At the end of the cluster analysis from a total of 209 problems, the mapping category

accounted for 38 problems, interaction 48 problems, functionality 60 problems and

architecture 17 problems. A further 46 problem descriptions were not included in the cluster

analysis because they either did not describe a problem with framework reuse or lacked

sufficient detail to classify accurately.

* A more detailed version of this image with annotated problem numbers is available in
Appendix A.

 55

3.7. Problem categories

The four types of problem category identified by the cluster analysis represent a number of

more specific problems. The properties shared by those problems in turn act as a definition

for each category. The following paragraphs provide informal descriptions based on those

properties for each of the four categories.

3.7.1 Mapping

Mapping (38 problems) identifies the problem of translating an abstract, conceptual solution

into a concrete implementation which reuses the existing structures within the framework.

Such problems are often expressed as “What should I use to represent…?” or “How do I

express…?”. Mapping problems occur when a developer has problems expressing a solution

using the abstractions available within the framework. In such cases there is often a

mismatch in granularity, or perspective, between the functionality that is offered by a

framework and the functionality that a developer expects to be there. When this mismatch

occurs the developer finds it difficult to change their perspective and create a design that

aligns appropriately with the existing structure of the framework. Mapping problems appear

to occur early in the reuse cycle as logically one must decide what to do before attempting to

do it. This increases their importance because bad decisions taken during mapping can

cause further difficulties during the modification.

Mapping problems typically feature a goal, something that the developer is trying to achieve

with the framework. Often problems occur because the solution a developer wants to take to

achieve a goal does not match the expectations expressed in the framework’s design. An

example of this was demonstrated in the individual developer study when creating a tool.

The developer wanted a tool to make rectangles. “How do I create a rectangle? (Why is

there no Rectangle tool?) – Subclass creation Tool?” (Individual developer report). The

developer initially assumed that a rectangle tool would exist within the framework but

attempts to find such a tool failed and the developer began to consider creating a tool from

scratch. Fortunately before doing so the developer referenced an example application and

found that many different types of figures, including rectangles, were being created by a

Creation Tool. Closer examination of the Creation Tool revealed that it implements the

prototype design pattern which enables it to create any type of figure if given a suitable

prototype to copy from. Having discovered this, the developer then had no problem

implementing a tool to create rectangles. The mapping problem in this example occurred

with the initial assumption to create a specific tool for a figure. This seems reasonable but it

 56

did not take into consideration the existing architecture of the framework and had the

developer not been fortunate enough to stumble across a contradicting example then he

may very well have implemented an unnecessary class to achieve the modification.

Another example of the mapping problem can be seen when the individual developer

attempted to add a figure to the drawing. The developer wanted to add the figure at a

particular location but could not find a suitable way to achieve this. “How do you add shape

at a position on the drawing? No obvious add function, may need to set figure locator”.

(Individual developer report). The Drawing had an add method but it only took a figure; no

parameters were available to set its location. The developer had previously read about

Locators in the framework, classes used to set the position of a figure, and began to

consider a solution using them. However, they seemed overly complex and more suited to

placing figures at relative positions rather than absolute values. Eventually the developer

found the displayBox method in Figure which sets the figures size. Somewhat unintuitively

this method also controls the figure’s position on the drawing as the parameters it takes are

coordinates on the Drawing. This problem was caused because the expectations of the

developer, that a drawing would allow a figure to be positioned, were incorrect.

A final example of a mapping problem comes from the software architecture coursework. A

student wanted to remove Connectors from the end of a ConnectionFigure (Connectors are

small white circles that are drawn where the figure and the connection meet). “Initially, to

hide connectors, they were set to the background colour. However, they were still visible if

they crossed text or figures. It may be possible to use HotDraw to set them as being not

visible but the same effect can be achieved by overriding the draw method with an empty

method” (Coursework reports). Initially the student had the idea of changing the colour of the

connector to match the figure so that it could not be seen. This did not work because in

some cases the connector is drawn outwith the coloured boundary of the shape. Eventually

a solution was achieved by overriding the Connector class and replacing its draw method

with an empty method. The student experienced these problems because they assumed that

changing the colour of the connector would be equivalent to removing it.

Mapping problems occur when a developer is faced with a problem and has difficulty

translating a problem domain concept to a framework solution concept. Failure to make the

correct mapping at best results in wasted time and in some cases can result in a poor

solution being adopted (as almost happened in the example about the rectangle tool).

 57

3.7.2 Interactions

Understanding interactions (48 problems) focuses on problems concerning the

communication between classes in the framework “What happens if … ?”, or “Where should

I put … ?”. Such problems are significant because of hidden or subtle dependencies within

the framework that may cause failures to occur elsewhere as the result of a wrongly

positioned modification. Interactions problems occur whenever the interactions between

classes cause confusion. They often manifest themselves through uncertainty about where

to place modifications within the call graph of the framework (a problem that is exacerbated

by the inversion of control characteristic of object oriented frameworks). Such problems are

significant because framework classes are largely interdependent on one another.

Illustrations of such problems might include: inserting code in the wrong area (for example

making calls to an object before it has been initialised) or removing unwanted code which

other parts of the framework might be dependant upon.

Interaction problems tend to occur because the communication between parts of the

framework is poorly understood by a developer. This can result in modifications

unintentionally altering the framework, or in extreme cases causing the framework to crash.

An example of this occurred when the individual developer attempted to remove some

unnecessary menus from JHotDraw. “Override methods to turn off menus first tried setting

createMenu()/createTools() to null behaviour -> crashed HD! – Seems like I want to override

createXXXX methods. Looking at D/A s/c for example! - Might not be possible seems that

you can only add extra not take away – not very flexible.” (Individual developer report). The

modification involved the removal of standard user interface code that created two menus on

the user interface. When the modification was made the application crashed because other

parts of the framework expected the menu options to exist. It is arguable that in this case the

problem was actually caused by a weakness in the original design of JHotDraw as it seems

unnecessary for the code to have a hardwired dependency upon menus in the user

interface. The developer decided to abandon the removal operation in case there was any

reason why those menus had to exist within the framework. Interestingly, the same problem

was reported by a software architecture student during the study (Figure 18) with similar

results.

Another interaction problem occurred when a developer attempted to add a border around a

figure. “I’m having a bit of difficulty with this practical … for drawing the box, I’m over-riding

SelectionTool, and in particular mouseDown() so that when the figure is clicked the box is

drawn. This bit works, however when trying to drag the figure, if I do something similar the

rectangle flickers like mad.” (Newsgroup). The code to draw the rectangle was placed in a

 58

part of the selection tool which was called every time the mouse was moved. This resulted in

a large number of redraw commands being sent to the framework causing the figure to

flicker whenever the mouse moved. A better understanding of the relationship between

mouse events, the tool and redraw code could have prevented this problem from occurring.

A similar interaction problem was captured in the coursework reports. A student had

attempted a modification to the Orrery application to create a rocket and allow the rocket to

fly along a connection between planets. “There is one more small problem with when I try to

connect two planets using the route connection, I get a null pointer exception, although it still

functions properly in that the connection does not occur. I did work out what the problem was

but I couldn’t think of a way to fix it. The problem occurs because I have set up the route

connection figure and the rocket figure so that a rocket can only be connected to one planet

at a time. When the connection is removed I set the rocket figure Boolean canConnect to

true so that it may be used in another connection. However, the method this occurs in is

called whenever two figures have tried to be connected, but are unsuccessful and so will

result in the Boolean trying to be set but there is no reference to a rocket figure class.”

(Coursework report). When the student created a connection between the planets the

framework generated a null pointer exception. The problem was caused by the student’s

custom connection figure which had overridden one of the connection methods to test if a

rocket could move along the connection. The method that contained this code was also

called as part of the initialisation of a connection, which because it happened before a rocket

was added to the connection, resulted in the null pointer exception. The student’s inability to

see how the method was used by the existing framework prevented them from detecting the

problem until after the solution had been built, by which time it was too late.

Interaction problems are difficult to detect because it is hard to tell how the classes of the

framework interact and whether a modification will have any ramifications beyond that which

was intended. Often these problems are dynamic in nature and so they are not spotted until

late in development when the modified application is executed. This can be quite depressing

when a time consuming or difficult modification is found not to work due to an unexpected

interaction problem.

3.7.3 Functionality

Understanding functionality (60 problems) describes problems understanding what specific

parts of the framework actually do. Manifestations of this problem include “How does …

work?”, “Where does … happen?”, or “Where is … defined/created/called?”. In part this is

 59

the familiar problem of understanding functionality described by source code but it is also

affected by other factors such as a person’s perspective, ability and domain knowledge.

These affect a developer’s ability to perceive and understand the functionality described

within the framework. Functionality problems tend to result in developers overlooking existing

functionality in the framework or attempting to use it inappropriately.

Functionality problems typically occur because of mistaken assumptions about the

framework’s behaviour. An example from the individual developer logbook (which has

already been seen in Figure 16) concerned finding the centre of a drawing. “Create circle in

centre of screen – How do you find centre of drawing? Look in drawing > wrong!

AbstractFigure.centre().” (Individual developer report). Initially this seemed straight forward

as the standard drawing class supports a centre method which purports to return the point at

the centre of the drawing. When the developer used this method it returned (0,0) despite the

fact that the drawing was clearly visible in the user interface. Eventually, after studying the

code in detail, the developer realised that the results were correct. This was unintuitive

because the developer could see the drawing in the user interface and so assumed it must

have a fixed size. What was actually visible in the interface was the Drawing’s view which

was given an initial size to make it visible in the user interface. This problem was caused by

the developer’s assumption that a drawing had a fixed size and hence a centre point. Only

by looking at the relevant parts of the implementation could he eventually determine that this

was not the case.

Another problem which was quite common amongst students during the coursework was a

difficulty in locating the methods to control a figure’s colour. For example “I have been

looking everywhere to try to change the default colour of the ellipse from green to red. Do

you know if this is possible and if so what class should I look at to do this?” (Newsgroup). In

part this problem was caused by the relevant information being contained in an abstract

class near the top of the inheritance hierarchy (hiding it from view) but it was also caused by

the naming of the relevant methods. To change the colour of a figure developers had to use

a figure’s setAttribute method and pass it the attribute name (FillColor or FrameColor) and a

colour value. A more obvious approach would have been to have a set colour method on the

figure. Developers often could not find the set attribute functionality and so resorted to

elaborate solutions such as overriding the draw method to change the figure’s colour.

Sometimes the inability to find relevant functionality resulted in solutions being chosen that

were less than optimal. In one student’s coursework report a requirement existed to check

what figures exist at a particular point on the drawing. The student had correctly identified

 60

the find figure method of drawing as a potential solution but this only returns the topmost

figure and sometimes the developer wanted a figure underneath this. The solution that was

implemented was to go through each figure on the drawing and check whether it contained

the point in question. This solution involved a linear search through the contents of the

drawing despite the fact that most figures would be nowhere near the point in question. A

more efficient solution was possible using the existing members of the drawing class (using

a combination of find figure inside and find figure without) but the student did not recognise

this and had to spend time and effort implementing the alternative solution.

Functionality problems are pervasive during framework reuse as there is much to

comprehend. One strategy to deal with this volume of information is to make assumptions

about what functionality is available. This can work well but, inevitably will sometimes be

incorrect.

3.7.4 Architecture

Understanding the framework architecture (17 problems) is the problem of making

modifications without giving appropriate consideration to the high-level architectural qualities

of the framework. Such alterations might have no short-term negative effects but ultimately

lead to the framework losing its flexibility. Architecture problems are the smallest cluster of

problems identified in this study. They occur in situations where developers make, or plan to

make, modifications to the framework without giving appropriate consideration to the

architectural qualities they might be affecting. The discovery of relatively few architectural

problems may be because such modifications do not immediately become problems. Rather

they lie dormant until some future modification arises which cannot be made without

rewriting the current solution extensively. Such long term effects would have been difficult to

detect by the participants in this study given the short timescales involved.

Architectural problems occur when the developer does not respect the original design of the

framework in a proposed modification. This can lead to both immediate problems and more

long term problems as the flexibility of the framework is reduced. One such problem was the

attempt to combine Swing user interface components with the existing JHotDraw user

interface. “Build GUI for tool using Java swing stuff [taken wrong approach here]” (Individual

developer report). This created a problem because JHotDraw is implemented upon the AWT

framework, which although it underpins Swing is not directly compatible with it. The resulting

conflict caused the user interface to be displayed incorrectly and the offending code had to

be removed.

 61

Another architectural problem occurred when the individual developer decided to edit the

selection tool to prevent a figure from changing size. “How do I prevent resize > think

handles. Look in Ellipse Figure > redefine handles. Subclass ellipse? Seems a bit extreme.

What about changing selection tool?” (Individual developer report). The modification was

successful but after it was complete the developer noticed a flaw. The changes to the tool

prevented the figure in question from changing size but it also affected all other figures on

the Drawing. The global affect of the modification had not been properly considered

beforehand and it had to be removed in favour of a more local alteration to the figure.

A common architectural mistake made by the students during the coursework exercise was

to supply figures with a reference to the drawing or the drawing view. “Figures having access

to Drawing/DrawingView – Figures do not by default have any access to either the Drawing

or the DrawingView in which they are contained. This prevents them from accessing

information such as the size of the drawing. However, it is possible to overcome this problem

by passing the view into the constructor of a figure, which can then store and access this as

required.” (Coursework reports). This violated the existing architecture of the framework

which used the observer pattern to link the drawing to the figures. The use of the observer

allowed a drawing to remain independent of its figures maximising the potential for reuse but

making it difficult for a figure to determine which other figures were on the same drawing.

Students often wanted this information and so would directly couple the figure and the

drawing together despite the architectural problems this would cause (in the above example

the framework was unable to initialise because the figure referenced a null drawing view, the

drawing view being created later in the initialisation code!).

Architectural problems represent the smallest of the categories identified in this study. In

some cases they are caused by a lack of foresight, such as the example of the tool which

modified more than the target figure. In other circumstances they represent a lack of

awareness of the high level design of the framework (as in the case of the drawing and the

figure being merged together).

3.7.5 The significance of reuse problems

The above categorisation, with hindsight, might appear quite obvious but it is nonetheless

useful because it describes the scope of problems that effective documentation must

address. It is not obvious that previous research, proposing framework documentation

techniques, has recognised the need to address this range of problem categories. Existing

 62

approaches often only partially address these issues providing limited support for framework

re-users and requiring a combination of techniques to be deployed.

The relative frequency for each of the problem types suggests that functionality and

interaction problems are the most common types experienced during reuse. These are

followed by a smaller number of mapping and architecture problems. This says little about

the relative importance of each problem category. In fact it could be argued that problems

like mapping and architecture, although less frequent, are actually more important than the

other categories. While functionality and interaction tend to focus on problems in classes or

methods, architectural and mapping problems deal with much wider issues to do with the

choice of a solution within the framework. Therefore these problems cause more disruption

to the reuse process when they cannot be addressed by documentation. Mapping and

architecture may share even more in common. It can be argued that documentation that

assists developers to map solutions onto the framework ought to do it in an architecturally

compatible manner. This would prevent architectural issues arising later during development,

effectively addressing the two problems with one form of documentation. Mapping also

stands out as a problem that may occur early during framework reuse as it arises when the

developer is deciding upon how to implement a given requirement within the framework. It is

followed by a range of functionality, interaction and then architectural problems as the

solution is developed further. This makes mapping especially important because if it is

performed well it may help to reduce subsequent problems from the other categories. This

suggests that it is worthwhile investing heavily in documentation that can address mapping

issues as this could have a corresponding benefit for all the other problem categories.

3.7.6 Related work

Despite the lack of empirical investigation into framework reuse problems there is a limited

discussion in the literature about the type of problems that can occur during reuse and some

evaluation of problems found in the wider field of software maintenance. There appears to be

a similarity with the observations made here and those found in the literature which provides

some confirmation of the identified problem categories.

Support for the mapping problem can be found in work from the program comprehension

community. Ruven Brooks (Brooks 1977) describes a model of program comprehension in

which a programmer hypothesises about the structure of the software using a mixture of

domain knowledge and programming experience. The programmer subsequently tries to

confirm the conjecture with a detailed study of the program source. Searching the code

 63

either supports or invalidates the hypothesis. This model of anticipation followed by

investigation mirrors closely the process that was discovered during framework reuse by this

study. In particular it is closely related to the problems of mapping and functionality which

can be seen respectively as analogous to the process of hypothesising about the expected

structure of the framework and the difficulty of comprehending the source code when trying

to confirm a hypothesis.

Further evidence for the mapping problem can be found in the work of Johnson (Johnson

1992). He argues from his experience working with and developing object frameworks that

documentation should explain how to use a framework. Johnson claims that this requires the

communication of the purpose of the framework and its individual parts. This description is

similar to the information developers reverse engineer from a framework as they perform a

mapping task. Each successive mapping teaches more about the purpose of that region of

the framework and helps to explain how it can and should be used.

Butler, Keller and Milli describe a taxonomy of framework documentation primitives that

bears some resemblance to the problems identified here (Butler, Keller and Milli 2000). They

describe six primitives which are derived from their knowledge of framework reuse. The first

of these, signature of the participants (SP) is defined as, an enumeration of the interfaces

within a framework; This is a trivial although significant part of the mapping problem. It

relates to the idea of seeing the framework as a collection of smaller entities and is a first

step towards understanding how each element differs from its neighbours and when they

should be used.

Further support for the mapping problem is provided in a survey of framework programming

environment support by Fairbanks (Fairbanks 2004). He suggests a number of questions

(derived from a logical argument) that developers can ask of their environments when trying

to understand a framework. One of these questions is How do I accomplish this? Fairbanks

observes that this question is harder to answer in a framework because the space of

possible solutions is restricted by the existing structure of the framework. This question

appears to be closely related to the mapping problem. The programmer needs to know what

structures exist within the framework and has to be able to map their notions of a solution

onto those structures. Failure to make the link between the existing structures and the

desired solution causes mapping problems.

 64

Johnson provides limited support for the interaction and functionality problems presented in

this study. He argues that frameworks re-users should delay exposure to the detailed design

of the framework for as long as possible, preferring instead to use the framework in a black

box manner. However, he concedes that eventually developers will need access to

implementation details and that this demand should be met by documentation. Johnson’s

notion of detailed design seems similar to the requirements of interaction and functionality

problems described in this work, although Johnson’s claim that these details should be

delayed as long as possible does not appear to be borne out by this research.

Butler, Keller and Milli’s taxonomy of framework documentation primitives also appear

relevant to the problems of interaction and functionality. They describe five primitives which

appear to be relevant: Behavioural specification of the participants (BSP): a description of

the behaviours of the framework classes; Computational specification of the participants

(CSP): a domain independent and static behavioural specification of the participants;

Structural dependencies between the participants (SDP): a description of the structural

relations between the framework classes (both static and dynamic); Behavioural

dependencies between the participants (BDP): a description of inter-object behaviour, which

is often a consequence of the structural dependencies; and Computational dependencies

between the participants (CDP): a domain-independent BDP. The behavioural and

computational specification of participants appears to be a call to understand the detailed

workings of parts of the framework, while the structural, behavioural and computational

dependencies appear to be closely related to the problem of understanding the interactions

in a framework.

Rosson and Carrol describe a detailed evaluation of software maintainers. They observed

four programmers performing two small scale reuse tasks in a graphical user interface

framework (the tasks were to create a colour mixing application and to add a hierarchical

view to an existing library acquisitions application). Their main observation was that

programmers, when reusing a class, where much more interested in seeing an example of

that part in operation rather than reading its implementation detail. This finding echoes the

result of a similar study performed by Lange and Moher (Lange and Moher 1989). Although

not definitive such studies seem to indicate that developers are reluctant to study source

code in detail. This work provides some support for the functionality and interaction problems

presented in this work as it suggests that developers are not willing or able to digest large

amounts of implementation detail from the source code.

 65

Fairbanks (Fairbanks 2004) also describes a couple of questions which appear relevant to

an understanding of the detailed design of a framework. He suggests that programmers ask

have I done all I need to do? when making a modification and ask what is going on here?

when browsing existing parts of the framework. These questions appear closely related to

the problems of interaction and functionality.

Van Grup and Bosch (van Grup and Bosch 2001) describe the problem of design erosion

which appears to be similar architectural problems identified in this study. Design erosion

relates to the gradual worsening of the quality of a design over time. Van Grup and Bosch’s

observations are derived from several studies of software architectures in industrial

situations and are supported by anecdotal evidence in the architecture literature. The

authors cite several reasons for design erosion but one that is particularly relevant to this

work is the notion of architectural drift. They claim that drift occurs in situations where code is

maintained by developers who do not fully understand the design and make sub optimal

decisions during maintenance. Over time this erodes the architectural assumptions behind

the design and can make the code more difficult to change in the future. This is a similar

situation to the one facing re-users when tasked with making a modification to the

framework. Often they must make their modifications without a full understanding of the

surrounding system and this can lead to architectural entropy.

Krueger, in his survey of software reuse (Krueger 1992), describes a model for reuse that is

consistent with the four problems identified here. In his opinion reuse can be described as a

three-phase activity: selection, specialisation and integration. Selection identifies the relevant

artefacts for reuse; this is similar to the problems of mapping and understanding

functionality. Specialisation involves the customisation of the relevant artefacts to meet the

needs of the new situation; this is represented in our investigation by the problems of

understanding the behaviour of the part and understanding the architectural roles that

surround it. The final phase, integration, describes the process of placing an artefact within

the flow of control of a larger system. This relates to the problem identified as understanding

interaction.

3.8. Questionnaire

To confirm the results of this study a questionnaire was sent to the students of the software

architecture class, independently of the cluster analysis, asking their opinions on the

problems they had experienced and the documentation they had used. The questionnaire

 66

was delivered to students via email and was sent a couple of days after the submission date

for the class coursework assessment. It contained two questions about reuse problems and

documentation use, each with a number of parts. Participation from the students was

voluntary. The construction of the questionnaire had been informed by experience of reuse

problems collected from the individual developer study. The questionnaire explained the

purpose of the questions and how to respond. In total sixteen members of the class

responded to the questionnaire, from a class size of seventy seven (approximately a quarter

of the class), which is a reasonable response rate for this type of collection technique

(Edwards 1972). The complete questionnaire is available in Appendix A.

Question 1 How difficult did you find understanding the following aspects of the
JHotDraw framework?

1.1 Understanding individual classes and their methods.

1.2 Using abstract classes and interfaces.

1.3 Mapping your solution to framework code.

1.4 Understanding the structure of inheritance hierarchies and object compositions.

1.5 Understanding design patterns.

1.6 Understanding the dynamic structure of the framework.

1.7 Choosing from alternative framework solution strategies.

1.8 Understanding the HotDraw problem domain.

Table 1: Rating the difficulty of framework problems

Question 2 How effective have you found the following in solving your problems during
the practicals?

2.1 Browsing JavaDoc files.

2.2 Using JHotDraw Pattern Language.

2.3 Design pattern knowledge.

2.4 Asking lecturer.

2.5 Asking newsgroup.

2.6 Asking other students.

2.7 Studying existing examples.

2.8 Previous practical solutions.

Table 2: Rating the available documentation

 67

The first question (Table 1) described a collection of potential problems that students may

have experienced during framework reuse and asked students to rate them according to

their perceived difficulty. Participants were asked to rate each problem on a five-point scale

ranging from difficult to easy. The second question (Table 2) explored documentation utility,

collecting information on how helpful the participants considered each technique to be.

Responses were also on a five-point scale and varied from not helpful to very helpful.

Table 3 shows the distribution of responses to each part of question 1. It can be seen from

the table that question 1.6, understanding the dynamic structure of the framework, was rated

the hardest of the activities. One possible reason for this is the omission of any

documentation on the dynamic aspects of the framework’s behaviour. Question 1.3, mapping

the solution into the framework was rated as the second hardest, suggesting that students

had difficulty in identifying relevant parts of the existing framework to modify. Question 1.7,

choosing from alternative solution strategies, was considered difficult indicating that, where

students could identify functionality, problems were still present in trying to select the best

approach from those available. Question 1.5, understanding design patterns, was also

considered hard by the majority of students. This may in part be due to the students’ lack of

familiarity with design patterns as they had only recently been taught them and this was their

first experience of seeing instantiations in a real example.

Response\ Question Very easy Easy Moderate Hard Very hard

1.1 Classes and methods. 1 8 5 1 1

1.2 Abstract classes and

interfaces.
 8 6 2

1.3 Mapping solutions 1 1 2 11 1

1.4 Inheritance and

compositions.
 3 3 8 2

1.5 Design patterns. 1 1 5 9 2

1.6 Framework dynamics 1 2 8 5

1.7 Alternative solutions. 1 5 8 2

1.8 Problem domain. 2 4 5 4

Table 3: Problems understanding framework aspects

 68

Question 1.4, understanding the structure of inheritance hierarchies and object

compositions, was rated as a moderately difficult activity. This is perhaps because the way in

which inheritance and composition distribute knowledge across the system is common to the

majority of object-oriented programs, therefore students had prior experience dealing with

this kind of problem. Question 1.8†, understanding the framework domain, shows a very

even distribution between the hard, moderate and easy categories. It is possible that this

spread can be attributed to variations in developer experiences of graphics-related domains.

The majority of students on the course had little experience of understanding abstract

classes and interfaces (question 1.2). Initially the concept seemed to cause some confusion

but after a brief learning curve the students appeared to grasp the idea. It was encouraging

to see abstract classes and interfaces being introduced and understood in such a short

period of time because they are such fundamental features of framework programming.

Finally question 1.1, understanding classes and their methods, was rated the easiest activity

in the table. This was unsurprising, as the students were all relatively experienced Java

programmers.

Response\ Question No Use Barely
Useful

Moderately
Useful

Useful Very Useful

2.1 JavaDoc 3 2 4 7

2.2 Pattern language. 1 7 4 4

2.3 Design patterns 5 10 1

2.4 Asking lecturer 2 7 4 1

2.5 Asking newsgroup. 8 4 2

2.6 Asking students. 1 5 7 3

2.7 Examples. 4 6 6

2.8 Practical solutions. 7 9

Table 4: Usefulness of supporting materials and techniques

† One student omitted Question 1.8.

 69

Table 4 describes how effective the students found each of the techniques intended to help

framework understanding. The two most significant were questions 2.7 (Examples) and 2.8‡

(Practical solutions). The fact that the coursework was a natural extension of the previous

practical solutions is likely to have exaggerated their usefulness. The practical solutions can

also be considered as a form of example, suggesting that the students found examples to be

a very positive aid to understanding. JavaDoc was rated as the third most useful of the

techniques. This demonstrates that, although there may be a need for additional support in

framework learning, the basic forms of documentation are still useful in a framework

environment.

The three questions 2.4, 2.5§, 2.6 can be grouped together and considered as ‘asking a

more experienced individual for help’ or mentoring. The results of these three questions are

all similar with the majority of students rating them as a useful source of information.

Presumably, one of the key advantages in asking another person about a problem is that a

dialogue can then take place, answers can be clarified, additional questions asked etc. The

flexibility of this approach is its main advantage over other forms of learning.

The JHotDraw pattern language was rated as moderately useful by the students. This was

disappointing because it is a technique specifically intended to address framework problems.

The pattern language was only presented to the students halfway through the practical

exercises (due to a delay in conversion). This may have reduced its benefit because by the

time it was available students had already some familiarity with the concepts within the

framework. Perhaps if it had been available earlier the students would have gained more

benefit and rated it higher.

The design pattern knowledge was the final form of documentation rated by the survey. The

students generally considered this to be the least useful of the techniques presented (but still

quite useful). It appears that the students’ lack of experience with design patterns may have

reduced its ability to act effectively as framework documentation.

The results of the questionnaire appear to support the problem categories identified by the

clustering. The questionnaire was independent of the cluster analysis but still addressed the

same population, and had taken place prior to clustering. The problems it discovered appear

‡ Due to a typing error Question 2.8 appeared as Question 2.9 in the original questionnaire.
§ Two students omitted Questions 2.4 & 2.5.

 70

to confirm the existence of the four problem categories. Mapping problems are addressed by

questions 1.3 and 1.8, interaction problems by questions 1.4 and 1.6, functionality problems

by 1.1 and 1.2 and architecture by question 1.7 (where the search for alternative solutions

can be seen as an attempt to find the most architecturally compatible solution). The results

of the questionnaire suggest that developers found interactions and mapping to be

particularly hard tasks during reuse, while architecture problems were of medium difficulty

and functionality problems were considered the easiest of the problems encountered.

The questionnaire also provided a preliminary impression of the documentation used during

this study. It suggested that users found examples and practical exercises the most useful of

the documentation provided, followed by JavaDoc, mentoring and the pattern language.

Least useful was the design pattern information, although the fact that developers rated

design patterns difficult to understand (question 1.5) may suggest that the student’s

unfamiliarity with patterns contributed to its poor performance. None of the available

documentation was considered to be completely useless during reuse implying that

developers were grateful for the support offered by all documentation and that some

information was better than none.

Source code and UML were overlooked in the design of the questionnaire so it is not clear

how those forms of documentation compare with the other techniques. The questionnaire

also only presents a very rough measure of documentation utility as it does not provide any

insight into the reasons why developers rated documentation as they did. In the next section

a more detailed review of the available documentation will be presented.

3.9. Documentation review

Having identified four major problem categories for framework documentation it seems

appropriate to consider what support existing forms of documentation provide for them. An

exhaustive evaluation of all possible framework documentation would not have been

practical in this study, so this review only considers the techniques which are available for

the JHotDraw framework. These include JavaDoc, a pattern language, design patterns,

UML, practical exercises, examples, mentoring and the framework source code. In each

case evidence to support the claims made about documentation is provided from data

collected during the study.

 71

3.9.1 JavaDoc

JavaDoc is an appealing form of documentation because of its relative simplicity and

familiarity. It appears most relevant for addressing questions of functionality about a

framework. In particular its ability to provide textual overviews of each class’ behaviour can

be a considerable advantage as it prevents the developer from having to spend time

understanding the framework source code. “Without these [JavaDoc] files it would have been

near impossible to determine what functions a particular class provided” (Coursework

reports). However, such textual overviews often vary in their quality and sometimes do not

provide sufficient support for developers to avoid having to consult the code. “I tried to use

the documentation provided within the package HotDraw. Although there is quite a large

amount of this, i.e. there is a JavaDoc page for every class in the framework, I found that

each individual page did not contain enough information to be used as the sole tool for

learning the framework…I thought that the documentation should have contained a more in-

depth description of what each method did” (Coursework reports). JavaDoc also appears to

help navigation across a framework’s source code as it features hypertext links which allow

rapid traversal between classes and up and down inheritance hierarchies. While some

developers found this useful, “Firstly there were the JavaDoc files. These provided a form of

‘roadmap’ that was used to determine a path through the framework hierarchy to see the

relationships of particular classes and functions” (Coursework reports). Others did not find

this useful, complaining that the rapid changes made them become disoriented and forget

what they were doing. “Generally, determining what methods were available in any one class

and which capabilities HotDraw provided was awkward, due to the need to check all super

classes through several layers of inheritance, as well as the interfaces implemented by the

super classes” (Coursework reports).

3.9.2 Pattern languages

Pattern languages have been targeted specifically as a form of framework documentation.

This suggests that they might be more supportive of framework reuse problems than other

more generic techniques. Indeed pattern languages appear to offer some level of support for

all of the four problem categories. They support mapping problems by identifying potential

classes suitable for a given circumstance, “I already knew that there was an abstract class

called Action Tool that would handle performing an action on a figure because I had read

about it in [the pattern language]” (Coursework reports). They support interaction and

functionality problems by showing how classes can be used via illustrative examples. “For

the animation there was no other way of understanding how to use this feature as there is no

examples within HotDraw and I think that it would have been very difficult if [the author]

hadn’t written the [pattern language] or it wasn’t covered within the practicals” (Coursework

 72

reports). They also promote architectural consistency by suggesting valid solutions and

offering advice about which solutions might be most appropriate. “[The pattern language]

gave me the idea for using menus to undecorate figures. In the paper [the author] states that

menus are preferable for selection oriented events” (Coursework reports). However, pattern

languages are not complete in their support. Developers criticised the pattern language for

under-supporting some areas of the framework domain. “[The pattern language] was a good

aid, but I thought the solution descriptions were too brief (and wholly incorrect on occasion)”

(Coursework reports). There are also questions about which format of pattern would be most

effective for communicating information to developers.

3.9.3 Design patterns

Design patterns are commonly used within object-oriented frameworks. This suggests that a

designer with a good understanding of common design patterns could be at a distinct

advantage when learning to reuse a framework. In particular patterns might be expected to

help developers gain an understanding of the interactions that occur between elements of

the system and also to help them to appreciate the architectural roles that must be enforced

when making modifications to the framework. They can also assist during mapping, because

each pattern provides a rationale to explain the reasons for adopting the given solution and

they also support functionality because they explain how the parts of the pattern operate.

The evidence from this study suggests that design patterns were not very helpful as a form

of documentation. The comments provided by developers about design patterns focused

more on how they had implemented new design patterns in their solutions rather than

maintaining existing ones. “I used the template method design pattern to factor out the

duplicated code in my ellipse figure classes…” (Coursework reports). They also tended to

make general comments about the benefits of design patterns without commenting on their

specific relevance to frameworks. “The extensive use of design patterns enables

programmers with experience of such patterns to quickly obtain a good understanding of the

framework” (Coursework reports).

Evidence from the questionnaire sheds some light on these responses because it suggests

that developers found design patterns difficult to understand and use (most respondents

rated patterns moderately to barely useful). This claim is strengthened by comments made

during the study where students admitted that rather than patterns helping to explain the

framework it was actually the other way round with the concrete implementation of the

framework helping to explain the purpose of the pattern “We touched on it [the decorator

pattern] in the class before we saw it in HotDraw. So perhaps [I] didn’t understand it that

much in the class but once I saw the HotDraw example it was a bit easier to appreciate it”

 73

(Coursework reports). Perhaps, because students in this study had only recently been

introduced to design patterns, their unfamiliarity limited the potential to use them as

documentation.

3.9.4 UML

The UML overview provided with JHotDraw is little more than a description of its high level

interfaces and the important relationships between them (Figure 21). As such it is not fully

representative of the power and expressiveness available from UML documentation.

Figure 21: UML Overview of JHotDraw

Nevertheless it was provided with the framework and gives an understanding of the key

abstractions in the framework and thier significant relationships. As such the overview might

be expected to contribute towards mapping and interaction type problems. Few developers

passed comment upon its utility. One of the few mentions it does receives indicates that it

was at least partially helpful for identifying the roles that exist within the framework. “From

analysing a UML diagram representing the Drawing class and the figures that are stored in

Drawing, I found that Drawing is an interface class. I found that by overriding a method in the

Standard Drawing View called createDrawing I was able to achieve my goal” (Coursework

reports).

3.9.5 Practical exercises

The set of practical exercises used during the software architecture class were roundly

praised by many of the developers who used them. They cited the benefits of practicals as

the ability to introduce the main concepts within the framework. “The previous practical

exercises gave a solid introduction to the framework, revealing that no matter how baffling a

 74

requirement may be, there will usually be a straightforward way to go about implementing it”

(Coursework reports) and also to provide support for how to use many common parts of the

framework. “I reused the code from practical 5 to remove all functionality from the handles

and changed the colour of the figure in much the same way as I had changed the colour of

previous figures” (Coursework reports). This suggests that practicals could help to support

functionality and interaction problems within the framework. Mapping and architecture

problems may have also been supported, after the fact, by the inclusion of sample solutions

which attempt to show best practice within the framework. It should also be noted that the

practicals may have only performed so well as documentation because they were designed

to teach the specific skills required of students for the final assessed task. This close

relationship between documentation and task is unlikely to be reflected in other situations,

which may reduce its effectiveness.

3.9.6 Examples

Examples were another form of documentation that developers responded positively about.

Once again they helped to introduce framework concepts to the developer, “By reviewing the

demo applications that came with HotDraw package … I was able to see where certain

classes and methods could be used” (Coursework reports), and providing practical guidance

on how to implement solutions using those concepts, “In order to work out how to create and

align the individual figures I paid particular attention to the PertFigure class within the Pert

Application example as it used the composite figure class” (Coursework reports). This

suggests that examples may provide some support for mapping, interaction and functionality

problems. Examples were criticised for encouraging a piecemeal form of development which

could have negative consequences for the architecture of a system. “The lack of ‘how-to’

documentation proved frustrating – the code of the example applications was critical in

gathering an understanding of how to use JHotDraw. Just referring to the code however,

resulted in me searching for a solution to a single aspect of the problem at a time, resulting

in a ‘Frankenstein’ solution” (Coursework reports). Another problem with examples is the

difficulty of providing adequate coverage for a range of different tasks. Whereas a pattern

language might describe a general concept and use an example to illustrate its purpose,

examples are by themselves much more specific about what they can teach about the

framework. This suggests that example based documentation may struggle to provide ample

coverage for the range of modifications possible within a framework.

3.9.7 Mentoring

Mentoring, the process of using more experienced developers to coach or guide novices

through a framework modification, can offer effective support for all types of problem

 75

category. Its greatest strength is possibly its dynamic nature where the mentor can react to

the developer to compensate for areas they find hard or to skim over areas they find easy.

Another chief advantage of this approach is that novices can gain early criticism about their

intended design. This can help to ensure the architectural consistency of the framework and

it also saves the developer a lot of time and effort. In this study mentoring was used as part

of the software architecture practicals: developers were encouraged to talk through their

solutions with members of academic staff who had some familiarly with the JHotDraw

framework. Students also received a form of mentoring through participation in the class

newsgroup. Despite its utility, mentoring is too expensive to be applicable to mainstream

framework reuse as it requires experienced developers to be diverted from software

development and instead train novices (although its potential use in conjunction with pair

programming (Beck 2000) may increase its feasibility). It also suffers from the problem of

how to train a set of mentors in the first place! They have to somehow learn the framework to

begin with, so the problem of how to describe the framework with other forms of

documentation remains.

3.9.8 Source code

The framework source code is the last line in framework documentation. Developers must

use this to gain an understanding of the system when all other forms of documentation have

been exhausted. As such it can play a role in either functionality or interaction problems, but

source code is difficult to understand and developers can have problems sifting through the

volume of material to find items of interest. “The most difficult aspect concerning the

understanding of the framework was attempting to find where instances were created, where

methods were implemented and where methods were actually called. The number of levels

in the inheritance hierarchy make it difficult to see what methods can be called by a

particular class. It was therefore necessary to have many classes open in an editor at once,

often more than 15, and the Java API in another window in order to fully follow the

associations and inheritance present in the framework” (Coursework reports). Its biggest

strength is its accuracy, the code defines the behaviour of the framework and developers

often responded positively to this during the evaluation, “…the most useful source of

information when developing a solution … was the framework source files. These provided

invaluable implementation details and increased my understanding of HotDraw a great deal

more than the JavaDoc files could have done alone” (Coursework reports). Despite this,

source code will continue to be a last resort for framework comprehension. Ultimately it is

designed to express concepts in a machine, not human, readable form and as long as this is

the case there will always be a need for more human friendly sources of information.

 76

All forms of documentation presented during this study were considered to be useful by

developers but the presence of reuse problems despite the documentation confirms that the

existing approaches on their own are not enough. Also, specific forms of documentation

appear to favour subsets of reuse problems (e.g. pattern languages for mapping type

problems, source code for functionality). This suggests that it is unlikely that a single

documentation will be found that can support all reuse problems; instead combinations of

documentation will have to be sought to address different aspects of reuse.

3.9.9 Summary of Documentation techniques

Problem/Documentation Mapping Interactions Functionality Architecture

JavaDoc

Pattern Language

Design patterns

UML

Practical Exercises

Examples

Mentoring

Source code

Table 5: Summary of documentation evaluation

Table 5 presents a summary of the results of this evaluation. In the table ticks represent

situations where documentation has at least some potential to support a problem category,

while a cross means that the technique offers no (or very marginal) support. Pattern

languages stand out as a form of documentation that could better address mapping

problems in the future. Their ability to introduce new concepts from the framework domain

and to show how they can be implemented is directly relevant to the mapping task. Other

approaches which were relevant to mapping such as design patterns, practical exercises

and examples can be discounted as they only provided partial coverage of the framework,

while mentoring, although effective, is infeasible because of its high cost.

 77

The pattern language used in this study, being a translation from a different implementation,

did not always provide enough detail specific to JHotDraw. This was only realised after the

study had begun and the author had developed a better familiarity of the framework. With

this insight a better pattern language could be created providing more patterns to address

the range of capabilities in the framework and to provide greater accuracy in each pattern

with respect to the JHotDraw implementation.

Many techniques appear appropriate for functionality and interaction problems (for example

JavaDoc, design patterns and UML). However the existing approaches appear to suffer from

a trade-off between coverage and detail. Approaches that cover the entire framework, e.g.

JavaDoc, do so at the expense of detail, while approaches that provide detail (e.g. design

patterns) cannot describe the behaviour of the entire framework. To become more effective a

balance has to be found between describing the implementation of the framework in enough

detail and providing thorough coverage for all areas of the system.

Architectural problems could be addressed via a range of different techniques.

Documentation such as design patterns and pattern languages can provide support for

architectural constraints as they provide a rationale for the design helping to enforce the

system’s architecture. Despite this, it can be argued that architectural problems are best

addressed during the mapping phase of reuse. If documentation can address mapping

properly then it may minimise the subsequent architectural issues that can arise. Pattern

languages appear to be an important mechanism to provide such support as they can

address mapping issues while at the same time informing about architectural relationships

that ought to be upheld.

3.10. Conclusions

This chapter has described an investigation into framework reuse problems. Mapping,

functionality, interactions and architecture have all been identified as problems that affect

framework reuse. The performance of common forms of documentation has also been

evaluated to assess which approaches should be the focus of future work. Three separate

studies have been performed, each looking at framework reuse problems in different ways.

The first study, a personal investigation, recorded the observations of the author as he

attempted to create an application with a framework. His experiences were recorded in a

logbook. The second study captured the experiences of students enrolled in a software

architecture course. They were asked to create a framework modification as part of their

 78

assessment for the class. Their experiences were recorded in coursework reports, a class

newsgroup and via a questionnaire. The final study recorded the reuse process of four

students using a framework as part of their final year projects. This development occurred

over a period of six months and provided an in-depth exposure to a framework. Their

experiences were captured via semi-structured interviews.

All three studies represent a wealth of reuse experience each recording a number of

framework reuse problems during their modifications. The problems from each study were

collected and combined together in a cluster analysis process to identify the common

characteristics of reuse problems. The resulting categorisation suggests that four problems

dominate framework reuse: mapping solutions onto the implementation of the framework,

understanding the interactions that occur between framework classes, understanding the

functionality of parts of the framework and understanding the architectural constraints that

exist within the framework. In the future documentation should seek to address these

problems to assist developers during reuse.

This chapter has also summarised the performance of existing forms of framework

documentation. This was done by asking developers to record their opinions on the

documentation that was available to them during reuse. This work suggests that, although all

forms of documentation are appreciated by developers, some are more applicable to reuse

problems than others. In particular pattern languages stand out as a useful mechanism to

address the mapping problem as they can communicate details about the expected use of

key parts of a framework. Functionality and interaction problems, obvious targets for

documentation to address, are not well supported by existing techniques. Design patterns

and source code provide partial support but new techniques need to be considered to

address the large amount of, often subtle, implementation detail present in software

frameworks. Architectural issues appear to be related to mapping problems, as they indicate

a failure to consider architectural qualities during the initial design of a modification. This

study therefore contends that architectural issues ought to be addressed by documentation

during the mapping phase of framework reuse.

 79

4 Documentation for framework reuse

4.1. Introduction

This chapter describes the development of a pattern language and a micro architecture

based documentation to address the problems of framework reuse. Previous chapters have

summarised the state of the art in framework documentation and have provided some

evaluation of existing techniques. During this evaluation it was noted that there are few forms

of documentation that are capable of addressing the problem of mapping solutions into the

language of a framework. Notable exceptions are pattern languages and sets of examples.

The limited evaluation that has been performed on both forms of documentation suggests

that although examples are accessible and convenient they do not have the clarity or the

coverage of a pattern language. Indeed pattern languages are often a good place to exhibit

examples because the surrounding pattern can provide context for the example and draw

out the lessons to be learned. In addition because a pattern language describes how parts

should be used it may also provide support for the problem of maintaining the architectural

consistency of the framework.

The problems of understanding the functionality and interactions that occur within software

are by contrast frequently addressed by existing documentation. Techniques such as UML,

JavaDoc and design patterns are some of the more common approaches employed to

explain implementation details about a framework. Evaluation of these techniques suggests

that although many of them are useful, none of them are entirely effective at explaining how

a system works. In particular many of the existing techniques have difficulty scaling to

address the large size of software frameworks. Existing approaches either provide the

information all at one time, in which case it quickly becomes overwhelming or else they

intentionally omit material, leaving gaps in the coverage provided. In this chapter an

alternative approach will be considered where implementation details will be explained by a

set of micro architecture descriptions. Micro architectures are a way to decompose the

structure of a framework to illustrate how the framework implements domain functionality e.g.

(Lajoie and Keller 1994). They allow a framework to be understood in small meaningful

pieces but are created to allow the pieces to fit together to create a cohesive explanation of

the whole.

 80

4.2. The pattern language

Mapping problems require documentation to present information about how the framework is

expected to be used and to identify possible solutions that will preserve the architectural

quality of the existing framework. Pattern languages seem a likely candidate for this role as

they provide an opportunity to introduce aspects of the framework, explain the problem they

address and show how they can be used.

The pattern language created for the earlier work was derived from an existing language for

a different implementation of HotDraw (Johnson 1992). The use of a pre-existing structure

allowed the pattern language to be created quickly for JHotDraw but it did not allow the

language to fully describe the unique attributes and features of the Java implementation. The

initial evaluation suggested that the first pattern language was generally useful but lacked

detailed guidance and coverage of some important topics. For example, it did not describe

how and when to use composite figures or locators within the framework and provided only a

cursory overview of important topics such as creating a tool or handles. The language was

also very lightly interconnected which made it difficult to navigate through when searching for

particular topics. This indicated a need for improvement in three directions: in the

completeness of coverage, in the technical depth of description and in the number of

relationships between patterns in the language.

JHD
Domain
Overview

Creating
Composite
Figures

Modifying
Existing
Figures

Identifying
Existing
Figures

Figure
Hierarchy

JHD
Pattern
Index

Using
Creation
Tool

Customising
DrawApplication

Customising
the GUI

Creating
Animation

Using
Action
Tool

Creating
Custom
Menus

Customising
Selection
Behaviour

Adding Buttons
to the ToolBar

Creating
Connection
Figures

Using
Connectors

Using
Connection
Tool

Connection
Hierarchy

Tool
Hierarchy

Connector
Hierarchy

Creating
Handles

Using
Locators

Handle
Hierarchy

Locator
Hierarchy

Figure 22: Overview of second pattern language

(The dark grey boxes are UML diagrams)

 81

Improvements were also suggested from the pattern language literature. These included the

addition of source code examples (Lajoie 1993) and UML class hierarchies (Meusel,

Czarnecki and Köpf 1997). The content of individual patterns retained the textual narrative of

Johnson’s patterns rather than the more algorithmic descriptions of Meusel et al. (Meusel,

Czarnecki and Köpf 1997) and Froelich et al. (Froelich et al. 1997) as these are focused

upon isolated modifications and lacked the motivation and architectural awareness that was

present in Johnson descriptions.

The pattern language was improved in four different dimensions:

• Increased number of patterns: The number of patterns in the second language was

increased from 8 to 18 (Figure 22). Some of the patterns were created by dividing and

expanding existing patterns into separate topics (for example ‘Defining Drawing

Elements’ was divided into ‘Identifying Existing Figures’, ‘Modifying Existing Figures’ and

‘Creating Composite Figures’). New patterns were also created to address issues which

were not present in the Smalltalk implementation but were relevant to JHotDraw. For

example, concepts such as creating handles and locators within the framework were

identified through experience and patterns were created to support these topics.

• Detail added to each pattern: The detail of each pattern was also improved (Figure
22). Every pattern was designed to introduce a concept from the framework domain.

Paragraphs at the start of the pattern would describe the role the part played in the

framework and describe how it may be used. Images were often used to help illustrate

these descriptions (for example when talking about handles, images of the different

types of handle available are used to assist the textual description). A more significant

difference was that a large number of patterns featured source code examples. These

reinforced the description in the pattern by showing a concrete example of the part in

use. The fragments of code were often incomplete showing only the minimum amount of

code to illustrate a topic. The intention was that the code should be read and understood

and the relevant information extracted from it, not to cut and paste the example into a

developer’s solution. The patterns were augmented with the addition of six class

hierarchies (Figures, Tools, Locators, Handles, Painters and Connectors). These

described important hierarchies that developers often had to select elements from. The

class hierarchies were created as separate patterns (with no textual description) and

were linked to any pattern where a choice from the hierarchy was relevant.

• The network of patterns was enriched: The original pattern language only contained

eight links between its patterns and only one pattern was reachable from multiple areas

of the language. With such a small language this was not a problem but as the language

grew it became more desirable to create many different paths through the patterns.

 82

Multiple paths allow developers to find new ideas that are related to or contrast with the

current pattern. This type of structure can help them to discover new parts of the

framework by relating similar patterns together. A pattern language of 18 patterns is

perhaps still small enough that the density of relationships is not yet very critical but it

seems reasonable to assume that as a language grows the relationships between the

patterns will become an important navigational aid to the re-user.

• An overview pattern was created: Johnson’s pattern language placed a great deal of

importance on the initial pattern. This was intended to guide developers to other patterns

of relevance in the language. The first implementation of the JHotDraw pattern language

had a simple version of this that led the user to one of three possible start points in the

language. With the increase in size of the new language it was possible to make this

initial pattern much larger, linking it to the majority of other patterns directly. The

overview pattern was also accompanied by an index pattern, which provided links to all

the patterns, listed in alphabetical order for easy reference (so that if a developer already

knew a pattern of interest he or she could jump directly to it).

The new pattern language was created with a far deeper understanding of the framework’s

structure than the previous language. The major elements of the framework are all

represented by a pattern and the patterns themselves have been strengthened with the

inclusion of class hierarchy information. The patterns also provide detailed code examples to

illustrate how parts of the framework can be used.

These improvements were intended to make the pattern language better able to support

users when faced with mapping problems during reuse. The wider number of topics

addressed by the pattern language ensures that the major features of the framework are

represented within the documentation and increases the chance of finding a relevant pattern.

The increased technical depth of each pattern provides a better description of how to use

parts of the frameworks and also helps to discriminate between potential solutions. The

larger number of links between patterns and the improved overview pattern improve

navigation by connecting related information together. Complete versions of both the first

and second iteration of the pattern language can be found in Appendix A.

 83

A se

Direct manipulation of figures on a d
class implements the Handle interfa

• For futher information about th

JHotDraw predefines several typ
LocatorHandle and PolygonHandle
figure they were created for, oppo
developers should expect to have
of the above classes.

To add a handle to a figure the fig
other parts of the framework to draw

Resize handles are often required
utility class (BoxHandleKit) which si

• How to add handles to a

public Vector handles()
 Vector handles = new V
 handles.addElement(new
 handles.addElement(new
 handles.addElement(new
 handles.addElement(new
 return handles;
}

• How to add handles to a

public Vector handles()
 Vector handles = new
 BoxHandleKit.addHandl
 return handles;
}

When creating custom handles the
three important methods. invoke
called when the mouse is respectiv
with a handle will therefore follow
called (if the mouse is dragged) an
across the interaction allows the de

The appearance of a handle can al
will perform or the current state
draw(Graphics) method.

To create handles at a position on a
a point around which the Handle wi

• For more information on p

Figure 23

JHotDraw Pattern Language

Creating Handles

lected figure displaying resize handles

rawing is achieved through the use of Handles. The AbstractHandle
ce and provides default behaviour for all handles in the framework.

e Handle hierarchy see The Handle Hierarchy

es of handle; they include ChangeConnectionHandle, ElbowHandle,
. It should be noted that because Handles tend to be specific to the
rtunities of reuse across different types of figure are rare. Therefore

to write their own handles either by sub-classing AbstractHandle or one

ures handles() method must be overriden. This method is called by
 the selected figures handles on the DrawingView.

for figures in JHotDraw applications therefore the framework provides a
mplifies adding resize handles to a figure.

figure (example from GroupFigure).

 {
ector();
 GroupHandle(this, RelativeLocator.northWest()));
 GroupHandle(this, RelativeLocator.northEast()));
 GroupHandle(this, RelativeLocator.southWest()));
 GroupHandle(this, RelativeLocator.southEast()));

figure (using BoxHandleKit).

 {
Vector();
es(this, handles);

 dynamic behaviour of a handle has to be understood. Handles define
Start(), invokeStep() and invokeEnd(). These methods are
ely clicked, dragged and released on top of a handle. Every interaction
a sequence where invokeStart will be called, invokeStep may be
d invokeEnd will be called when the interaction ends. This granularity
veloper to control how the handle responds to the user input.

so be altered. This might be appropriate to indicate the action the handle
 the handle is in. To change a handles appearance override its

 figure the locate() method should be redefined. This method returns
ll be centred.
ositioning Handles see [Using Locators]

: Excerpt from second pattern language

84

4.3. The problems of interaction and functionality

The existence of interaction and functionality problems during framework reuse suggests

that re-users have difficulty understanding the existing structural and behavioural details of

object-oriented frameworks. This is unsurprising as frameworks are typically large structures

that contain a lot of interaction between their constituent parts. They also tend to use

potentially unintuitive code structures such as design patterns, abstract classes and

polymorphism which can make them even more difficult for re-users to understand.

4.3.1 Existing Documentation techniques

Many documentation techniques exist which claim to address the problems of understanding

interaction and functionality. Techniques such as JavaDoc, design patterns and UML provide

some support for these problems. In the previous chapter an evaluation of framework

documentation suggested that existing techniques are only partially useful for functionality

and interaction problems. In particular there again appears to be a trade-off between the

depth and breadth of coverage that documentation can provide. JavaDoc for example can

address all of a system but tends to provide a very cursory description of its functionality and

provides no insight into its interactions. Design patterns on the other hand, can provide a

detailed description of the interactions and functionality that occur in a part of the system but

cannot provide this coverage over the entire framework.

A potential solution to this problem may be to decompose the framework into a number of

smaller subsystems and document each of them in isolation. Each section could then be

described in some detail and combinations of them could be used to address the entire

framework. By introducing individual parts of the system one at a time a re-user has the

opportunity to understand the framework as a collection of separate yet interacting

mechanisms. This should reduce the amount of information to be understood at any one

time while still allowing that material to make sense in the context of the larger framework.

4.3.2 Decomposing a framework

To some extent the object oriented paradigm already helps re-users to decompose a

framework by partitioning its functionality into a collection of classes. Each class describes

an abstraction that is relevant either within the domain of the framework or from a more

general programming context. Classes are very useful for the comprehension of a software

system. Re-users can learn, by studying the source code, what operations a class supports

and what behaviour occurs whenever an operation is invoked. On the other hand,

 85

frameworks are more than just a collection of classes they also define how those classes

interoperate. This makes comprehension harder because re-users must understand not only

the class but the sequence of interactions that surrounds it. This implies that the

decomposition of a framework must occur at a coarser granularity than the class.

The idea that functionality may exist in larger groupings resonates with the experience of the

author. It was found that, after a period of time developing with JHotDraw, it was understood

in terms of clusters of interacting classes. These clusters were repeatedly used by other

parts of the framework and appeared to define behaviour that was significant to the

framework domain. For example, a particular combination of method calls would occur

between the drawing, its view and a few other subsidiary classes whenever a redraw of the

screen occurred. Other combinations were identified for connections between figures, using

handles and creating animation. Eventually the author began to depend upon these clusters

to identify where and how to make modifications to the framework code.

Further evidence for the division of large object oriented applications into sub systems can

be found within the software engineering literature. Design patterns, for example, share

much in common with groups of interacting framework classes. In fact many patterns were

identified by studying interactions within software frameworks. Gamma et al. describe

patterns as “micro architectures that contribute to the overall system architecture” implying

that an understanding of the design patterns within a system is important to the

comprehension of the entire system (Gamma et al. 1993).

The only distinction between design patterns and the class structures found within

frameworks are that design patterns contain a more general description of behaviour. “An

important distinction between frameworks and design patterns is that frameworks are

implemented in a programming language. Our patterns are ways of using a programming

language. In this sense frameworks are more concrete than design patterns” (Gamma et al.

1993). Patterns are primarily intended to educate a reader about the abstract qualities of a

design. They act like a template from which many different implementations can be created.

In contrast framework clusters are specific entities which are expressed as source code and

do not have an existence outwith the context of the framework. In some ways they can be

thought of as instantiations of design patterns but without the restriction of having to be

applicable in other contexts.

 86

The distinction between design patterns and framework clusters is subtle but significant. It is

this difference which makes design patterns unable to scale as documentation to describe

an entire framework. Their descriptions of functionality and interaction can only approximate

the behaviour of an actual system and there are many code structures within frameworks

which do not map onto any recognised design patterns. Admittedly some of these structures

might be from, as yet, unidentified design patterns but others seem more likely to exist only

within the domain or implementation of the framework and therefore are not addressed by

design patterns.

Lajoie and Keller also recognise the importance of understanding a framework through

clusters of interacting classes. They argue that the term “micro architecture” be used to

describe the specific structures found within object oriented frameworks and propose a

combination of design patterns and contracts to document them. “As frameworks codify

design knowledge of a particular domain, micro architectures codify design knowledge in

terms of the behavior of object collaborations” (Lajoie and Keller 1994).

Their use of design patterns differs from Gamma’s as they use the documentation to record

details from the specific implementation rather than an idealised exemplar. They also

suggest that knowledge of micro architectures distinguishes experienced framework

developers from novices. “These structures, micro architectures, are of course known by the

framework designers, but unfortunately by very few others. … the informed framework

designer has a comprehensible, coarse-grain picture of the framework, whereas the novice

framework user is overwhelmed with the many, seemingly unrelated framework classes”

(Lajoie and Keller 1994).

Use case maps are another form of documentation which suggests that clusters of

interacting objects are significant. A use case map visually shows the path of a use case as

it interacts with parts of a system. The elements of the system are shows as boxes but maps

often include groups of objects which interact strongly together and are called teams. “In use

case maps, teams are used to group operationally related components, without committing

to whether or not the teams themselves will have explicit existence in the implementation”

(Buhr 1996). Teams form significant parts of use case maps and appear to relate strongly to

the idea of micro architectures within frameworks.

Other evidence for the existence of micro architectures can be found in the work of object

oriented methodologists such as Booch and Meyer. Booch argues for the concepts of

 87

‘mechanisms’ within object oriented design claiming that they arise from the object structure

of an application. “The object structure is important because it illustrates how different

objects collaborate with one another through the patterns of interactions we call

mechanisms.” (Booch 1994, p21) He goes on to provide an example of such a mechanism

from a graphical user interface. “Consider the drawing mechanism commonly used in

graphical user interfaces. Several objects must collaborate to present an image to a user: a

window, a view, the model being viewed, and some client that knows when (but not how) to

display the model. The client first tells the window to draw itself. Since it may encompass

several sub-views, the window next tells each of its sub-views to draw itself. Each sub-view

in turn tells its model to draw itself, ultimately resulting in an image shown to the user.”

(Booch 1994, p166) This description seems very similar to the types of interaction one might

expect to find within a framework.

Meyer also describes a similar unit of composition called a cluster. “A cluster is a group of

related classes, or recursively, of related clusters.” (Meyer 1997, p923). Meyer claims that,

because of their scale, clusters play an important role in comprehension. “The cluster is also

the natural unit of single developer mastery: each cluster should be managed by one person,

and one person should be able to understand all of it – whereas in a large development no

one can understand all of a system or even a major subsystem.” (Meyer 1997, p923).

The evidence from the software engineering literature suggests that clusters, from here on

referred to as micro architectures, are composed of a small number of classes (or bits of

classes) interacting to achieve some purpose within the framework. They appear to present

a natural way to decompose a large software system for comprehension but the descriptions

are sufficiently vague to make it difficult to know how to best document a micro architecture

and also to be able to identify a set of them within a framework.

4.3.3 Documenting micro architectures

Design patterns are an attractive form of documentation because they combine information

about the functionality and interaction of a micro architecture into one location. Design

patterns typically represent structural and behaviour information via a combination of a

textual narrative and UML diagrams. They also tend to include sections on the motivation for

the pattern, examples and potential variations. Although design patterns were originally

intended as a generic description of a micro architecture Lajoie’s work shows that patterns

can be used to effectively describe details from a specific implementation. This also includes

the identification of patterns which may not be expected to exist in multiple contexts (e.g.

 88

Lajoie suggests the initialisation code of a framework might be a candidate pattern). From

this it seems reasonable to conclude that design patterns should be considered to document

the functionality and interactions within a framework.

An example of how these ideas might be realised for a framework can be seen in Figure 24.

This describes a part of the JHotDraw framework which deals with the placement of

connections upon a figure. Often in graphical applications situations will arise where a

connection must be made to a figure. In such circumstances there are a number of decisions

that can be made to determine the nature of the connection, its location and how it reacts to

changes in the figure or its position. For example connections might be placed in a fixed

position on a figure or be free to move around its edge, a figure might react differently to

particular types of connection or may have regions each of which behaves in a different way

when connected to. For each of these conditions the solution in JHotDraw is to encapsulate

the alternative behaviours within a Connector class. A connector covers a rectangular area

of a figure and whenever a connection is made to that area the figure delegates to the

connector to determine the actual point of contact for the connection. The micro architecture

documentation describes the motivation for this solution and shows the static and dynamic

behaviour that occurs between a figure, a connector and a connection figure whenever a

connection is made. The implementation section also describes potential areas of variation

supported by this solution, including having multiple connectors for a figure or having

different types of connector for fixed locations or movable ones. Where relevant definitions

already exist within the framework their names are provided for ease of reference.

Despite their apparent suitability, in practice design patterns struggle to capture the dynamic

information present in micro architectures. Polymorphism results in many alternative

behaviours which are difficult to capture in documentation without recourse to separate

dynamic traces for each combination (which would make the documentation hard to produce

and difficult to understand). In the example shown this problem was minimised because the

use of connectors is governed by a single protocol defined in the updateConnection method

of the LineConnection class. The Connector class contains two hook methods findStart and

findEnd which subclasses can override to alter how the connector calculates the endpoints

of a connection. The use of a single protocol allows one trace to be presented to the reader

while still being relevant to all potential implementations. In general however this pattern of

behaviour does not repeat across the framework. In some cases an interface is implemented

very differently by its subclasses and they share very little behaviour in common. In such

situations multiple views have to be created to show the different behaviours that can occur.

 89

Pattern: Connection Points

Problem

When connections are made between elements in a drawing the point at which the connection attaches to
the element must be described. Describing this position requires an intimate knowledge about the
geometry of the element, which the connection cannot have. A simple solution to this problem is to define a
standard connection point for all elements (for example the centre point) but this proves insufficient for
many applications. In addition the connection might require the connection point to change during the
course of execution (for example when the element is moved) or perhaps the type of connection should
determine its location. Connection Points allow precise positions on an element to be specified and to
allow those positions to be changed during use.

Solution

Delegate the connection point to a connector object. This indirection allows the connection point to vary by
changing which connector is used and allows precise location of the connection by creating connectors
that understand the geometry of particular drawing elements. This is an implementation of the Strategy
pattern.

Structure

interface
Figure

+connectorAt:void

interface
Connector

+displayBox:Rectangle
+draw:void
+findEnd:Point
+containsPoint:boolean
+findStart:Point
+owner:Figure

interface
ConnectionFigure

+endPoint:void
+connectionStart:void
+connectionEnd:void
+updateConnection:void

Participants

A Figure represents an element on the drawing.

A Connector describes a connection point on a figure.

A ConnectionFigure models a relationship between figures.

Collaborations

Initialisation:

Get the connector for the source figure of the connection. (Connectors are obtained by querying a Figure’s
ConnectorAt(int,int) method). Get the connector for the target figure of the connection. Complete the
initialisation of ConnectionFigure by passing the source connector into the connectorStart(Connector)
method and the target connector into the connectorEnd(Connector) method. This behaviour can be
triggered by a mouse interaction involving a handle or a tool. The ConnectionHandle,
ChangeConnectionHandle and the ConnectionTool all instigate this behaviour.

Connector protocol:

Whenever an updateConnection() request is made to a ConnectionFigure it must negotiate with its
connectors to determine new start and end points. This behaviour is triggered when either one of the
connected figures or the ConnectionFigure receives a move request.

 90

Caller

ConnectionFigure
ConnectionFigure

Connector
Connector

2.1: Specialise connection point

3: findEnd(ConnectionFigure):Point

2: findStart(ConnectionFigure):Point

3.1: Specialise connection point

1: updateConnection():void

Implementation

Points of variation:

By default all existing figures in the framework contain a single type of connector. It would be possible to
modify the behaviour of connectorAt(int,int) with the use of containsPoint(int,int) to return different
connectors for different areas of a figure.

Another, more obvious, modification is to customise the algorithm used by a connector to calculate the
connection point. This can be done by overriding the behaviour in the findStart() and findEnd() methods of
connector or creating an alternative mechanism to replace them (See locate() in LocatorConnector). The
connector hierarchy contains specialisations of connector for many common types of connection.
ChopBoxConnector and its descendants define connection points around the perimeter of specific shapes.
LocatorConnector defines a connector which can be repositioned on a figure during execution and
ShortestDistanceConnector attempts to minimise the length of ConnectionFigure used to make a
connection.

Default settings:

By default all descendants of AbstractFigure use the ChopBoxConnector. Exceptions are EllipseFigure,
PolyLineFigure and PolygonFigure, which use the ChopEllipseConnector, PolylineConnector and
ChopPolygonConnector respectively. Another exception is RoundRectangleFigure, which uses the
ShortestDistanceConnector.

Example

To illustrate the role that connectors play in a drawing consider this example from JavaDraw.

The connection between the rectangle and the ellipse touches both elements on their perimeter. If either
shape moves the connection between them is updated and the connectors are used to calculate the new
end points. This example demonstrates the use of the ChopBoxConnector on the rectangle and the
ChopEllipseConnector on the ellipse.

Figure 24: A candidate micro architecture notation

Another problem that arises from dynamic behaviour is capturing the frameworks reaction to

changes in state. Often such changes result in alterations to the sequence of interactions

within the framework. This is most obvious during initialisation of the framework where a

different sequence of behaviour might be carried out from that which occurs during normal

execution. This variation not only requires a separate diagram to be produced but it may also

 91

affect the static view of the architecture because methods might only be used at start up or in

a particular state and these will have to be included in the class diagram.

Attempting to provide coverage of design patterns across an entire framework also presents

problems. Deciding how and where to subdivide the system into a series of micro

architectures is a difficult decision. This is more challenging that it might at first seem

because there is little support from the framework source code to signify where conceptual

boundaries might be drawn. Take the connection points example mentioned earlier.

Arguably part of its attraction is the cohesive description of a small piece of the larger

framework. In helps people to understand that connections between figures can be modelled

in a number of ways and identifies the relevant parts of the framework that are involved. It

also doesn’t include any irrelevant material. There is no discussion of how connections are

redrawn, what constitutes a figure or even the other roles that a connection figure plays

within the framework. This is significant because it is this reduction which lends the example

a simplicity which suits its illustrative purpose.

Deciding what information one ought to leave out of a micro architecture appears to require

significant experience of both the framework implementation and its domain. Only with this

knowledge can a developer make decisions about where to draw boundaries between

concepts to create micro architectures. A subjective, opinionated, approach is liable to leave

gaps in the documentation damaging its ability to support reuse. It is also liable to make the

technique far more expensive and difficult to produce further reducing its appeal.

4.3.4 A micro architecture notation

If dividing the system by functionality is difficult to reliably achieve then perhaps another way

of decomposing the system would be more effective? One of the most obvious qualities of

object oriented frameworks is that some classes within the framework appear to be more

important than others. More specifically some classes within the framework model domain

abstractions while others only provide implementation detail. It could be argued that this

makes the domain abstractions more important to understand as they represent parts of the

framework’s design. For example the Figure interface is important to JHotDraw and is widely

used throughout the framework. Understanding something about Figures is vital for any use

of JHotDraw. In contrast understanding any specific implementation of the Figure interface

reveals far less about the behaviour of the entire system. This observation that some classes

are more important than others appears to be supported by Meyer who argues that there are

three types of classes in a system. Analysis classes which model abstractions within the

 92

domain, design classes, which model architectural structures within the application (i.e.

design patterns often fall into this category) and implementation classes which provide detail

to the application (Meyer 1997). Perhaps this information could be exploited to decompose a

framework for documentation?

An alternative to a functional decomposition could focus on the key domain abstractions

present within the framework, drawing them out from the background noise of subclasses

and utility classes and making them easier to understand. This approach, although not

strictly creating micro architectures, simplifies the decomposition of the framework as domain

abstractions are comparatively easy to spot. They tend to be named in the language of the

domain so anyone with some familiarity with domain vocabulary should be able to identify

candidate classes. They also tend to be abstract classes or interfaces and can often be

found at the top of inheritance hierarchies within the framework. The down side to this

approach is that it merges information about different aspects of functionality showing how

they intersect an abstraction within the framework. This trades the ease of following micro

architecture specific information across a framework for a better understanding of each

individual class’ role within the system. Although not explicitly describing micro architectures

this decomposition can still help develop an understanding of them as the interactions

surrounding important abstractions contain subsets of micro architecture information.

Understanding the system in terms of its key abstractions should therefore assist re-users to

learn framework micro architectures as they provide insight into some of the most important

framework behaviour. Decomposing the system into key abstractions also has the

advantage that the documentation provides coverage for the breadth of functionality and

interactions supported by the framework.

Figure 25: A micro architecture interface view

The notation used by this study to describe micro architectures comprises three views; an

interface view, a call graph view and a hierarchy view. The interface view (Figure 25)

displays the methods available for a particular interface within the framework. The call graph

 93

view (Figure 26) shows the call sequences within the framework that result in a call to a

method from a given interface. The hierarchy view (Figure 27) shows which classes within

the framework implement the interface and which methods they implement or inherit from

other classes.

These separate views are joined together by an index (Figure 28) which lists all of the

available interfaces in the framework. The technique also makes use of the framework

source code to provide descriptions of the functionality presented by callers or

implementations of an interface. Links between the views allow navigation from one source

of information to another. The index links to the interface descriptions and each method on

an interface then links to its own call graph. The class hierarchy for each interface can be

accessed separately from the main index. Accessing the framework source code is

performed manually (the documentation provides the class and method names to look for).

Figure 26: The Tool.activate call graph view

The interface and hierarchy views use standard UML notation to convey their information.

The call graph view is different and uses a customised activity diagram to represent the call

sequence leading up to the framework interface. Each graph is made up of three parts, a set

of inputs that begin the call sequence, a set of intermediate methods and a call to an

interface method. These three types are represented on the graph using nodes of different

colours, green for input, red for intermediate methods and blue for interface methods, arrows

indicate a method invocation and each node describes the concrete type and method that is

invoked by the call. The call graph inputs are constrained to describe user input events, calls

from a Java library or calls from another framework interface. This helps to modularise the

call graphs and prevents repetition of commonly occurring interactions. Users wishing to

follow calls further back in the call sequence can look up the micro architecture for the

 94

named interface and continue to follow the call from there. (The complete set of micro

architecture diagrams is available in Appendix B, 19 interfaces, 19 hierarchies and 171 call

graphs)

Figure 27: A section of the Tool micro architecture hierarchy view

4.3.5 An example of the micro architecture documentation

The following example illustrates how the resulting documentation could be used to

investigate the Tool interface in JHotDraw. This illustration assumes that a framework re-

user has read about Tool in the pattern language or has seen it in the list of micro

architectures and wants to know more about how it is used and what it does.

The user selects Tool from the list of framework interfaces (Figure 28). This displays the

interface for a Tool and allows the re-user to select individual methods from the interface to

understand how they are used by the framework (Figure 25). The user decides to look at the

activate method because it appears relevant to the initialisation of the Tool. Clicking on the

activate method displays its call graph (Figure 26). From this graph it can be seen that two

framework interfaces and one user input make use of the activate method. Focusing on the

 95

interfaces it can be seen that activate is invoked either from a call to

PaletteListener.paletteUserSelected or by DrawingEditor.toolDone. The user can also see

that these two interfaces are implemented by two classes DrawApplet and DrawApplication.

Of these DrawApplication is the most interesting (because the user is creating an

application). From both calling interfaces (PaletteListener and DrawingEditor) it can be seen

that the code eventually calls DrawApplication.setTool and that this method is responsible for

calling activate. This information presents the user with two choices: They may wish to

understand more about the PaletteListener and DrawingEditor interfaces and the conditions

which will result in them producing a call to activate or they may wish to drill down into the

implementation of DrawApplication.setTool to understand more about the functionality that

occurs during the initialisation of a tool.

If the other interfaces are consulted (by looking at the corresponding micro architectures) the

user will discover that activate is called as the result of three conditions; either a tool button

being selected on the user interface, a drawing being saved or loaded into the editor or from

the action of another tool. If on the other hand they decide to read about the functionality of

setTool they will discover that it first deactivates the current tool before activating the new

tool and updating the status bar (a text field at the bottom of the application) to reflect the

new tool name. Having understood something about the behaviour leading up to a call to

activate the re-user may still be interested in understanding what behaviour activate actually

performs.

Figure 28: The micro architecture index

 96

Tool, being an interface, has no implementation for the activate method but the existing Tool

implementations within the framework give some idea of the type of behaviour that activate

is expected to perform. To support the re-user in searching through these options the micro

architecture documentation provides a hierarchy view (Figure 27) which displays the

interface and all existing implementations within the framework. From this view the

implementations of Tool which define an activate method can be identified (six out of the

thirteen implementations define an activate method the remainder reuse an implementation

through inheritance).

All the implementations inherit from a common parent AbstractTool which seems to provide

a default implementation of a Tool. The re-user may decide to look at this implementation

first because it is widely used by other implementations but may also decide to look at some

of the other implementations to see how they differ from the default behaviour. The

implementation of activate in AbstractTool clears the current selection within the drawing

view. In the other implementations activate is often defined to reinitialise the state of the tool

back to some default value (for example the scribble tool sets the figure it creates to null).

This information allows the user to understand how to initialise a tool within the framework. It

identifies how existing parts of the framework use the activate method during initialisation

and explains how existing implementations define activate to clear the selection and reset

the tool to a default state ready for input.

The micro architecture documentation can thus support the developers comprehension of

the activate method within the Tool interface. The other methods of the tool interface can be

understood in a similar way allowing the developer to reuse the concept of a Tool in their

own applications and to take advantage of existing code through inheritance when

implementing their own Tool class.

4.4. Conclusions

This chapter has described the novel extension of two existing forms of framework

documentation designed to address the four problem categories of reuse. The second

iteration of the pattern language is expected to improve upon the performance of the first.

Specifically it is hoped that the increase in size and detail of the language will help it to better

address mapping problems during reuse. It is also anticipated that the language’s implicit

guidance about how to make modifications to the framework should help to encourage

 97

architectural conformity and ensure that modifications do not damage the existing non-

functional qualities of the framework. The micro architecture descriptions are intended to

provide support for the interaction and functionality problems that occur during framework

reuse. Interaction problems are supported by showing the interaction context of framework

interfaces. Functionality problems are addressed by identifying classes that call framework

interfaces and classes which implement interface methods. This provides a starting point

from which to explore the framework source code. The proposed documentation, a

combination of the pattern language and micro architecture techniques, is intended to

provide effective support for a broad range of framework reuse issues. These claims need to

be tested and the following chapter will present a thorough empirical evaluation of both forms

of documentation to determine their utility.

 98

5 Evaluating framework documentation

5.1. Introduction

The combination of pattern language and micro architecture documentation described in the

previous chapter offers support for the four categories of framework reuse problem. The

pattern language with its structural decomposition of the framework as a set of patterns

should help developers to identify what elements exist for modification or reuse. In addition

its use of examples and hierarchies should enable developers to see how solutions can be

implemented and to assess what options are available for a particular role. These features

should make the pattern language well suited to supporting the mapping and architectural

problem categories. The micro architectures, on the other hand, focus on the key interfaces

of the framework and provide a mechanism to trace sequences of interactions back through

the existing framework code. This should help developers to identify what functionality is

available and also to develop an understanding of the interactions that exist between the

classes of the framework. Together this combination suggests support for all of the identified

problem categories, which, if it were true, would have significant implications for the

documentation of object-oriented frameworks. This study evaluates these claims through a

user trial of the pattern language and micro-architecture documentation. Developers were

supplied with the documentation and a suitable reuse task and were asked to produce a

solution relying only on the documentation and the framework source code for guidance. In

order to develop an understanding of how documentation was used during the task the

process was observed and documentation accesses and developer actions recorded for

later analysis.

The primary motivation for this investigation is to understand and collect evidence of how the

pattern language and micro-architecture documentation perform when addressing framework

reuse problems. This enables weaknesses to be identified and may suggest modifications to

make the documentation more effective. There are other reasons why this investigation is

merited. One is the comparative lack of similar studies within the framework literature which

currently appears to champion the creation and ad-vocation of documentation over its

evaluation. This failure to evaluate has limited our ability to distinguish between effective and

ineffective forms of documentation and also limits our ability to identify what characteristics

of documentation have effects on its usefulness. This study will demonstrate that evaluations

are both practical and useful to perform, hopefully encouraging other researchers to follow a

 99

similar approach in the future. It also provides an opportunity to validate and possibly refine

the framework reuse problem categories identified earlier in this thesis.

5.2. Experimental design

The goal of this study, to make detailed observations about a process, suggests that a

qualitative approach to data analysis will be useful. Qualitative analysis categorises patterns

of behaviour within a task and attributes meaning and effects onto these. This allows the

cause of events to be traced to their origins, helping to identify how documentation

(alongside other possible sources of information) have been used to affect the solution. This

kind of detailed insight into what happened during the process would not be available in a

quantitative analysis, which abstracts the process under investigation into a number of

discrete quantities and draws inferences from the magnitude of those variables.

The user of the documentation is as important to this evaluation as the documentation itself.

Of course the documentation’s structure and content is an essential factor in deciding what

information is available during reuse but it is the reader of the documentation that chooses

what pages to access and to a certain extent they also control what knowledge to deduce

from the documentation. Therefore the re-user’s perception of the problem, their thoughts on

a solution and their selection of what documentation to read are critically important to the

evaluation of that documentation.

5.2.1 Data capture

The data collected by this study consists of the documentation accessed during the task and

the developer’s plans and actions in response to that documentation. Documentation

accesses are directly observable and therefore easy to capture. However, gathering

information about the developer’s thought process is more difficult. This study used a talk

aloud protocol to obtain this insight. Participants were required to describe their thoughts out

loud as they worked on the task. The data produced was in two forms, audio for the talk

aloud protocol and video to capture the documentation that the user had on screen during

reuse. Fortunately, because the documentation was available online, a natural way to

capture the data was to use screen and audio capture software (Netu2 2005). This could

reside as a background task on the developer’s machine and with the addition of an external

microphone would provide an accurate recording of all the spoken and visual activity that

occurred during the trial.

 100

5.2.2 Plan of analysis

There is no single approach to qualitative analysis recommended by the literature. Instead

each study has to make its own decisions about how to process its data to identify relevant

patterns and relationships between elements. Despite the lack of process there is common

agreement on what the key activities to perform are. These include transcribing the data into

a textual format, clustering data into categories, using visualisation techniques to draw out

patterns between categories, and paying particular attention to the differences between

participants rather than the similarities (Miles and Huberman 1994), (Dey 1993) and (Judd et

al 1991).

Data was transcribed for each participant into a textual narrative that describes their reuse

attempt. This makes analysis easier and helps to preserve the anonymity of the participant.

The narratives were then read to identify what solutions had been proposed for each section

of the task. These were then considered for their completeness and the quality of solution

that was achieved. The analysis then considered how those solutions arose by identifying

critical documentation accesses and categorising them with respect to the type of problem

addressed and whether the documentation provided useful information. This information was

explored further for significant patterns with which to characterise the documentation use

and allow the study to make specific claims about the utility of both forms of documentation.

5.2.3 Experimental subjects

The study solicited volunteers from the Computer and Information Sciences department at

the University of Strathclyde in Glasgow. Requests were made to the postgraduate students,

three final year undergraduate students (who were using JHotDraw in their final year

projects) and to the teaching staff of Strathclyde’s Software Architecture class (Roper and

Wood 2004), which teaches framework development using JHotDraw.

Individuals were invited to participate in the experiment via email. The call outlined the

details of the study, but did not describe specifics about the task to prevent any

preconditioning about possible solutions. It went on to describe what work would be

expected from the participants and the methods that would be used to monitor them. It also

explained their ethical rights and how to sign up for participation. Participation in the study

was voluntary and participants were assured of their anonymity and of their right to stop the

study at any time (The call for participation is available in Appendix C).

 101

The intention in targeting these different sources for volunteers was to obtain a range of

experience of the JHotDraw framework. The undergraduate students all represented

experienced developers with the framework as they had each spent the past six months

using it to achieve sizable individual projects. The postgraduates at Strathclyde represented

a wider spectrum of experience, as some of them had no experience of the framework at all

while others had been students at Strathclyde and had used JHotDraw in the Software

Architecture class. Finally the Software Architecture lecturers had a good familiarity of the

framework domain and its design but did not have a lot of experience developing solutions

with it. By targeting this mixture of people, it was hoped that the study could attract some that

had a lot of experience with the framework, some which had moderate experience and some

that had never used it at all. It was felt that observing people with a range of different

experience levels of the framework would be of value, as they are likely to use

documentation differently.

From a postgraduate population of around thirty students only three agreed to participate in

the study. From the undergraduates approached two agreed to take part and both of the staff

involved in the Software Architecture class also agreed to participate. This produced a total

of seven participants for the evaluation. With hindsight the poor participation from the

postgraduates might be explained because the duration and nature of the task was a

maximum of three hours performing software development activities. This might have been

off-putting for a lot of potential participants and may also have been considered too much

effort for no reward. The seven individuals that did agree to take part (from here on referred

to as participants A through G) covered the range of experience that was sought and

produced such a large amount of data that it would probably have been infeasible to work

with larger numbers.

5.2.4 Reuse task

The task that was chosen for this study was to recreate a model of a Blocks World in

JHotDraw (Figure 29). Taken from the artificial intelligence community (e.g. Slaney and

Thiébaux 1994) a Blocks World is a simple abstraction of the geometric problem of

positioning blocks on a ground. The task comprised of four subtasks listed below. To keep

the application simple the functionality of removing a block was not considered (the complete

task description can be found in Appendix C).

• A representation had to be selected for the ground and the ground had to be created in

the application at start up.

 102

• A representation also had to be developed for a block, which had to be a given size and

coloured red.

• A mechanism for adding blocks to the world had to be created.

• The blocks had to be constrained to only exist on the ground or on top of another block

(i.e. they could be stacked into towers). Blocks could be moved only if they did not have

another block on top of them.

Figure 29: An example Blocks World

The selection of a Blocks World application satisfied two goals. Firstly it was important to the

study that the task fits well within the domain of the framework as this ensures that the

framework will support the modification. Secondly, it was important that the task was clear

and simple enough for participants to understand and for them to be able to produce

solutions within the time constraints of the experiment. This had to be balanced against the

desire to exercise as much of the framework as possible and to as realistic a level of detail

as possible to better mimic real application development. The participants were not required

to code their solutions but instead asked to articulate them verbally (coding was considered

to be too time consuming, and there was a concern that less important implementation

issues would become dominant). One participant (A) did decide to code a solution and took

significantly longer than three hours to complete the task.

In addition to the above task participants would also be asked to take part in two interviews

(one before and one after the task) to capture their background within this domain and their

reactions to the documentation. They would also be given a period prior to the study (no

longer than 30 minutes) where they could familiarise themselves with the experimental

documentation. Altogether the participants would be given a maximum of three hours to

perform the task and the related activities.

5.3. Threats to validity

This section considers the major threats to the results of this study. Internal threats are those

which compromise the findings for this study while external threats compromise the ability of

 103

findings from this study to generalise to the wider framework population. In each case the

threat to validity is described and the steps taken to limit this effect are explained.

5.3.1 Internal threats

• Unfamiliar documentation: There is a risk that developers will shy away from the

new forms of documentation because they are less familiar and unproven compared

to other more conventional forms. To limit this developers were provided with a short

tutorial on the micro-architecture notation and a period at the start of the study to

familiarise themselves with the new documentation (The tutorial is available in

appendix C). Also all other forms of documentation, except the source code, were

removed to encourage the use of the new techniques.

• Selective coverage of the framework: The same task was used for each

participant under observation. This enabled a fair comparison of the relative

performance of each developer but it meant that only specific parts of the framework

were being exercised by the task. This might have affected the performance of

documentation if it were particularly suited, or not, to those areas. To address this,

the task was created to cover a wide range of framework behaviour and to be as

realistic as possible to properly exercise the available documentation.

• Talk aloud intrusion: The use of a talk aloud protocol can have negative effects on

the participant in a study. It can affect the individual’s concentration and might make

them feel embarrassed or awkward during the task. To prevent this the studies were

performed in private with only the researcher and the participant present. The

researcher could then act as a focus for the participant’s speech and they could also

prompt for thoughts if the developer fell silent.

5.3.2 External threats

• Selection effect: Participants in the study have volunteered which might somehow

distinguish them from other potential framework re-users who would not volunteer.

There is little that can be done to control this, as it would be impractical and also

unethical to perform a similar study without the user’s consent.

• Using a single framework: All of the reuse activity occurs using one framework so

it is not possible to say which problems are particular to the framework and which

are applicable to frameworks in general. It would have been impractical to perform

this evaluation with more than one framework. The amount of time required to create

comparable documentation for them would have been prohibitive and the

 104

contribution provided by each participant would have had to be unrealistically

increased to provide enough time for multiple reuse tasks.

• Choice of participants: The participants were all drawn from an academic

background. This might limit the generalisation of the results because they might

differ in their approach and motivation from industrial framework re-users. It is

difficult to gain access to real world developers and academic subjects should

provide a reasonable approximation to the real thing. This is especially so in this

case as only final year students, post graduate students or members of staff were

solicited. Also, participants were frequently reminded that they could leave the task

at any point hopefully ensuring that only those interested and suitably motivated

continued to take part.

• Choice of task: The task chosen for the reuse task has been shaped in part by the

need to cover a wide range of features in the framework and to be achievable within

a strict time constraint. This inevitably means that it is smaller and somewhat

artificial in its requirements when compared to genuine reuse tasks. Care has been

taken to ensure that the tasks set mimic those found in real life and are not designed

to fit exactly on top of the existing features of the framework forcing the developers

to make modifications to the framework to achieve the task.

5.4. Data

In total twenty-one hours of video and audio data were collected from the seven studies. The

participants varied in the amount of time they spent on the task: some completed the task

before the three hours were up, others asked to continue past the time limit. The times for

each participant are available in Appendix C. The amount of data was potentially

overwhelming because almost anything within it could become important evidence in the

study. This section describes how the volume of material was managed and distilled, through

several stages, to produce the evidence that characterises the documentation’s use.

5.4.1 Transcription

The first step of analysis was to transcribe the data into a textual account for each

participant. This was important because text is much easier to analyse than video. Skipping

back and forth to compare ideas is a matter of turning a page rather than rewinding a tape. It

is also much faster to read a textual account of what has happened than to listen to it

occurring on tape in real time; this is especially important when sections have to be revisited

many times to make comparisons or to retrieve information. Another practical difference

 105

between the two media is that text can be printed allowing the researcher to work away from

the machine increasing the amount of time available for analysis.

Time Documentation
Accessed

Talk aloud comments Non verbal
observations

31 PL Overview

PL Identifying
existing figures

PL Figure
hierarchy

First thing that I’m thinking about is representing the
ground. I’m guessing it will be some sort of figure. I’m
going to look in the pattern language.

It’s annoying me it’s too big (laugh).

R: What are you searching for?

Scanning Figure
hierarchy

Scrolling around

32 I’m thinking about either using a line figure or just using
some sort of rectangle.

Not entirely sure… don’t know if that is a reasonable
use of line figure or if they are meant to exist as part of
more complex figures.

33 Line figure exists by itself…

Only thing that bothers me is that line figure extends
poly line figure, doesn’t seem like a proper use of it
because its not poly!

Maybe this is
why sub is
worried about
line figure?

34 PL Identify
existing figures

I reckon that a line figure would be okay. Aesthetically it
would look, hmmm concerned about thin line try to alter
its attributes to make it a big thick line.

35 PL Overview

PL Modifying
existing figures

I want to modify a line

Now I’m frustrated I’ve been to figure hierarchy… I feel
that I’ve hit a dead end now.

My reaction previously would have been to look at the
source code, I’II have a look in the micro architectures
but I don’t feel that its going to tell me what I want to
know.

Mod figure links
back to figure
hierarchy in PL.

Table 6: Excerpt from a transcript

The transcription had to capture an accurate account of both the talk aloud protocol and the

documentation used during the task. To achieve this each transcription was performed in a

grid with columns for different types of information to be recorded (Table 6). Information was

captured on time, documentation accessed, talk aloud comments, and non-verbal

observations. The time column recorded the time, in minutes, from the start of a task that an

event had occurred. This provided a way to reference data when used as evidence later in

the report. The documentation accessed column recorded what documents, and if applicable

what pages, were accessed during the task. This column also allowed the sequence of

accesses and duration of each access to be considered. The talk aloud protocol column

captured the thoughts and reactions of the developer during the task. It was important that

this information be recorded verbatim as later analysis would focus on the meaning of each

 106

sentence and even small errors in transcription could have a large effect on the semantics of

that sentence. Finally, the observations column was used to capture any interesting non-

verbal actions that had occurred during the task. For example, if a user gestured using the

mouse to an item in the documentation then this would be recorded here.

The microphone used to record the participants talk aloud monologues did not perform very

well capturing faint and at times distorted audio. This made some areas of the tapes difficult

to understand and required more effort to transcribe. The microphone had offered

reasonable quality during practise tests, but during the task its quality was poor because the

participants often spoke quietly or turned to address their comments to the researcher who

was sitting opposite the microphone (behind and to one side of the participant). In addition

traffic noise from the street below and the sound of people passing in the corridor

occasionally drowned out the speaker’s voice making short sections of the tape unintelligible.

The poor quality of the tape made transcription difficult; sections of the tape had to be

replayed multiple times until an accurate account could be produced and some words and

phrases on the tape could not be deciphered at all.

Transcription was surprisingly difficult to perform. It was difficult to transcribe in real time and

as a result the tape had to be stopped frequently in order to allow the previous few moments

of audio to be written down before listening to the next segment and pausing again. The

frequent stops and starts added significantly to the transcription time and it soon became

apparent that, with each tape lasting approximately three hours, it would take too long to

transcribe everything. Instead the decision was taken to only focus on the sections of each

tape that contained the participants working on the task. This meant that their pre- and post-

task interviews and documentation orientation data were not used in this study which

reduced the amount of data to be analysed by around a third to a still considerable but

critical fourteen hours of data.

It was difficult to decide how to transcribe some portions of the tapes. Spoken text conveys a

lot of information through the tone of the speaker’s voice and the timing with which it is

delivered. This information is non verbal and difficult to capture using punctuation alone. To

capture this in the transcription any passages of tape that displayed a strong emotion were

tagged with a brief description either beside the affected comment, or in the non-verbal

observations column, allowing at least some sense of the speaker’s emotions to be

preserved. Timing between words and phrases in the monologue was represented by

padding the written text with white space and ellipsis to give the reader a sense of the length

 107

of each pause. Together these additions along with the other non-verbal observations helped

to flavour the transcription with those characteristics that did not transfer well into text.

In total the transcription produced almost two hundred pages of text and took a period of

around five months to complete. The complete set of transcripts can be found in Appendix C.

The amount of effort and time that was required to transcribe the data was staggering and

something that the study had seriously underestimated. On the other hand, transcription had

enabled the researcher to become familiar with the information on the tapes, and start to

recognise patterns of behaviour across different participants, which was not only

encouraging but also of significant benefit in later stages of analysis.

5.4.2 Blocks World solutions

In order to assess the performance of each developer their solutions to the task

requirements were extracted from the transcriptions. The solutions were often difficult to

identify as they were expressed in the talk aloud protocol and spread throughout the

transcription. In order to make the assessment easier the transcripts were searched and

relevant material separated into a summary table (Table 7 shows a representative example)

that described the details of each particular solution. By identifying these solutions the

performance of each participant could be recorded and some general comparisons and

observations made about them. (The numbering in the solution column refers to the order in

which tasks were carried out)

The transcripts were searched for solutions using the requirements of the task. The Blocks

World problem consisted of four main requirements: creating the ground, creating a block,

creating a mechanism to add blocks and enforcing the constraints between the ground and

the blocks; each of these could be further decomposed into a number of sub categories that

had to be addressed. Identifying what solutions had been provided for each of these

problems enabled the performance of each developer to be understood and compared to the

others performing the task. To facilitate these comparisons the details of each solution were

augmented with information about the forms of documentation that were most influential to

its development (captured in the Critical Insight column), the amount of interference caused

by the observer who sometimes prompted developers when they were stuck (captured in the

researcher interference column – R.I.) and the duration of time spent working on that task

(Duration). This information was collected for each of the sub-tasks performed by a

developer and was compiled together into the summary table.

 108

Requirement Solution Critical Insight R.I. Duration

Represent the
Ground

1 Using Line figure

Prev Knowledge +
Pattern Language

0 4min

Set size

Set position

Set colour

2 Thickness: Display box (wouldn’t really work)

5 Position: using basic display box

Prev Knowledge +
Source code

Prev Knowledge

0

0

11min

1min

How to make
ground appear

3 Don’t want a tool

4 Create drawing and drawing add

Prev Knowledge

Pattern Language
+ Micro
architecture

0

1

2min

29min

Adjust
position on
resize

6 Involves the interaction between DV and F (cant
get this)

7 Feels should be a listener (stop – potential.
solution suggested)

?

Prev Knowledge

?

0

69min

4min

Prevent size
colour pos.

<Not done>

Represent the
block

9 Using Rectangle figure (or subclass) Prev Knowledge +
Pattern Language

0 1min

Set size

Set colour

10 Colour: using set attribute

11 Size: using constructor (Researcher inference
crucial)

Prev Knowledge +
Source code

Prev Knowledge +
Source code

0

1

2min

12min

Add blocks 8 Use creation tool Prev Knowledge 0 1min

Prevent size
and colour

12 Turning off handles

13 Using Null handles

14 Creation tool, turn off drag and change mouse
down

Prev Knowledge +
Pattern Language

Pattern Language
+ Source code

Micro architecture
+ Source code

1

0

1

10min

10min

13min

Add in valid
position

15 Use CT mouse down to place blocks

16 Use display box to make the transition

Prev Knowledge

Prev Knowledge

0

0

20min

3mins

Constrain
valid position

17 Check done within CT – sub wants to use
isEmpty and mouse up (only thinking about block /
ground)

18 Getting ref between Tool and Status bar
(incomplete)

Prev Knowledge +
Pattern Language

0

3

15min

38min

Only move top
block

Not done – developer ran out of time

Table 7: A developer’s solution table

 109

Compiling the summary table was straightforward. It was generally easy to identify areas in

the text where developers were working on a particular requirement and to locate the

solution they had proposed. In a few cases it was not so straightforward. Sometimes the

developer had not realised that there was a problem to be solved and had therefore never

addressed it; these were recorded as ‘Not Done’ in the table. In other cases the problems

addressed were of a finer granularity than those proposed and so evidence had to be

collected from several areas of the transcript to create a composite understanding of the

proposed solution, and on other occasions solutions were sometimes altered by a developer

later in the task, as they gained a better understanding of the problem or realised that a

previous solution was not good enough. This required the data in the table to be continually

updated to reflect the latest solution proposed. Despite these difficulties tables were

produced for each participant and the conclusions drawn from them are presented in the

analysis section below. The complete set of tables can be found in Appendix C.

5.4.3 Documentation accesses vs. reuse problems

By focusing on documentation accesses within the transcripts it was possible to understand

what problems participants faced and whether the documentation helped them to answer

those problems. An overview was prepared of each participant’s documentation accesses.

This presented a summary, in the form of a matrix, of what accesses had occurred and

whether they had successfully resolved a given problem. The matrix recorded

documentation types along one axis, and problem categories along the other (Table 8). This

allowed it to relate the types of problems experienced by a participant to the types of

accesses made trying to resolve them and to consider how successful such attempts were

(helpful accesses were recorded in the light grey column and un helpful accesses in the dark

grey column). Accesses were recorded as a letter representing the participant and the time

when the access occurred.

The study was also interested in how the documentation had been used and what the

developers thought about it. The text surrounding each documentation access was studied in

detail and comparisons were made across accesses to the same documentation. This

captured a variety of information about the documentation: some comments described how

developers felt about the documentation, while others showed the kind of information that it

did or did not provide. Together these insights provided a detailed description of the support

provided by documentation, where it had failed to support reuse and how the developers felt

about using the different types of documentation.

 110

The identification of documentation accesses was straightforward as they were separated

during transcription. However, while reading through the text it became apparent that

developers’ existing knowledge was also playing a significant role in shaping the solution.

This knowledge was a mixture of past experience of the framework and more general

experiences, about algorithms, design patterns and language idioms. This information had

originally been overlooked but having been recognised it was felt important to include it in

the analysis. This required transcripts to be reprocessed to identify incidents of previous

experience, in effect treating it as if it were another form of documentation.

 Pattern
Language

Micro
Architecture Source code Previous

knowledge Other

Mapping E101

E102

E103

E114

E136

E22

E115

E135

E137

E140

E20 E17

E42

E44

E45

E53

E100

E105

E112

E129

E132

E146

E153

E21

E55

E141

Interaction E114 E24

E27

E47

 E117 E140

Function E25

E45

E55

E106

E107

E132

E145

E148

E22

E115

E119

E125

E148

E21

E34*

E34

E38

E48

E152

E26

E28

E35

E37

 E43

E132

Architecture E30

Other

Table 8: A problem vs. documentation matrix

 111

Identifying documentation accesses was quite straightforward but relating them to problems

proved to be more difficult. Each access occurs for a reason; in order to understand this

reason, one must look into a developers thoughts prior to the access to try to identify what

information was required to proceed with their solution. Similarly, to establish what

information has been retrieved from the documentation one must look at the thoughts and

actions that occur after the access has occurred. This allows a chain of cause and effect

from emergence of a problem to its proposed solution to be built. However, it was not always

easy to understand the sequence of events that led up to, and that occurred after, a

particular access.

In part, the difficultly in building up a chain of events was caused by the problems of

identifying reuse problems and relating them to documentation accesses. Developers

sometimes described problems poorly as their attention was focused more on the description

of solutions. They also worked frequently on multiple tasks at one time and this caused

problems to become overlapped in the transcription making it harder to match accesses to

specific problems. Problems sometimes also mutated or were decomposed into different

problems as a task progressed, again making it harder to keep track of what problems were

current and which had been abandoned. Relating documentation successfully to problems

required iteratively going through the transcript and building up a detailed understanding of

what had happened in the areas surrounding each access.

Each developer experienced his or her own unique set of problems while performing the

reuse task. To ease the comparison between developers, each problem was categorised

into one of the four problem categories identified previously in this thesis (mapping,

interaction, functionality and architecture). These categories helped to abstract away details

of each specific problem and to merge them into groups that shared particular information

requirements.

While analysing the transcription for reuse problems and related accesses, occasionally

other passages of text would be found that, although not directly relevant, did have

something interesting to contribute to the study. This might have been an offhand remark

made by the developer about documentation or the difficulty of the task. Or it may be a

comment made by the researcher who occasionally overstepped the mark when assisting

developers who had become stuck. Whenever any potential interesting material such as this

was found, it was recorded and, if possible, clustered into groups of similar items. These

clusters were then used in the detailed analysis to provide a more holistic view of the major

events in the task.

 112

5.5. Analysis

This section describes how the data contained in the developer solutions, the problem

versus documentation matrices and the detailed observations was analysed to identify

information about the usefulness of the pattern language and micro architecture

documentations.

5.5.1 Developer solutions

Table 9 presents a summary of the solutions produced by each developer during the task.

The solutions are grouped by experience level of the participant into three bands, high,

medium or low depending on their previous exposure to the framework. Each cell in the table

provides a brief description of the part of the framework used by the solution. Those cells

that are shaded grey indicate that the task was either not completed or would not have

worked if implemented. The table allows a comparison between the solutions produced and

also provides an overview of each developer’s performance during the task.

The high degree of uniformity between the solutions produced by different developers is

interesting. It is difficult to say what has caused this similarity to occur. In part the limited

scope of the requirements, the features available in the framework and the documentation

provided might all have played a role.

No developer managed to complete all of the tasks in the study. The majority of them did

complete the core activities of creating a ground, a block and methods to add these to the

application. One task that was not addressed adequately by anyone was constraining blocks

to appear only in valid positions on the ground. This requirement, although difficult, was most

likely unsolved because it relied upon other solutions and hence occurred later in the task.

Developers, rather than being unable to solve it, simply ran out of time while working on it.

Another task that was not solved during the study was the implicit requirement to ensure that

parts of the framework, other than those intended to, could not modify the size, colour or

position of elements in the application. This task, while quite simple to achieve, was

overlooked either because developers were not aware that other parts of the framework

might affect their application or because time pressure meant that such trivial details were

 113

not considered. It is also possible that not implementing a solution in code may have

reduced the detail of proposed solutions.

 High Experience Medium Experience Low Experience

Requirement C D A B E F G

Represent
the Ground

Rectangle
Figure

Rectangle
Figure

Rectangle
Figure Line Figure Rectangle

Figure Line Figure Bottom of
View

Set size Constructor Not Done Display
Box

Display
Box

Told Not
To! Not Done Not Done

Set position Told Not
To! Not Done Display

Box
Display
Box

Told Not
To! Not Done Get Size

Set colour Not Done Not Done Set
Attribute Not Done Told Not

To! Not Done Not Done

How to make
ground
appear

Create
Drawing

Init.
Drawing

Create
Drawing

Create
Drawing

Create
Drawing Constructor! Not Done

Adjust
position on
resize

Drawing Not Done Not Done Partial
Solution

Draw
Application! Not Done Not Done

Prevent size
colour pos. Not Done Not Done Not Done Not Done Not Done Not Done Not Done

Represent
the block

Rectangle
Figure

Rectangle
Figure

Rectangle
Figure

Rectangle
Figure

Rectangle
Figure

Rectangle
Figure

Rectangle
Figure

Set size Display
Box

Display
Box

Display
Box Constructor Constructor Not Done Not Done

Set colour Set
Attribute

Set Fill
Colour

Set
Attribute

Set
Attribute

Set
Attribute Not Done Set Fill

Colour

Add blocks Creation
Tool

Creation
Tool

Creation
Tool

Creation
Tool

Creation
Tool

Creation
Tool

Creation
Tool

Prevent size
and colour

Partial
Solution

Creation
Tool

Handles

Creation
Tool

Handles

Creation
Tool

Handles

Creation
Tool

Handles

Creation
Tool

Handle -
Partial
Solution

Not Done

Constrain
valid
position

Partial
Solution

Partial
Solution

Partial
Solution

Partial
Solution

Partial
Solution Not Done Not Done

Only move
top block On Top On Top On Top Not Done Drawing Not Done Not Done

Table 9: An overview of developer solutions

Interestingly, Table 9 suggests that developer A has performed the best in terms of the

number of tasks completed. This developer was the only individual in the study to code their

 114

solution (the others produced verbal accounts). It is possible that the act of coding has in

some way helped the developer to achieve this extra performance although he also asked to

work on longer than the three hours to achieve this solution.

The allocation of participants to different bands of experience was performed by considering

the previous exposure the participants had of the framework. The two undergraduate

students who took part were both recently involved with large scale modifications to the

framework. This work lasted for several months and required detailed knowledge of the

framework. Both students were therefore considered highly experienced developers in this

study. In contrast two of the post graduate students had no previous knowledge of the

framework before the study. They were therefore considered to be low experience subjects

in the study. The remaining three participants represented a medium level of experience

because they had used the framework in the past to complete the practical exercises for the

software architecture class (or in the case of the two class lecturers they had supervised labs

where these exercises were taught and had presented example answers to students).

Considering the effects of experience upon reuse suggests that the two low experience

developers (F and G) perhaps unsurprisingly have performed less well than the other

participants, while the medium (A, B, E) and highly experienced (C, D) individuals appear

much more similarly matched. This may support the argument that early phases of

framework comprehension are critically important but also suggests that documentation is

still not providing enough support for this area.

Table 9 also illustrates the impact the researcher had on the developers’ performance. The

researcher was present during the task primarily to observe the participants performance but

was also there to answer questions about the process and to help developers if they became

hopelessly stuck. The researcher was not as impartial an observer as he should have been

and occasionally directed developers to work on a particular task or to avoid one that

seemed trivial (hence the incidents of ‘Told Not To’ in the table). This assistance would not

have been a problem had the behaviour been provided consistently across participants but

this was not the case. There is a danger that this interference in the task may have altered

some developers’ performances. To understand the affect this might have had more analysis

will be performed of researcher interactions later in this chapter.

 115

5.5.2 Problem versus documentation matrices

Table 10 presents a summary of the problem versus documentation matrices. The cells

contain the number of accesses recorded for all developers during the task and are

separated by problem and documentation type. Pluses represent documentation accesses

that were helpful and minuses are used to represent accesses that did not help. From the

table it appears that the pattern language has been accessed frequently for mapping type

problems. Of those accesses, a significant number of them did not provide any useful

support for the problem at hand suggesting that the pattern language was not entirely

successful in supporting the mapping problem. The use of the pattern language for mapping

is insignificant in comparison to the use of previous knowledge. This dominates mapping

problems and unlike the pattern language it appears to have been used successfully in the

majority of cases. One might suggest that this is a self-fulfilling phenomenon because most

developers will put forth rational plans of action based on previous knowledge, which have a

correspondingly high chance of success, independent of whether or not those solutions are

the best available. Also noteworthy is the comparatively high number of accesses of micro

architecture and source code documentation during functionality problems suggesting that

developers perceived some benefit from these techniques for functionality problems.

 Pattern
Languages

Micro
Architecture

Source code Previous
knowledge

 + - + - + - + -

Mapping 30 20 3 1 6 0 84 15

Interaction 5 5 12 11 5 3 13 14

Functionality 3 9 35 24 48 18 15 7

Architecture 0 0 0 0 0 0 1 3

Total 38 34 50 36 59 21 113 39

Table 10: Summary of the Problem vs. Documentation Matrices

Both the mapping and functionality problems appear to dominate this reuse task. The high

number of mapping problems is surprising because these were expected to be relatively few

in number but have wide reaching consequences. The large number of functionality issues

was expected and underlines the significance of this problem during reuse. The

comparatively small number of interaction issues that arose may suggest that these are less

common than the other categories but may reflect the fact that developers were not asked to

code their solutions and were therefore not exposed to many situations where interactions

 116

matter. Finally, the small number of architectural problems encountered is unsurprising

because the study was not of sufficient duration or complexity to warrant the kinds of

changes to requirements that cause architectural issues to arise. Those issues that did occur

are all incidents where developers are worrying about the future consequences of their

actions rather than experiencing the affects of bad architectural decisions.

Table 11 and Table 12 present the total number of problems types and documentation

accesses from the documentation matrices stratified into bands of experience. Average

numbers are used to adjust for the extra participant of medium experience. The totals for

highly experienced developers suggest that they relied on their previous knowledge rather

than the pattern language while performing tasks with the framework. This is unsurprising,

but it is interesting to note that the situation is reversed with inexperienced developers: those

with little previous knowledge to rely on used the pattern language, as expected, to

compensate for their missing knowledge.

Experience Mapping Interaction Functionality Architecture

 + - + - + - + -

High 14.5 3.5 0.5 2 6.5 1.5 0 0

Medium 22 6 10.3 6.7 24 13 0.3 0.3

Low 14 5.5 1.5 4.5 8 8 0 1

Table 11: Average no of problems experienced stratified by experience.

Experience Pattern
Language

Micro
architecture

Source code Previous
Knowledge

 + - + - + - + -

High 2 0.5 2.5 2 5 0.5 12 4

Medium 6.3 7 13 8 12.3 3.3 25 7.6

Low 7.5 6 5 5 9 5.5 7 4

Table 12: Average no of documentation accesses stratified by experience.

Another interesting result, apparent from the tables, is that developers with medium amounts

of experience seem to have encountered more problems and also have had more

 117

documentation accesses than either of the two other groups. This may be because

developers with medium levels of experience are not affected by factors which cause the

other two groups to bypass reuse problems. Low experienced developers get tied up with

fundamental questions about what the framework offers, which may prevent them from

tackling as many problems as the other developers. On the other hand, highly experienced

developers are presumably more likely to select solutions which are well suited to the

existing architecture and hence encounter less resistance when making their modifications.

Medium level re-users may fall in between and therefore may be competent enough to tackle

a large number of problems, but inexperienced enough not to select the best course of

action, making their solutions difficult to implement.

It is also interesting to note that highly experienced developers did not report any

architectural problems during the study. One might speculate that this is due to their

familiarity with the framework, which makes them more confident about producing solutions

which complement the existing structure. Both of the other categories of developer did report

some level of architectural concern (albeit a relatively small amount). This study did not

encounter a great deal of evidence for architectural problems although as mentioned earlier

this is perhaps unsurprising. Architecture issues are likely to be encountered more frequently

some time after the original solution has been crafted (when changes to circumstances

reveal an inflexibility in the chosen implementation). Since these studies took place over a

three hour timescale they did not generate this kind of circumstance. There is an indication

that some developers were aware of architectural issues as they expressed concerns

regarding the quality of their chosen solution. They would express doubts about the quality of

their solution and look for some evidence to support their choice. “No I really worry about

hard coding it because there is so much stuff here to do with listeners, I really worry about

that and I feel that I'd be missing something out and I wouldn't be happy that I would pick up

on the events properly.” (Subject B, 216). Although this can be seen as something of an

architectural question it would appear to be more the preserve of the mapping problem,

where such questions should affect the choice of solution made.

5.6. Detailed observations

This section presents detailed observations from the participants’ transcripts about the use of

documentation during the task (this includes the use of previous knowledge and the source

code). In each case a number of observations are made and evidence is presented from the

transcripts to support those arguments.

 118

5.6.1 Previous knowledge

The evidence from this study shows that developers favoured a combination of previous

experience and tacit problem solving knowledge rather than the pattern language when

developing their solutions. The pattern language did offer some support for problem solving

but it was more supplementary in nature rather than decisive in shaping a particular solution.

Developers, upon reading a requirement of the task, often pre-empted documentation

references by suggesting an initial plan or solution seemingly off the top of their head. This

immediate reaction appears to have derived from previous exposure to the framework as in

the following quote "So I assume that when the application pops up, … and you have got the

ground, for the sake of argument at the bottom of the screen. So that would obviously be a

figure because it’s on the diagram" (Subject E, 112). The supposition that a figure is required

presumably comes from the developer’s previous experience of the framework. In many

cases this immediate selection of a solution correctly identified a viable approach to the

problem but it is nonetheless troubling because it can exclude other less common solutions

from consideration. For example, the above quote describes using a figure to represent the

ground, however an alternative solution (supported by the framework) is to implicitly

represent the ground as part of the drawing (the drawing has support to add background and

foreground images). The particular merits of this approach may be debatable, and perhaps

the previous solution would be preferred in most cases, but the fact that no evaluation has

occurred (or perhaps that it has be pre-empted so early on that the developer has not even

verbalised it) is a problem. It suggests that the individual requirements of the task are not

being evaluated fully against the existing capabilities of the framework. This has the potential

to produce solutions which are less well adapted to the capabilities of the framework than

they might otherwise be. This may have been caused by the artificial nature of the task

where developers were under tight time constraints and were simply looking for a feasible

solution.

This problem of immediate selection was even more acute when a developer had previous

experience of solving similar problems. In those cases developers often recalled their

previous solutions and attempted to fit them to the current problem irrespective of their

suitability. In some cases this worked perfectly well, i.e. when the problem was the same and

only parameters had changed, for example when changing the colour of a figure. At other

times developers attempted to apply a solution which was not suitable for the current

context. In these circumstances the developer was slow to realise the poor fit (if such a

realisation ever happened), persisting with the solution despite its awkwardness. The

following example illustrates the kind of problem this tended to cause: A developer

 119

attempting to constrain the block's size during its creation tried to override the creation tool,

but found that he was unable to control the size in this manner (the created figure was a

private member of the creation tool). This led the developer to cut and paste the

implementation of creation tool into a new class parallel to the existing creation tool in the

tool hierarchy and proceed with the modification from there. When asked why this approach

had been taken the developer replied, "I’m not that happy about it. I have seen it used before

though I wasn’t that convinced about it was a…I’m surprised and I would expect there is a

better way of doing it. Multiple students have told me I need to do that… Its convincing…

yeah I suppose it is because I’ve heard it from two or three sources so… and having had a

look here I can’t see…" (Subject A, 228). This indicates that, although the solution was ugly,

its use in previous circumstances (and the apparent lack of any viable alternative) suggested

that the approach was required now. In fact several alternatives did exist but none involved

setting the size in the subclass.

Using previous solutions in this manner was not restricted to developers with previous

experience of the framework. Novice users also referred to previous solutions to address

their problems, only their knowledge did not come from the framework but from previous

programming tasks in different domains. One example comes from a developer who was

trying to make a button to create blocks in his application "I’m trying to find that location.

When you actually press the button what actually happens…Hmmm… have listeners…

hmmm. Ah that’s what I’m after. I want to know what happens when you press the

button…Ah I see what they have done. So the button that is actually in there at the moment

hasn’t actually got an action listener on it." (Subject G, 130). The developer became stuck

because he anticipated the typical Java approach of creating a button, which had an action

listener defined elsewhere in the code. The participant couldn't find any such action listener

in the example and this caused considerable confusion until he deduced that this was

handled behind the scenes by the framework.

5.6.2 Pattern language

Although many of the problems were addressed by developers using their previous

knowledge and experience there was one circumstance where this could not happen. Novice

users with little or no previous exposure to the framework did not have the knowledge to

produce solutions that were informed by the existing structure of the framework. The pattern

language seems to have played an important role in overcoming this problem as its patterns

help decompose and explain the major concepts and roles that exist within the framework.

This has helped developers to utilise those concepts to create solutions or to replace initial

ideas about a solution with ones that are consistent with the existing structure. For example

 120

one participant, who was trying to create a mechanism for adding blocks to the Blocks

World, began with a solution based on overriding mouse behaviour "So … with the left click

you would add … and the right click would move it. That would be my solution as simple as

possible …I’d probably use the mouse interaction on top of the canvas." (Subject F, 32). This

opinion changed upon reading about the concept of a tool in the pattern language "Then

again I’m seeing that we have got an adding buttons to the toolbar here. If there is already a

set procedure for adding a button and making that … for adding figures to the canvas. I’d be

as well to use that… [Reading the pattern]… Yeah so okay. I have moved away from the

idea of left and right clicking of the mouse. This is giving me [an idea] how to create a tool

button" (Subject F, 35). Despite its benefit to novices, experienced framework developers did

not appear to gain much benefit from the pattern language in this way, suggesting that once

learned the basic concepts of the framework are not forgotten but instead are internalised

into a developer's perception of the framework.

The pattern language also helped developers (both experienced and novice alike) by

providing examples and inheritance hierarchies within its patterns. Examples helped to

illustrate how the concepts introduced by the pattern language could be implemented in code

while hierarchies were used to identify specific classes to fill a role in the framework. For

example “The pattern language I know from using it before is a good example for creation

tool. So basically just put that code into the draw application obviously with a new creation

tool that would create a new blocks figure and we have also got help with adding the button

as well.” (Subject C, 33) and “I’m going to create a figure. I found the pattern language… the

hierarchy of the figures quite good…. Two options I’d have a rectangle figure or a group

figure.” (Subject C, 22).

In both cases one can observe a qualitative difference between novice and experienced

users. For novices (e.g. participant F) both the examples and hierarchies appear to provide

information about how a part should be used and to identify existing classes to reuse within

the framework. For experienced developers (e.g. participant C) the information provided was

different; they already knew how to perform the common tasks covered by examples (e.g.

creating a tool) and they also already knew at least some of the possible options in each

hierarchy. Instead, for them, the example becomes a piece of boilerplate code that can be

easily modified for their needs (saving time more than anything) and hierarchies become

defensive tools to make sure that no suitable classes have escaped attention, rather than to

find new candidates.

 121

The original expectations for the use of the pattern language appear to have been optimistic.

It was supposed to act as a guide for developers leading them towards good solutions in the

framework. Instead this seems only to be true in cases where the developer is completely

unfamiliar with the framework and then only to the extent that it allows concepts from the

framework to be integrated with the developers own plans. Developers with more experience

appear not to require this stepping-stone, instead using previous knowledge of the

framework and reference to previous solutions when constructing new solutions to

framework problems (of course this knowledge may have been developed through previous

exposure to the pattern language). For all developers the pattern language did offer useful

support in terms of both examples and inheritance hierarchies, which enable low-level details

such as how parts work and what parts are available to be addressed.

5.6.3 Micro architectures

The data collected in this study suggests that understanding the interactions in a framework

remains a hard problem for documentation to address. Developers answered many trivial

forms of interaction problem effectively but occasionally a larger question involving a series

of interactions and dependencies would arise that developers found much more difficult to

answer. Documentation support for these problems was found to be lacking and in particular

the micro architecture call graph documentation proved to be ineffective at both identifying

interactions and describing their significance to developers.

The most common form of interaction problem that occurred during the study was the need

to obtain a reference to another class. This problem was typically addressed from some

combination of source code, class interfaces (from the micro architectures) or previous

experience with the framework. Using this material, developers found it quite easy to string

together a sequence of references that would result in access to the correct class or

interface, as the following example illustrates "[looking in source code] There is initialise

drawing there. Which looks helpful but that’s calling… create drawing…. Back to init drawing!

(Sigh)", (Subject D, 36). In part this finding was due to the developer simply adding to the

interactions already in the framework without affecting its existing behaviour. A more

significant problem presented itself whenever a developer was asked to modify the

sequence of interactions within the framework. This required a more detailed understanding

of the relationship between classes than in the previous case and appeared to be difficult for

developers to achieve.

 122

One such problem is illustrated in the following example. The developer wants to detect

changes to the drawing's size in order to reformat the contents of the drawing with respect to

the space available in the window. This problem is complicated because JHotDraw utilises

the MVC design pattern, which de-couples the appearance of the drawing (its view), from the

state of the drawing (its model). In order to reformat after a window resize, the developer had

to understand the sequence of events that would flow from the window through the model

and view. The developer was familiar with the MVC pattern and could identify the key roles

of drawing and drawing view within the framework but despite this he was unable to create

an accurate account of the behaviour between the two classes upon a resize. This process

continued for over an hour, “I'm clutching at straws I'm just looking at anything that… seems

to go down… I just want to tie this figure up! …to something I can’t see a place to tie a figure,

to register it.” (Subject B, 220), and the final answer produced was less than convincing,

"Drawing view… when it does a check damage it gets the listeners but I will tell you why I'm

not happy with it, I'm not happy with it… explicitly registered the… the relationship between

the drawing and the drawing view I suspect is established elsewhere, right, and that a

drawing has automatically a listener for a drawing view. I'm not comfortable with that at all…,

does that take you far enough?" (Subject B, 228). The important point to highlight from this

example is the amount of time that was wasted searching for a solution because of the lack

of understanding of the interactions across the framework.

The micro architecture call graph notation was the primary support for interactions offered in

this study. It was supposed to illustrate how each of the major interfaces in the framework

was called by other parts of the framework. The intention was the developers could use this

call graph to understand how the existing code in the framework made use of that interface.

This expectation proved to be somewhat optimistic. Developers seldom used the call graphs

at all and when they did they were not interested in finding out about the behaviour of the

surrounding code.

The failure of the call graph documentation to support interaction problems can perhaps be

attributed to a number of specific weaknesses. Developers appeared to find it difficult to

know which interface to start from as there was no guidance in the documentation that

related behaviour to interactions. The interactions were also fragmented into little pieces by

the need to have separate graphs for each method of an interface and to limit the length of

call sequences to include only the calls made between interfaces. This meant that the

interactions that were being shown were largely devoid of meaningful domain semantics (i.e.

application functionality), making it difficult for developers to appreciate their significance.

The notation used exacerbated this problem, as it provided nothing other than the

 123

relationship between method calls. The behaviour of the calls was not included and was

supposed to be looked up in the source code if required. Developers did not appreciate this

separation, “Yeah, if you could then, yeah, if you were able to click on a method in the

coloured blocks diagram and then jump straight to the source code that would be helpful…”

(Subject E, 58). Finally, the developers seemed less interested in the behaviour leading up

to a method call than in the behaviour after the call (although this might be more to do with

gaining an understanding of functionality than interactions): “You see there is something up

about the…about this [Developer is looking at Drawing.add call graph] I'm wanting to see…

and I've found this a number of times looking at this. This is telling you what calls that and I

want to see what add is doing.” (Subject A, 355). This does not mean that the call graphs

were never useful. There were occasions where a developer successfully mined information

from them. For example “So the only methods I need to worry about are standard drawing

view selection handles and decorator figure handles.” (Subject E, 47). But these occasions

were few and they do not live up to the expectations placed on the documentation at the

outset of the study.

Interactions appear to have been addressed poorly by the documentation. The proposed call

graph documentation appears to be too fragmented and simplistic to offer developers the

support they require for addressing these problems. It can also be argued that developers

were not sufficiently familiar with the technique (revealed in informal talks with participants

after the task) and that this reduced its effectiveness. Perhaps better education about the

technique and more opportunity to practice before the study would have improved its

performance.

5.6.4 Source code

Functionality support was primarily provided by the source code. Developers were expected

to use the other documentation, particularly micro architectures, to identify classes of interest

and then use the source code to understand how those classes operate. To a certain degree

this was found to be the case. Developers did identify classes in other documentation and

often turned to the code to gain further insight but that was not the whole story: developers

also complained about having to use source code and frequently requested access to other

documentation, which would supplement this information.

Use of the source code varied across situations, sometimes the reader would be searching

for a particular class or method at other times the reading would be less directed and more

opportunistic, capturing pieces of knowledge by accident rather than intent. There was a lot

 124

of use of the source code by all of the developers in the study and many accesses appeared

to reveal information that was helpful to the developer "Ah right okay, so that’s where…yeah

its got set methods … This has definitely been helpful because it can initialise line figure."

(Subject F, 102). However, not all developers were happy to use the code and several

complaints were recorded. “Then again, it should be noted that the idea of looking up source

code to see how an application works is the least appealing option.” (Subject F, 203), " So I

don’t have an example of how to use this and I don’t have any JavaDoc. I’m just going to

have to resort to the source code which is a bit [frustrating]" (Subject E, 116). This suggests

that, although accurate, it was an effort to identify and understand material of interest.

Given the apparent unpopularity of source code it appears relevant to question why

examples were so popular in the pattern language? One potential argument is that they

provide an instant solution to a problem that can simply be cut and pasted into their

application. They also remove a lot of superfluous detail and provide a concrete illustration of

what structures of the framework can be used. It was also interesting to note that the source

code was also used as an implicit example for modifications. Developers would look to the

existing code to find a way of doing something and then generalise it to another case (often

claiming to cut and paste the solution from one place to another). “So I think we have

identified creation tool but we have still to come up with how we are going to add these

blocks. Well I think I would probably get a yeah a … so what you have here is an example of

the selection tool.“ (Subject F, 138). It is hard to tell from this study whether such behaviour

is caused by a desire to maintain architectural consistency or simply as a mechanism to

achieve a solution as quickly and simply as possible.

The unpopularity of source code is further supported by the many requests made by

developers for access to JavaDoc documentation. For example, "So back to the code. I’d

rather use JavaDoc if it were here.", (Subject A, 141) and "I’m going to look in the source

code but I’d really like to look at the JavaDoc", (Subject B, 258). JavaDoc can be considered

as a more abstract representation of the behaviour of the code although this comes at the

cost of lower precision but with high navigability. Developers also appear to have avoided

source code by the use of the micro architecture class interfaces, which were often

consulted to identify methods to use. On some occasions the identified methods would be

checked against the source code definitions but on many others assumptions about the likely

behaviour (or perhaps past knowledge of the behaviour) appear to have been used.

Functionality was described mainly through the source code of the framework. Developers

demonstrated that they could understand the behaviour of parts of the code in order to make

 125

decisions about their intended solutions. Developers also illustrated the potential for code to

operate as an example, both from its popularity within the pattern language documentation

and also by reusing snippets of code in new modifications but there appears to be a

significant effort involved in locating and understanding relevant code, which has resulted in

developers turning to alternative sources where possible.

5.7. Researcher interference and reliability

The researcher had a great deal of experience with JHotDraw and its operation and so was

well placed to offer critiques of the participants’ solutions. At times the researcher found it

difficult to provide this critique because the participant’s solution differed from the anticipated

answer. This occasionally led to solutions being accepted when in reality they would not

work or would require additional steps to complete. It was also difficult to avoid participating

in solutions and on occasion the bounds were overstepped and a dialogue developed. This

actually helped encourage the developer to describe what they were doing but ran the risk of

too much support being provided and prompting them towards a solution.

Qualitative analysis relies critically on the researcher’s judgement when categorising data.

This has the potential to spoil the categorisation because this judgement might be flawed or

biased with a particular mindset. To protect against this the researcher’s judgement must

itself be analysed to determine how accurate it appears to be. To perform this measurement

an inter rater reliability test is used which compares the categorisation of data performed by

the researcher against other researchers to detect if there are significant differences of

opinion.

In this case the inter-rater test was carried out by using the researcher’s two supervisors as

alternate researchers (Rater one and Rater two). They were both given a short section of a

developer’s transcript (six pages) and were asked to produce a problem versus

documentation matrix for it. The matrix was chosen for the test because it involves the most

significant amount of categorisation in the analysis. Researchers have to identify problems,

relate them to accesses and then decide whether an access was helpful or not for the re-

user.

The results of the reliability test are shown in Table 13. Initially, this table appears to show a

significant difference between the categorisation made by the three raters. The common

problems are shown in normal type while those where a disagreement occurred are

 126

surrounded by a box. In order to ascertain whether this was true the raters met and went

through each entry in the table, identifying the problem that was observed and why it has

been allocated to a particular category on the table. This provided a richer insight into the

categorisation below and revealed that a number of factors were exaggerating the apparent

difference between raters.

 Pattern
Language

Micro
architecture

Source code Previous
knowledge

Mapping 22 19

18

19

20 17

18

16

21

Interactions 24

27

Function

22 23 25

24

25

27

33

23

20

22

23

24

20

22

24

27

21

34

34

38

21

33

34

20

34

24

28

26

28

35

37

21

26

28

35

38

33

26

36

21

33

39

33

30

39

25

30

Architecture 31

41

30

Other

Table 13: Composite view of inter rater problems

Discussing the problems revealed that some of the differences were caused by raters

disagreeing on the time to record a problem. This caused one rater to record a time of, for

example, 16 minutes when the others recorded 17 minutes despite the fact that they were

describing the same problem. To resolve this a single time was agreed by all raters to

represent each problem. Raters occasionally missed problems that one or both of the others

had identified. In each case the other raters were asked if they agreed about the problem

and its position in the table and, if so, it was added to the problems found. Sometimes the

raters disagreed on the position in which problems were allocated on the table. This resulted

 127

in five of the original researcher’s problems being re-categorised from mapping or interaction

problems into the functional category.

 Pattern
Language

Micro
Architecture

Source code Previous
knowledge

Mapping 22 19 20 17 21

Interactions 24

27

Function 25

27

23

20

22

24

21

34

34

38

26

28

35

37

33

39

30

Architecture 41 30

Other

Table 14: Adjusted problem documentation matrix

Having made these adjustments the final categorisation is shown in Table 14. The problems

that were agreed by all raters and did not move position are marked in bold. Those that were

agreed and have moved are shown in normal type in the new position and are struck through

in their original position. Finally, those problems that were added by the researcher or one of

the raters have been underlined.

 Same Moved Researcher Other Raters

Problems 17

21

25

26

28

34

35

37

20

22

24

27

30

21

23

34

38

19

33

39

41

Total 8 5 4 4

Table 15: Detail of inter rater differences

 128

Table 15 shows the problems that each rater had in common, those that were moved and

those that were overlooked by the researcher or by the other raters. From this table it can be

shown that the raters agreed upon the majority of problems discovered. Further to that, five

problems were moved from the original categorisation but only in terms of the problem

categorisation, the documentation type and documentation support were always agreed

upon.

From this it is possible to conclude that the work of the original researcher, at least in terms

of documentation type, problem type and support offered by documentation, is in broad

agreement with that of his peers, indicating that the transcripts are not affected significantly

by developer bias. The rating has shown that a single developer will miss some of the

relevant problem accesses and also suggests that there may be a tendency for the original

researcher to categorise functional problems mistakenly as either interaction or mapping

tasks. This may reduce the significance of the number of problems found in the study but this

is relatively unimportant because seven subjects were never a representative sample of the

population and therefore the size of each problem category must in any case be treated with

caution.

5.8. Results

The evaluation of the pattern language and micro architecture documentation has helped to

develop an understanding of what support documentation offers a reuser. The study has

also provided a detailed look at the existing problem categories for framework reuse and has

provided valuable experience in the use of qualitative analysis for evaluating documentation.

This section concludes the analysis by summarising what was learned about the

documentation, the framework reuse problems and the process that was used.

5.8.1 Pattern language

The evidence presented suggests that the pattern language was effective at introducing

concepts to developers, particularly novices. Its patterns described many of the important

areas of the framework, explaining what parts exist and the roles they are expected to play.

Examples in the pattern language also helped to introduce concepts by illustrating how parts

could be used to solve common problems in the framework.

On the other hand, pattern languages struggle to compete with a developer’s previous

knowledge during mapping problems. There is no doubt that such knowledge is an important

 129

aspect of reuse. Developers will learn from past experiences in the framework and there is

nothing wrong with them using this knowledge to advance their current reuse task. Such

experience is not always a benefit; sometimes it can override other sources of information

and create problems during reuse. For instance, when the experience comes from outside

the domain of the framework, there is a danger that it will be at odds with the existing

architecture of the system, complicating rather than assisting the reuse task. Problems can

also occur with framework specific knowledge. In this circumstance a solution can be

selected because it was useful in the past. Just because a solution was good for a problem

in the past is no guarantee that it will be a good solution in the present but because of the

close relationship between a developer’s problem solving ability and their previous

knowledge it is difficult for other documentation to inject opinions and force a wider

viewpoint.

The pattern language in this study contained examples and hierarchies both of which were

found to be useful. Examples help to introduce concepts and show implementation detail

while hierarchies present a selection of interchangeable classes and can provide

suggestions of functionality. The question is not whether examples and hierarchies are

useful but rather whether they should be integrated into a pattern language? The answer to

this question is not clear; while both forms of documentation integrate well with the pattern

language it is possible to conceive of both working as standalone documentation. There also

was a suggestion during the study that adding these to the pattern language detracts from

the patterns themselves; with developers appearing to be drawn to these elements and

sometimes overlooking relevant material in the pattern text.

5.8.2 Micro architecture

The micro architecture documentation provided minimal support for interaction problems.

Developers seldom used the call graph notation, which was supposed to provide this

support, and there is evidence that they found the syntax and purpose of the graphs

confusing. They also complained that the call graphs described the wrong type of

information, claiming to prefer information about the interactions that occurred within the

implementation of an interface rather than the sequence of calls that led up to it.

The interface descriptions and class hierarchies were both found to be useful for the

identification of functionality during reuse. However, the support provided was rather trivial

as it merely presented class and method names and relied on the developer to speculate

about their functionality.

 130

The disjoint nature of the micro architectures was also unpopular with developers. Moving

between views was awkward as the reader had to backtrack to the micro architecture index

before each switch. It was also difficult to move between the micro architectures and source

code, as this required the developer to find the relevant source code amongst the various

files of the framework and open it in a separate editor. There is a suggestion that some of

these problems may have been caused by lack of familiarly with the micro architecture

documentation. While it seems unlikely that this could explain all of the weaknesses

identified in this evaluation, it may have reduced its effectiveness in some situations. Future

studies must do more to properly communicate how to use a documentation technique

before evaluation.

5.8.3 Reuse problems

The evaluation has provided an opportunity to gain further insight into the problems that

occur during reuse. The study did not discover any new types of problem but did provide a

tentative view of the relative frequency and significance of each problem during the task.

Mapping problems occur throughout the task and are not restricted to low experience

subjects. High and medium experience subjects are also affected although the problem for

them might be more one of selecting a solution rather than identification. Mapping problems

still appear to be the most significant of the problems discovered. They dictate the actions of

the developer over large periods of the reuse task and by their nature cause other problems

to occur or to be avoided depending on how well the solution has been mapped onto the

existing parts of the framework.

Interaction problems were found to occur less frequently than originally assumed. In part this

may be because of the experimental situation, which did not go into the detail of coding a

solution, but it also might reflect that this type of knowledge is required less frequently from

documentation. One caveat to this argument is that when a significant interaction problem

occurs, such as trying to trace aspects of MVC in the framework, a large amount of time and

effort can be spent attempting to identify and understand the interactions. This suggests that,

although interactions may not be frequent, they can be important to the reuse task.

Functionality problems were very frequent in the task. Despite their frequency they do not

appear to trouble developers overly during reuse. The reason for this is that each

 131

functionality problem is relatively small and therefore quite contained. In such circumstances

a developer’s failure to understand a part of the framework does not affect their overall

solution. Functionality problems are also well supported by available documentation. This

study has shown that developers do not like using source code, but the fact is they can use it

and often do get useful information from it. There are also other alternatives, such as

JavaDoc, or developers can also use class or method names to guess at the underlying

functionality.

Architecture problems were not captured well by this study. They remain a target for future

investigations, which will have to take place over a longer timescale to identify the size and

significance of architectural issues. One observation that can be made about the

architectural concerns identified in this study is that they all represented worries about the

future impact of solutions. Arguably, this can be seen as an extension of the mapping

problem where one is trying to find a solution which not only fits onto the existing architecture

but that is also intended by that architecture.

5.8.4 Study lessons

The evaluation of framework documentation is a relatively rare occurrence. In part this is

because of the difficulty in gaining access to relevant information and then being able to

analyse how that data relates to documentation performance. This study has attempted to

use a qualitative approach to overcome some of the problems associated with such

evaluations. While this has provided many useful insights into documentation use it has also

been a learning process in the use of such evaluations.

The use of a talk aloud protocol and video recording software worked well. It helped to

provide insight into the thought processes of developers during reuse and it allowed the

developers’ thoughts to be recorded immediately after they had occurred. This is a

tremendous advantage over the first study in this thesis because there is no opportunity for

events to be forgotten or reorganised to hide mistakes and the taping means that the data

can be captured verbatim for later analysis.

One of the most significant challenges for this type of investigation is how to deal with the

volume of data it produces. The talk aloud protocols created an almost overwhelming

amount of material to transcribe and analyse. If possible, future studies should try to

minimise the amount of information they capture, or alternatively increase the amount of

person hours available to process it. Also, if recording to tape, high quality microphones

 132

should be used and several should be positioned around the environment to make certain

that the audio captured is as strong as possible. Similarly, the acoustics of the environment

should be considered and, if possible, a quiet location chosen which will not be affected by

other sources of noise.

A major problem with qualitative analysis is that it relies on the specific circumstances of an

investigation to dictate what information to capture and what processes to use during

analysis. To some extent this is unavoidable but it can be mitigated by careful preparation. A

pilot study, performed on a small amount of data before the real investigation began, would

allow a researcher time to identify and to practise suitable analysis techniques.

Future studies should also seek to address different timescales and environments of reuse.

This study was limited by its use of academic volunteers and the relatively artificial task they

were asked to perform. Ideally future studies should seek industrial settings to perform

evaluations. Industrial users are likely to have different motivations to complete a task and

real world tasks will produce more authentic requirements which would be of benefit to future

evaluation. There is also a need to apply similar studies to the many forms of unvalidated

documentation that exist. This may be quite difficult because many of the techniques are not

described in sufficient detail to allow others to create effective replications but it is at least

hoped that the developers of future documentations might consider the importance of

evaluation and provide evidence to support their claims.

5.9. Conclusions

This chapter has described the evaluation of a pattern language and micro architecture

based documentation that aimed to address the four problems of framework reuse. The

study involved seven academic participants instantiating the JHotDraw framework to create

a simple Blocks World application. The evaluation was performed using qualitative

techniques and employed a talk aloud protocol and video capture to record developer

thoughts and actions during the study. The data was transcribed into textual narratives

describing each developer’s reuse process and the problems they encountered. This was

then analysed by creating different views of the data to identify what problems were

experienced, what documentation accesses occurred and what solutions were produced.

The results show that the pattern language provides some support for mapping problems by

introducing concepts, providing examples and class hierarchies. Sometimes, this support is

overwhelmed by a developer’s natural instinct to trust their previous experience which,

 133

although often useful, can sometimes trap developers into poor solutions. The micro

architecture documentation was less useful and its support for interaction problems was

largely ignored. It did provide some support for functionality but even this was quite limited,

consisting of identifying classes and methods only by their names. The study also revealed

that source code, although effective, was unpopular with developers who often requested

JavaDoc and were reluctant to use the code. It has also confirmed the existence of the four

problem categories of framework reuse and has provided insight into the frequency of their

occurrence and the impact they have had on developers’ reuse processes.

The information provided by this study, while identifying weaknesses in both documentations

has not ruled out the use of either as framework documentation. In the future improvements

can be made which might help the pattern language to complete against and influence the

decisions made by a developer’s previous knowledge. The micro architectures could also be

improved by providing a more unified notation which possibly describes semantic sub

sections of the framework and by better educating developers about its use.

 134

6 Conclusions

This thesis makes several contributions to the comprehension and documentation of object-

oriented frameworks. It has identified a set of problem categories that affect framework users

during reuse. Namely: mapping, interaction, functionality and architectural problems. The

identification of these categories enables the comparison of the level of support offered by

competing documentation techniques. An understanding of these problem categories can

also help to drive the development of new forms of documentation, informing their content

and presentation to increase the support offered for the problem categories. Finally, they can

assist with the identification of useful combinations of documentation to provide coverage for

different types of problem while minimising the amount of redundancy or overlap in the

material provided.

This study has investigated the concept of a pattern language and modified the format in an

attempt to make them better suited to supporting mapping and architectural reuse problems.

It suggests that pattern languages can be an effective way to introduce new concepts to

developers. In many cases, when a developer is unsure how to proceed, the language can

act as a prompt and suggest ideas to them. It supports mapping solutions by describing

relevant parts of the framework and shows examples for developers to copy. However,

pattern languages are far less successful when a developer has already made up their mind

about what to do. Sometimes framework developers appear to become fixated with a

solution even if it is not the best option to take. In such situations developers ignore the

pattern language and proceed with their own solution regardless of its effects on the rest of

the system. The pattern language was expected to act like a devil’s advocate in such

situations, challenging the developer with alternative solutions and allowing them to consider

the relative merits of each approach. This did not happen and as a consequence, developers

would sometimes produce modifications which were difficult to make, were incompletely

specified or which damaged the integrity of the existing framework.

The thesis has also investigated micro architectures as an aid to framework comprehension

and proposed a documentation to describe them. Micro architectures help to address the

scale of a framework, making the implementation detail easier to digest by dividing the code

into independent sections of functionality. The micro architecture documentation has not

been as useful as expected. In particular, the call graph view, which was supposed to help

developers understand and trace interactions through the framework, was hardly used

during the evaluation. In part this may have been caused by lack of familiarity with this type

 135

of documentation (clearly it did help in one or two isolated cases) but more importantly, it

appears to have required too much effort to be useful. Developers made better use of the

other views offered by the micro architecture documentation. The interface descriptions and

class hierarchies were both useful for suggesting functionality and assisting navigation to

relevant parts of the source code, although this could arguably be better provided by existing

approaches such as JavaDoc. There is a suggestion that some of the difficulties may have

been caused by a lack of familiarity with the technique but it seems likely that further

alterations will be required to produce effective micro architecture based documentation in

the future.

An unexpected finding of this work was the extent to which previous knowledge influences

the decisions taken during framework reuse. Previous knowledge shapes the way

developers think about and perceive reuse problems. It can derive from any past learning

experience, not just computer science or programming knowledge but other forms of

problem solving or logical thought. This can have a significant affect upon how a developer

attempts to map a solution onto the existing structures of the framework. Sometimes, when

the expectations of the re-user align with the existing architecture, there is no problem and

previous knowledge actually helps to create the solution. Sometimes, this doesn’t happen

and there seems to be a disparity between the solutions proposed by the developer and the

material offered by a framework. In these situations previous knowledge can blinker a

developer and prevent the consideration of alternative solutions. It is possible that the extent

of this problem has been exacerbated by the experimental set-up used for the evaluation.

The short timescale may have placed too much pressure on developers to produce a

solution, resulting in a tendency to go with their first instinct or to rely more heavily on past

experience. This remains an open question for future studies to address.

Another contribution made by this thesis is the identification and description of two

alternative approaches to documentation evaluation. A lightweight strategy was adopted in

the first experimental study. It used a combination of user reports and questionnaire

information to construct a profile of framework reuse and the capabilities of different

documentation. This approach provides good insight into a developer’s thoughts about

documentation and also allows a wide range of techniques and large numbers of developers

to be considered at the same time. On the other hand, it can only provide a second-hand

insight into the reuse process and there is a possibility that this might reduce the accuracy of

its findings. A more heavyweight process was employed for the second evaluation, using an

in-depth, observation study to assess the utility of the two new forms of framework

documentation. This approach provides a much more accurate insight into documentation

 136

performance but is far more expensive to perform and can only address a small number of

documentation techniques and developers at a time.

Both techniques have demonstrated their usefulness during evaluation but it may be

possible to make alterations from the implementation presented in this thesis to improve

future studies.

6.1. Lessons learned

Several valuable lessons have been learned which should benefit future research. The

evaluation of documentation has revealed that it doesn’t always operate as expected. It is

important to detect such occasions and to try to identify the reasons for the unexpected

behaviour. To illustrate the benefits of evaluation consider the micro architecture

documentation proposed by this thesis. It initially seemed to be an effective technique. It

presents important parts of the framework to a re-user and provides an understanding of the

context in which the part should be used. However, when evaluated the documentation was

not used as expected. Developers did not develop an understanding of the surrounding

interactions; instead they used the documentation to provide limited insight into functionality.

The disparity between intended and actual use was apparently caused by information being

distributed across multiple views which required considerable effort to navigate. This was

something that developers did not seem prepared to do which severely reduced the

effectiveness of the documentation. This result, although potentially disappointing, is actually

quite helpful because it provides a direct suggestion about how such a technique could be

improved (namely by integrating separate views into one cohesive document). By performing

such an evaluation, and possibly iterating over several versions, the final documentation

produced should be more likely to provide useful support for framework reuse.

This thesis has also identified a number of problems which can arise during empirical work.

Experimental factors such as time pressure and lack of familiarly with documentation are

difficult but important problems to overcome. Time pressure can lead to participants

producing poor quality solutions in a rush to meet the task deadline. A lack of familiarly with

documentation can cause developers to favour existing techniques or use new techniques

inappropriately. The solution to these problems is straightforward. Better training ought to be

provided so that developers know how to use documentation prior to an experimental study.

Where possible studies should take place over longer time scales (e.g. days or weeks) or

require less work in the available time (e.g. provide focused questions for the developer to

 137

answer). Other improvements that could be made to the evaluation process include:

reducing the amount of data captured during observations, allocating more person hours to

process the data, and the use of a pilot study to refine the analysis procedures beforehand.

Reducing the data captured by a study is unusual for a qualitative experiment, the traditional

argument being that it is better to collect too much data rather than too little and then sort out

what is relevant during analysis. This can result in large amounts of data and a difficult

subsequent analysis. It may be possible to design a study which only captures key

information; for example explicit references to documentation, which would reduce the

amount of analysis required. Alternatively, if a large amount of data must be captured, it

would seem sensible to budget for a large period of time for analysis, or provide extra

personal to reduce the burden. In either case, it is necessary to include a pre-study to allow

researchers to practice their observation skills and refine suitable analysis techniques.

A question that naturally arises from this thesis is how should object oriented frameworks be

documented? The answer is somewhat qualified, because much more remains to be done in

the evaluation of framework documentation, but two approaches can be identified as

promising candidates. The combination of a pattern language and a set of micro architecture

documentation is one approach. Pattern languages can address mapping and architectural

issues and micro architectures appear relevant for an understanding of the implementation

details of a software framework. In both cases this thesis has revealed deficiencies within the

existing documentation that limit their effectiveness. As such it is difficult to recommend this

approach without further research to improve their usefulness.

An alternative approach, which may be of benefit in the meantime, is to use a combination of

examples and practical exercises to teach developers how to use a framework. There is

some evidence in this study and in the literature that such an approach can be useful.

Students in the software architecture class were exposed to this environment for a number of

weeks before being asked to create their modifications to the framework. While other

documentation was available, it is clear from their responses in the questionnaire (Chapter 2)

and in the coursework reports, that they found examples and practicals to be a useful form of

documentation during this time. This perception is backed up by the work of Dénommée

(Dénommée 1998), Sparks et al. (Sparks, Benner and Faris 1996) and Schull et al. (Schull,

Lanubile and Basili 2000) who have all commented positively on example driven techniques.

Arguably, this approach also has the benefit of being a relatively simple form of

documentation to create. Examples are easy for experienced developers to create and while

some critics argue that the choice of example is important (e.g. Dénommée 1998) this work

used a fairly arbitrary collection of examples and practical exercises to achieve at least an

 138

initial level of framework comprehension. Despite their utility examples are not a panacea, as

there is evidence in this thesis and also in the wider literature to suggest that they can be

incomplete in their coverage (Schull, Lanubile and Basili 2000) and damaging to the

architecture of a framework (Schneider and Repenning 1995). In the longer term, it is hoped

that pattern languages and micro architectures will be able to provide a documentation

technique which overcomes these limitations while still retaining the ease of creation and use

of an example driven approach.

6.2. Future work

This study has suggested that a systematic empirical evaluation of documentation can be an

effective strategy to identify the problems of framework reuse and to enhance the support

provided by framework documentation. There are a number of ways in which this study could

be improved upon by future evaluations, including: the use of different frameworks, more

realistic environments and longer periods of evaluation. The use of different frameworks

(especially different types of framework) may help to further define the problem categories

identified in this study. It may identify problems which did not occur within JHotDraw or

provide a more accurate understanding of the relative importance and frequency of problem

categories across frameworks. Setting evaluations in different environments will also

improve the accuracy of the evaluation. This thesis drew its findings from academic subjects,

working in an experimental situation. An alternative setting, using industrial participants and

using actual development situations could result in more accurate findings. It would also be

useful to assess documentation use over a longer period of time. This would enable

developers to overcome any learning effects from new documentation, expose the

documentation to a wider range of problem situations, and enable more exploration of the

differences between experienced and novice framework users. However, longer evaluations

would be harder to perform because more data would have to be collected and it would be

difficult to account for external influences affecting a developer during observation periods.

6.2.1 Improvements to investigated documentation

The form of pattern language and micro architectures used in this study were found to have

weaknesses in addressing framework reuse problems. The study has found no evidence to

suggest that either form of documentation should be abandoned altogether but the results of

the user evaluation suggest areas of future work which may improve the effectiveness of

both forms of documentation.

 139

The pattern language did not do enough to attract the user away from their pre-conceived

ideas of a solution to those more suited to the framework. Future pattern languages should

concentrate on providing such support. This may require a greater emphasis on the types of

problems a developer may encounter during a modification rather than a more general

description of framework functionality (a point advocated in other discussions about pattern

languages e.g. (Meszaros and Doble 1998)). It could also require the text of each pattern to

contain a section on motivation to argue for the adoption of that solution. Future studies

ought to compare different types of pattern against each other to provide a better

understanding of what types are possible and which are best at communicating mapping

support to developers. Another topic which requires significant research is how to identify the

range of patterns that ought to be included in a language. This is important because it

defines the range of support offered by the documentation. At present it is not clear how to

reliably and systematically identify a set of patterns which will provide this support without

extensive domain knowledge on behalf of the pattern writer. Such guidance is critical in order

to reduce the effort and cost involved in pattern writing and key to writing effective pattern

languages.

The micro architecture documentation requires greater modification to become useful. Its

major weakness was the number of different views it contained and the difficulty in

navigating between them. This could be improved in a number of ways; perhaps the most

obvious being to bring the separate pieces of information together into one larger

description. A potential example of this type of documentation was shown earlier in the

thesis (Figure 24, Chapter 4). That particular form of description was disregarded because

of the difficulty in identifying and describing parts of the framework as cohesive subsystems.

More work has to be done in this area to investigate whether such micro architectures can

be reliably decomposed from a larger framework and if so whether a notation similar to that

shown in Figure 24 is adequate to document them.

A final question of interest is the relationship between pattern languages and micro

architectures. In this thesis they have been presented as two separate forms of

documentation but there is a need to consider the relationship between them. This is

because mapping and architectural concerns eventually have to give way to implementation

detail as a solution is created. This suggests that the relationship between the high level

design type documentation and the low level implementation detail is important and warrants

further investigation. Another motivation for this work is that both the pattern language and

micro architecture are closely related to the concept of a pattern. This similarity leads one to

suggest that perhaps, although serving different purposes, the two forms of documentation

 140

are actually very similar. This could lead to the creation of a unified pattern language with

design oriented patterns at the top and implementation oriented patterns at the bottom. Such

an idea is appealing because the interplay between the two forms of pattern might help with

the process of identification. In other words, the relationship between the two levels of

documentation might actually help with the identification of both types of pattern.

6.3. Other documentation techniques

This thesis has focused primarily on the evaluation of a pattern language and micro

architecture based documentation but a number of other forms of documentation could

benefit from further exploration particularly; sets of examples, UML and forms of tool support.

JHotDraw comes supplied with four example applications and these have been thoroughly

mined and explored by participants searching for clues about how to use parts of the

framework. Examples can be successful, and they are often advocated in the literature as

the means to document frameworks. This study would not disagree with their utility but from

a practical perspective they have limitations. Examples are relatively cheap to produce; the

creator of the framework can churn out a few simple applications that show a lot of

functionality quite easily. The challenge is to properly package those examples so that

subsequent developers can easily appreciate what each example is trying to get across. In

addition the concrete nature of examples suggests that there would have to be a great

number of them to cover the breadth of framework functionality; these factors increase the

cost of creation. As an alternative, this study has proposed that examples should play an

important role as an integrated part of a pattern language. Here the benefit of examples, as

concrete descriptions of behaviour, can be felt while the pattern helps to generalize their

lesson to a wider audience.

An omission in the coverage of documentation investigated in this thesis has been a serious

appraisal of UML. It was only looked at briefly using the high level model of JHotDraw that is

provided with the framework. This provides little more that a starting point for further

understanding and there is little evidence that developers found it critical in their

understanding. But UML can be much more than a pithy overview. It can describe the

classes, the methods and the static and dynamic information that is present within a system.

UML has also been adapted and modified specifically for frameworks; UML-f (Fortuora, Pree

and Rumpe 2000) attempts to show where parts of the framework can be modified and what

alternatives exist to plug into the gaps. It was considered beyond the scope of this work to

 141

create a complete coverage of a framework with UML. However, the views provided by

current reverse engineering tools e.g. Together (Borland 2005) do provide some idea of its

utility. It would appear to offer the type of support that may be useful for functionality or

interaction type problems but there are issues with the scale of diagrams and the dynamic

nature of frameworks. UML diagrams that describe a framework can easily cover several

pages making them unwieldy to manipulate and absorb. Framework understanding also

requires a significant degree of dynamic information which is difficult to provide using UML.

Polymorphism is employed extensively by frameworks to create flexibility but it creates

problems for UML. For example, instead of one sequence diagram to describe the

interactions of a part of the framework there might be several diagrams, one for every

potential polymorphic substitution. These diagrams might in turn feature other examples of

polymorphism each of which could be multiplied out creating a large number of diagrams to

comprehend. Both of these problems, scale and dynamics, are serious inhibitors to the use

of UML as framework documentation. Nevertheless, the prominent position of UML as a

mechanism to describe object-oriented designs warrants further exploration in the future.

Tool support is another area that is worthy of future attention. Obvious advantages of tools

are that they can present a number of different views of a framework and they can also

handle a framework’s scale by providing support for searching and indexing. The downside

of tool development is the cost and difficulty of producing the tools. There is a need to

investigate the utility of current tools and to identify where tools can best contribute to

framework comprehension. This research has provided some insight into the support that

tools might offer framework developers which may serve as a starting point for further

investigation and development.

Tools could offer useful support for mapping problems by leading a developer through the

choices they have to make when instantiating an application. This could help novice users

who may not be familiar enough with the framework, to ask relevant questions, in the correct

order to produce a complete application (Tools such as FRED (Hakala et al. 1998) provide

some support for this functionality). Such support is not as useful to an experienced

developer who may find such guidance inflexible or redundant. Instead they may benefit

more from tools which can automate repetitive or boring tasks within the frameworks (such

as generating boilerplate code for common modifications) allowing them to concentrate more

on the unique aspects of their modification.

Other tool support could use static and dynamic analysis to provide users with information

about the call structure of their application and the relative frequency with which particular

 142

calls occur. Such information could be an important starting point for the construction of a

mental model of a frameworks interaction. Existing tools can provide such information but it

is often provided in overwhelming amounts. The challenge is to find ways to filter or

otherwise reduce the volume of information presented so that it can be more easily absorbed

by framework developers.

The potential of tool support for architecture and functionality problems is less obvious. To a

certain extent architecture can be addressed by supporting the mapping problem but

perhaps tools could be used to mine architectural information from the framework code. At a

basic level this might provide insight into invariants which must be preserved across the

framework but more ambitiously might help to provide insight into the original developer’s

intentions about a solution helping to guide the choice of modification. Functionality may

receive some support from software visualizations tools which could reverse engineer views

of the source code to present information in a more digestible manner, although it is not clear

at present what nature such visualisations might take.

6.4. Conclusions

Object-oriented frameworks are a popular form of large scale reuse. They combine the

benefits of reusable class libraries with software architectures to create a skeleton

application that can be customised to suit a wide variety of circumstances. This utility does

not come cheaply. Frameworks are large and feature significant interaction amongst their

components. This makes them difficult to understand and to modify during reuse.

This thesis has argued that better documentation is the key to tackling this problem. The

more information that can be effectively communicated to re-users about the construction

and operation of a framework the better. This thesis has also argued that there are key

requirements that documentation must meet in order to provide useful information. In

particular it must help the developer to map solutions onto the framework code, to

understand the functionality and interactions that exist within the framework implementation

and to describe the overall architecture of the framework so that developers can plan

appropriate modifications.

Currently little evaluation is performed of framework documentation to ensure that it meets

developer needs. Ideally this thesis will convince others of the importance of careful

evaluation of framework documentation. The evaluation of a pattern language and micro

 143

architecture based documentation shows how expectations are not always borne out in

practice and also how evaluation can usefully feed back into development by identifying

areas of weakness in the original documentation. It is vitally important for framework reuse

that the documentation community begins to properly validate its work. Only through this

approach can we produce a wider understanding of what documentation works and in which

circumstances it ought to be used.

 144

References

Alexander, Christopher. 1979. The Timeless Way of Building. New York: Oxford University

Press.

Alexander, Christopher, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid Fiksdhal-

King and Shlomo Angel. 1977. A Pattern Language - Towns, Buildings, Construction. New

York: Oxford University Press.

Apple. 2005. MacApp. http://developer.apple.com/tools/macapp/. (Accessed on 8 February

2005).

Bass, Len, Paul Clements and Rick Kazman. 1998. Software Architecture in Practice.

Reading, MA: Addison Wesley.

Beck, Kent. 2000. Extreme Programming Explained: Embrace Change. Reading, MA:

Addison Wesley.

Beck, Kent and Ward Cunningham. 2005. HotDraw. http://c2.com/cgi/wiki?HotDraw.

(Accessed on 9 Februrary 2005).

Beck, Kent and Erich Gamma. 1999. JUnit A Cook’s Tour. JavaReport 4(5). Available online

at http://junit.sourceforge.net/doc/cookbook/cookbook.htm.

Beck, Kent and Ralph Johnson. 1994. Patterns Generate Architectures. In Proceedings of

the 1994 European Conference on Object Oriented Programming held in Bologna, Italy,

June, 1994, edited by M. Tokoro and R. Pareschi, 139-149. Springer.

Booch, Grady. 1994. Object Oriented Analysis and Design with Applications 2nd ed.

Redwood City CA: Benjamin/Cummings Publishing Company.

Borchers, Jan. 2001. A Pattern Approach to Interaction Design. John Wiley and Sons.

Borland. 2005. Together. http://www.borland.com/together/. (Accessed on 10 February

2005).

Bosch, Jan, Peter Molin, Michael Mattsson, PerOlaf Bengtsson. 1999. Framework Problems

and Experiences. In Building Application Frameworks: Object-Oriented Foundations of

Framework Design, ed. M. E. Fayad, D. C. Schmidt and R. E. Johnson, 55 - 82. John Wiley

and Sons.

Bosch, Jan. 2001. Design and Use of Software Architectures: adopting and evolving a

product line approach. Harlow, UK: Addison Wesley/Pearson.

Brooks, Ruven. 1978. Using a Behavioural Theory of Program Comprehension in Software

Engineering. In the Proceedings of the 3rd International Conference on Software

 145

http://developer.apple.com/tools/macapp/
http://c2.com/cgi/wiki?HotDraw
http://www.borland.com/together/

Engineering held in Atlanta, Georgia, USA. May 1978. 196-201. Piscataway, NJ: IEEE

Press.

Brown, Kyle and Bruce Whitenack. 1996. Crossing Chasms: A Pattern Language for Object-

RDBMS Integration. In Pattern Languages of Program Design Vol. 2, ed. J. Vlissides, J. O.

Coplien and N. Kerth, 227-238. Reading, MA: Addison Wesley.

Buhr, Raymond J.A., 1996. Use Case Maps for Attributing Behaviour to System Architecture.

In Proceedings of the 4th International Workshop on Parallel and Distributed Real-Time

Systems held in Honolulu, Hawaii, USA, April, 1996. 3-11. Washington, DC: IEEE Computer

Society.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad and Michael Stal.

1996. Pattern-Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley

and Sons.

Butler, Greg and Pierre Dénommée. 1997. Documenting Frameworks to Assist Application

Developers. In Eighth Workshop on Institutionalising Software Reuse. Available online at:

http://www.umcs.maine.edu/~ftp/wisr/wisr8/papers/butler/butler.html (Accessed on 19

August 2005).

Butler, Greg, Rudolf K. Keller and Hafedh Milli. 2000. A framework for framework

documentation. ACM Computing Surveys 32(1).

Cisco Systems. 2005. Cisco Element Manager System. http://www.cisco.com

/en/US/products/sw/netmgtsw/ps829/. (Accessed on 8 February 2005).

Codenie, Wim, Koen De Hondt, Patrick Steyaert and Arlette Vercammen. 1997. From

Custom Applications to Domain-Specific Frameworks. Communications of the ACM 40(10):

70-77.

Dénommée, Pierre. 1998. A Case Study in Documenting and Developing Frameworks.

Master’s Thesis, Concordia University, Canada.

Dey, Ian. 1993. Qualitative Data Analysis: A User-Friendly Guide for Social Scientists.

London, UK: Routledge.

Eclipse. 2005. Eclipse. http://www.eclipse.org/. (Accessed on 11 February 2005).

Edwards Brian, 1972. Statistics for Business Students. Collins.

Fairbanks George. 2004. Software Engineering Environment Support for Frameworks: A

position paper. In Workshop on Directions in Software Engineering Environments. Available

online at: http://hdcp.org/Publications/WoDiSEE_ICSE04_Fairbanks.pdf (Accessed on 19

August 2005).

 146

http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Regine Meunier/104-1770077-1441529
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Hans Rohnert/104-1770077-1441529
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Peter Sommerlad/104-1770077-1441529
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Michael Stal/104-1770077-1441529
http://www.umcs.maine.edu/~ftp/wisr/wisr8/papers/butler/butler.html
http://www.eclipse.org/
http://www.cs.auckland.ac.nz/~herm/WoDiSEE2004/
http://hdcp.org/Publications/WoDiSEE_ICSE04_Fairbanks.pdf

Fayad, Mohamed, Douglas C. Schmidt and Ralph E. Johnson. 1999. Building Application

Frameworks: object oriented foundations of framework design. New York , NY, John Wiley

and Sons.

Fayad, Mohamed, Douglas C. Schmidt. 1997. Object Oriented Application Frameworks.

Communications of the ACM, 40(10):32-38.

Fontoura, Marcus, Wolfgang Pree and Bernhard Rumpe. 2000. UML-F: A Modelling

Language for Object Oriented Frameworks. In Proceedings of 2000 European Conference

on Object Oriented Programming held in Sophia Antipolis and Cannes, France, June, 2000,

edited by E. Bertino, 63-82. Springer.

Fraser, Steven, Kent, Beck, Grady Booch, Jim Coplien, Ralph Johnson and Bill Opdyke.

1997. Beyond the Hype: Do patterns and frameworks reduce discovery costs? In

Proceedings of 1997 conference on Object Oriented Programs, Languages and Applications

held in Atlanta Georgia, USA, October 1997, 342 - 344, edited by A. Michael Berman, New

York NY: ACM Press.

Froehlich, Garry, James Hoover, Ling Liu and Paul Sorenson. 1997. Hooking into Object

Oriented Application Frameworks. In Proceedings of 1997 International Conference on

Software Engineering held in Boston, Massachusetts, USA, May, 1997, 491-501. New York:

ACM Press.

Gamma and Eggenschwiler 1998. JHotDraw. http://members.pingnet.ch/gamma/JHD-

5.1.zip. (Accessed on 9 Februrary 2005).

Gamma, Erich, Richard Helm, Ralph Johnson and John Vlissides. 1994. Design Patterns:

Elements of Reusable Object Oriented Software. Reading, MA: Addison Wesley.

Gamma, Erich, Richard Helm, Ralph Johnson and John Vlissides. 1993. Design

Patterns: Abstraction and Reuse of Object-Oriented Design. In Proceedings of 1993

European Conference on Object Oriented Programming held in Kaiserslautern, Germany,

July, 1993, edited by O. Nierstrasz. 406 - 431. London, UK: Springer-Verlag.

Gangopadhyay, Dipayan, Subrata Mitra. 1995. Understanding Frameworks by Exploration of

Exemplars. In Proceedings of the Seventh International Workshop on Computer-Aided

Software Engineering held in Toronto, Ontario, Canada, July, 1995, 90-100. Washington,

DC: IEEE Computer Society.

Graham Technology. 2005. What is GT-X? http://www.gtnet.com/site/Home/

ProductsPage.htm. (Accessed on 8 February 2005).

Hakala, Markku, Juha Hautamäki, Jyrki Tuomi, Antti Viljamaa, Jukka Viljamaa, Kai

Koskimies and Jukka Paakki. 1999. Managing Object Oriented Frameworks with

Specialization Templates. In Proceedings of the Workshop on Object Oriented Technology

 147

http://members.pingnet.ch/gamma/JHD-5.1.zip
http://members.pingnet.ch/gamma/JHD-5.1.zip
http://www.gtnet.com/

held in Brussels, Belgium, July,1998, edited by S. Demeyer and J. Bosch, 199-209. London,

UK: Springer-Verlag.

Helm, Richard, Ian M. Holland, Dipayan Gangopadhyay. 1990. Contracts: specifying

behavioral compositions in object-oriented systems. In Proceedings of the 1990 European

Conference on Object Oriented Programming held in Ottawa, Canada, October, 1990, edited

by N. Meyrowitz, 169-180. New York: ACM Press.

Johnson, Ralph. 1992. Documenting Frameworks using Patterns. In Proceedings of the

1992 conference on Object Oriented Systems, Languages and Applications held in

Vancouver, British Columbia, Canada, October, 1992, 63-76. New York: ACM Press.

Johnson, Ralph and Brian Foote. 1988. Designing Reusable Classes. Journal of Object

Oriented Programming, 1(2):22-35.

Judd, Charles M., Elliot R. Smith, Louise H. Kidder. 1991. Research methods in social

relations 6th ed. Fort Worth TX: Holt Rinehart and Winston.

Kaiser, Wolfram. 2005. JHotDraw as Open-Source Project. http://www.jhotdraw.org/.

(Accessed on 8 February 2005).

Krasner, Glen E., and Stephen T. Pope. 1988. A Description of the Model-View-Controller

User Interface Paradigm in the Smalltalk-80 System. Journal of Object Oriented

Programming 1 (3):26-49.

Krueger, Charles W., 1992. Software Reuse. ACM Computing Surveys 24(2): 131-183.

Lajoie, Richard. 1993. Using Reusing and Describing Object-Oriented Frameworks. Master’s

Thesis, McGill University, Canada.

Lajoie, Richard and Rudolph K. Keller. 1994. Design and Reuse in Object-Oriented

Frameworks: Patterns, Contracts, and Motifs in Concert. In the Proceedings of the

Colloquium on Object Orientation in Databases and Software Engineering held in Montreal,

Canada, May, 1994, edited by V. S. Algar and R. Missaoui, 295-312. River Edge, NJ: World

Scientific.

Lange Beth. M. and Thomas G. Moher. 1989. Some Strategies of Reuse in an Object

Oriented Programming Environment. In Proceedings of the conference on Human factors in

computing systems held in Austin, TX, USA. 30 April-4 May 1989. Edited by K Bice and

C Lewis. 69-73. New York, NY: ACM Press.

Lange, Danny B., and Yuchi Nakamura. 1995. Interactive visualization of design patterns

can help in framework understanding. In Proceedings of the 1995 conference on Object

Oriented Systems, Languages and Applications held in Austin, Texas, USA, October, 1995,

342-357. New York: ACM Press.

 148

http://www.jhotdraw.org/

Mancl Dennis, William F. Opdyke and Steven D. Fraser. Tackling the Discovery Costs of

Evolving Software Systems. In the Proceedings of the 2002 conference on Object Orientated

Systems, Languages and Applications held in Seattle Washington, USA. November 2002.

Page 83. New York, NY: ACM Publishing

Mattsson, Michael, Jan Bosch and Mohamed Fayad. 1999. Framework Integration,

Problems, Causes, Solutions. Communications of the ACM, 42(10):80-87.

McIlroy, M. Doug. 1968. Mass produced software components. In the Proceedings of the

NATO Software Engineering Conference held in Garmisch, Germany, October, 1968, edited

by P. Naur and B. Randell, 138-155. NATO Science Committee.

Meszaros, Gerard and Jim Doble. 1998. A Pattern Language for Pattern Writing. In Pattern

Languages of Program Design 3, ed. R. C. Martin, D. Riehle, F. Buschmann, 529-574.

Reading, MA: Addison Wesley.

Meusel, Matthias, Krzysztof Czarnecki and Wolfgang Köpf. 1997. A Model for Structuring

User Documentation of Object-Oriented Frameworks Using Patterns and Hypertext. In

Proceedings of the 1997 European Conference on Object Oriented Programming held in

Jyvaskyla, Finland, June, 1997, edited by M. Aksit and S. Matsuoka, 496-510. Springer-

Verlag.

Meyer, Bertrand. 1997. Object Oriented Software Construction 2nd ed. Upper Saddle River,

NJ: Prentice Hall.

Microsoft. 2005a. Overview of ADO.NET. http://msdn.microsoft.com/ library

/default.asp?url=/ library/en-us/cpguide/html/cpconoverviewofadonet.asp. (Accessed on 8

Februrary 2005).

Microsoft. 2005b. Microsoft ASP.NET. http://www.asp.net/. (Accessed on 8 Februrary 2005).

Microsoft. 2005c. Microsoft .NET Framework: Windows Forms. http:// www. Windowsforms

.net/. (Accessed on 8 February 2005).

Michail, Amir and David Notkin. 1998. Illustrating Object-Oriented Library Reuse by

Example: A Tool-Based Approach. In Proceedings of the thirteenth conference on

Automated Software Engineering held in Honolulu, Hawaii, October, 1998, 200-203.

Washington, DC: IEEE Computer Society.

Miles, Matthew B. and A. Michael Huberman. 1994. Qualitative data analysis : an expanded

sourcebook 2nd ed. Thousand Oaks, CA: Sage Publications

Moser, Simon and Oscar Nierstrasz. 1996. The Effect of Object Oriented Frameworks on

Productivity. IEEE Computer 29(9): 45-51.

Netu2. 2005. MediaCam High Speed Screen Recording. http://www.netu2.co.uk/home.htm.

(Accessed on 8 February 2005).

 149

http://cm.bell-labs.com/cm/cs/who/doug/components.txt
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Robert C. Martin/104-1770077-1441529
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Dirk Riehle/104-1770077-1441529
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Frank Buschmann/104-1770077-1441529
http://msdn.microsoft.com/ library /default.asp?url=/ library/en-us/cpguide/html/cpconoverviewofadonet.asp
http://msdn.microsoft.com/ library /default.asp?url=/ library/en-us/cpguide/html/cpconoverviewofadonet.asp
http://www.asp.net/
http://www.netu2.co.uk/home.htm

Odenthal, Georg and Klaus Quibeldly-Cirkel. 1997. Using Patterns for Design and

Documentation. In the Proceedings of the 1997 European Conference on Object Oriented

Programming held in Jyvaskyla, Finland, June, 1997, edited by M. Aksit and S. Matsuoka,

511-529. Springer-Verlag.

OMG. 2005a. Corba. http://www.corba.org/. (Accessed on 8 February 2005).

OMG. 2005b. The Unified Modelling Language. http://www.uml.org/ (Accessed 14 April

2005).

Ortigosa, Alvaro, Marcelo Campo and Roberto M. Salomon. 1999. Enhancing Framework

Usability through Smart Documentation. In Proceedings of the 3rd Argentine Symposium on

Object Orientation held in Buenos Aires, Argentina, September 1999, 103-117. SADIO.

Pree, Wolfgang. 1999. Hot Spot Driven Development. In Building Application Frameworks:

Object-Oriented Foundations of Framework Design, ed. M. E. Fayad, D. C. Schmidt and R.

E. Johnson, 379-394. John Wiley and Sons.

Pressman, Roger, S. 1994. Software Engineering: A practitioner’s approach. 3rd ed. London,

UK: McGraw Hill.

Richner, Tamar and Stéphane Ducasse. 1999. Recovering High-Level Views of Object-

Oriented Applications from Static and Dynamic Information. In Proceedings of the 1999

International Conference on Software Maintenance held in Oxford, England, UK, September

1999, 13-22. IEEE Computer Society.

Roberts, Don and Ralph E. Johnson. 1996. Evolving Frameworks: A Pattern-Language for

Developing Object-Oriented Frameworks. In Proceedings of the 1996 Pattern Language of

Programming Conference held in Illinois, Chicago, USA, September 1996, 471-486, Addison

Wesley.

Robitaille, Sébastien, Rienhard Schauer and Rudolf K. Keller. 2000. Bridging Program

Comprehension Tools by Design Navigation. In Proceedings of the 2000 International

Conference on Software Maintenance held in San Jose, CA, USA, October 2000, 22-32.

Washington, DC: IEEE Computer Society.

RoleModel Software. 1996. Drawletts. http:// www.rolemodelsoftware.com/ drawlets/

index.php. (Accessed on 9/ Februrary 2005).

Roper, Marc and Murray Wood. 2004. 52.440 Software Architecture and Design. https://

www.cis.strath.ac.uk/ teaching/ug/classes/52.440/. (Accessed on 11 February 2005).

Rosson Mary B. and John M. Carroll. 1996, The Reuse of Uses in Smalltalk Programming.

Transactions on Computer-Human Interaction 3(3) 219-253.

Schmidt, Doug C., 2005. The Adaptive Communication Environment Framework. http://

www.cs.wustl.edu/ ~schmidt/ACE.html. (Accessed on 8 Februrary 2005).

 150

http://www.corba.org/
http://www.uml.org/
http://st-www.cs.uiuc.edu/~droberts/evolving.pdf
http://st-www.cs.uiuc.edu/~droberts/evolving.pdf
http://www.cs.wustl.edu/

Schneider, Kurt and Alexander Repenning. 1995. Deceived by Ease of Use: Using

Paradigmatic Applications to Build Visual Design Environments. In Proceedings of the

Symposium on Designing Interactive Systems: Processes, Practices, Methods and

Techniques held in Ann Arbor, MI, USA, August, 1995, edited by G. M. Olsen and S. Schon,

177-188. New York: ACM Press.

SEI. 2005. Software Project Lines. http://www.sei.cmu.edu/productlines/index.html

(Accessed on 19 July 2005).

Shull, Forrest, Filippo Lanubile and Victor R. Basili. 2000. Investigating Reading Techniques

for Object-Oriented Framework Learning. IEEE Transactions on Software Engineering

26(11): 1101-1118.

Slaney, John and Sylvie Thiébaux. 1994. Adventures in Blocks World. Technical Report (TR-

ARP-7-94). Research School of Information Sciences and Engineering and Centre for

Information Science Research. Australian National University.

Somerville, Ian. 2001. Software Engineering. 6th ed. Harlow, UK: Addison Wesley/Pearson.

Sparks, Steve, Kevin Benner and Christopher A. Faris. 1996. Managing Object-Oriented

Framework Reuse. IEEE Computer 29(9): 52-60.

Steyaert, Patrick, Carine Lucas, Kim Mens and Theo D’Hondt. 1996. Reuse Contracts:

Managing the Evolution of Reusable Assets. In the Proceedings of the 1996 conference on

Object Oriented Systems, Languages and Applications held in San Jose, CA, USA, October

1996, 268-285. New York: ACM Press.

Sun Microsystems. 2005a Core Java: JavaDoc Tool. http://java.sun.com/j2se/javadoc/.

(Accessed on 7 February 2005).

Sun Microsystems. 2005b. Desktop Java: Java Foundation Classes (JFC/ Swing).

http://java.sun.com/products/jdbc/. (Accessed on 8 February 2005).

Sun Microsystems. 2005c. J2EE: Java Active Server Pages. http:// java.sun.com/ products/

jsp/. (Accessed on 8 February 2005).

Sun Microsystems. 2005d. J2EE: JDBC Technology. http://java.sun.com/products/jdbc/.

(Accessed on 8 Februrary 2005).

Van Grup, Jilles and Jan Bosch. 2001. Design Erosion: Problems and Causes. Journal of

Systems and Software 61(2): 105–119.

Vlissides, John. 1990. UniDraw: A Framework for Building Domain-Specific Graphical

Editors. ACM Transactions on Information Systems 8(3): 237-268.

 151

http://www.sei.cmu.edu/productlines/index.html
http://java.sun.com/j2se/javadoc/
http://java.sun.com/products/jdbc/
http://java.sun.com/products/jdbc/

White, Scott, Joshua O’Madadhain, Danyel Fisher and Yan-Biao Boey. 2005. JUNG: Java

Universal Network/Graph Framework. http://jung.sourceforge.net/. (Accessed on 8 February

2005).

Wienand, Andre, Erich Gamma and Rudolf Marty. 1988. ET++ an object oriented application

framework in C++. In the Proceedings of the 1988 conference on Object Oriented Systems,

Languages and Applications held in San Diego, CA, USA, September, 1988, edited by N. K.

Meyrowitz , 46-57. New York: ACM Press.

WindRiver. 2005. SNiFF+. http:// www.windriver.com/ products/ development_tools/ ide/

sniff_plus/. (Accessed on 11 February 2005).

 152

http://jung.sourceforge.net/

	Technical Reports
	Publications
	Understanding object-oriented frameworks
	Introduction
	The importance of software reuse
	Motivations for reuse
	Limited uptake of reuse

	The reuse of object-oriented frameworks
	Framework skeleton
	Framework class libraries
	Types of framework
	The growth in popularity of frameworks
	Discovery costs
	The difficulty in reusing frameworks

	Describing frameworks
	Product line architectures
	Thesis outline
	Contribution to knowledge
	Identifies key problems of framework reuse: It identifies a
	Evaluates framework documentation: It evaluates many common
	Improves existing forms of documentation: It investigates al
	Provides guidance for future evaluations: It provides guidan

	Thesis Assumptions
	Thesis structure
	Chapter 2 presents a review of the literature, highlighting

	Framework documentation techniques
	Introduction
	Source code
	Micro architectures
	Macro-architectures
	Hotspots
	Examples
	Prescriptive documentation
	Conclusions

	Identifying framework reuse problems
	Introduction
	Experimental design
	JHotDraw Framework

	The pattern language
	The three studies

	Data collection
	Individual developer study
	Software architecture students
	Project students

	Threats to validity
	Internal threats
	External threats

	Analysis
	Cluster analysis

	Problem categories
	Mapping
	Interactions
	Functionality
	Architecture
	The significance of reuse problems
	Related work

	Questionnaire
	Documentation review
	JavaDoc
	Pattern languages
	Design patterns
	UML
	Practical exercises
	Examples
	Mentoring
	Source code
	Summary of Documentation techniques

	Conclusions

	Documentation for framework reuse
	Introduction
	The pattern language
	The problems of interaction and functionality
	Existing Documentation techniques
	Decomposing a framework
	Documenting micro architectures
	A micro architecture notation
	An example of the micro architecture documentation

	Conclusions

	Evaluating framework documentation
	Introduction
	Experimental design
	Data capture
	Plan of analysis
	Experimental subjects
	Reuse task

	Threats to validity
	Internal threats
	External threats

	Data
	Transcription
	Blocks World solutions
	Solution

	Documentation accesses vs. reuse problems

	Analysis
	Developer solutions
	Problem versus documentation matrices

	Detailed observations
	Previous knowledge
	Pattern language
	Micro architectures
	Source code

	Researcher interference and reliability
	Results
	Pattern language
	Micro architecture
	Reuse problems
	Study lessons

	Conclusions

	Conclusions
	Lessons learned
	Future work
	Improvements to investigated documentation

	Other documentation techniques
	Conclusions

	References

