
Lecture 6: Informed Search, Part 2

Dr John Levine

CS310 Foundations of Artificial Intelligence

February 9th 2016

Today on CS310

• Searching graphs with costs attached to the edges

• Uniform cost (cheapest first) search

• Reminder of all the different search methods

• Why A* returns the optimal path

• How to design a good heuristic function

Uniform Cost Search

• If there are costs attached to the edges and we want

the lowest cost plan, we use uniform cost search

• For each path on the agenda, we store the cost of the

path.

• When selecting a path to expand, select the one with

the lowest cost

• Returns the plan with the lowest cost

• Note: this is not a heuristic search method!

Heuristic Search

• We can often estimate the distance from Si to G by

using a heuristic function, h(Si,G)

• The function efficiently compares the two states and

tries to get an estimate of how many moves remain

without doing any searching

• For example, in the blocks world, all blocks that are

stacked up in the correct place never have to move

again; all blocks that need to move that are on the

table only need to move once; and all other blocks

only need to move at most twice:

h(Si,G) = 2*Bbad + 1*Btable + 0*Bgood

Enforced Hill Climbing

• The easiest way to use a heuristic estimate to search

is to require that every single move we make takes us

strictly closer to the goal

• The form of search doesn’t even require an agenda,

since at each decision point, we take the action that

looks best to us and repeat until we’re done

• Problems: dead ends, plateaus, solution quality (i.e.

the number of steps can be very poor)

• Used to good effect in the FF planner (which reverts

to best-first search if enforced hill climbing fails)

Enforced Hill Climbing

S0,5

S3,5 S2,3 S1,5

S4,2

S5,0

Best-First Search

• Enforced hill climbing is great when it works, but for

some problems it’s better to keep track of the nodes

we haven’t yet expanded, using the agenda

• We can then use the heuristic function to determine

which node to expand next

• As new states are discovered, we add them to the

agenda and record the value of the heuristic function

• When we pick the next node to explore, we choose

the one which has the lowest value for the heuristic

function (i.e. the one that looks nearest to the goal)

Best-First Search

S0,5

S3,5 S2,4 S1,3

S6,2 S5,6 S4,5

S7,0

Best-First Search

• To get best-first search, pick the best node on the

agenda as the one to be explored next:

 let Agenda = [S0]

 while Agenda ≠ [] do

 let Current = Best (Agenda)

 let Agenda = Rest (Agenda)

 if Goal (Current) then return (“Found it!”)

 let Next = NextStates (Current)

 let Agenda = Agenda + Next

Best-First Search and Algorithm A

• Best-first search can speed up the search by a very

large factor, but can it isn’t guaranteed to return the

shortest solution

• When deciding to expand a node, we need to take

account of how long the path is so far, and add that on

to the heuristic value:

f(Si ,G) = g(S0 ,Si) + h(Si ,G)

• This will give a search which has elements of both

breadth-first search and best-first search

• This type of search is called “Algorithm A”

Algorithm A*

• If h(Si,G) never over-estimates the distance from Si to

the goal, it is called an admissible heuristic

• If h(Si,G) is admissible, then Algorithm A will always

return the shortest path (like breadth-first search) but

will omit much of the work if the heuristic function is

informative

• The use of an admissible heuristic turns Algorithm A

into Algorithm A*

• Uses: problem solving, route finding, path planning in

robotics, computer games, etc.

Why is A* Optimal?

• Suppose a suboptimal goal node, Sk, appears in the

agenda – we haven’t selected it yet, so we don’t yet

know that it’s a goal node

• Also on the agenda, there must be a node, Si which is

on the optimal path from S0 to the goal state

• Since the heuristic function, h(Si ,G), is admissible,

this means:

 g(S0 ,Sk) + h(Sk ,G) > g(S0 ,Si) + h(Si ,G)

 so Sk will never be selected over Si for expansion.

Heuristic Functions

• Consider the 8-puzzle:

• Can we come up with a good admissible heuristic

function for this problem?

1 2 3

4 5 6

7 8

7 2 4

5 6

8 3 1

Heuristic Functions

• Consider the 8-puzzle:

• h1 = number of misplaced tiles

 Exercise: calculate this for the above problem

1 2 3

4 5 6

7 8

7 2 4

5 6

8 3 1

Problem Relaxation

• We can do better than this!

• How about if we somehow relax the problem and then

solve the relaxed problem exactly?

• The relaxed problem needs to be tractable, i.e. can be

solved in polynomial time

• Relaxing the problem means allowing the laws of

physics to change, removing constraints from the

problem, generally making it easier to find a solution

• How could we relax the 8-puzzle?

Summary of Search

• Uninformed search methods: depth-first, breadth-first,

iterative deepening, uniform cost search.

• Informed search methods, using a heuristic: enforced

hill-climbing, best-first, algorithm A, algorithm A*.

• Heuristic search is generally faster, but heuristics are

problem dependent

• Algorithm A* requires an admissible heuristic to give

an optimal solution

