
Balanced FSM Generation for Empirical Studies 
 

 

Sarah Salahuddin  
Dept. of Computer Science 

University of Sheffield, UK 

s.salahuddin@dcs.shef.ac.uk 

 

 

Kirill Bogdanov  
Dept. of Computer Science 

University of Sheffield, UK 

k.bogdanov@dcs.shef.ac.uk 

 

 

Neil Walkinshaw 
Dept. of Computer Science 

University of Sheffield, UK 

n.walkinshaw@dcs.shef.ac.uk 

 

Abstract 
 

The experiments conducted to compare and analyse 

different FSM-based testing methods do not always 

provide the details of FSM generation. This paper 

focuses on automated generation of data, which can be 

used to run FSM- and X-machine test generation 

experiments. The novelty of the work is generation of 

what we call "balanced", state machines where the 

number of incoming and outgoing transitions from 

each state is a parameter specified by a user. It is also 

possible to build machines where a user-defined 

proportion of states have a few times higher number of 

incoming/outgoing transitions.  

 

 

1. Introduction 
 

Model Based Testing (MBT) uses a model of an 

application under test to derive test cases and evaluate 

test results. Empirical work in model based testing 

focuses on specific case studies using specific model 

types.  There is no established repository of models 

that could be used to evaluate a testing method or 

models characterizing a variety of realistic software. A 

possible reason is that there are various types of models 

that can be used to model systems and generate test 

sets. These different models include finite state 

machines, state charts, unified modelling language 

models, markov chains, petri nets, grammars and others 

including decision trees, decision tables and program 

design language. In this paper we focus on the 

empirical work using finite state machines. 

Evaluation of different testing methods can focus 

on their applicability to different kinds of software, 

whether different people using the same program and 

method get comparable results or even whether one can 

reuse a test set for a modified program without a 

substantial rework. When tests are generated from a 

model, one may be interested to see whether a method 

is useful for models of a specific kind or whether tests 

generated often exhibit specific properties. 

The experiments in FSM-based testing methods [1-

3] focus on the results and the data analysis with little 

focus on the FSMs being used for experiments. As 

pointed out by [4], there are three important aspects 

that characterize the maturity of the experiments in a 

study. 

The first aspect is the rigour of the experiment to 

get results beyond mere data analysis. If the experiment 

is difficult to describe, it will also be difficult to 

replicate and thus will not be useful in future. The 

second aspect is the use of meaningful and relevant 

programs to experiment on and use of realistic 

techniques. The third aspect is to coordinate empirical 

research across the community and ensure that the 

results obtained by the experiments are ratified and 

complemented by each other. 

 In this paper we focus on the automated LTS 

(labelled transition system)/ FSM generation used in 

experiments such as those to analyse the impact of 

change on test sets. Labelled transition systems are 

state transition diagrams where each transition carries a 

single label rather than an input/output pair as in the 

case of FSMs. We implemented LTS because X-

machine test methods [1] rely on it but the generation 

algorithm presented below can be easily modified to 

produce machines with inputs/outputs instead of labels. 

This will particularly address the first aspect of [4] 

mentioned above, providing the means to develop 

libraries of state machines that can be used as 

benchmarks for experiments with FSMs. It has already 

been used in the work [5] to evaluate how resistant a 

Vasilevski/Chow [6, 7] test method is to changes. 

The rest of the paper is structured as follows: 

Section 2 describes how FSMs have been generated in 

a number of papers, section 3 describes the approach 

taken for LTS/FSM generation illustrated by an 

example, section 4 summarises the results obtained in 

[5] and section 5 concludes the paper. 

 



2. Related Work 
 

Much work has been done on experiments using 

FSMs, but there is little literature available on the 

generation of FSMs to be used in experiments. FSM 

generation can be seen as random graph generation 

with certain specific constraints on the graphs. There 

should be no equivalent states in the graph (two states 

are equivalent if they exhibit the same behaviour) and 

all states must have a path leading to them from the 

initial state. 

Dorofeeva et al [8] have tried to address the problem of 

lack of research in FSM generation. The random 

machines generated by [8] to evaluate the FSM-based 

testing methods are complete FSMs with varying 

number of states and inputs. The number of inputs 

chosen is much less than the number of states. Though 

there has been no reason provided, a logical reason is 

that the work is based on models developed for 

protocol specifications, which have been used for FSM 

testing [9].  

In another experimental evaluation of FSM-based 

testing methods, Adenilso et al [10] outline the details 

of the random FSMs used and also give the detail of 

the generation steps involved in random FSM 

generation. The authors generate random FSMs in a 

two-phase procedure. In the first phase an initially 

connected FSM is generated. This is achieved by 

selecting a state as the initial state and marking it as 

reachable, then for each state, which is not reachable, a 

reachable state is chosen and a transition is added with 

an input and an output between the pair of a reachable 

and an unreachable state. The previously unreachable 

state is then marked as reachable and the process 

continues until all states are reachable thus generating 

an initially connected FSM and completing the first 

phase. In the second phase, more transitions are added 

until the required numbers of transitions have been 

added. In this phase the choice of states is made 

randomly since all states are now reachable. One 

drawback to this approach is that the machine could 

have states with very low or very high numbers of 

incoming/outgoing transitions. 

The use of random graph generation algorithms 

could be a possible way to generate FSMs with the 

necessary constraints since FSMs are directed graphs. 

The JUNG framework [11]could be used for this 

purpose. It is a free open source library that allows 

generation, manipulation, analysis and visualisation of 

graphs.  

Of particular interest are the algorithms of 

randomly generated graphs in the JUNG network. The 

Erdös and Réyni [12] random graph generation 

algorithm produces graphs where every pair of vertices  

may be connected to each other with a probability 

specified by a user. The Barabassi-Albert [12] 

algorithm  generates undirected graphs. The generation 

starts with a small number of vertices, and at each time 

step, a new vertex is created and is connected to 

existing vertices according to the principle of 

"preferential attachment", where vertices with higher 

degree have a greater probability of being chosen.  

It appears hard to control the topology of a 

network generated with the described random 

generation algorithms in order to avoid unreachable 

and equivalent states. For this reason one has to 

generate numerous FSMs and discard those not 

satisfying those properties. Because of this it was not 

realistic to use these network algorithms. 

An important statistic, used in graph network 

analysis, is the degree of a vertex. In-degree of a state 

is the number of transitions leading into it and out-

degree of a state is the number of transitions leaving it. 

We use the term “degree of completeness” to calculate 

the in/out degree for states; it is a ratio of in/out degree 

to a number of different labels which may be placed on 

transitions. Since the machines generated have the 

same in/out degree,  

In/out degree = No. of labels * degree of completeness 

The total number of transitions can then be calculated 

using the in/out degree, 

No. of transitions = No. of states  * in/out degree 

Varying in/out degrees for each of the states in a 

machine can lead to machines with an uneven 

distribution of transitions as identified in [10]. One 

possible solution to this problem is generating 

machines with all states having the same in/out degree. 

The algorithm to do this is described in section 3.1. 

Based on the evaluation of a few models, it appears 

that software mostly satisfies this property except for a 

few states where the in/out degree is very high and 

which have been addressed in section 3.2. 

Another factor important in FSM generation is the 

number of labels; software models tend to show higher 

number of labels whereas the FSM experiments in the 

literature tend to focus on using FSM based testing 

methods for protocol testing which involves fewer 

labels, and as few as two. Therefore, in our FSM 

generation, machines generated had higher number of 

labels to be more representative of the software system 

models. 

 



3. FSM Generation Algorithm 
  

3.1 Balanced FSM Generation 
 

Using the knowledge of random graph generation 

algorithms and the necessary constraints for LTS/FSM 

generation we have developed a generator, which 

allows generating machines with given number of 

states and labels that have same in/out degrees for all 

states. Unlike the random graph generation algorithms 

discussed earlier these are “balanced” graphs and not 

entirely random in their nature.  

The machine generation algorithm is illustrated 

below using the example of a machine with 3 states and 

3 labels. 

Initially, as shown in figure 1 all 3 states are added 

to the machine and two of them are randomly chosen 

for creation of the first transition between these two 

states (S0 and S1) with a randomly chosen label a. The 

table next to the figure shows the in/out degree for each 

state and whether the state is reachable or not. For the 

next transition, the source state is chosen from the 

states that are reachable and have the lowest out-

degree; therefore only S1 can be chosen as the source 

state. The state with lowest in-degree is chosen as a 

destination state, both S0 and S2 are candidates for the 

destination state and in this case either can be chosen 

randomly. A label for the new transition is chosen 

randomly as long as that label is not used on any 

transition leaving the source state. 

 
Figure 1: The initial step in FSM generation 

Figure 2: Adding a transition 

After a transition has been added from S1 to S2 the 

table is updated and source/destination states for the 

next transition are chosen using in/out degrees. For the 

destination state of the next transition there is only one 

choice i.e. the initial state S0, and the only choice for 

the source state is S2. Therefore, the third transition is 

added between S2 and S0. The described way to 

choose source and target states ensures that all states 

are given an equal chance of being selected thus 

eliminating the factor of randomness in state selection. 

The process of adding transitions continues until the 

desired numbers of transitions have been added.  

After each selection of a pair of states and the 

transition label between them, the graph with this 

transition is checked for equivalent states and a new 

choice of source/destination states and a label is made 

if any two states become equivalent once a new 

transition is added. Figure 3a shows a machine with 

four transitions. The next transition possible could be 

from S1 to S1 using a label a shown in Figure 3b, but 

this would cause S0 and S1 to become equivalent. 

FSM-based testing methods require all pairs of states in 

the machine to be distinguishable, and therefore no 

equivalent states can exist. W set is the set of 

sequences that allows all pairs of states to be 

distinguished and in the course of testing this set is 

used for state identification. 

        

Figure 3a: Machine with 4 transitions 

Figure 3b: Adding a transition that leads to an FSM 

with equivalent states (S0, S1) 

3.2 FSM with Sun-Like States 
 

Although balanced machines generated cover the 

threat to validity mentioned in [10] regarding the 

uneven distribution of transitions, balancing the in/out 

degree can be a limitation as it may not be most 

representative of realistic software systems. To address 

this limitation, a variation of the balanced FSM was 

developed. Two additional parameters were 

introduced, (a) a ratio of states with more in/out 

transitions than the rest of the states and (b) the ratio of 

transitions from those states to the degree of 

completeness. This variation of the FSM generation 

was a result of studying several FSM software models, 

where states representing menus have a higher in/out 

degree than the other states. 

For example, a machine with 10 states and 20 labels 

with a degree of completeness 0.2 would have a total of 

40 transitions i.e. each state with an in/out degree of 

20*0.2= 4. A variation of this machine could be created 

with the proportion of sun-like states being 0.3 i.e 3 

states having more transitions than the other 7 states. If 

the number of transitions from sun-like states is chosen 

States S0 S1 S2 

In-Deg 0 1 0 

Out-Deg 1 0 0 

Reachable Y Y N 

States S0 S1 S2 

In-Deg 0 1 1 

Out-Deg 1 1 0 

Reachable Y Y Y 



to be 4 times the number of transitions from/to other 

states, this would result in a machine with 3 states with 

in/out degree of 16 and the remaining 7 states with an 

in/out degree of 4. Usually, one would want to compare 

results of experiments on balanced graphs to those 

using sun-like states and the same total number of 

transitions. Such a normalisation would yield 3 states 

with in/out degree of 8 and 7 states with in/out degree 2 

or 3.  

 

4. Experiments Using the Proposed 

Algorithm 
 

There is a lack of literature on the generation of 

realistic FSM models of software, and the focus of this 

paper is on the generation of such FSMs. We will not 

go into the details of all the results of the experiments 

conducted [5] using the described generator. Instead, to 

demonstrate the usefulness of the FSM generator we 

mention two sets of experiments where the FSM 

generator was used to generate the experimental data. 

The generated FSMs were used in experiments 

analysing the impact of change on test sets. Test sets 

were generated for the machines and then changes were 

made and test sets were generated for the changed 

machines. Knowing the details of the FSMs allowed 

analysing the changes since all possible changes could 

be calculated.  

(1) The W sets for the generated machines turned 

out to comprise of mostly singleton sequences, which is 

a characteristic representative of software models 

where the number of labels is quite large. (2) In 

addition, a W set generator that does not aim to reduce 

the size of W was producing W sets which were more 

resistant to changes than smaller W sets. 

Besides testing, our FSMs have also been used to 

evaluate the performance of a grammar inference-based 

technique [13] to reverse engineer software systems. As 

with conventional testing techniques, grammar 

inference techniques tend to only be evaluated with 

respect to (quasi-) random graphs that do not tend to 

represent state machines of realistic software systems. 

The use of our synthetic machines enabled a more 

controlled evaluation, by systematically varying the 

number of states and transitions to gain an overview of 

the accuracy and scalability of the algorithm. 

 

5. Conclusions 
 

 In this paper we have described an approach to 

generate data for LTS/FSM experiments. The generator 

has been developed with consideration of the points 

mentioned in section 3. In future, we aim to identify 

other variants of FSMs that could be representative of 

different types of software.  

 

6. References 
 

1. Bogdanov, K., Holcombe,M., Ipate,F., Seed,L., and 

Vanak,S., Testing methods for X-machines: a review. 

Formal Aspects of Computing, 2006. 18(1): p. 3-30. 

2. Chan, W.Y.L., Vuong,C. T., and Otp, M. R., An 

improved protocol test generation procedure based on 

UIOS. ACM SIGCOMM Computer Communication 

Review , Symposium proceedings on Communications 

architectures & protocols, 1989. 19(4): p. 283-294. 

3. Fujiwara, S., Bochmann,G., Khendek,F., Amalou,M. 

and Ghedamsi,A., Test Selection Based on Finite State 

Models. IEEE Transactions on Software Engineering, 

1991. 17(6): p. 591-603. 

4. Juristo, N., M,Moreno., and Vegas,S., Reviewing 25 

years of testing technique experiments. Empirical 

Software Engineering, 2004. 9: p. 7-44. 

5. Salahuddin, S., Bogdanov, K. Analysing the Impact of 

Change on State Machine Test Sets. Submitted to A-

MOST 2008.  

6. Chow, T.S., Testing software design modelled by finite-

state machines. IEEE Transactions on Software 

Engineering, 1978. 4(3): p. 178-187. 

7. Vasilevskii.M.P., Failure diagnosis of automata. 

Kibernetika. (Transl.),. July-Aug.1973. 4: p. 98-108. 

8. Dorofeeva, R., Yevtushenko,N., El-Fakih,K., and 

Cavalli, A.,R. Experimental Evaluation of FSM-Based 

Testing Methods in Proceedings of the Third IEEE 

international Conference on Software Engineering and 

Formal Methods 2005. Washington: IEEE Computer 

Society. 

9. Sidhu, D.P. and Leung,T.,K., Formal Methods for 

Protocol Testing: A detailed study. Transactions on 

IEEE Software Engineering, 1989. 15(4): p. 413-426. 

10. Simao, A., Petrenko,A., and Maldonado,J.C., 

Experimental Evaluation of Coverage Criteria for FSM-

based Testing. in Proceedings of XXI Brazilian 

Symposium on Software Engineering (SBES 2007). 

2007. Joao Pessoa, Brazil. 

11. Madadhain, J.O., Fisher,D.,Smyth.,S., White,S., and 

Boey,Y.B., Analysis and Visualisation of Network Data 

using JUNG. PrePrint, Journal of Statistical Software. 

12. Barabasi, A.L., Emergence of Scaling in Complex 

Networks. Handbook of Graphs and Networks, 2004: p. 

69-84. 

13. Walkinshaw, N., Bogdanov,K., Holcombe,M., and 

Salahuddin,S., Reverse Engineering State Machines by 

Interactive Grammar Inference in 14th Working 

Conference on Reverse Engineering (WCRE 2007). 

2007. Canada. 


	Introduction
	Related Work
	FSM Generation Algorithm
	3.1 Balanced FSM Generation
	3.2 FSM with Sun-Like States

	Experiments Using the Proposed Algorithm
	Conclusions
	References



