
Benchmarking Effectiveness for Object-Oriented Unit Testing

Anthony J. H. Simons and Christopher D. Thomson
Department of Computer Science, University of Sheffield

Regent Court, 211 Portobello, Sheffield S1 4DP, United Kingdom
{A.Simons, C.Thomson}@dcs.shef.ac.uk

Abstract

We propose a benchmark for object-oriented unit
testing, called the behavioural response. This is a
normative set of state- and equivalence partition-based
test cases. Metrics are then defined to measure the
adequacy and effectiveness of a test set (with respect to
the benchmark) and the efficiency of the testing
method (with respect to the time invested). The metrics
are applied to expert manual testing using JUnit, and
semi-automated testing using JWalk, testing a standard
suite of classes that mimic component evolution.

1. Introduction

The popularity of automated test execution tools,
such as JUnit [1], has done much to raise awareness of
the importance of frequent testing. However, there is
little quantitative data about how effective testing with
JUnit is in practice, since test-sets are constructed
intuitively and are not evaluated for their quality. In
other testing approaches, test coverage metrics are
frequently cited, such as statement, branch or multiple-
condition coverage [2]. However, it has been argued
that these, and similar metrics, merely measure the
amount of testing effort, rather than demonstrate test
effectiveness [3]. For example, no guarantees can be
made after testing about the quality of the tested
software, where any remaining errors might be found,
nor how serious they might be.

In the related discipline of software measurement,
two schools of thought have emerged regarding how
metrics should be derived. One school, exemplified by
the Chidamber and Kemmerer metrics for object-
oriented software [4], seeks to find easily measurable
quantities, without making strong claims about what
software qualities these indicate. The other school is
exemplified by Basili et al.’s GQM approach, in which
the conceptual goals are outlined, before determining
operational questions and suitable quantitative metrics

[5]. Though the latter approach is initially harder, the
extra effort is worthwhile, since the resulting metrics
more accurately measure the desired qualities.

We argue in this paper that many current testing
metrics are like the former approach, in that they count
easily measured quantities, without being able to make
any strong claims about the quality of the test-set or the
tested software. For example, path coverage metrics
[6] can be fooled by unreachable dead code and, even
if full path coverage is attained, the software has only
been fully exercised, without verifying its correctness.
Similarly, counting the number of exceptions raised [7]
in unit testing may just indicate violated preconditions,
rather than actual software faults. Test-set reduction
approaches that seek to improve testing efficiency by
filtering randomly generated test-sets [8, 9] divert
attention away from measuring test effectiveness to
measuring testing effort, a different quality.

As an example of something that is closer to the
kind of metric we seek, mutation testing is able to
characterize test-sets according to the number of faults
that they detect in fault-seeded code [10]. To the
extent that the seeded faults (code mutations) are
representative of actual software faults likely to occur
in the live system, the mutant-killing index is a true
measure of test effectiveness. In the rest of this paper,
we argue for testing metrics that measure test
effectiveness, that is, which measure to what degree a
given test-set can guarantee the correct behaviour of an
implementation; and then which measure how efficient
the testing method is in identifying effective tests.

2. Effective Testing

We believe that the basis for all effective testing
metrics should be conformance testing, which measures
how far the tested component behaves as intended, up
to the testing assumptions. The notion of correctness is
usually defined relative to a specification, whether this
is expressed as an algebra [11], a finite-state automaton

[3] or a set of logical schemas [12]. The software is
tested for conformance to the specification, which is
assumed to be correct, predicting all significant paths
and test outcomes. Since it is desirable to make
effective testing accessible to the widest possible
community, we suggest that the notion of a
specification be broadened to include semi-formal
maps from inputs to outputs, simple state machine
sketches [13] and even the oracles devised by
programmers in manual JUnit tests [1]. All of these
ways of testing for conformance should be measurable
by the proposed metrics.

2.1. Measuring degrees of correctness

The domain chosen for this paper is object-oriented
unit testing. We assume here that the granularity of
each unit is a single compiled class, whose constructors
and methods may be invoked by the test harness and
supplied with suitable test arguments. Test objects may
be created, updated in various ways and inspected for
conformance to a nominal specification. The reaction
of an object may, at different times, be contingent upon
its encapsulated state variables, or upon the input
values supplied to its methods, or upon both.

Below, we seek to quantify the notion of a class’s
behavioural response, a normative test set. A measure
of test effectiveness is defined on test sets in relation to
their coverage of the behavioural response. A test set
which exactly covers this is 100% effective, whereas a
test set which fails to observe certain reactions, or
which observes the same reaction many times, is less
effective. The metric for effectiveness is calculated
from collections of test cases:

BR, the behavioural response, a set of ideal tests;
T, a bag of tests to be measured for effectiveness;
TE = BR T, the set of effective tests in T;
TR = T – TE, the bag of redundant tests in T.

The collections T and TR are bags, since they may
contain duplicates, or equivalent tests that confirm the
same property. Two metrics are now defined for test
effectiveness, Ef(T), and test adequacy, Ad(T):

Ef(T) = (|TE | – |TR |) / |BR| test effectiveness
Ad(T) = |TE | / |BR| test adequacy

Effectiveness, the stronger metric, is the number of
effective tests minus redundant tests as a proportion of
the behavioural response. The weaker adequacy metric
ignores redundant tests and is the number of effective
tests as a proportion of the behavioural response.

2.2 Determining the behavioural response

The behavioural response of an object-oriented class
is determined by considering its state-dependent and
argument-dependent reactions separately. A reaction
is any distinct behaviour, typically a unique path
through a method (or constructor), which is intended by
the designer, or specified in the requirements. We
assume that the set of desired reactions is known.

Every method of the class has an input response,
that is, a number of distinct reactions that depend on
input values supplied to constructors and methods. We
take the maximum possible number of reactions (over
all states) as the input response for an operation, since
certain states may not permit all reactions. Selecting
inputs to trigger the input response is similar to finding
exemplar values in equivalence partition testing [12].

The input response for the class is the sum of the
input responses of its constructors and methods. The
class also has a state response, a number of distinct
reactions that depend on the state variables of the class.
We take any distinct state-related reaction (over all
operations and inputs) as indicating an abstract state.
Selecting method sequences to reach all states is
similar to computing the state cover in finite-state
testing approaches [3].

We define the behavioural response of the class as
the product of its state and input responses, that is, the
reaction of the class to every input partition for every
public operation in each of its abstract states. For
example, if a class has 3 states and 5 public operations,
of which 3 exhibit 2 input responses and the rest just 1,
then the behavioural response has 3 (3 2 + 2 1) =
24 test cases.

2.3 Relaxing testing assumptions

The behavioural response is a minimal test-set that
can confirm, or rule out, every reaction in every state.
It is still an idealized test set, in that it makes certain
assumptions about the tested unit, in order to keep the
size of the test set to a bare minimum. Note that this
test set is already more efficient than tests intuitively
chosen by programmers [13], which tend to over-
confirm expected behaviour, but fail to rule out all
unwanted behaviour [14, 15].

The two main assumptions are that the tested class
has no redundant states; and that the boundaries are
drawn correctly between the input partitions. These
assumptions may be relaxed by extending the test set.
We define BR(S,P) as the parametric behavioural
response in which S and P are integers denoting the
level of testing needed to validate redundant states and

boundary values. For example, BR(3,2) tests method
sequences up to length 3 in every state, to rule out
faults in duplicated states hiding in shorter sequences
[3]; and picks 2 exemplars from each partition, to
better verify the partition boundaries [12]. The point of
a benchmark parameterised in terms of transition path
length and the number of partition exemplars is that it
is possible to quantify precisely what any test set has
tested, which makes comparisons possible between
testing methods [14, 15].

3. Effectiveness of two testing methods

Two testing methods, using JUnit [1] and JWalk
[16], were evaluated according to the effectiveness and
adequacy metrics (see 2.1). In each case, the time
taken to devise the test sets was also measured. A suite
of 6 classes was tested, consisting of three related pairs,
representing evolving software designs. The first pair
was a linked and bounded implementation of a Stack (a
change of implementation). The second pair was a
loanable and reservable library Book (an extension by
inheritance). The last pair was a basic and modified
bank Account (with added preconditions on inputs).
The Stack examples were biased towards state-related
reactions, whereas the Account examples were biased
towards input partition-related reactions; and the Book
examples had both kinds of reaction.

Table 1. Size of the behavioural response

Test class API input R state R BR(1,1)
Stack1 6 6 2 12
Stack2 7 7 3 21
Book1 5 5 2 10
Book2 9 10 4 40
Account1 5 6 2 12
Account2 5 9 2 18

The behavioural response (see Table 1) of each test
class was determined manually from the input response
of each constructor and method and the state response
of the class, by inspection of the source code.

3.1 Testing with JUnit

JUnit is the most widely used testing tool in the
agile programming community [1]. Tests are manually
constructed, according to the programmer’s intuitions,
and automatically executed. Tests are grouped into
suites that exercise a particular method of the test class.
Because of this localised focus, it is common to find
redundant checks for the same property across different

test suites. Another feature of JUnit is the
encouragement to retest modified classes using the
saved tests as regression tests. This promotes test
reuse, where generating all-new tests from scratch is
often needed to achieve the same coverage [14].

For this experiment, an expert software tester with 3
years’ experience of using JUnit was asked to “test
each behavioural response of each test class, similar to
the transition cover and all equivalence partitions for
method inputs”. He was given full access to the source
code, as well as javadoc specifications of each API.
The time taken to create the test suites was logged.

Table 2. JUnit adequacy and effectiveness

Test class T TE TR Ad Ef time
Stack1 20 12 8 1.0 .33 11.31
Stack2 23 16 7 .76 .43 14.00
Book1 31 9 22 .90 -1.30 11.00
Book2 104 21 83 .53 -1.55 20.00
Account1 24 12 12 1.0 0.0 14.37
Account2 22 17 5 .94 .67 08.44

In Table 2, the size of the test-set T was determined
by inspecting the expert’s test-code and counting each
assertion or forced exception as a distinct test case.
The tester was able to create adequate tests, or nearly
so, in most cases (but failed to find all states of Book2;
and omitted 5 cases in Stack2). Most startling is the
degree of redundant testing, giving low effectiveness
scores. Considerable time was spent creating the tests;
shading in Table 2 indicates cases that required extra
time to debug faults in the test harness code.

3.2 Testing with JWalk

JWalk is a lazy systematic unit-testing tool [16].
The lazy systematic testing method is based on lazy
specification, inferring a specification on-the-fly by
semi-automated dynamic analysis of the evolving code,
and systematic testing, generating complete test-sets
that validate the state-space of a test class exhaustively
to bounded depths. The JWalk tool allows the tester to
compile a test oracle interactively, confirming key
properties of the test class. Oracle values are re-used
predictively during automated testing, which verifies
the states and transitions of the test class exhaustively.

Although JWalk automates the exploration of states,
it relies on programmer-adapted generators to supply
specific exemplars from equivalence partitions, if these
are desired. This might make it harder to test all input
partitions. Elsewhere, JWalk removes the burden of
having to think up unique test cases, by virtue of its

systematic exploration of states, so it was expected that
the time taken to devise effective tests with JWalk
might be much shorter than with JUnit. The human
tester was given identical instructions to the above.

Table 3. JWalk adequacy and effectiveness

Test class T TE TR Ad Ef time
Stack1 12 12 0 1.0 1.0 0.42
Stack2 21 21 0 1.0 1.0 0.50
Book1 10 10 0 1.0 1.0 0.30
Book2 36 36 0 .90 .90 0.46
Account1 12 12 0 1.0 1.0 1.17
Account2 17 17 0 .94 .94 16.10

In Table 3, the test set T was determined by
instructing JWalk to verify all states and transition
paths of length 1. For Account1, the tests were run
twice, using different generators (to vary the pattern of
inputs); and for Account2, a new BadIndexGenerator
had to be written (to deliberately raise the exceptions)
and the tests were run three times. This explains the
much longer time spent on the last example.

The state and transition coverage of JWalk was
complete. The missed input partition cases were (in
Book2) permutations in which a Book was issued and
reserved by the same person; and (in Account2) where
the Account was constructed with a negative balance.
The outstanding result is the huge time-saving with
JWalk: for most examples, it took seconds, rather than
minutes, to confirm the unique test cases.

3.3 Conclusions on the Comparison

Semi-automated testing using JWalk is clearly more
effective and massively more efficient than expert
manual testing with JUnit. This is because the tool
takes responsibility for exhaustive state and transition
coverage, but makes best use of the human tester to
confirm key oracle values interactively.

4. References

[1] Beck, K., The JUnit Pocket Guide, 1st edn., O’Reilly,
Beijing, 2004.

[2] BSI, BS-7925-2 Software Component Testing, Draft 3.4,
http://www.testingstandards.co.uk/Component Testing.pdf,
BSI/British Computer Society, London, 2001.

[3] F. Ipate, and W. M. L. Holcombe, “Specification and
testing using generalised machines: a presentation and a case

study”, Softw. Test., Verif. Reliab. 8(2), John Wiley,
Chichester, 1998, 61-81.

[4] S. Chidamber, and C. Kemmerer, “A metrics suite for
object-oriented design”, IEEE Trans. Softw. Eng., 20(6),
IEEE Computer Society, Los Alamitos, 1994, 476-493.

[5] V. R. Basili, G. Caldiera, and D. Rombach, “The goal
question metric approach”, in: ed. J. Marciniak, Encycl.
Softw. Eng., John Wiley, New York, 1994, 528-532.

[6] Information Processing Ltd., Cantata++ for testing C,
C++ and Java. http://www.ipl.com/. IPL, Bath, 2008.

[7] C. Csallner, and Y. Smaragdakis, “JCrasher: an automatic
robustness tester for Java”, Softw. Pract. Exp., 34 (11), John
Wiley, Chichester, 2004, 1025-1050.

[8] T. Xie, D. Marinov, and D. Notkin, “Rostra: a framework
for detecting redundant object-oriented unit tests”, Proc. 19th

IEEE Conf. Autom. Softw. Eng., IEEE Computer Society,
Washington DC, 2004, 196-205.

[9] T. Xie, and D. Notkin, “Tool-assisted unit test selection
based on operational violations”, Proc. 18th IEEE Int. Conf.
Autom. Softw. Eng. IEEE Computer Society, Montreal, 2003,
40-48.

[10] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava: an
automated class mutation system”, Softw. Test., Verif. Reliab.
15(2), John Wiley, Chichester, 2005, 97-133.

[11] H. Y. Chen, T. H. Tse, and T. Y. Chen, “TACCLE: a
methodology for object-oriented software testing at the class
and cluster levels”, ACM Trans. Softw. Eng. Meth., 10 (1),
ACM, New York, 2001, 56-109.

[12] P. A. Stocks, and D. A. Carrington, “A framework for
specification-based testing”, IEEE Trans. Softw. Eng.,
22(11), IEEE Comp. Soc., Los Alamitos, 1996, 777-793.

[13] W. M. L. Holcombe, “Where do unit tests come from?”,
Proc. 4th Int. Conf. on Extreme Progr. and Flexible Proc. in
Softw. Eng., LNCS 2675, Springer Verlag, Genova, 2003.
161-169.

[14] A. J. H. Simons, “A theory of regression testing for
behaviourally compatible object types”, Softw. Test., Verif.
Reliab., 16, John Wiley, Chichester, 2006, 133-156.

[15] A. J. H. Simons, and C. D. Thomson, “Lazy systematic
unit testing: JWalk versus JUnit”, Proc. 2nd Test. Acad. Ind.
Conf. Pract. Research Tech., IEEE Computer Society,
Windsor, 2007, 138.

[16] A. J. H. Simons, “JWalk: a tool for lazy systematic
testing of Java classes by introspection and user interaction”,
Autom. Softw. Eng., 14(4), Springer, USA, 2007, 369-418.

