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Abstract

We propose a benchmark for object-oriented unit 
testing, called the behavioural response.  This is a 
normative set of state- and equivalence partition-based 
test cases.  Metrics are then defined to measure the 
adequacy and effectiveness of a test set (with respect to 
the benchmark) and the efficiency of the testing 
method (with respect to the time invested).  The metrics 
are applied to expert manual testing using JUnit, and 
semi-automated testing using JWalk, testing a standard 
suite of classes that mimic component evolution.

1. Introduction

The popularity of automated test execution tools, 
such as JUnit [1], has done much to raise awareness of 
the importance of frequent testing.  However, there is 
little quantitative data about how effective testing with 
JUnit is in practice, since test-sets are constructed 
intuitively and are not evaluated for their quality.  In 
other testing approaches, test coverage metrics are 
frequently cited, such as statement, branch or multiple-
condition coverage [2].  However, it has been argued 
that these, and similar metrics, merely measure the 
amount of testing effort, rather than demonstrate test 
effectiveness [3].  For example, no guarantees can be 
made after testing about the quality of the tested 
software, where any remaining errors might be found, 
nor how serious they might be.

In the related discipline of software measurement, 
two schools of thought have emerged regarding how 
metrics should be derived.  One school, exemplified by 
the Chidamber and Kemmerer metrics for object-
oriented software [4], seeks to find easily measurable 
quantities, without making strong claims about what 
software qualities these indicate.  The other school is 
exemplified by Basili et al.’s GQM approach, in which 
the conceptual goals are outlined, before determining 
operational questions and suitable quantitative metrics 

[5].  Though the latter approach is initially harder, the 
extra effort is worthwhile, since the resulting metrics 
more accurately measure the desired qualities.

We argue in this paper that many current testing 
metrics are like the former approach, in that they count 
easily measured quantities, without being able to make 
any strong claims about the quality of the test-set or the 
tested software.  For example, path coverage metrics 
[6] can be fooled by unreachable dead code and, even 
if full path coverage is attained, the software has only 
been fully exercised, without verifying its correctness.  
Similarly, counting the number of exceptions raised [7] 
in unit testing may just indicate violated preconditions, 
rather than actual software faults.  Test-set reduction 
approaches that seek to improve testing efficiency by 
filtering randomly generated test-sets [8, 9] divert 
attention away from measuring test effectiveness to 
measuring testing effort, a different quality.

As an example of something that is closer to the 
kind of metric we seek, mutation testing is able to 
characterize test-sets according to the number of faults 
that they detect in fault-seeded code [10].  To the 
extent that the seeded faults (code mutations) are 
representative of actual software faults likely to occur 
in the live system, the mutant-killing index is a true 
measure of test effectiveness.  In the rest of this paper, 
we argue for testing metrics that measure test
effectiveness, that is, which measure to what degree a 
given test-set can guarantee the correct behaviour of an 
implementation; and then which measure how efficient
the testing method is in identifying effective tests.

2. Effective Testing

We believe that the basis for all effective testing
metrics should be conformance testing, which measures 
how far the tested component behaves as intended, up 
to the testing assumptions.  The notion of correctness is 
usually defined relative to a specification, whether this 
is expressed as an algebra [11], a finite-state automaton 



[3] or a set of logical schemas [12].  The software is 
tested for conformance to the specification, which is 
assumed to be correct, predicting all significant paths 
and test outcomes.  Since it is desirable to make 
effective testing accessible to the widest possible 
community, we suggest that the notion of a 
specification be broadened to include semi-formal 
maps from inputs to outputs, simple state machine 
sketches [13] and even the oracles devised by 
programmers in manual JUnit tests [1].  All of these 
ways of testing for conformance should be measurable 
by the proposed metrics.

2.1. Measuring degrees of correctness

The domain chosen for this paper is object-oriented 
unit testing.  We assume here that the granularity of 
each unit is a single compiled class, whose constructors 
and methods may be invoked by the test harness and 
supplied with suitable test arguments.  Test objects may 
be created, updated in various ways and inspected for 
conformance to a nominal specification. The reaction 
of an object may, at different times, be contingent upon 
its encapsulated state variables, or upon the input 
values supplied to its methods, or upon both.

Below, we seek to quantify the notion of a class’s 
behavioural response, a normative test set.  A measure 
of test effectiveness is defined on test sets in relation to 
their coverage of the behavioural response.  A test set 
which exactly covers this is 100% effective, whereas a 
test set which fails to observe certain reactions, or 
which observes the same reaction many times, is less 
effective.  The metric for effectiveness is calculated 
from collections of test cases:

BR, the behavioural response, a set of ideal tests;
T, a bag of tests to be measured for effectiveness;
TE = BR  T, the set of effective tests in T;
TR = T – TE, the bag of redundant tests in T.

The collections T and TR are bags, since they may 
contain duplicates, or equivalent tests that confirm the 
same property.  Two metrics are now defined for test 
effectiveness, Ef(T), and test adequacy, Ad(T):

Ef(T) = (|TE | – |TR |) / |BR| test effectiveness
Ad(T) = |TE | / |BR| test adequacy

Effectiveness, the stronger metric, is the number of 
effective tests minus redundant tests as a proportion of 
the behavioural response.  The weaker adequacy metric 
ignores redundant tests and is the number of effective 
tests as a proportion of the behavioural response. 

2.2 Determining the behavioural response

The behavioural response of an object-oriented class 
is determined by considering its state-dependent and 
argument-dependent reactions separately.  A reaction
is any distinct behaviour, typically a unique path 
through a method (or constructor), which is intended by 
the designer, or specified in the requirements.  We 
assume that the set of desired reactions is known.

Every method of the class has an input response, 
that is, a number of distinct reactions that depend on 
input values supplied to constructors and methods.  We 
take the maximum possible number of reactions (over 
all states) as the input response for an operation, since 
certain states may not permit all reactions.  Selecting 
inputs to trigger the input response is similar to finding 
exemplar values in equivalence partition testing [12].

The input response for the class is the sum of the 
input responses of its constructors and methods.  The 
class also has a state response, a number of distinct 
reactions that depend on the state variables of the class.  
We take any distinct state-related reaction (over all 
operations and inputs) as indicating an abstract state.  
Selecting method sequences to reach all states is 
similar to computing the state cover in finite-state 
testing approaches [3]. 

We define the behavioural response of the class as 
the product of its state and input responses, that is, the 
reaction of the class to every input partition for every 
public operation in each of its abstract states.  For 
example, if a class has 3 states and 5 public operations, 
of which 3 exhibit 2 input responses and the rest just 1, 
then the behavioural response has 3  (3  2 + 2  1) = 
24 test cases.

2.3 Relaxing testing assumptions

The behavioural response is a minimal test-set that 
can confirm, or rule out, every reaction in every state.  
It is still an idealized test set, in that it makes certain 
assumptions about the tested unit, in order to keep the 
size of the test set to a bare minimum.  Note that this 
test set is already more efficient than tests intuitively 
chosen by programmers [13], which tend to over-
confirm expected behaviour, but fail to rule out all 
unwanted behaviour [14, 15].

The two main assumptions are that the tested class 
has no redundant states; and that the boundaries are 
drawn correctly between the input partitions.  These 
assumptions may be relaxed by extending the test set.  
We define BR(S,P) as the parametric behavioural 
response in which S and P are integers denoting the 
level of testing needed to validate redundant states and 



boundary values.  For example, BR(3,2) tests method 
sequences up to length 3 in every state, to rule out 
faults in duplicated states hiding in shorter sequences 
[3]; and picks 2 exemplars from each partition, to 
better verify the partition boundaries [12].  The point of 
a benchmark parameterised in terms of transition path 
length and the number of partition exemplars is that it 
is possible to quantify precisely what any test set has 
tested, which makes comparisons possible between 
testing methods [14, 15].

3. Effectiveness of two testing methods

Two testing methods, using JUnit [1] and JWalk
[16], were evaluated according to the effectiveness and 
adequacy metrics (see 2.1).  In each case, the time 
taken to devise the test sets was also measured.  A suite 
of 6 classes was tested, consisting of three related pairs, 
representing evolving software designs.  The first pair 
was a linked and bounded implementation of a Stack (a 
change of implementation).  The second pair was a 
loanable and reservable library Book (an extension by 
inheritance).  The last pair was a basic and modified 
bank Account (with added preconditions on inputs).  
The Stack examples were biased towards state-related 
reactions, whereas the Account examples were biased 
towards input partition-related reactions; and the Book
examples had both kinds of reaction. 

Table 1.  Size of the behavioural response

Test class API input R state R BR(1,1)
Stack1 6 6 2 12
Stack2 7 7 3 21
Book1 5 5 2 10
Book2 9 10 4 40
Account1 5 6 2 12
Account2 5 9 2 18

The behavioural response (see Table 1) of each test 
class was determined manually from the input response 
of each constructor and method and the state response 
of the class, by inspection of the source code. 

3.1 Testing with JUnit

JUnit is the most widely used testing tool in the 
agile programming community [1].  Tests are manually 
constructed, according to the programmer’s intuitions, 
and automatically executed.  Tests are grouped into 
suites that exercise a particular method of the test class.  
Because of this localised focus, it is common to find 
redundant checks for the same property across different 

test suites.  Another feature of JUnit is the 
encouragement to retest modified classes using the 
saved tests as regression tests.  This promotes test 
reuse, where generating all-new tests from scratch is 
often needed to achieve the same coverage [14].

For this experiment, an expert software tester with 3 
years’ experience of using JUnit was asked to “test 
each behavioural response of each test class, similar to 
the transition cover and all equivalence partitions for 
method inputs”.  He was given full access to the source 
code, as well as javadoc specifications of each API.  
The time taken to create the test suites was logged.

Table 2.  JUnit adequacy and effectiveness

Test class T TE TR Ad Ef time
Stack1 20 12 8 1.0 .33 11.31
Stack2 23 16 7 .76 .43 14.00
Book1 31 9 22 .90 -1.30 11.00
Book2 104 21 83 .53 -1.55 20.00
Account1 24 12 12 1.0 0.0 14.37
Account2 22 17 5 .94 .67 08.44

In Table 2, the size of the test-set T was determined 
by inspecting the expert’s test-code and counting each 
assertion or forced exception as a distinct test case.  
The tester was able to create adequate tests, or nearly 
so, in most cases (but failed to find all states of Book2; 
and omitted 5 cases in Stack2).  Most startling is the 
degree of redundant testing, giving low effectiveness
scores.  Considerable time was spent creating the tests; 
shading in Table 2 indicates cases that required extra 
time to debug faults in the test harness code.

3.2 Testing with JWalk

JWalk is a lazy systematic unit-testing tool [16].  
The lazy systematic testing method is based on lazy 
specification, inferring a specification on-the-fly by 
semi-automated dynamic analysis of the evolving code,
and systematic testing, generating complete test-sets
that validate the state-space of a test class exhaustively 
to bounded depths.  The JWalk tool allows the tester to 
compile a test oracle interactively, confirming key 
properties of the test class.  Oracle values are re-used 
predictively during automated testing, which verifies 
the states and transitions of the test class exhaustively.

Although JWalk automates the exploration of states, 
it relies on programmer-adapted generators to supply 
specific exemplars from equivalence partitions, if these 
are desired.  This might make it harder to test all input 
partitions.  Elsewhere, JWalk removes the burden of 
having to think up unique test cases, by virtue of its 



systematic exploration of states, so it was expected that 
the time taken to devise effective tests with JWalk
might be much shorter than with JUnit.  The human 
tester was given identical instructions to the above.

Table 3.  JWalk adequacy and effectiveness

Test class T TE TR Ad Ef time
Stack1 12 12 0 1.0 1.0 0.42
Stack2 21 21 0 1.0 1.0 0.50
Book1 10 10 0 1.0 1.0 0.30
Book2 36 36 0 .90 .90 0.46
Account1 12 12 0 1.0 1.0 1.17
Account2 17 17 0 .94 .94 16.10

In Table 3, the test set T was determined by 
instructing JWalk to verify all states and transition 
paths of length 1.  For Account1, the tests were run 
twice, using different generators (to vary the pattern of 
inputs); and for Account2, a new BadIndexGenerator
had to be written (to deliberately raise the exceptions) 
and the tests were run three times.  This explains the 
much longer time spent on the last example.

The state and transition coverage of JWalk was 
complete.  The missed input partition cases were (in 
Book2) permutations in which a Book was issued and 
reserved by the same person; and (in Account2) where 
the Account was constructed with a negative balance.  
The outstanding result is the huge time-saving with 
JWalk:  for most examples, it took seconds, rather than 
minutes, to confirm the unique test cases.

3.3 Conclusions on the Comparison

Semi-automated testing using JWalk is clearly more 
effective and massively more efficient than expert 
manual testing with JUnit.  This is because the tool 
takes responsibility for exhaustive state and transition 
coverage, but makes best use of the human tester to 
confirm key oracle values interactively.
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