
Experience with a Concurrency Bugs Benchmark

Yaniv Eytani, Rachel Tzoref, and Shmuel Ur
University of Illinois at IBM Haifa Research Lab
Urbana-Champaign, USA Haifa, Israel

 yeytani2@cs.uiuc.edu rachelt@il.ibm.com, ur@il.ibm.com

Abstract

We describe a benchmark of publicly-available

multi-threaded programs with documented bugs in
them. This project was initiated a few years ago with
the goal of helping research groups in the fields of
concurrent testing and debugging to develop tools and
algorithms that improve the quality of concurrent
programs. We present a survey of usage of the
benchmark, concluding that the benchmark had an
impact on the research in the field of testing and
debugging of concurrent programs. We also present
new possible directions to foster a discussion about
new goals to be set for this initiative.

1. Introduction

The increasing popularity of concurrent
programming – for the Internet as well as on the server
side – has brought the issue of concurrent defect
analysis to the forefront. Concurrent defects such as
unintentional race conditions or deadlocks are difficult
and expensive to uncover and analyze, and such faults
often escape to the field. Now that all processors being
made are multi-core, the testing of multi-threaded
programs becomes even more important.

There is a large body of research that seeks to

improve the quality of multi-threaded programs, both
in academic circles and in industry. We believe that
greater impact, and better tools, could result if use was
made of the variety of relevant technologies [16].
Toward this end, a few years ago we began an
initiative to help researchers create useful technologies,
evaluate them, and share knowledge in the realm of
concurrent testing and debugging. For this purpose, we
previously created a benchmark containing multi-
threaded programs with documented bugs in them.
When combined with other artifacts, such as publicly
available instrumentation engines [9], this type of a

framework enables technology developers to
concentrate on their components and use other ready-
made components to create a testing solution.

We view this as a project to be shared by the entire

concurrent testing and debugging community. We
have conducted discussions about this project at the
PADTAD workshop series [25], starting in 2003 [15],
and with additional groups, such as the AspectJ
developers. Quite a few groups and researchers have
expressed interest in participating in this project. We
published initial results for developing a benchmark
that formally assesses the quality of different tools and
technologies and compares them at PADTAD 2004
[17], followed by a dedicated special issue of
"Concurrency and Computation: Practice &
Experience" for parallel testing and debugging [24]
[16]. Initially, we had created and documented about
forty annotated programs, most of which were small
examples annotated by undergrad students. Since then,
we have had additional contact with other researchers
who agreed to share their own repositories used mostly
for static [18][19] and dynamic [1] [14] [20] [3]
atomicity and race detection tools. We have
incorporated these into the publicly available
repository.

This paper provides the following contributions:
• Presenting our efforts in creating the benchmark

so far. We believe it is important to publicize the
benchmark content to researchers who may want
to use it and participate in it. Furthermore, sharing
our experience during the last four years with
others may promote additional such efforts.

• Showing how this type of benchmark has helped
to facilitate research with different academic
groups. We survey works that used programs from
the benchmark to demonstrate that it had an
impact for the concurrent testing and debugging
community.

• Promoting an open discussion in the testing
community on how to further extend the
benchmark.

2. Motivation and Problem Description

There are a number of distinguishing features
between concurrent defect analysis and sequential
testing. These differences make it especially
challenging if the set of possible interleavings is huge
and it is not practical to try all of them. First, only a
few of the interleavings actually produce concurrent
faults; thus, the probability of producing a concurrency
fault can be very low. Second, under the simple
conditions of unit testing, the scheduler is
deterministic; therefore, executing the same tests
repeatedly does not help. As a result, concurrent bugs
are often not found early in the process, but in stress
tests or by the customer. The problem of testing multi-
threaded programs is even more costly because tests
that reveal a concurrent fault in the field or in a stress
test are usually long and run under different
environmental conditions. As a result, such tests are
not necessarily repeatable, and when a fault is
detected, much effort must be invested to recreate the
conditions under which it occurred. When the
conditions of the bug are finally recreated, the
debugging itself may mask the bug (the observer
effect).

One might ask why creating a benchmark is a useful

effort at all. The benchmark we are describing here is
different than many others available, for various
domains, in that it not only contains programs against
which the tools are evaluated, but also a number of
additional artifacts that are useful for developing the
testing tools. For example, the bugs are annotated, so
that if a race detection tool suspects a variable,
assessment can be made to determine whether it is a
false negative or a real result. Thus, the benchmark
provides an infrastructure and a standardized way to
compare different solutions. The benchmark contains a
large number of publicly available small and well-
understood programs that help develop and debug new
testing tools, as well as several publicly available large
programs with documented bugs to allow evaluation of
scalability of tools. The large repository of programs
can also help educate about concurrent bug patterns.

Creating a benchmark for run-time testing tools is a

more challenging task than it might initially seem, for
several reasons. First, it requires a good understanding
of the programs under test. Augmenting the benchmark

with programs requires either the manual work of
writing a small program exhibiting a known bug
pattern or adapting publicly available programs to the
benchmark. In the latter case, such programs
containing concurrent bugs must first be located. It is
usually difficult to take such an arbitrary program, and
then configure and run it without previous familiarity
with the functionality of the program. In addition, it
may be even harder to write a specific test driver that
exercises code containing the bug. Specifications for
these programs may not be available in many cases.
Hence, manual work must be invested to reason about
the program behavior and write oracles that detect at
run time whether an error had occurred. Unless the
error is an uncaught exception or a deadlock,
knowledge of the excepted results or exact calculation
done is needed. A related problem is that a violation of
general criteria, such as a race condition or an
atomicity violation, may not directly translate to a
visible bug. For example, for an exception that leads to
an actual crash to occur in the Jigsaw web server,
many races ([20]) must occur during the program
execution. Thus, an exact description of the bug's
scenario can be especially important for writing a test
oracle and for evaluating tools debugging multi-
threaded code.

3. Current State, Dissemination and

Feedback

Currently the benchmark contains about 60

programs written in Java. As mentioned earlier, most
of the programs in the benchmark are small programs
that exhibit known bug patterns [26]. Other small and
medium examples are either taken from programs used
for testing by NASA, open source, Java standard
library components (Collection, stringbuffer, apache
tomcat logger, and apache commons pool collections
and libraries [3]) and other larger programs, adapted
from open source resources. Though the benchmark is
publically available, it requires an initial registration
process. This enables some tracking of the benchmark
usage. Registered users include people from academia
as well as the industry. Even though the benchmark
became available to researchers less than four year
ago, it has already been used by many groups and in a
number of published academic papers.

Below is a partial list of universities and industry

research centers that use the benchmark:
• Cornell University, Ithaca, NY
• Purdue University, West Lafayette, India
• University of Texas at Arlington

• University of Illinois at Urbana-Champaign
• NEC Laboratories America
• Brigham Young University, Provo, Utah
• Technical University of Valencia, Spain
• Queen's University, Kingston, Canada
• University of Sao Paulo, Brazil
• IBM TJ Watson Research Center
• Hong Kong University of Science and Technology
• UniTESK team, ISP RAS
• Haifa University, Israel

Below is a list of published work that used the
benchmark artifacts for development and evaluation,
segmented to different research sub-domains:

• Testing concurrent components by combining

code inspection and static analysis [2] and static
[5] and dynamic [3][4],[28] tools for race
detection and finding atomicity violations.
Random test generation [13].

• Debugging of concurrent code and bug
explanation [23][12].

• Defining new program mutation operators for
testing concurrent code [10][11].

• Evaluating different path controlling factors [6],
selection heuristics [7][8] and new testing methods
[21] for model checking multi-threaded Java code.

By examining the different publications and other
publications [27] [18], we can draw some observations
about the usefulness of the benchmark programs. We
notice that researchers from the model checking field
were interested in relatively small to medium programs
that can be easily understood and run in a model
checker. Such programs make it easy to write violation
assertions and can feasibly be model-checked. Hence,
model checking researchers found the student
programs valuable. Other researchers building static
and runtime tools that scale better prefer to try larger
open source programs and components. Smaller
programs are still very useful at the development stage
for testing the tool implementation, as carried out by
Chen, Serbanuta, and Rosu [3]. Most of the research
work is focused around detecting races and atomicity
violation as opposed to deadlock and missing signals
(e.g., wait and notify).

4. Conclusions and Future Direction

A wide range of technologies has already been
developed to tackle the problem of testing multi-thread
code. However, no silver bullet solution exists and
current research focuses on a variety of partial

solutions. One of the original goals for creating our
concurrent benchmark was to allow rapid prototyping
and development of technologies for concurrent testing
and debugging while reducing the validation
overheard. Considering the wide range of work that
has taken place using the benchmark since its
establishment, we believe that this goal has been
achieved.

Additional infrastructure can help further reducing

the development effort of tools for concurrent testing
and debugging. Examples of such infrastructures are a
generic infrastructure for instrumentation (such as [9]),
a standard for automatic test drivers to allow easy
setup (a possible solution might be similar to [22]), and
a generic open API that allows different components to
exchange knowledge about concurrent programs and
executions without having a-priori knowledge about
each other. We are currently considering which
infrastructures to include in the extension of our
benchmark.

Another direction we believe could be improved is
the use of experience reports, based on experience with
the programs and different tools using the concurrency
benchmarks. There are a limited number of taxonomies
available for concurrent bugs that mostly predate the
benchmark creation [26]. Hence a revisited taxonomy
should be devised taking into account programs in the
benchmark that contain real concurrent bugs found in
open source projects and various thread-safe libraries.
Further, more experimental evaluation is needed. This
should include a comparative work that would
compare the benchmark programs across techniques
and tools.

5. References

[1] K. Sen and G. Agha, “A Race-Detection and Flipping
Algorithm for Automated Testing of Multi-Threaded
Programs”, Haifa Verification conference, Haifa, Israel,
2006, Revised Selected Papers. Lecture Notes in Computer
Science 4383, Springer, 2007.

[2] M. Wojcicki and P. Strooper. "Maximising the
Information Gained from a Study of Static Analysis
Technologies for Concurrent Software”, Journal of Empirical
Software Engineering. 2007.

[3] F. Chen and T. F. Serbanuta and G. Rosu. “jPredictor: A
Predictive Runtime Analysis Tool for Java”, ICSE. 2008.

[4] F. Chen, M. d'Amorim and G. Rosu, “Checking and
Correcting Behaviors of Java Programs at Runtime with
Java-MOP” , RV'05, ENTCS 144, issue 4, pp 3-20. 2005.

[5] N. Kidd, T Reps, J. Dolby, and M. Vaziri, “Static
Detection of Atomic-Set Serializability Violations”, TR-
1623, Computer Sciences Department, University of
Wisconsin, Madison, WI, October 2007.

[6] M. B. Dwyer, S. Person, and S Elbaum, “Controlling
Factors in Evaluating Path-Sensitive Error Detection
Techniques”, FSE. 2006.

[7] N. Rungta and E. G. Mercer, “Generating Counter-
examples through Randomized Guided Search”, SPIN
Workshop on Model Checking of Software, Berlin,
Germany, 2007.

[8] N. Rungta and E. G. Mercer, “Hardness for Explicit State
Software Model Checking Benchmarks”, 5th IEEE
International Conference on Software Engineering and
Formal Methods, London, U.K, 2007.

[9] Y Nir-Buchbinder and S. Ur “ConTest Listeners: a
Concurrency-Oriented Infrastructure for Java Test and Heal
Tools”, International Workshop on Software Quality
Assurance, 2007.

[10] J. S. Bradbury, J. R. Cordy, and J. Dingel, "Comparative
Assessment of Testing and Model Checking Using Program
Mutation", Workshop on Mutation Analysis (Mutation
2007), UK, 2007.

[11] J. S. Bradbury, J. R. C. and J. Dingel. "Mutation
Operators for Concurrent Java (J2SE 5.0)", In Proc. of the
Workshop on Mutation Analysis (Mutation 2006), pages 83-
92, Raleigh, North Carolina, USA, 2006.

[12] Y. Eytani and T. Latvala. “Explaining Intermittent
Concurrent Bugs by Minimizing Scheduling Noise”. Haifa
Verification conference, Haifa, Israel, 2006, Revised
Selected Papers. Lecture Notes in Computer Science 4383,
Springer, 2007.

[13] Y. Ben-Asher, Y. Eytani, E. Farchi, and S. Ur. "Noise
Makers Need to Know Where to be Silent – Producing
Schedules that Find Bugs". International Symposium on
Leveraging Applications of Formal Methods, Verification
and Validation (ISOLA), 2006.

[14] C. von Praun and T. R. Gross, “Static Detection of
Atomicity Violations in Object-Oriented Programs”, Journal
of Object Technology 3(6): 103-122 (2004)

[15] K. Havelund, S. D. Stoller, and S. Ur, “Benchmark and
framework for encouraging research on multi-threaded
testing tools”, Workshop on Parallel and Distributed Testing
and Debugging, 2003.

[16] Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur,
“Toward a Framework and Benchmark for Testing Tools for
Multi-Threaded Programs”, Concurrency and Computation:
Practice & Experience, 19(3): 267-279 (2007).

[17] Y. Eytani and S. Ur, “Compiling a Benchmark of
Documented Multi-threaded Bugs”, Workshop on Parallel
and Distributed Testing and Debugging, 2004.

[18] M. Naik, A. Aiken and J. Whaley, “Effective Static
Race Detection for Java”, Conference on Programming
Language Design and Implementation (PLDI), 2006.

[19] M. E. Keremoglu, S. Tasiran, T. Elmas, “Classification
of Concurrency Bugs in Java Benchmarks by Developer
Intent”, Workshop on Parallel and Distributed Testing and
Debugging, 2006.

[20] L. Wang and S.D. Stoller, “Runtime Analysis of
Atomicity for Multi-threaded Programs”, IEEE Transactions
on Software Engineering, 32(2):93-110, 2006.

[21] V. Mutilin, “Concurrent Testing of Java Components
Using Java PathFinder”, ISOLA. 2006.

[22] C. Artho, Z. Chen, S. Honiden, “AOP-Based Automated
Unit Test Classification of Large Benchmarks”, AoAsia.
2007.

[23] Rachel Tzoref, Shmuel Ur, Elad Yom-Tov:
"Instrumenting Where It Hurts: An Automatic Concurrent
Debugging Technique". ISSTA 2007:

[24] Shmuel Ur, “Special Issue: Parallel and Distributed
Systems: Testing and Debugging (PADTAD)”. Concurrency
and Computation: Practice and Experience 19(3): 265-266
(2007)

[25] http://www.haifa.ibm.com/projects/verification/padtad/
index.html

[26] Eitan Farchi, Yarden Nir, Shmuel Ur, "Concurrent Bug
Patterns and How to Test Them", Workshop on Parallel and
Distributed Testing and Debugging, 2003.

[27] Robert O'Callahan, Jong-Deok Choi, "Hybrid Dynamic
Data Race Detection", PPOPP 2003.

[28] C. Hammer, J. Dolby, M. Vaziri, F. Tip, "Dynamic
Detection of Atomic-Set-Serializability Violations",
Accepted for publication at the 30th International Conference
on Software Engineering (ICSE'08), Germany, May 2008

