
IR for the Masses
... well, the FP Masses at least

Neil Ghani
University of Strathclyde

ng@cis.strath.ac.uk

Peter Hancock
University of Strathclyde
hancock@spamcop.net

Abstract
Induction recursion offers the possibility of a clean, simple and yet
powerful meta-language for the type system of a dependently typed
programming language. At its crux, induction recursion offers the
possibility of defining universes of objects (primarily, types) closed
under given dependently typed operations. The key feature of in-
duction recursion is that the codes in the universe of types are built
up inductively at the same time as the recursive definition of their
decoding function.

Despite this potential, induction recursion has not become as
widely understood or used as it should have been. We believe this is
in part because: i) there is still scope for analysing the foundation of
the induction recursion; and ii) because a presentation of induction
recursion for the wider functional programming community still
needs to be developed. The aim of this paper is to tackle exactly
these two issues. That is, we aim to i) develop an algebraic pre-
sentation of induction recursion to complement the original type
theoretic one; and ii) reflect this new understanding into imple-
mentations which broaden the accessibility of induction recursion
to non-theorists.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features-Data types and struc-
tures

General Terms Dependently Typed Programming, Category
Theory, Type Theory

Keywords Induction Recursion

1. Introduction
Recursion is one of the most fundamental concepts in computation.
Its importance lies in the ability it gives us to define computational
agents in terms of themselves - these could be recursive programs,
recursive data types, recursive algorithms or any of a myriad of
other structures. The first formal analysis of recursion go back a
century or more, to the birth of the theory of general recursive
functions, fixed points, and induction. It is virtually impossible to
overestimate how recursion has contributed to our ability to com-
pute, and to understand the process of computation.

[Copyright notice will appear here once ’preprint’ option is removed.]

Is it possible that there is anything fundamental left to say about
recursion? We believe there is and, in this article, we want to focus
on just one strand, namely induction-recursion. When defining a
function f : A→ B recursively,A is usually fixed in advance. But
what if it is not? What if, as we build up the function f recursively,
we also build up “just-in-time” the type A inductively? Induction
recursion concerns itself with the study of functions defined in this
way. This name is due to Peter Dybjer, who together with Anton
Setzer wrote a number of papers developing the subject [5–8], that
first appeared with the notion of universe, or type of types, intro-
duced by Martin-Löf in the early 70’s.

It is our opinion that members of the TLDI audience have much
to gain from an understanding of induction recursion because in-
duction recursion offers the possibility of a clean, simple and yet
powerful meta-language for the type system of a dependently typed
programming language. To see this consider the evolution of the
theory of data types within programming languages. At the sim-
plest level, one models data types as initial algebras of functors
on the category Set of sets. Natural numbers, lists storing data of
a given type, binary trees etc fit into this framework. However,
many important data types do not. As a result, various, more so-
phisticated, categories have been suggested as a place where initial
algebra semantics can be deployed so as to capture such advanced
data types. For example, many-sorted data types can be modelled
as initial algebras of functors over categories of the form SetI for
a fixed set I , data types with variable binding have been studied as
initial algebras of functors over various presheaf categories, nested
types can be modelled as initial algebras of functors over the cate-
gory of endofunctors Set → Set. These semantic treatments have
been accompanied by syntactic grammars for generating functors
over such categories. Examples of such grammars are polynomial
functors, strictly positive functors, containers, indexed containers,
dependent polynomials, analytic functors, inductive families etc.

Now, each of the above theories of data types can be seen as at-
tempting to define indexed data types T : U → X where U is a
collection of indexes and X is something like Set. Induction recur-
sion is the next step in this line of research where, for the first time,
the set U is defined simultaneously with the function T . Formalis-
ing this idea, induction recursion proposes to i) represent data types
as initial algebras of functors over categories of families; and ii) de-
velops a syntactic system of codes for representing such functors.
Induction recursion covers all of the data types mentioned above
but comes into its own when we wish to defined universes closed
under dependently typed operations as such universes exactly re-
quire the simultaneous definition of their index set and decoding
function. Such examples cannot be easily represented within any

IR for the Masses 1 2010/10/11

of the theories of data types mentioned in the previous paragraph.
Examples of such inductive recursive definitions will be given in
the body of the paper.

However, despite the fundamental analysis of Dybjer and Setzers
type-theoretic foundation, induction recursion has yet to become
as widely used as its potential suggests it should. We believe this
is because both the theoretical foundations and pragmatic aspects
of induction recursion need further development. This paper pro-
poses to address this by i) developing a categorical presentation
of induction recursion to complement the type-theoretical formu-
lations of Dybjer and Setzer; and ii) following in the footsteps of
the algebra of programming school and reflecting this categorical
structure into code. This methodology has proved to be very fruit-
ful in the past probably because both functional programming and
category theory seek to understand computational phenomena us-
ing high levels of abstraction which can be reflected into structured
programming idioms. More concretely, providing implementations
of categorical concepts helps make our paper more accessible to
those whose category theory is not as strong as it could be and it
also gives programmers code to experiment and play with. On the
other hand, the implementation of our ideas also guarantees their
partial correctness via type checking.

In more detail, after recapping Dybjer and Setzer’s theory of induc-
tion recursion in section 2, our contributions are as follows:

• In section 3 we investigate the families monad so as to work
uniformly over families rather than to first deal with indexing
sets and then with decoding functions. We also separate out co-
and contravariant aspects of induction recursion which allows
us to give a universal property characterising the set of IR codes.
Finally, we introduce briefly the key notion of reflection. 1

• In section 4 we show how induction recursion can be reformu-
lated using containers. This allows us to compactify the defi-
nition of IR codes and to define morphisms between inductive
recursive definitions which represent natural transformations in
the same way that IR codes represent functors.

• In section 5 we return to the topic of reflection and show
how the essence of induction recursion is contained within the
concept of reflection. This allows us to understand the essence
of induction recursion as a question of size and to parameterise
induction recursion by the choice of a reflection.

• In section 6 we show that the theory of induction recursion can
be localised to a universe. This allows us to avoid having to
talk vaguely about large sets and instead use the well known
territory of the category Set of small sets as the basis for our
work.

• Finally, in section 7 we show there is nothing special about
families and replace them with an arbitrary strong monad which
we combine with the reader monad.

This step by step process is designed to explain a number of inno-
vations which we have introduced so as to simplify definition of IR
codes to that of being a free monad and whose decoding function
is just the unique mediating morphism from this free monad to an-
other monad generated by a reflection function.

In this paper we assume a category SET of large sets, a category
CAT of large categories which contains as an object Set, the cat-

1 This use of reflection is based upon the set-theoretic use of reflection rather
than the categorical notion of reflection arising within the theory of adjoints.

egory of small sets. These size issues reflect analogously delicate
size issues which arise in Dybjer and Setzer’s work. We assume the
reader is familiar with only simple categorical constructions such
as categories, functors, natural transformations, initial algebras,
and monads. We denote the one point set and the category with
one object and one morphism by 1 - which meaning is intended
can be inferred from the context. If a category C has Set-indexed
coproducts, A is a set and B : A→ |C| is an A-indexed collection
of objects of C, then we denote by Σa : A. Ba the coproduct of
this collection. If f : A → C and g : B → C are morphisms in
a category, we denote by [f, g] : A+B → C the cotuple of f and g.

In terms of programming, we use the dependently typed pro-
gramming language Agda to present a functional programming
perspective on this paper. Those not familiar with this depen-
dently typed programming language can either find more details
at [3] or can infer the meaning of the Agda code from general
functional programming knowledge. The only Agda2 specific no-
tion is that of implicit parameters to functions which are written
“{x : A} → ...“ and which can be thought of as the decla-
ration of an input which can be inferred from its context when
used and hence need not be given. Our code can be found at
http://www.cis.strath.ac.uk/∼ng. As explained above, the
inclusion of this Agda code serves several purposes in terms of
increasing the accessibility, usability and correctness of our paper
and we feel these benefits outweigh the overhead of requiring the
reader to read the Agda code. Its a testament to the progress in de-
pendently typed programming that we now have a language which
is abstract enough to closely mirror the mathematical foundations
of induction recursion with relatively minor overhead. One last
question: Despite our best efforts to provide computational intu-
ition by providing Agda code, is this work still too theoretical for
TLDI? While it may remain too theoretical for some, we hope that
we have made the case that the subject of induction recursion needs
to be brought more firmly to the attention of at least a segment of
the TLDI audience, and that this paper, using familiar ideas from
the algebra of programming school, does as good a job as possible
given the inherently technical nature of the subject. And, after-
all, the value of a conference papers need not lie in its ability to
say something to all participants, but may lie in its ability to say
something significant to some of its participants.

2. Induction Recursion in A Nutshell
Dybjer and Setzer defined a system of codes for defining functors
as follows:

DEFINITION 1 (Dybjer and Setzer’s IR-Codes). Let D be a large
set. The large set IR D of IR-codes has the following constructors

d : D
ι d : IR D

A : Set f : A→ IR D

σAf : IR D

A : Set F : (A→ D)→ IR D

δAF : IR D

Note that the constructor δ allows for the possibility that A = 0.
Since 0 → D = 1, we have that if F ∈ IR D, then (by regard-
ing an element of IR D as a function 1 → IR D, we have that
δ0F ∈ IR D.

Understanding IR codes, and thus each of the IR-constructors, is
best done by understanding the semantics of each IR-code. This
semantics was given by Dybjer and Setzer and associates to each

IR for the Masses 2 2010/10/11

IR code a functor over the category of families of the discrete
category over D. This semantics is sometimes called the decoding
of a code. First we define the families functor, and then we define
the decoding function itself.

DEFINITION 2. Let C ∈ CAT be a large category. The large
category Fam(C) ∈ CAT is defined as follows.

• The objects of Fam(C) are pairs (U : Set, T : U → |C|). Here,
|C| refers to the objects of the category C. Note here that the set
U is a small set. We call U the index set of the family and T the
decoding function of the family.

• The morphisms of Fam(C) between (U, T) and (U ′, T ′) consist
of pairs (g, g∗) where g : U → U ′ is a function between
the index sets of the respective families and g∗ is a function
assigning to each u ∈ U , a morphism g∗u : Tu→ T ′(ga) in C.
Equivalently, g is a natural transformation between the functors
T and T ′ ◦ g.

When I is a large set, we write Fam I for the action of Fam on
the discrete category over I . Indeed, within the theory of induction
recursion, we are typically interested in categories of the form
FamI where I is a large set. We also will need a version of the
families functor which is an endofunctor on SET. This version of
the families functor, which we also denote Fam takes as input a
large set I and returns the large set of objects in Fam I . Which
version of Fam is intended can be inferred from the context. The
reader may ask why we need the variations of Fam. The answer is
that firstly Fam must return a category so that the decoding of an
IR code can be a functor between categories of families, while the
input must be a category so that Fam can form a monad. Secondly,
the ability of induction recursion to define universes closed under
mixed variant constructors such as Π-types only works when we
decode IR codes as functors over Fam I where I is a large set.
And, finally, we need a version of Fam as an endofunctor over the
category SET as for most of the paper, we will consider IR codes
to form an initial algebra of an endofunctor which, thus, must be an
endofunctor over SET. For the moment, observe that if I is a large
set, then a morphism (U, T) → (U ′, T ′) in Fam I consists of a
α : U → U ′ such that T = T ′ ◦ α.

EXAMPLE 1. Fam 1: A degenerate case occurs when C = 1,
the one object category. In this case, Fam 1 is isomorphic to the
category Set of sets. As we shall see, this allows us to study functors
F : Set → Set within induction recursion. More precisely, it will
allow us to see containers as a special case of induction recursion.

EXAMPLE 2. Fam(Set): When C is the category Set, the category
Fam(Set) has as objects families of sets. This category is equiva-
lent to the arrow category Set→ and is widely used as a model of
type theory as it is locally cartesian closed. See for example [10]

EXAMPLE 3. Fam(Setop): When C is the category Setop, we get
the category Cont of containers [4], [14], [2], [1]. This category
has a full and faithful embedding [−] : Cont → [Set,Set] defined
by

[S, P] : Set→ Set

[S, P]X = Σs : S. Ps→ X

See section 4 for more details.

The next part of Dybjer and Setzer’s work is to define a decoding
function which assigns to every large set D and IR code c ∈ IR D
a functor [[c]] : Fam D → Fam D. Dybjer and Setzer notice that
any object P of Fam D, is given by an object π0P : Set and
π1P : π0P → D. Indeed π0 : Fam D → Set is a functor. As

a result of this decomposition, the object part of the functor [[c]]
can be given in two parts: i) a function F0 : Fam D → Set;
and ii) a function F1 which assigns to each object P of Fam D a
function F0P → D. The morphism part of [[c]] is given, of course,
by mapping morphisms to morphisms.

DEFINITION 3 (Dybjer and Setzer’s Decoding Function). Let D
be a large set and c ∈ IR D. Define the functor [[c]] : Fam D →
Fam D as follows:

• When c = ιd,

[[ι d]]0 (U, T) = 1

[[ι d]]1 (U, T) = d

• When c = σAf ,

[[σAf]]0 (U, T) = Σa : A.[[fa]]0 (U, T)

[[σAf]]1 (U, T) (a, i) = [[fa]]1 (U, T) i

• When c = δAF ,

[[δAF]]0 (U, T) = Σg : A→ U.[[F (T.g)]]0 (U, T)

[[δAF]]1 (U, T) (g, i) = [[F (T.g)]]1 (U, T) i

We note the special case [[δ0F]] = [[F]]. Also, in the definition of
decoding notice that various coproducts in Set are used. Crucially,
these coproducts are small and hence exist. For example, the def-
inition of [[σAf]] is a coproduct over elements of the small set A,
while in the definition of [[δAf]](U, T), the coproduct is over ele-
ments ofA→ U . SinceA and U are small sets, such elements also
form a set.

Infact, Dybjer and Setzer proved that if c is an IR code, then [[c]] not
only maps families to families, but is also a functor. We give the
action of [[c]] on morphisms below:

LEMMA 1. LetD be a large set and c ∈ IR D be an IR code. Then
[[c]] defines a functor Fam D → Fam D.

PROOF 1. Let (U, T) and (U ′, T ′) be objects of Fam D. As re-
marked above, sinceD is a (large) set, a morphism between (U, T)
and (U ′, T ′) consists of an α : U → U ′ such that T = T ′ ◦ α.
Then [[c]]α : [[c]](U, T) → [[c]](U ′, T ′) can be defined by giv-
ing a function [[c]]0α : [[c]]0(U, T) → [[c]]0(U ′, T ′) such that
[[c]]1(U, T) = [[c]]1(U ′, T ′) ◦ [[c]]0α. Induction on the structure of c
can be used to define [[c]]0α as follows:

• If c is ιd, then [[c]]0(α) = id
• If c is σ(A , f), then [[c]]0 α (a, t) = (a, [[fa]]0 α t)
• If c is δ(A , F), then [[c]]0 α (g, t) = (α◦g, [[F (T ◦g)]]0 α t)

Those functors in the image of [[−]] are given a special name:

DEFINITION 4 (IR Functors). Let D be a large set and F :
Fam D → Fam D be a functor. If there is a code c such that
F ∼= [[c]], then we say that F is an IR-functor.

The final part of the work of Dybjer and Setzer is to state the
principle of definition by induction recursion. This principle is the
assertion that for every code c, the functor [[c]] has an initial algebra.
As a result, induction recursion is a principle asserting the existence
of various set-indexed families. It clearly goes beyond W -types as
these are the fixed points of containers and (as we shall see in the
next section on examples) all containers are IR-functors.

DEFINITION 5 (IR Datatypes). A family T : U → D is inductive
recursive iff there is an IR-code c such that (U, T) ∼= µ[[c]]

So the main question is ... what does the above mean? It looks like
fairly technical type theory and many researchers have tried, and

IR for the Masses 3 2010/10/11

found it hard, to understand IR codes and their semantics in the
form of their decoding function. This is clearly a problem since in-
duction recursion has enough potential that it deserves study from a
variety of researchers with varying perspectives and backgrounds.
We hope our algebraic perspective on induction recursion, and in
particular its presentation via familiar and known categorical con-
cepts, together with its implementation in Agda, will help to rectify
this situation. But before we delve into our own results, we present
some examples to show both the power, and the inscrutability, of
induction recursion. note that examples 5, 7, 8 and 9 are original
and hence part of the contribution of this paper. These examples
get ever more sophisticated so, if examples aren’t your thing, skip
straight to section 3.

2.1 Examples of IR Datatypes
IfD = 1, then Fam D is essentially the category Set of sets. Hence
functors on Set can be discussed within the framework of induction
recursion.

EXAMPLE 4 (Natural numbers). The functor mappingX toX+1
is the decoding of the IR-code

ι ∗+δ1(λx. ι∗) : IR 1

We can embellish or transform this code to one that be used not
only to define the set of natural numbers, but can also be used to
define the set-valued function Fin : Nat→ Set that assigns to each
natural number the enumerated type Fin(n) = {0, . . . , n− 1}

ι 0 + δ1 (λX. ι (X + 1)) : IR Set

In the last example, we coded-up the inductively defined datatype
Nat with an IR code, and showed how to embellish it to define
directly by recursion a useful set-valued function. This is known as
large elimination, or large-valued recursion, and was discussed in
[15]. One of the main reasons (stated in [13]) for the invention of
universe types in dependent type theory was to make it possible to
define families of datatypes defined by structural recursion on their
indices, so obtaining the effect of large-valued recursion.

We now do something more general, for the so-called W-type
of Martin-Löf type theory. This is its canonical mechanism for
defining inductive data types. Given a family of sets (S, P) :
FamSet, the type W (S, P) represents the initial algebra of the
container functor [S, P]. Its elements are wellfounded trees, in
which the nodes are labelled by elements s of S, and each such
node is assigned a P s indexed family of immediate subtrees.

EXAMPLE 5 (Container functors and W-types). More generally, if
(S, P) is any container, the functor [S, P] : Set → Set is the
decoding of the IR-code

σS(λs. δPs(λ . ι∗)) : IR 1

Indeed, it is an easy inductive proof to see that the class of IR-
functors when D = 1 is exactly the class of container-functors.

A simple embellishment of this code assigns to each element of a
W-type the set of paths through it from the root to some subtree.

σS(λs. δPs(λX : Ps→ Set. ι (1 + Σ (Ps)X))) : IR(Set)

Since we have shown that all container functors are IR-functors,
we also have that all W -types are IR datatypes. We illustrate in a
later example that induction recursion is a comparatively powerful
principle, which allows us to define data structures more complex
than those that can be defined using fixed points of containers, or
even indexed containers.

Though it is powerful, it is also useful at an extremely humdrum
level, for example to define a datatype such as a type of labelled
binary trees, that we wish to make sure satisfy some invariant. By
using induction recursion we can build the invariant into the type.

EXAMPLE 6 (Binary sorted trees). Suppose we have a set A of
labels on which there is a decidable total order (≤) : A2 → 2.
Now we define a set T ofA-labelled binary trees in which the labels
are non-decreasing as we traverse the tree in-order.

T = 1 + (Σ t1 : T, a : A, t2 : T) t1 ≤ a ∧ a ≤ t2
〈〉 ≤ a = true a ≤ 〈〉 = true
t1, a, t2, , ≤ a′

= a ≤ a′ ∧ t2 ≤ a′
a′ ≤ t1, a, t2, ,

= a′ ≤ t1 ∧ a′ ≤ a

The structure has type Fam((A → 2)2). The code for the endo-
functor is as follows.

ι 〈λ . true, λ . true 〉
+ σ A (λa.

δ1 (λ〈X,Y 〉.
ι 〈λa′. a ≤ a′ ∧X a′, λa′. Y a′ ∧ a′ ≤ a 〉))

: IR((A→ 2)2)

A further use of induction recursion is to define closure operations
over families of sets. The following example shows how this can be
done in a variety of different ways.

EXAMPLE 7 (Three kinds of closure under Σ). Assume that we
have a family (S,E) : Fam Set. We define three different indexed
families that extend this given family (in the sense that there are
indices for each set of the given family, and are moreover closed
under Σ, each in a slightly different sense. These families are re-
spectively the initial algebras of the following functors, that are
endofunctors on Fam Set.„

U
T

«
7→

„
S
E

«
+

„
[U, T]U

λ(u, f).Σ (T u)(T · f)

«
„
U
T

«
7→

„
S
E

«
+

„
[U, T]S

λ(u, s).Σ (T u)(E · s)

«
„
U
T

«
7→

„
S
E

«
+

„
[S,E]U

λ(s, u).Σ (E s)(T · u)

«
These functors are represented by the following IR codes, of type
IR(Set)).

σι (S,E) + δ1 (λU. δU (λT. ι(ΣU T)))

σι (S,E) + δ1 (λU. σι (U → S, λs.ΣU (E · s)))
σι (S,E) + σS (λs. δE s (λT. ι(Σ (E s)T)))

Note that the third of these codes is ‘degenerate’ (strongly fibred),
in that though large-valued recursion is involved, there is no need
to define the two parts of the family simultaneously.

We have already seen examples of ‘small’ induction recursion,
where the values of the recursively defined function are sets, or
small types such as the set 2 of booleans, or the set A → 2 of
boolean predicates over a set. Small induction recursion can be
extremely useful to obtain a desired structure on the inductively
defined indices. This is illustrated in the following example.

EXAMPLE 8 (Consecutive transitions). A transition system is a 4-
tuple:

S : Set,
T : S → Set,
d : (s : S)→ T s→ S
s0 : S

IR for the Masses 4 2010/10/11

Think of the elements of S as states. Think of the pair of functions
(T, d) as (co-operatively) assigning to each s : S the set-indexed
family SETd s tt : T s of states immediately downstream from s,
which means those that can be reached from s by a single transition
in T s. The last piece of data is an initial state s0.

We may be interested to the family of states that are reachable
from the initial state of a transition system via zero or more transi-
tions. To define an index set for this family, we need to define the set
of sequences (possibly empty) of consecutive transitions from the
initial state. Simultaneously with this we define a function whose
domain is the set of such composite transitions, that gives the state
to which the system is brought by the last transition. The notion of
a sequence of consecutive transitions has to be expressed in terms
of this function. This mutual interdependency between a function
and its domain, where we must think of both entities as built-up
simultaneously, is characteristic of induction recursion.

The things we are defining, that I write T∗ : Set and d∗ :
T∗ → S, are given as the two coordinates of the fixed point of
the following endofunctor on FamS.„

Γ : Set
f : Γ→ S

«
7→

„
1

λ . s0

«
+

„
Σ Γ (Tf)

λ(γ, t). (f γ) t

«
This functor can be coded as follows:

ι s0 + δ1 (λs. σι (T s, d s)) : IR(S)

I shall write the constructor for the empty sequence 〈〉 : T∗,
and write the binary constructor that corresponds to the second
summand of the functor (where we prolong a given sequence by
a further atomic transition) using an infix operator _ : (ts :
T∗)→ T (d∗ts)→ T∗.

Now we put these things together to define the reachable part of
a given transition system.

S′ = T∗
T ′ Its = T (d∗ Its)
d′ Its t = (Its_ t)
s′0 = 〈〉

.

The following defines a set of well-founded structures by in-
duction recursion of type Fam2 Set. It can be shown that this set
is strictly more extensive than can be obtained by use of W-types
alone, in other words by using induction recursion only at type
Fam 1).

EXAMPLE 9 (An inaccessible). An inaccessible will be a structure
of type Fam (Fam Set). Such an object is a triple

Ω : Set – index set
I : Ω→ Set
J : (α : Ω)→ I α→ Set

ff
Ω→ Fam Set

Informally, the definition can be written

Ω = 1 + Ω + (Σα : Ω) ([I α, J α]Ω

I 0 = 000
I α+ = I α+ 1 J α+ i = J α i

J α+ 〈〉 = W (I α)(J α)
I(tα,if) = (Σ j : J α i) I(f j) J(tα,if) (j, i′) = J(f j) i′

where the equation above the line defines the index set inductively,
while the columns of equations below the line define I : Ω → Set
and J : (α : Ω) → I α → Set by recursion. I use 0, + and t ,
as constructors for the respective summands of the right-hand side
in the inductive definition of Ω.

To see what is going on, it is enlightening to figure out the first
few families of sets that arise. The key is that these families of sets
are used to define containers, and the W-types that are the initial
algebras of these are in turn used to define exponential functors
X 7→ XE .

• The family I 0, J 0 is the empty family { }. As a container, this is
the constant functor with value 000, for which the initial algebra
W (I 0, J 0), is the empty set 000.

• The family I 0+, J 0+ is the singleton family {000 }. As a con-
tainer, this is the constant functor with valueX000 = 1, for which
the initial algebra W (I 0+, J 0+) is the singleton set 1. So far
so boring.

• The family I 0++
, J 0++ is {000, 1 }. As a container, its value

at a set X is value X000 + X1, and for this the initial algebra
W (I 0+, J 0+) is Nat.

• The family I 0+++
, J 0+++

is {000, 1,Nat }. As a container
functor this takes X to 1 + X + XNat, and for this the initial
algebra is the set of countable Brouwer ordinals.

And so on. Successive family members (the values of J) are essen-
tially set-level implementations of the successive regular ordinals
(provided we allow that 000 and 1 are, though finite, both regular).
For each α : Ω, the elements of Iα serve as indices for the prede-
cessors of α. The sequence of sets SETJ ββ : Iα exhaust the first
α successive regular ordinals. By construction J α+ is the least
common fixed point of the functors SETX 7→ XJ αββ : I α. The
long and the short of it is that the set Ω is regular, yet closed under
the step to the next regular, and hence an in a sense that can be
made precise, inaccessible.

Finally, we write the code that represents the endofunctor on
Fam2Set displayed informally in the table above. Taking the liberty
of using pattern-matching abstraction, it can be written as the
following code of type IR (FamSet).0BBB@

ι(000,)
+ δ1 (λ(I, J). ι(I + 1, [J |W I J]))
+ δ1 (λ(I, J).

σδ (I, J) (λ(i, (λj : J i. (K j,L j))).
ι (Σ (J i)K,λ(j, k). L j k)))

1CCCA
Finally, an example of an operation on families which is not

functorial, and hence not IR-encodable.

EXAMPLE 10. The map sending a family (U, T) to the family
(U + 1, [T, λ . U]) does not extend to a functor on Fam and hence
is not the decoding of an IR code.

3. The Families Monad And Mixed Variant IR
The Families Monad: The presentation of the decoding function
given above takes as input a code c and a family (U, T) and then
first computes the index set of the output family and then computes
the decoding function of the output family. This is essentially a
two stage process which treats a family as an index set together
with a decoding function. There is an alternative - namely to work
directly at the level of families by treating families as atomic en-
tities. Raising the level of abstraction is well known to illuminate
fundamental structure and category theory has proven itself well
equipped for this task. Indeed, the ability to trade complex con-
structions in simple categories for simpler constructions in more
sophisticated categories is of course a hall mark of category theory.
As a concrete pay-off we will be able to remove the six clauses
defining the decoding function and replace them by three. Not only
will this increase tractability, this gives us the new possibility of
high level reasoning by using the properties of the category Fam D.

In this section we develop the properties of families we need and
then use them to give a different presentation of induction recur-
sion based upon this structure. One key concept we need is that the
functor Fam is a strong monad. We begin by recalling this defini-
tion and then showing that Fam is indeed a strong monad. Note

IR for the Masses 5 2010/10/11

the definition of a strong monad relies on working with a monoidal
category. Were we to spell out all the details regarding monoidal
categories and strength, these details would not add much to the
paper but would be a significant diversion from our main topic of
interest. Hence we refer to [12] for more details regarding monoidal
categories and strength should the reader wish to have complete
definitions to hand.

DEFINITION 6. Let C be a category. A monad on C consists of a
functor T : C → C together with natural transformations called
the unit η : Id → T and multiplication µ : T ◦ T → T . These
natural transformations are required to satisfy the associativity and
unit laws: µ ◦ ηT = Id = µ ◦ Tη and µ ◦ Tµ = µ ◦ µT .

A strong monad on a monoidal category (C,⊗, I) is is a monad
(T, η, µ) on C together with a natural transformation τ : TX ⊗
Y → T (X ⊗ Y) satisfying the obvious laws.

We note that in this paper we use µ for two operations: i) the initial
algebra of a functor; and ii) the multiplication of a monad. While
unfortunate, we have used this dual meaning since both are standard
in the literature and the intended meaning of µ can be deduced from
the context. We also note that the above definition of a monad is the
”categorical” definition of a monad which is known to be equivalent
to the functional programming definition based upon return and
bind. The above reference contains more details of this equivalence.

LEMMA 2. Fam(−) is a strong monad on CAT equipped with its
cartesian structure.

PROOF 2. The unit ηD : D → Fam D maps d to the family
(1, λ .d). We note this process is functorial, ie that ηD is a functor,
and hence that η is a natural transformation as required.

An element of Fam(Fam D) consists of a set A and a function
f : A → Fam D which, itself, consists of two parts: i) a function
f0 : A→ Set; ii) and a function f1 which takes an a ∈ A as input
and returns a function f1a : f0a → D. The action of µD on such
a family returns the family with index set Σa : A.f1a and with
decoding function mapping the pair (a, x) to f1ax. Again, µD is a
functor and hence µ is a natural transformation as required.

Strength is given by a natural family of maps Fam D × X →
Fam(D ×X) which is defined by mapping a family (A, f) and an
x ∈ X to the family (A, λa : A.〈fa, x〉)

In Agda, we can represent the families monad as follows.

Fam : Set1 → Set1
FamD = Σ Set (λA→ (A→ D))

Fam1 : {D D′ : Set1} → (D → D′)→ FamD → FamD′

Fam1 g (A , f) = (A , g ◦ f)

η : {D : Set1} → D → FamD
η d = (> , const d)

µ : {D : Set1} → Fam(FamD)→ FamD
µ{D}(A , B) = (Σ A (proj1 ◦B) , g)

where g : Σ A (proj1 ◦B)→ D
g (a , k) = proj2 (Ba) k

We chose not to implement strength in Agda as we need only one
consequence of strength in our work, namely the following function

ev : FamI → Fam(FamI → FamO)→ Fam(FamO)
ev P (A, f) = (A, λa : A. f a P)

We have seen that families are important in induction recursion as
IR codes produce functors between categories of families. Further,

the input to the σ-constructor is in fact a family of IR codes. But
what about the δ-constructor. If we think about σ-constructor as
taking as input a code parameterised over elements of a set A, then
(whenA = 1 andD = Set) the δ-constructor takes as input a code
parameterised over an arbitrary set. At this point the reader should
think about the difference between a function consisting of a value
parameterised by elements of a specific set, and a polymorphic
function which is a function parameterised by sets themselves.
Similarly, one can thus see σ as building codes from A-indexed
codes for a specific set A, while δ-builds codes from type-indexed
codes. To model this we introduce the notion of a large family so
called because such a large family existentially quantifies over Set
rather than a specific set

DEFINITION 7. The large families functor LFam : SETop ×
SET → SET is defined by LFam I O = ΣA : Set.(A →
I)→ O

In Agda, one may represent large families by

LFam : Set1 → Set1 → Set1
LFam I O = Σ Set (λA→ (A→ I)→ O)

Mixed Variant IR: Having discussed families for a while, we turn
our attention to variance. Notice how large families have a natu-
rally contravariant part and a naturally covariant part. This makes
us wonder about IR codes themselves - the reader may have asked
whether IR is functorial. That is, does a map f : D → D′ in-
duce a map IR f : IR D → IR D′. The answer is clearly no as
the construction of IR D is both covariant and contravariant in D.
However, we can tease out the covariance and contravariance if we
notice that all the covariance comes from the ι constructor, while
all the contravariance comes from the δ-constructor. The construc-
tor σ is variance neutral.

Thus we arrive at our first reformulation of IR codes as the follow-
ing Agda definition

data IR(I O : Set1) : Set1 where
ι : O → IR I O
σ : Fam(IR I O)→ IR I O
δ : LFam I (IR I O)→ IR I O

This makes it clear that the type IR I O is the initial algebra of
the functor O+ Fam + LFam I : SET→ SET. Notice that since
IR codes form a large set, this dictates the requirement that it be
the initial algebra of a functor on SET which, in turn, motivates the
need to be able to consider Fam as a functor on SET as motivated
briefly in section 2. An equivalent universal property for IR I O is
that it is the free monad on the functor Fam+LFam I atO. This is
the most fundamental pay off for mixed variant IR - by separating
out the variance in IR’s constructors, we get a universal property
characterising the large set of IR-codes.

The reader however should be nervous ... what exactly is the cate-
gory SET. Its certainly not the usual place we look for semantics
and only the foolish would tread blindly into the world of large
cardinals, ignoring subtle issues such as local smallness, regularity
and inaccessibility without caution. Certainly, things should work
out, but should is not as firm a basis for certainty as we ideally
want. Nor should the fact that these definitions type check in Agda
fool us into believing these foundations are as secure as we would
like them to be. As we shall see in section 6, the role of internal IR
will be to exactly resolve this problem by brining us back down to
functors and monads over the category Set of small sets.

IR for the Masses 6 2010/10/11

Reflection: What is left to do is give our decoding function for
mixed variant IR codes. As the codes IR I O are parameterised
by a negatively occurring I and a positively occurringO, the reader
will not be surprised to discover that in mixed variant IR, each code
decodes to a functor Fam I → Fam O. Before we define the
decoding function, we will use a new idea to help understand the
essence of the decoding function for δ.

DEFINITION 8. Let F : SETop × SET → SET be functor. A
reflection for F consists of a family of maps ρ : F I O →
Fam I → Fam O natural in O. Note that in this definition
Fam I → Fam O should be regarded as the large set of functors
between the category Fam I and Fam O where I and O are large
sets.

A categorically astute reader may wonder why no naturality in I is
required by a reflection. The simple answer is we never need any
form of naturality in I as I always seems to be fixed in our con-
structions. Were it to vary, one could of course ask for naturality
in I . However, the reader may then wonder whether dinaturality
would be better deployed if some form of naturality in both I and
O were required. Unfortunately this would not seem sufficient as
we definitely need maps F I O → Fam I → Fam O when
I 6= O.

A reflection for LFam is given in Agda by defining

ρ : LFam I O → Fam I → Fam O
ρ (A , F) (U , T) = (A→ U , λg → F (T ◦ g))

This definition clearly shows that something like reflection is at
the heart of the decoding function for δ-codes and, indeed, we can
use reflection to recast the decoding function of the δ-constructor.
Overall, mixing the ideas of the families monad, mixed variant IR
and reflection, we derive the following Agda decoding function for
IR codes.

[[−]] : {I O : Set1} → IR I O → Fam I → FamO
[[ι d]] P = η d
[[σ f]] P = (µ ◦ Fam1(ev P ◦ [[−]])) f
[[δ F]] P = (µ ◦ Fam1(ev P ◦ [[−]])) (ρ F P)

Notice several things: As promised, working directly with the fam-
ilies monad has both allowed us to define the decoding function
of an IR code uniformly over families rather than by giving first
the index set and then the decoding function of the output. Further,
we see the monadic structure of the families monad as playing a
crucial role in the semantics of each of the three IR-constructors.
The decoding functions for σ and δ-constructors look very similar.
Essentially, reflection is being used in the above decoding func-
tion to turn a large family of codes into a small family of codes
whose semantics can then be given using the semantics for the
σ-constructor. However, there is much more to be said about re-
flection if the reader will bear with us a little bit longer.

What about functoriality of [[c]] - can this too be given at the level of
families. The answer is yes, and the proof is even more immediate
with our algebraic presentation of the decoding function.

LEMMA 3. Let c : IR I O be an IR code. Then [[c]] : Fam I →
Fam O is a functor

PROOF 3. All constructions in the definition of [[−]], e.g. µ, Fam,
ev and ρ are functorial and so act on morphisms.

Given an IR code, we have seen how to generate a functor. When
I = O we get an endofunctor and, as we mentioned before, its
fixed point is called an inductive recursive type. In Agda, we can
define

mutual
data U {D : Set1} (c : IR D D) : Set where
C : (proj1 ◦ [[c]])(F c)→ U c

T : {D : Set1} → (c : IR D D)→ U c→ D
T c (C a) = (proj2 ◦ [[c]]) (F c) a

F : {D : Set1} → (c : IR D D)→ FamD
F c = (U c , T c)

Of course, using mixed variant IR has the advantage that we could
define a more general fixed point operator IR (I + O) O →
Fam I → Fam O but this is standard and so we don’t do it here.
Our final construction is to note that the construction of IR codes is
itself mixed variant, that is IR is contravariant in its first argument
and covariant in its second argument.

LEMMA 4. IR is a mixed variant functor SETop × SET→ SET.

PROOF 4. Our sketch proof consists of the action of on morphisms
which we present in Agda

◦l : {I I ′ O : Set1} → IR I O → (I ′ → I)→ IR I ′ O
ι d ◦l f = ι d
σ(A , g) ◦l f = σ(A , λa→ ga ◦l f)
δ(A , F) ◦l f = δ(A , λk → F (f ◦ k) ◦l f)

◦r : {I O O′ : Set1} → (O → O′)→ IR I O → IR I O′

f ◦r ι d = ι (fd)
f ◦r σ(A , g) = σ(A , λa→ f ◦r (g a))
f ◦r δ(A , F) = δ(A , λk → f ◦r Fk)

4. Container IR
Having three constructors is a pain. And whats more, when the se-
mantics of σ and δ is presented using reflection, these two construc-
tors seem very similar. Such unity is crying out to be formalised!
To do this, we note that we could regard Fam as a mixed variant
functor which is constant in its contravariant position. As such we
could define a reflection for it by

ρ : FamO → Fam I → Fam O
ρ (A , F) (U , T) = (A , F)

then the semantics of both the σ- and δ-constructors are exactly the
same, namely the semantics of both σ(A,F) and δ(A,F) maps P
to

(µ ◦ Fam1(ev P ◦ [[−]])) (ρ F P)

where ρ is the reflection for Fam and LFam-respectively. This leads
us to wonder if there is a common pattern underlying both σ and
δ ... and then Thorsten Altenkirch pointed out what that common
pattern was. In more detail, Thorsten pointed out we don’t need to
have three constructors as the constructors σ and δ can naturally be
compressed into one constructor which leads to a containerification
of the meta-theory of IR.

In this section we develop container IR and, as an application,
use it to define morphisms between IR codes. Our eventual goal
is to replicate the fundamental theorem of containers which says
that there is a category of containers which has a full and faithful
embedding into a category of endofunctors. Container based IR
allows us to do this, although the full result requires a paper in its
own right. Here, we simply sketch the beginning of the process so
as to demonstrate container IR at work.

IR for the Masses 7 2010/10/11

Recall from section 2 that a container is a set S and a function
P : S → Set. In Agda we may define

Cont : Set1
Cont = Fam Set

As mentioned there, containers define functors on the category Set.
They also, using the same formula, extend to functors on SET as
the following Agda definition shows

[−])0 : ∀{a} → Cont→ Set a→ Set a
[(S, P)]0X = Σ S (λs→ Ps→ X)

[−]1 : ∀{a b} → ∀{X : Set a} → ∀{Y : Set b} →
(H : Cont)→ (X → Y)→ [H]0X → [H]0Y

[(S, P)]1 f (s , g) = (s , f ◦ g)

There are a number of constructions on containers which reflect
constructions on endofunctors. For example, there is an identity
container, constant containers, hom-functors, sums of containers,
composition of containers. Once more, in Agda

Id : Cont
Id = (> , const >)

⊕ : Cont→ Cont→ Cont
(S , P)⊕ (S′ , P ′) = (S + S′ , [P , P ′])

K : Set→ Cont
K S = (S , const ⊥)

R : Set→ Cont
R A = (1 , const A)

� : Cont→ Cont→ Cont
(S , P)� (S′ , P ′) = ([(S , P)]0S

′ , g)
where g : [(S , P)]0S

′ → Set
g (s , f) = Σ (Ps) (P ′ ◦ f)

Its easy to check that Id represents the identity functor,⊕ represents
the coproduct of functors, KA represents the constantly A-valued
functor, RA represents the functor mapping X to A → X . Cru-
cially, the embedding of containers as endofunctors maps � to the
composition of functors. That is, if H and G are containers, then
the functors [H �G] and [H] ◦ [G] are naturally isomorphic. One
half of this isomorphism will be needed later and so we give it now
in Agda

≈ : {H K : Cont} → {X : Set1} →
[H �K]0X → [H]0([K]0X)

≈ {(S , P)} {(S′ , P ′)} ((s , f) , k) = (s , 〈f, curry k〉)

We are almost ready to define the codes and decoding functions
for container based IR. But to do this we need first to understand
what happens in container based IR to the σ and δ constructors.
As mentioned earlier, they are amalgamated into one single type
constructor generalising both Fam and LFam from the previous
section. This gives us the LCFam functor which in Agda may be
defined by

LCFam : Set1 → Set1 → Set1
LCFam I O = Σ Cont (λH → [H]0 I → O)

Just like LFam, the functor LCFam is contravariant in its first
argument and covariant in its second argument. Note that Fam and
LFam are special cases where the chosen container is taken to be
firstly a container ofK Awhich represents the constantlyA valued
functor, and secondly R A which represents the functor A →
−. Thus the container based IR codes have the same expressive
power as Dybjer and Setzer’s IR codes and container IR simply

presents them differently. With these definitions in place, container
induction recursion has the following codes

data IR(I O : Set1) : Set1 where
ι : O → IR I O
σδ : LCFam I (IR I O)→ IR I O

As a result, we see that IR I O is the free monad on LCFam I
at O. However the remarks of the previous section on size issues
remain valid and caution should be used when making claims such
as those above. To give the decoding function, we need a reflection
for LCFam and this can be given in Agda by

ρ : {I O : Set1} → LCFam I O → Fam I → Fam O
ρ (H , F) (B , f) = ([H]0B , F ◦ [H]1f)

Given this reflection, we can define the decoding function for con-
tainer IR codes as follows:

[[−]] : {I O : Set1} → IR I O → Fam I → FamO
[[ι d]] T = η d
[[σδ F]] T = (µ ◦ Fam1(ev T ◦ [[−]])) (ρ F T)

The fact that the decoding function remains very similar to that pre-
sented in the previous section is very pleasing! Our understanding
of IR is beginning to become sufficient that we can make changes
to the theory of induction recursion locally, eg change the num-
ber of constructors, without having to redevelop the whole of the
theory of induction recursion for our new theory. In essence we
are beginning to see a modular understanding of IR develop where
we can change parts of the theory without effecting other parts. Of
course, the reader may want to know concretely what this decoding
formula does (and we shall need it later) so we give that now

LEMMA 5. Let σδ(H , F) ∈ IR I O and (U, T) ∈ Fam I . Then

[[c]](U , T) = Σ(s, f) ∈ [H]0U . [[F (s, T ◦ f)]](U , T)

PROOF 5. Direct calculation

As remarked above, the presence of separate σ and δ constructors,
or a single σδ constructor doesn’t change the expressive power of
induction recursion as each system can be defined in terms of the
other. But the use of σδ, and more generally, the containerifica-
tion of induction recursion, allows us to import some sophisticated
mathematics concerning containers and use them to help us under-
stand induction recursion. An example of this occurs in the defi-
nition of container morphisms. But first, we remark that one can
go beyond Thorsten’s remark in that there is nothing special about
containers. Let K be any class of functors SET → SET. Then we
could define

K ∈ K F : KI → IR I O

σδKKF ∈ IR I O

and give this constructor an associated semantics via a decoding
function. The natural questions to ask here regard the nature of the
transformation of a class of functors K into the class of functors
definable using the form of induction recursion with σδK as a
constructor. Is it inflationary? What is its fixed point? Having asked
such natural questions, we will not pursue them in this paper.

4.1 IR Morphisms via Container IR
The goal of this section is to define, for each pair of IR codes
c, c′ ∈ IR I O a set IR(c, c′) and a decoding function mapping
each f ∈ IR(c, c′) to a natural transformation [[c]]→ [[c′]]. We will
do this from the ground up and so begin by showing that the functor
P + − : Fam I → Fam I which sends a family Q to P + Q is
inductive recursive.

LEMMA 6. LetP be an object of Fam I . ThenP + − : Fam I →
Fam I is inductive recursive

IR for the Masses 8 2010/10/11

PROOF 6. Lets define the function

4 : {I : Set1} → Fam I → LCFam I I
4{I}(X , T) = (KX ⊕ Id , g)

where g : [KX ⊕ Id]0 I → I
g(inj1x , f) = T x
g(inj2x , f) = f x

We claim that if P ∈ Fam I is of the form B : A→ I , and if4P
is the pair (H , φ), then the IR code σδ(H , ι ◦ φ) decodes to the
functor P + −. This is established by direct calculation

[[σδ(H , ι ◦ φ)]](U, T) = Σx : [H]0U.[[(ι ◦ φ)([H]1Tx)]](U, T)

= Σx : A+ U. η(φ[H]1Tx)

= Σa : A. η(Ba) + Σu : U. η(Tu)

= (A,B) + (U, T)

Now that we know that coproduct with a fixed family is an inductive
recursive functor, we wish to extend this result to show that if we
compose an inductive recursive functor with a functor of the form
P+−, we still get an inductive recursive functor. The key definition
is the following

comp : {I O : Set1} → IR I O → LCFam I I → IR I O
comp (ι P) F = ι P
comp{I}{O} (σδ(H , F)) (K , φ) =

σδ(H �K , g)
where g : [H �K]0I → IR I O

g t = comp ((F ◦ [H]0φ ◦ ≈)t) (K , φ)

We can now prove the main property of comp.

LEMMA 7. If c is an IR code and (K,φ) ∈ LCFam I I , then

[[comp c (K , φ)]] (U, T) = [[c]]([[σδ(K, ι ◦ φ)]](U, T))

PROOF 7. Let (U ′, T ′) = [[σδ(K, ι◦φ)]](U, T). Direct calculation
shows that U ′ = [K]0U and that T ′ = φ ◦ [K]1T. Now, when c
is an ι-code the lemma is trivial. When c is of the form σδ(H , F),
then [[c]](U ′, T ′) is equal to each of the following:

Σα : [H]0U
′. [[F ([H]1T

′α)]](U ′, T ′)
= Σα : [H]0([K]0U). [[F ([H]1(φ ◦ [K]1T)α)]](U ′, T ′)
= Σα : [H]0([K]0U). [[(F ◦ [H]1φ)([H]1[K]1Tα)]](U ′, T ′)
= Σα : [HK]0U. [[(F ◦ [H]1φ)([H]1[K]1T (≈ α))]](U ′, T ′)
= Σα : [HK]0U.

[[comp(F ◦ [H]1φ)([H]1[K]1T (≈ α))(K,φ)]](U, T)
= [[comp c (K,φ)]] (U, T)

We can now prove the main result of this section: namely, we define
IR morphisms and show they decode to natural transformations.
To do this, note that if (S, P) is a container and X : [S, P]0I ,
then the second projection of X is an I-indexed family - that is
π1X : Fam I

DEFINITION 9 (IR-Morphisms). Define inductive recursive mor-
phisms as follows.

• For σδ codes, define IR(σδ((S, P), F) , K) to be

Π(X : [S, P]0I). IR(FX,K(π1X +−))

• For ι-codes define IR(ιd , σδ((S, P), F)) to be

Σ(s, f) : [S, P]0. IR(ιd , F (s, ! ◦ f))

and IR(ιd , ιd′) to be 1 if d == d′ and 0 otherwise.

Note that the first clause of the definition of IR-morphisms is well
defined as by the previous two lemmasK(π1X+−) is an inductive
recursive functor. We can now prove that IR-morphisms do indeed
generate natural transformations.

LEMMA 8. Let φ ∈ IR(c, c′). Then φ generates a natural transfor-
mation from [[c]] to [[c′]]

PROOF 8. The ι-cases are easy, so we concentrate on the case
where φ ∈ IR(σδS,PF,K), that is

φ : Π(X : [S, P]I).IR(FX , K(π1X +−))

By induction, for all (s : S , Q : Ps → I), φs,Q generates a
natural transformation and so we get maps

∀s : S,Q : Ps→ I, T : U → I.
[[F (s,Q)]]T → [[K]](Q+ T)

Its easy to see that from such maps, we can derive a map of type

∀s : S,Q : Ps→ I, T : U → I.
[[F (s,Q)]]T ⊗ (Fam I)(Q,T)→ [[K]]T

where if R ∈ Fam I and A is a set, then R ⊗ A is the A-fold
coproduct of R which exists as Fam I is closed under Set-indexed
coproducts. These maps allow us to define a map of type

∀s : S, g : Ps→ U, T : U → I. [[F (s, T ◦ g)]]T → [[K]]T

which is exactly a natural transformation as required.

Finally, we can make good on an earlier promise. Not only are
IR 1 1 codes equi-expressive with containers, but the category
of containers is equivalent to the category of IR 1 1 codes and
morphisms.

LEMMA 9. When I = 0 = 1, not only do IR codes agree with
containers, but IR morphisms are exactly the container morphisms.

PROOF 9. We know that a container (S, P) can be represented as
an IR functor σδ((S, P), const(ι∗)). The IR-morphisms between
σδ((S, P), const(ι∗)) and σδ((S′, P ′), const(ι∗)) are thus given
by

Πs : S. Σg : [S′, P ′](Ps).1 = Πs : S. Σs′ : S′. P ′s′ → Ps
= Σf : S → S′. Πs : S. P ′(fs)→ Ps

which are exactly those appearing in the literature.

5. Reflective Induction Recursion
In section 3 we replaced the decoding function given by Setzer and
Dybjer with one based upon the notion of reflection. In particular,
we defined a reflection for a functor F : SETop × SET → SET
to be a family of maps ρI O : F I O → Fam I → Fam O
natural in O. By giving a reflection for the functor LFam, we were
able to rewrite the decoding function for IR codes built from the
δ constructor in a manner similar to that for the σ constructor. In
section 4 we went further and showed how, by giving a reflection
for Fam, the semantics of both σ and δ are essentially the same,
varying only in the choice of reflection. Once we had introduced
the σδ-constructor, we gave a reflection for the functor LCFam and
used it to define the same decoding function for container based
IR codes as for non-container IR apart from the different choice of
reflection. These reflections do seem to therefore be at the heart of
the decoding function for induction recursion. We now give some
more examples of reflections:

EXAMPLE 11. The mixed variant functor IR I O has a reflection
given by its decoding function [[−]] : IR I O → Fam I → Fam O
is a reflection

As an extreme case, we have the following

EXAMPLE 12. The mixed variant functor mapping I and O to
Fam I → Fam O has the identity as a reflection.

And an obvious mixed variant functor is the hom-functor:

IR for the Masses 9 2010/10/11

EXAMPLE 13. The mixed variant functor mapping I and O to
I → O has as a reflection the map sending a function f : I → O
and the family (U, T) ∈ Fam I to the family (U, f ◦ T). This is of
course just the action of the functor Fam on morphisms.

So the three reflections appearing in the previous sections, together
with the three above, suggest that not only are reflections key to
the decoding function for induction recursion, but that moreover
they are a natural concept which can be expected to arise widely.
The reader may wonder whether a reflection is all that we need to
define IR codes and a decoding function. Perhaps surprisingly the
answer is yes. Indeed, we can parameterise an Agda module by
a functor representing the constructors of induction recursion and
a reflection from which the decoding function may be generated.
This can be done via the declaration

open import Fam1

module RefIR
(F : Set1 → Set1 → Set1)
(F1 : {Z X Y : Set1} → (X → Y)→ F Z X → F Z Y)
(R : ∀{I O : Set1} → F I O → Fam I → Fam O)
where

and then build our IR codes and their decoding function over these
parameters. Given the last two sections, it should not be surprising
that the IR-codes IR I O relative to these parameters are the free
monad on F I at O as can be given in Agda by

data IR(I O : Set1) : Set1 where
ι : O → IR I O
σδ : F I (IR I O)→ IR I O

while the decode function for these codes uses the reflection pa-
rameter just as the specific instances previously have

[[−]] : {I O : Set1} → IR I O → Fam I → FamO
[[ι d]] P = η d
[[σδ F]] P = (µ ◦ Fam1(ev P ◦ [[−]])) (ρ F P)

So, this shows us that given any functor, we can derive codes via
the free monad construction and a decoding function via the reflec-
tion for the functor. Moreover, this suggests to us that reflection is
at the heart of induction recursion. We believe this not just because
reflection is all that is needed to define codes and their decodes,
but also because reflection contains at its core a reduction of size
from big to small, a feature which is central at a conceptual level to
induction recursion. Indeed, Dybjer and Setzer’s first presentation
of induction recursion was as a reflection principle as found in set
theory. Roughly speaking, within that setting, a reflection principle
is something that turns large things into small things. For example,
a function Set1 → Set in Agda could be thought of as reflection
principle as it will have to turn large sets into small sets. Similarly
a natural transformation LFam I O → FamO could be a thought
of as a reflection principle as it would turn a large family into a
family indexed by a specific, small set.

Other examples of such reflections are given by parametricity as
found in System F which can be used to show that types quantified
over other types impredicatively are equivalent to small types - eg
ΠX.X ≈ O. From category theory, one can see the Yoneda lemma
as a reflection as it says the large set of natural transformations
between the hom functor C(X,−) and a functor F is equivalent to
the small set FX . Finally representation theorems such as the con-
tainer representation theorem which classifies natural transforma-
tions between containers as a small set, and the ”eating” program
of classifying continuous functions between final coalgebras as a
small set are also reflections in this sense. Of course, in general,
reflections with good properties are hard to come up with precisely
because it is hard to turn large things into small things. But their

importance is hard to ignore ... indeed one could argue that much
of the work of the computer scientist lies in the search for reflec-
tions which convert large semantic objects into small objects which
can be represented with a computer program and hence be made
amenable to computational processes.

Now consider the reflections ρ : F I O → Fam I → Fam O
which concern us. Given a family P ∈ Fam I , we can define
ρ P : F I O → Fam O which can turn a large object as rep-
resented by F I O into a small family indexed by a set. This is
exactly why the semantics of σ and δ in section 3 were so similar
- reflection turned a large-indexed family of IR-codes into a small
indexed family of IR-codes which could be handled by σ. Another
way of looking at ρ is to say that it turns the largeness inherent
in F , into largeness of the functor-space between small-indexed
families. And a final way to consider the use of reflection inherent
in induction recursion is to provide the capacity to generate from a
family P a function which turns a large object into a small object
localised at P .

We finish this section with an open question. We have seen how
induction recursion can be seen as taking as input a functor F :
SETop × SET → SET and a reflection ρ and returns the functor
IR I O with decode function [[−]]. We have seen how IR is a mixed
variant functor in lemma 4. This makes [[−]] a reflection for IR and
so one may play the same process again and again. That is, one may
ask for the fixed point of the operation sending the pair (F , ρ) to
(IR, [[−]]). More concretely, one may wonder whether building IR
codes over the reflection (IR , [[−]]) gives us any more definable
functors than those arising from the IR codes IR I O themselves.
Note this is a different question from asking for the relationship
between IR I (IR I O) and IR I O - this later relationship is
probably best understood by noting that

IR I (IR I O) = (F I)∗(FI)∗0→ (F I)∗O = IR I O

where the middle arrow is the multiplication of the monad (F I)∗.

6. Internal IR
So far we have been happy working, with the odd warning, with
large categories, large functors, large this and large that. While we
have not been deterred by the inherent dangers of this activity, we
have noted that caution is surely required. As another example of
the potential pitfalls we are in danger of falling into, consider the
principle of doing induction on the structure of IR codes as is found
in both the original works of Dybjer and Setzer when defining the
decoding function, and in our work when defining IR morphisms.
In performing such inductive arguments, one must assume that the
code δAF is larger, in some sense, than FX where X is any object
of Fam I . If we think of FX as a code containing a free type vari-
able, then this induction principle shares marked similarities with
the induction principle for types of System F. While this can be
done, it is certainly non-trivial.

The key to avoiding this size problem, and to get back to working
with the small sets we know and love, is to internalise induction
recursion to a universe itself. At first, this seemed like a daunting
task, but the authors were very happy to see how the theoretical
work we have engaged in so far made this task relatively simple.
Now, all we need to do is to consider the right notion of reflection
etc.

Concretely, lets ask ourselves what is so special about the universe
of small sets. They certainly are special ... they index families

IR for the Masses 10 2010/10/11

and appear in the definition of containers, large families and a
plethora of other constructions we have seen already. However, we
can replace the universe (Set,El) (where El : ΠS : Set. S →
Set) by some other universe (S0, E0). To develop the theory of
induction recursion wrt a universe (S0, E0) we would need to
define a families monad wrt this universe. Unfortunately this cannot
be done with an arbitrary universe - rather we need a universe
closed under Σ-types and containing a code for the one element
set. Of course we can build freely such a universe - using of course
- induction recursion. In Agda, this gives us the code:

mutual

data S : Set where
one : S
η : S0 → S
sig : (s : S)→ (Es→ S)→ S

E : S → Set
E one = >
E (η s) = E0s
E (sig s f) = Σ (E s) (E ◦ f)

Given a universe such as (S , E) which has a code for the one
element set and which is closed under Σ-types, we can define a
families monad on Set. This monad indexes families not by sets,
but by elements of S. Here is the definition in Agda

Fam : Set→ Set
FamD = Σ S (λs→ (Es→ D))

Fam1 : {D D′ : Set} → (D → D′)→ FamD → FamD′

Fam1 g (A , f) = (A , g ◦ f)

η : {D : Set} → D → FamD
η d = (one , const d)

µ : {D : Set} → Fam(FamD)→ FamD
µ {D} (s , f) = (sig s (proj1 ◦ f) , g)

where g : Σ (Es) (E ◦ proj1 ◦ f)→ D
g (a , k) = proj2 (fa) k

As can be seen from this code, we get an honest to god monad
on Set. Given our families monad relative to (S , E), we can
capitalise on use our previous work to define a notion of internal
induction recursion. All we need to do is take as input a functor
F : Setop × Set → Set and reflection ρ : F I O → Fam I →
Fam O. Exactly as before! The strength of our previous work now
becomes apparent - yet again no new effort is required to define
internal induction recursion. Codes are again constructed by the
free monad on the functor F I at O

data IR(I O : Set) : Set where
ι : O → IR I O
σδ : F I (IR I O)→ IR I O

while the decode function for these codes uses the reflection pa-
rameter just as the specific instances previously have

[[−]] : {I O : Set} → IR I O → Fam I → FamO
[[ι d]] T = η d
[[σδ F]] T = (µ ◦ Fam1(ev T ◦ [[−]])) (ρ F T)

7. Monadic Induction Recursion
The reader by now may feel we are belabouring the point and that
we have made clear what the abstract structure of induction recur-
sion is by demonstrating how a variety of different instances of
induction recursion all arise in the same manner using the notion
of reflection. But there is one last thing we wish to add.

Lets begin by saying there is one part of our treatment that is still
a mystery ... namely the part of the decoding function for the σδ-

constructor which is not part of the reflection. Namely the use of
the multiplication of the Fam monad, the use of evaluation and the
recursive use of the decoding function [[−]]. Can we understand this
part of induction recursion better? A related question is the follow-
ing - is the families monad special. Perhaps another monad would
suffice? After all, we have already seen how the standard families
monad can be internalised to the internal families monad defined
with respect to a universe closed under Σ and containing a code
for the one element type. And, while we are at it, shouldn’t the
decoding function be defined via a fold? Especially now that we
are working over the category Set where traditional initial algebra
semantics may be deployed safely.

Of course, we have answers to all these questions. Firstly, yes,
one needs only a strong monad (M,η, µ, τ) as opposed to being
restricted to working only with the families monad. Given functor
F and such a monad, a reflection is then a natural transformation
ρ : F I O → MI → MO. As expected, in this setting the IR
codes are given once more by the free monad construction

data IR(I O : Set) : Set where
ι : O → IR I O
σδ : F I (IR I O)→ IR I O

But how will the use of an arbitrary monad M effect the decoding
function? Concretely, lets first define the fold for IR codes and then
see how to define decoding using the fold operator.

fold : {I O X : Set} → (O → X)→
(F I X → X)→ IR I O → X

fold α β (ι o) = α o
fold α β (σδ K) = (F (fold α β)K)

With this initial algebra semantics in place, the decoding function
can be given as a fold as desired.

[[−]] : {I O : Set} → IR I O →M I →M O
[[−]] = fold α β where

α : {I O : Set} → O →M I → MO
α o t = η o
β : {I O : Set} → F I (M I →M O)→M I →M O
β t m = (µ ◦M1(ev m))(ρ t m)

So far we have answered two of the questions posed in this sec-
tion - namely can the decoding function we written for an arbitrary
monad and can it be written via a fold. But one last question re-
mains ... why is the decoding function the way it is?

To answer this question, recall that for a given set X , the functor
X → − is called the reader monad with state X and is written
RX . The monad transformer for RX takes a monad M as input
and returns the monadX →M−. ThusM I →M− is the reader
monad transformer with state M I applied to M . Thus a reflection
ρ : F I O → M I → M O is a natural transformation from
the functor F I to the monad M I → M− and as such induces a
monad morphism from the free monad on F I to this monad. This
monad morphism is exactly the decoding function! Wow!

One final comment. The reader may start to think of arrows rather
than monads, as the functor F is a mixed variant functor and so
is the map sending I O to Fam I → Fam O. Indeed, when
viewed like this, a reflection ρ perhaps starts to resemble a ar-
row morphism. However, such thinking seems misplaced. Indeed,
Fam I → Fam O is not an arrow as we cannot map a functor
FamI → Fam O to one Fam(I ×D)→ Fam (O ×D).

IR for the Masses 11 2010/10/11

8. Conclusions and Future Work
Conclusions: Starting from Dybjer and Setzers specific formula-
tion of induction recursion, we have simplified its meta theory in a
number of ways. Specifically, we have

• Exploited the families monad to bring out more of the intrinsic
algebraic structure in both the constructors for IR codes and
also in the decoding function for IR codes. So we can now work
directly with families rather than separately with their index sets
and then their decoding functions.

• Separated out covariant and contravariant occurrences in the
target of the decoding function for IR codes so as to be able
to characterise IR codes as an initial algebra arising from a free
monad construction.

• Introduced containers into the presentation of induction recur-
sion so as to be able to bring the algebra of containers to bear
on that of induction recursion.

• Revealed that not only do induction recursive codes represent
functors, but also that between such codes there are morphisms
that represent natural transformations.

• Isolated a certain notion of reflection as a key ingredient in the
definition of the decoding function for IR codes. In particular,
the universal property of IR codes arising from their definition
via a free monad construction characterises the decoding func-
tion as simply the monad morphism generated by a reflection.

• Shown how induction recursion can be internalised within a
universe so as to address issues pertaining to size.

• Shown that in order to develop the theory of induction-recursion,
no specific features of Fam are used beyond the structure it car-
ries as a monad. The IR codes and their decoding as endofunc-
tors can be defined for any strong monad.

These are, we hope, substantial contributions to the development of
an algebraic treatment of induction recursion, revealing important
new structure, specifically the categorical structure of hom-sets
between the codes. Our hope is that this algebraic presentation
of IR, by teasing out the structure hidden in the type-theoretical
presentation, will help to make the subject more accessible to the
academic community, as it deserves. To further achieve this goal,
and reach those whose operational and computational intuitions
are stronger than their categorical intuitions, we have also provided
partial implementation of our results in Agda. This seems partic-
ularly important for a conference such as TLDI. We hope to have
thus struck an appropriate balance between new results and cleaner
presentations of known results, as well as delivered a deepening of
the theoretical underpinnings of the subject, accompanied by prac-
tical constructions.

Future Work: There is certainly much more work required to fully
understand induction recursion. It is an enormously powerful def-
initional principle, arguable one that takes us to the very limits of
the realm of data structures and code whose semantics can be de-
fined predicatively [11] – beyond which lies the bottomless abyss
of system F , Fω , impredicative higher-order logic, topos-theory,
and the like. At the theoretical level we wish to fulfil the promise
of this paper and show that IR morphisms can be mapped to nat-
ural transformations in a full and faithful way. This requires some
sophisticated mathematics, centrally the characterisation of the se-
mantics of the δ-constructor as a left Kan extension. In another
direction, we wish to render that mapping in a computationally rel-
evant form so that it can be exploited by functional programmers.
Once we have a category IR I O of IR codes and IR morphisms,
we will wish to understand its properties better. The category of

containers is in fact, slightly surprisingly, cartesian closed [4, 9]
and hence the question arises whether the same can be said of
IR I O. A positive answer here will allow the technology of higher-
order functions familiar to functional programmers to be deployed
when dealing with IR codes. Further, once we start asking about
cartesian closure, we will inevitably need to focus on other cate-
gorical structure of the IR codes. Note: this will be far from merely
a handle-turning exercise. The structure of the category Fam I is
much more austere than that of the familiar categories Set, SetI ,
Set → Set and the like. For example, it lacks a terminal object
in general (unless I is small). As a deeper level, just as we have
explained in this paper the key constructions in induction recursion
(including the large set of IR codes) using universal properties, we
would like to understand the universal property of not just the set,
but rather the category of IR codes and morphisms.

The key contribution in this paper is to reveal the role reflection
plays in induction recursion. But from where does that reflection
arise? Why is it that we can turn large objects into the action of
functions on small objects. We conjecture this is a very deep issue
linked to the local smallness of the category Set. While sets are
‘without number’, between any two sets there is only a small set of
functions. We believe this is fundamentally what makes induction
recursion tick.

References
[1] M. Abott, T. Altenkirch, and N. Ghani. Categories of containers.

In Proceedings of Foundations of Software Science and Computation
Structures, 2003.

[2] M. Abott, T. Altenkirch, and N. Ghani. Containers - construct-
ing strictly positive types. Theoretical Computer Science, 342:3–27,
September 2005. Applied Semantics: Selected Topics.

[3] Agda. The agda wiki. http://wiki.portal.chalmers.se/agda/
pmwiki.php, 2010.

[4] T. Altenkirch, P. Levy, and S. Staton. Higher Order Containers.
Computability in Europe, 2010.

[5] P. Dybjer. A general formulation of simultaneous inductive-recursive
definitions in type theory. J. Symb. Log., 65(2):525–549, June 2000.

[6] P. Dybjer and A. Setzer. Indexed induction-recursion. J. Log. Alg.
Prog., 66:1–49, 2006.

[7] P. Dybjer and A. Setzer. Induction-recursion and initial algebras. Ann.
Pure Appl. Log., 124(1-3):1–47, 2003.

[8] P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive
definitions. In J.-Y. Girard, editor, Typed Lambda Calculi and Appli-
cations, volume 1581 of LNCS, pages 129–146. Springer-Verlag, Apr.
1999.

[9] R. Hasegawa. Two applications of analytic functors. Theor. Comput.
Sci., 272(1-2):113–175, 2002. ISSN 0304-3975. doi: http://dx.doi.
org/10.1016/S0304-3975(00)00349-2.

[10] B. Jacobs. Categorical Logic and Type Theory. Number 141 in
Studies in Logic and the Foundations of Mathematics. North Holland,
Amsterdam, 1999.

[11] R. Kahle and A. Setzer. An extended predicative definition of
the Mahlo universe. In R. Schindler, editor, Ways of ProofTheory.
Festschrift on the occasion of Wolfram Pohler’s retirement.

[12] G. M. Kelly. Basic concepts of enriched category theory. Reprints in
Theory and Applications of Categories, (10):1–136, 2005.

[13] P. Martin-Löf. An intuitionistic theory of types: Predicative part.
In Logic Colloquium ’73, pages 73–118. North-Holland, Amsterdam,
1973.

[14] P. Morris and T. Altenkirch. Indexed containers. In Twenty-Fourth
IEEE Symposium in Logic in Computer Science (LICS 2009), 2009.

[15] J. M. Smith. Propositional functions and families of types. Notre
Dame J. Form. Log., 30(3):442–458, 1989.

IR for the Masses 12 2010/10/11

