
Haskell Programming with Nested Types: A Principled

Approach†

Patricia Johann and Neil Ghani‡

({patricia,ng}@cis.strath.ac.uk)
University of Strathclyde, Glasgow, G1 1XH, Scotland

Abstract. Initial algebra semantics is one of the cornerstones of the theory of
modern functional programming languages. For each inductive data type, it provides
a Church encoding for that type, a build combinator which constructs data of
that type, a fold combinator which encapsulates structured recursion over data of
that type, and a fold/build rule which optimises modular programs by eliminating
from them data constructed using the build combinator, and immediately consumed
using the fold combinator, for that type. It has long been thought that initial algebra
semantics is not expressive enough to provide a similar foundation for programming
with nested types in Haskell. Specifically, the standard folds derived from initial
algebra semantics have been considered too weak to capture commonly occurring
patterns of recursion over data of nested types in Haskell, and no build combinators
or fold/build rules have until now been defined for nested types. This paper shows
that standard folds are, in fact, sufficiently expressive for programming with nested
types in Haskell. It also defines build combinators and fold/build fusion rules for
nested types. It thus shows how initial algebra semantics provides a principled,
expressive, and elegant foundation for programming with nested types in Haskell.

1. Introduction

Initial algebra semantics is one of the cornerstones of the theory of mod-
ern functional programming languages. It provides support for fold
combinators which encapsulate structured recursion over data struc-
tures, thereby making it possible to write, reason about, and transform
programs in principled ways. Recently, [15] extended the usual initial
algebra semantics for inductive types to support not only standard
fold combinators, but also Church encodings and build combinators
for them as well. In addition to being theoretically useful in ensuring
that build is seen as a fundamental part of the basic infrastructure
for programming with inductive types, this development has practical
merit: the fold and build combinators can be used to define, for each
inductive type, a fold/build rule which optimises modular programs
by eliminating from them data of that type constructed using its build
combinator and immediately consumed using its fold combinator.

† This is a revised and extended version of the conference paper [23].
‡ Supported in part by EPSRC grant EP/C511964/2.

c© 2009 Kluwer Academic Publishers. Printed in the Netherlands.

hosc.tex; 13/05/2009; 18:07; p.1

2 Johann and Ghani

Nested data types have become increasingly popular in recent years[4,
6, 7, 8, 16, 17, 18, 20, 28]. They have been used to implement a number
of advanced data types in languages, such as the widely-used functional
programming language Haskell [32], which support higher-kinded types.
Among these data types are those with constraints, such as perfect
trees [18]; types with variable binding, such as untyped λ-terms [2, 6,
10]; cyclic data structures [13]; and certain dependent types [29]. In
addition, examples of nested types supporting algorithms which are
exponentially more efficient than those supported by corresponding
inductive structures are given in [31].

The expressiveness of nested types lies in their generalisation of the
traditional treatment of types as free-standing individual entities to en-
tire families of types. To illustrate, consider the type of lists of elements
of type a. This type can be realised in Haskell via the declaration

data List a = Nil | Cons a (List a)

As this declaration makes clear, the type List a can be defined inde-
pendently of any type List b for b distinct from a. Moreover, since the
type List a is, in isolation, an inductive type — i.e., a fixed point of
a (certain kind of) data type constructor — the type constructor List
is seen to define a family of inductive types. The kind of recursion cap-
tured by inductive types is known as uniform recursion [31] or simple
recursion [39].

Compare the declaration for List a with the declaration

data Lam a = Var a
| App (Lam a) (Lam a)
| Abs (Lam (Maybe a))

defining the type Lam a of untyped λ-terms over variables of type a up
to α-equivalence. Here, the constructor Abs models the bound variable
in an abstraction of type Lam a by the Nothing constructor of type
Maybe a, and any free variable x of type a in an abstraction of type
Lam a by the term Just x of type Maybe a; example representations of
some particular λ-terms are given in Example 3. The key observation
about the type Lam a is that, by contrast with List a, it cannot be
defined in terms of only those elements of Lam a that have already
been constructed. Indeed, elements of the type Lam (Maybe a) are
needed to build elements of Lam a so that, in effect, the entire fam-
ily of types determined by Lam has to be constructed simultaneously.
Thus, rather than defining a family of inductive types as List does,
the type constructor Lam defines an inductive family of types. The kind
of recursion captured by nested types is a special case of non-uniform
recursion [8, 31] or polymorphic recursion [30].

hosc.tex; 13/05/2009; 18:07; p.2

Programming with Nested Types 3

There are many ways to represent inductive families of types [9]. The
fact that inductive families can be represented as nested data types in
Haskell has generated significant interest in principled techniques for
programming with such types. It has also encouraged the development
of Haskell libraries of pre-defined functions for manipulating nested
types [4, 16]. These library functions can then be combined in a mix-
and-match fashion to construct more sophisticated functions which
manipulate data of nested types.

Associated with modularly constructed programs are inefficiencies
arising from allocating, filling, deconstructing, and deallocating cells for
so-called intermediate data structures, i.e., data structures which “glue”
program components together but otherwise play no role in computa-
tions. Even in lazy languages like Haskell this is expensive, both slowing
execution time and increasing heap requirements. When the interme-
diate data structures are lists or other algebraic structures, short cut
fusion [11, 12, 26] can often be used improve program performance.
Short cut fusion is a local transformation based on two combinators
for each algebraic type — a build combinator, which uniformly pro-
duces structures of that type, and a standard fold combinator, which
uniformly consumes structures of that type — and one corresponding
replacement rule for each such type, known as its fold/build rule.1

The fold/build rule for an algebraic type replaces a call to the build
combinator for that type which is immediately followed by a call to
the fold combinator for that type with an equivalent computation
that does not construct the intermediate structure of that type that is
introduced by build and immediately consumed by fold.

The fold and build combinators for algebraic data types, as well as
their associated fold/build rules, can be derived from initial algebra
semantics. Indeed, these combinators and rules derive uniformly from
standard isomorphisms between algebraic data types and their Church
encodings. In [14, 15] this theoretical perspective was used to show that
even non-algebraic inductive types have associated fold and build
combinators and corresponding fold/build rules. This was achieved
by extending the well-known initial algebra semantics of inductive types
to include a generic Church encoding, generic build and fold combi-
nators, and a generic fold/build rule, each of which can be specialised
to any particular inductive type of interest. These specialisations can
be used to eliminate intermediate structures of any inductive type that
are produced by the instance of build for that type and immediately
consumed by its instance of fold. Details appear in Section 2 below.

1 The standard fold combinator for lists is known as foldr in Haskell, and the
replacement rule underlying short cut fusion for lists is known as the foldr/build
rule.

hosc.tex; 13/05/2009; 18:07; p.3

4 Johann and Ghani

The uniform derivation of [14, 15] is far preferable to defining fold and
build combinators and fold/build rules on a case-by-case basis for
each inductive type.

Given the increased interest in nested types and the ensuing growth
in their use, it is natural to ask whether initial algebra semantics can
give a similar principled foundation for structured programming with
nested types in Haskell. Until now this has not been considered possible.
For example, Bird and Paterson state in the abstract of [7] that the fold
combinators derived from initial algebra semantics for nested types are
not expressive enough to capture certain commonly occurring patterns
of structured recursion over data of nested types in Haskell. Indeed,
they write:

Although the categorical semantics of nested types turns out
to be similar to the regular case, the fold functions are
more limited because they can only describe natural trans-
formations. Practical considerations therefore dictate the
introduction of a generalised fold function in which this
limitation can be overcome.

This echoes similar assertions appearing in Section 6 of [5]. The sup-
posed limitations of the standard folds has led to the development of
so-called generalised folds for nested types in Haskell [4, 7, 16, 17, 18,
20]. But despite their name, these generalised folds have until now not
been known to be true folds. As a result, the initial algebra-based gen-
eral principles that underlie programming with, and reasoning about,
standard folds in Haskell have not been available for these generalised
folds. Moreover, no corresponding build combinators or fold/build
fusion rules have until now been proposed or defined for nested types.

The major contribution of this paper is to confirm that

Initial algebra semantics is enough to provide a principled
foundation for structured programming with nested types
in Haskell.

We achieve this by showing that:

• For the class of nested types definable in Haskell, there is no
need for the generalised folds from the literature. That is, the
gfold combinators which implement generalised folds are uni-
formly interdefinable with the hfold combinators which imple-
ment the standard folds derived from initial algebra semantics.
This means that, contrary to what had previously been thought,
the hfold combinators capture exactly the same kinds of recur-
sion, and so are every bit as expressive, as generalised folds.

hosc.tex; 13/05/2009; 18:07; p.4

Programming with Nested Types 5

Interdefinability also guarantees that the same principles that un-
derlie programming with, and reasoning about, standard folds in
Haskell also provide the heretofore missing theoretical foundation
for programming with, and reasoning about, generalised folds in
that setting.

• We can define hbuild combinators for each nested type definable in
Haskell. To the best of our knowledge, such combinators have not
previously been defined for nested types. Coupling each of these
with the corresponding hfold combinator gives an hfold/hbuild
rule for its associated nested type, and thus extends short cut
fusion from inductive types to nested types in Haskell. Moreover,
just as the gfold combinators can be defined in terms of the
corresponding hfold combinators, so a gbuild combinator can
be defined from each hbuild combinator, and a gfold/gbuild
rule can be defined for each nested type in Haskell. Neither build
combinators nor fold/build fusion rules developed in this paper
have previously been defined for nested types.

We make several other important contributions as well. First, we
actually execute the above programme in a generic style by providing a
single generic hfold combinator, a single generic hbuild operator, and
a single generic hfold/hbuild rule, each of which can be specialised
to any particular nested type in Haskell. A similar remark applies to
the generalised combinators and generalised fold/build rule. This
approach emphasises that our development is highly principled, and
allows us to treat the combinators and rules for all nested types in
Haskell simultaneously, rather than in an ad hoc fashion which depends
on the particular type under consideration.

Secondly, our results apply to all nested types definable in Haskell.
In particular, this includes nested types defined using type classes,
GADTs, monads, and other Haskell features. It is worth noting that in-
terdefinability of standard and generalised folds is considered in [1] for
the class of nested types expressible in a variant of Fω. In fact, [1] goes
further and establishes the interdefinability of standard and generalised
folds for all higher-ranked types definable in that variant. But because
the results of [1] are applicable only to those nested types definable in a
particular type theory, because there are manifest differences between
their type theory and a Turing complete programming language like
Haskell, and because build combinators and fold/build rules for
nested types are not given in [1], Haskell programmers may prefer our
development.

Thirdly, as in [1], interdefinability of the gfold and hfold combina-
tors is proved here using right Kan extensions, which can be considered

hosc.tex; 13/05/2009; 18:07; p.5

6 Johann and Ghani

a form of “generalised continuation” [7]. Bird and Paterson also use
right Kan extensions, but only as a meta-level reasoning device by which
they justify writing object-level programs in terms of generalised folds.
By contrast, we use right Kan extensions as an object-level programming
device which can be used directly to structure Haskell programs. We
similarly use left Kan extensions, which can be considered a form of
computation involving hidden state, at the object level to establish
interdefinability of the gbuild and hbuild combinators.

Finally, we demonstrate the practical benefit of our development
with a variety of examples and a complete implementation of our ideas
in Haskell, available at http://personal.cis.strath.ac.uk/~ng. The
code runs in GHCi version 6.6; the -fglasgow-exts option, included
in the code file, is needed to handle the nested forall-types aris-
ing in our nested data type definitions. Our implementation demon-
strates the practical applicability of our ideas, makes them more ac-
cessible, and provides a partial guarantee of their correctness via the
Haskell type-checker. This paper can therefore be read both as abstract
mathematics, and as providing the basis for experiments and practical
applications.

Our observation that initial algebra semantics is expressive enough
to provide a foundation for programming with nested types in Haskell
allows us to apply known principles to them, and thus, importantly,
to program with them in a principled and effective manner without
requiring the development of any fundamentally new theory. Moreover,
this foundation is simple, clean, and accessible to anyone with an un-
derstanding of the basics of initial algebra semantics. This is important,
since it guarantees that our results are immediately usable by functional
programmers. Further, by closing the gap between initial algebra se-
mantics and Haskell’s data types, this paper clearly contributes to the
foundations of functional programming. It also serves as a compelling
demonstration of the practical applicability of left and right Kan exten-
sions — which, as mentioned above, are the main technical tool used to
define the generalised combinators and prove them interdefinable with
their counterparts derived from initial algebra semantics — and thus
has the potential to render them mainstays of functional programming.
More generally, it shows how categorical abstractions can be used to
inspire functional programming constructs.

The remainder of this paper is structured as follows. Section 2 recalls
the initial algebra semantics of inductive types. It also discusses the
relationship between the category theory used in this paper and the
functional programming constructs it inspires. Section 3 recalls the
derivation of standard fold combinators from initial algebra seman-
tics for nested types in Haskell, and defines build combinators and

hosc.tex; 13/05/2009; 18:07; p.6

Programming with Nested Types 7

fold/build rules for these types. Section 4 defines the gfold combina-
tors for nested types in Haskell and shows that they are interdefinable
with their corresponding hfold combinators. It also derives our gbuild
combinators and gfold/gbuild rules for nested types in Haskell. Sec-
tion 5 discusses related work, while Section 6 mentions the coalgebraic
duals of our combinators and rules, and draws some conclusions.

2. Initial Algebra Semantics for Inductive Types

In this section we review the standard initial algebra semantics for lists,
for algebraic data types, and, finally, for all inductive types. We recall
from [14, 15] how the standard initial algebra semantics gives, for each
inductive type, a fold combinator encapsulating a commonly occuring
type-independent pattern of structured recursion over data of that type.
We further recall how to extend the standard initial algebra semantics
to derive Church encodings, build combinators, and fold/build fu-
sion rules for inductive types. The resulting extended initial algebra
semantics provides a principled and expressive infrastructure for pro-
gramming with data having inductive types. This semantics will be
generalised in Section 3 to derive a similarly principled and expressive
infrastructure for programming with nested types in Haskell.

2.1. Structured programming with Lists

In Haskell, structured programming with lists is accomplished using the
built-in list data type constructor [-], the associated data constructors
(:) and [] (for Cons and Nil, respectively) and the recursion combi-
nator foldr defined in Figure 1. The foldr combinator is widely used
because it captures a commonly occurring type-independent pattern
of computation for consuming lists. The development of a substantial
collection of techniques for reasoning about programs which uniformly
consume lists using foldr has further encouraged this form of struc-
tured programming over lists. Intuitively, foldr c n xs produces a
value by replacing all occurrences of (:) in xs by c and the single
occurrence of [] in xs by n. For instance, foldr (+) 0 xs sums the
(numeric) elements of the list xs. The combinator foldr is included in
the Haskell prelude.

Uniform production of lists, on the other hand, is accomplished
using the less well-known combinator build. This combinator takes
as input a function providing a type-independent template for con-
structing “abstract” lists, and produces a corresponding “concrete”
list. For example, build (\c n -> c 4 (c 7 (c 5 n))) produces the

hosc.tex; 13/05/2009; 18:07; p.7

8 Johann and Ghani

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr c n xs = case xs of [] -> n

z:zs -> c z (foldr c n zs)

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

map :: (a -> b) -> [a] -> [b]
map f xs = build (\ c n -> foldr (c . f) n xs)

Figure 1. Combinators and functions for lists.

list [4,7,5]. The definitions of build and the other list-processing
functions used in this paper are given in Figure 1.

The function build is not just of theoretical interest as the producer
counterpart to the list consumer foldr. In fact, build is an important
ingredient in short cut fusion [11, 12], a widely-used program optimisa-
tion which capitalises on the uniform production and consumption of
lists to improve the performance of list-manipulating programs. Short
cut fusion is based on the foldr/build rule which states that, for every
function g :: forall b. (a -> b -> b) -> b -> b,

foldr c n (build g) = g c n (1)

When this rule is considered as a replacement rule oriented from left
to right and is applied to a program, it yields a new “fused” program
that avoids constructing the intermediate list produced by build g
and immediately consumed by foldr c n in the original. For example,
if sum and map are defined as in Figure 1, if sqr x = x * x, and if
sumSqs = sum . map sqr, then

sumSqs :: [Int] -> Int
sumSqs xs = sum (map sqr xs)

= foldr (+) 0
(build (\c n -> foldr (c . sqr) n xs))

= (\c n -> foldr (c . sqr) n xs) (+) 0
= foldr ((+) . sqr) 0 xs

No intermediate lists are produced by this final version of sumSqs.

hosc.tex; 13/05/2009; 18:07; p.8

Programming with Nested Types 9

2.2. Structured programming with Algebraic Types

The above infrastructure for structured programming with lists, based
on the constructors (:) and [] and the combinators foldr and build,
can be generalised to other algebraic data types. An algebraic data type
is, intuitively, a fixed point of a (covariant) functor which maps type
variables to a type constructed using sum, product, arrow, forall, and
other algebraic data types defined over those type variables — see [33]
for a formal definition. Algebraic data types can be parameterised
over multiple types, and can be mutually recursive, but not all types
definable using Haskell’s data mechanism are algebraic. For example,
neither nested types nor fixed points of mixed variance functors are
algebraic.

Every algebraic data type D has associated fold and build combi-
nators. Operationally, the fold combinator for an algebraic data type
D takes as input appropriately typed replacement functions for each
of D’s constructors, together with a data element d of D. It replaces
all (fully applied) occurrences of D’s constructors in d by applications
of their corresponding replacement functions. The build combinator
for an algebraic data type D takes as input a function g providing a
type-independent template for constructing “abstract” data structures
from values. It instantiates all (fully applied) occurrences of abstract
constructors appearing in g with corresponding applications of the
“concrete” constructors of D.

A typical example of a non-list algebraic data type is the type
of arithmetic expressions over variables of type a. This type can be
represented in Haskell as

data Expr a = EVar a
| Lit Int
| Op Ops (Expr a) (Expr a)

data Ops = Add | Sub | Mul | Div

The buildE and foldE combinators associated with Expr appear in
Figure 2. Many commonly occurring patters of computation which
consume expressions can be written using foldE — see, for example,
the function accum of Figure 2, which maps an expression to the list of
variables occurring in it.

Just as compositions of list-consuming and list-producing functions
can be fused using the foldr/build rule, so compositions of expression-
consuming and expression-producing functions defined using foldE and
buildE can be fused via the fold/build rule for expressions. This rule
states that, for every function g :: forall b. (a -> b) -> (Int -> b)

hosc.tex; 13/05/2009; 18:07; p.9

10 Johann and Ghani

foldE :: (a -> b) -> (Int -> b) ->
(Ops -> b -> b -> b) -> Expr a - > b

foldE v l o e = case e of
EVar x -> v x
Lit i -> l i
Op op e1 e2 -> o op (foldE v l o e1)

(foldE v l o e2)

buildE :: (forall b. (a -> b) -> (Int -> b) ->
(Ops -> b -> b -> b) -> b) -> Expr a

buildE g = g EVar Lit Op

accum :: Expr a -> [a]
accum = foldE (\x -> [x]) (\i -> []) (\op -> (++))

mapE :: (a -> b) -> Expr a -> Expr b
mapE env e = buildE (\v l o -> foldE (v . env) l o e)

Figure 2. Combinators and functions for expressions.

-> (Ops -> b -> b -> b) -> b,

foldE v l o (buildE g) = g v l o (2)

For example, if env :: a -> b is a renaming environment and e is an
expression, then a function renameAccum which accumulates variables
of renamings of expressions can be defined modularly as

renameAccum :: (a -> b) -> Expr a -> [b]
renameAccum env e = accum (mapE env e)

Using rule (2) and the definitions in Figure 2 we can derive the following
more efficient version of renameAccum:

renameAccum env e
= foldE (\x -> [x]) (\i -> []) (\op -> (++))

(buildE (\v l o -> foldE (v . env) l o e))
= (\v l o -> foldE (v . env) l o e)

(\x -> [x]) (\i -> []) (\op -> (++))
= foldE ((\x -> [x]) . env) (\i -> []) (\op -> (++)) e

Unlike the original version of renameAccum, this one does not construct
the renamed expression but instead accumulates variables “on the fly”
while renaming.

hosc.tex; 13/05/2009; 18:07; p.10

Programming with Nested Types 11

2.3. Structured programming with Inductive Types

As it turns out, a similar story about structured programming can be
told for all inductive data types. Inductive data types are fixed points of
functors, i.e., of type constructors which support fmap functions, and
inductive data structures are data structures of inductive type. Functors
can be implemented in Haskell as type constructors supporting fmap
functions as follows:

class Functor f where
fmap :: (a -> b) -> f a -> f b

The function fmap is expected to satisfy the two semantic functor laws

fmap id = id
fmap (f . g) = fmap f . fmap g

stating that fmap preserves identities and composition. Satisfaction of
the functor laws is, however, not enforced by the compiler. Instead, it
is the programmer’s responsibility to ensure that the fmap function for
each instance of Haskell’s Functor class behaves appropriately.

As is well-known [14, 15, 37], every inductive type has an associated
fold and build combinator which can be implemented generically in
Haskell as

newtype M f = Inn {unInn :: f (M f)}

ffold :: Functor f => (f a -> a) -> M f -> a
ffold h (Inn k) = h (fmap (ffold h) k)

fbuild :: Functor f => (forall b. (f b -> b) -> b) -> M f
fbuild g = g Inn

The fbuild and ffold combinators for a functor f can be used to
construct and eliminate inductive data structures of type M f from
computations. Indeed, if f is any functor, h is any function of any type
f a -> a, and g is any function of type forall b. (f b -> b) -> b,
then rules (1) and (2) above generalise to the following fold/build
rule for M f:

ffold h (fbuild g) = g h (3)

The following example of short cut fusion is borrowed from [14]. An
interactive input/output computation [35] is either i) a value of type a,
ii) an input action, which, for every input token of type i, results in
a new interactive input/output computation, or iii) an output config-
uration consisting of an output token of type o and a new interactive
input/output computation. This is captured in the declaration

hosc.tex; 13/05/2009; 18:07; p.11

12 Johann and Ghani

data IntIO i o a = Val a
| Inp (i -> IntIO i o a)
| Outp (o, IntIO i o a)

The data type IntIO i o a is M (K i o a) for the functor K i o a
defined by

data K i o a b = Vk a | Ik (i -> b) | Ok (o,b)

instance Functor (K i o a) where
fmap k (Vk x) = Vk x
fmap k (Ik h) = Ik (k . h)
fmap k (Ok (y,z)) = Ok (o, k z)

We can obtain ffold and fbuild combinators for this functor by
first instantiating the above generic definitions of ffold and fbuild
for f = K i o a, and then using standard type isomorphisms to un-
bundle the type arguments to the functor (and guide the case anal-
ysis performed by ffold). Unbundling allows us to treat the single
argument h :: K i o a b -> b to the instantiation of ffold as a
curried triple of “constructor replacement functions” v :: a -> b,
p :: (i -> b) -> b, and q :: (o,b) -> b, and to give these three
functions, rather than the isomorphic “bundled” function h, as argu-
ments to ffold. Unbundling is not in any sense necessary; its sole
purpose is to allow the instantiation to take a form more familiar to
functional programmers. Similar remarks apply at several places below,
and unbundling is performed without comment henceforth. Instantiat-
ing f to K i o a, we have

IntIOfold :: (a -> b) -> ((i -> b) -> b) -> ((o,b) -> b)
-> IntIO i o a -> b

intIOfold v p q k = case k of
Val x -> v x
Inp h -> p (intIOfold v p q . h)
Outp (y,z) -> q (y, intIOfold v p q z)

intIObuild :: (forall b. (a -> b) -> ((i -> b) -> b) ->
((o,b) -> b) -> b) -> IntIO i o a

intIObuild g = g Val Inp Outp

intIOfold v p q (intIObuild g) = g v p q

As discussed in [14, 15], the ffold and fbuild combinators for
inductive types, as well as the corresponding ffold/fbuild rules, gen-
eralise those for algebraic types. Moreover, the ffold and fbuild

hosc.tex; 13/05/2009; 18:07; p.12

Programming with Nested Types 13

combinators for inductive types are defined uniformly over the functors
whose fixed points those types are. We will use this observation to good
effect in the next subsection.

2.4. A Theoretical Perspective

Thus far we have purposely taken a determinedly computational point
of view so as to make clear the relevance of this paper to programming
in general, and to Haskell programming in particular. However, even
from a programming perspective the above development is rather in-
complete. If we are to generalise the treatment of inductive types given
above to more advanced data types, we must ask:

Why is the above style of structured programming possible,
i.e., why do the ffold and fbuild combinators exist for
inductive types and why are the associated ffold/fbuild
rules correct?

A principled answer to this question is clearly important if we are to
program with, and reason about, the ffold and fbuild combinators,
and also if we are to generalise them to more expressive types.

This section offers precisely such a principled answer. However, read-
ers without the required background in category theory, or whose main
focus is not on the categorical foundations of the combinators and fu-
sion rules for advanced data types, can safely omit this section and other
categorical discussions in the paper since all of the relevant category-
theoretic constructs used in this paper are implemented in Haskell.
Readers who choose to do this will miss some of the motivations for
the theory of nested types, and some of the connections between the
theory of inductive types and the theory of nested types, but will
miss no necessary facts. In any case, we do not attempt a complete
reconstruction of all of category theory here. Instead, we introduce
only those concepts that form the basis of our principled approach to
programming with nested types in Haskell.

The key idea underlying our approach is that of initial algebra se-
mantics. Within the paradigm of initial algebra semantics, every data
type is the carrier µF of the initial algebra of a suitable functor F :
C → C for some suitable, fixed category C. In more detail, suppose we
have fixed such a category C. An algebra for a functor F : C → C (or,
simply, an F -algebra) is a pair (A, h) where A is an object of C and
h : FA → A is a morphism of C. Here, A is called the carrier of the
algebra and h is called its structure map. As it turns out, the F -algebras
for a given functor F themselves form a category. In the category of
F -algebras, a morphism f : (A, h) → (B, g) is a map f : A → B in C

hosc.tex; 13/05/2009; 18:07; p.13

14 Johann and Ghani

such that the following diagram commutes:

FA
Ff //

h
��

FB

g

��
A

f // B

We call such a morphism an F -algebra homomorphism.
Now, if the category of F -algebras has an initial object — called

an initial algebra for F , or, more simply, an initial F -algebra — then
Lambek’s Lemma ensures that the structure map of this initial F -
algebra is an isomorphism, and thus that its carrier is a fixed point
of F . If it exists, the initial F -algebra is unique up to isomorphism.
Henceforth we write (µF, in) for the initial F -algebra comprising the
fixed point µF of F and the isomorphism in : F (µF)→ µF .

2.4.1. Folds
The standard interpretation of a type constructor is as a functor F ,
and the standard interpretation of the data type it defines is as the
least fixed point of F . As noted above, this least fixed point is the
carrier of the initial F -algebra. Initiality ensures that there is a unique
F -algebra homomorphism from the initial F -algebra to any other F -
algebra. The map underlying this F -algebra homomorphism is exactly
the fold operator for the data type µF . Thus if (A, h) is any F -algebra,
then fold h : µF → A makes the following diagram commute:

F (µF)
F (fold h) //

in
��

FA

h

��
µF

fold h // A

From this diagram, we see that the type of fold is (FA → A) →
µF → A and that fold h satisfies fold h (in t) = h (F (fold h) t).
This justifies the definition of the ffold combinator given above. Also,
the uniqueness of the mediating map ensures that, for every algebra
h, the map fold h is defined uniquely. This provides the basis for the
correctness of fold fusion for inductive types, which states that if h and
h′ are F -algebras and ψ is an F -algebra homomorphism from h to h′,
then ψ . fold h = fold h′. But note that fold fusion [4, 6, 7, 8, 28], is
completely different from, and inherently simpler than, the fold/build
fusion which is central in this paper, and which we discuss next; see
Section 5 for a full discussion.

It is reasonable to ask at this point when an initial F -algebra is
guaranteed to exist for a functor F on a category C. It is possible that

hosc.tex; 13/05/2009; 18:07; p.14

Programming with Nested Types 15

some functors on a given category will have initial algebras and some
not, but the following result (see, e.g., [36]) gives sufficient conditions.

THEOREM 1. If C has both an initial object and ω-colimits, and if F
preserves ω-colimits, then C will have an initial F -algebra.

To unpack Theorem 1, we first introduce the idea of an ω-chain. An
ω-chain (D, f) is a family D of objects Di together with a family f of
morphisms fi : Di → Di+1 for all i ≥ 0. Diagrammatically, we have

D0
f0 // D1

f1 // D2
f2 // ...

A cocone µ : D → X of an ω-chain (D, f) is an object X and a family
of morphisms µi : Di → X such that µi = µi+1 ◦ fi for all i ≥ 0.

D0
f0 //

µ0

!!CC
CC

CC
CC

D1
f1 //

µ1

��

D2
f2 //

µ2}}{{
{{

{{
{{

...

X ...

A colimit of an ω-chain (D, f) is a cocone µ : D → X with the property
that if ν : D → Y is also a cocone of (D, f), then there is a unique
morphism k : X → Y such that νi = k ◦ µi. Colimits of ω-chains are
also called ω-colimits. A functor F preserves ω-colimits if, for every
ω-colimit µ : D → X, the cocone Fµ : FD → FX is also an ω-colimit.

The proof of Theorem 1 considers the particular ω-chain (D, f) given
by

0 ! // F0
F ! // F 20

F 2! // ...

where 0 is the initial object in C, F is the particular functor of interest,
and ! is the unique morphism from 0 to F0. It next observes that, under
the hypotheses of the theorem, if µ : D → X is an ω-colimit of (D, f)
then Fµ : FD → FX is an ω-colimit of the ω-chain (FD,Ff) given
by

F0
F ! // F 20

F 2! // F 30
F 3! // ...

Finally, this observation is used to show directly that if ν : FX → X
is the unique morphism such that µi+1 = ν ◦ Fµi for all i ≥ 0, then
(X, ν) is an initial F -algebra.

Many categories arising in the semantics of programming languages
are well known to have initial objects and ω-colimits. Moreover, in
any category, identity and constant functors preserve ω-colimits, as do

hosc.tex; 13/05/2009; 18:07; p.15

16 Johann and Ghani

products and coproducts of functors which preserve ω-colimits. As a
result, all polynomial functors preserve ω-colimits.

Regarding the choice of a suitable category C in which to work, we
note that, unfortunately, a semantics of Haskell does not exist indepen-
dently of any specific implementation. In particular, there is no known
categorical semantics for full Haskell. Nevertheless, programmers and
researchers often proceed as though there were, or may someday be, and
we follow in this well-established tradition. There is a sense, then, that
the treatment of structured programming for nested types put forth in
this paper takes place “in the abstract”, given that the existence of a
suitable category C is simply assumed, and thus that our programming
constructs may best be considered “categorically inspired”. But we
prefer a slightly different take on the situation, regarding this paper as
prescriptive, since it indicates properties that any eventual categorical
semantics of Haskell should — even intuitively — satisfy.

2.4.2. Church encodings, builds, and fold/build fusion rules
Although the above discussion shows that fold combinators for in-
ductive types can be derived entirely from, and understood entirely
in terms of, initial algebra semantics, regrettably the standard initial
algebra semantics does not provide a similar principled derivation of
the build combinators or the correctness of the fold/build rules. In
fact, build has been regarded as a kind of optional “add-on” which is
not a fundamental part of the basic infrastructure for programming
with inductive types. The practical consequence of this has been that
the build combinators have been largely overlooked and treated as poor
relatives of their corresponding fold combinators, and thus unworthy
of fundamental study.

This situation was rectified in [15], where the standard initial alge-
bra semantics was extended to support not only fold combinators for
inductive types, but also Church encodings and build combinators for
them. Indeed, [15] considers the initial F -algebra for a functor F to
be not only the initial object of the category of F -algebras, but also
the limit of the forgetful functor from the category of F -algebras to
the underlying category C as well. We summarise this result and its
consequences, which we later apply to derive our build combinators
for nested types.

If F is a functor on C, then the forgetful functor UF maps F -algebras
to objects in C by forgetting the F -algebra structure. That is, UF
maps an F -algebra (A, h) to its carrier A, and maps an F -algebra
homomorphism f : (A, h)→ (B, g) to the underlying f : A→ B in C.

If C is an object in C, then a UF -cone for C comprises, for every
F -algebra (A, h), a morphism ν(A,h) : C → A in C such that, for any

hosc.tex; 13/05/2009; 18:07; p.16

Programming with Nested Types 17

F -algebra homomorphism f : (A, h) → (B, g), we have ν(B,g) = f ◦
ν(A,h).

A
f // B

C

ν(A,h)

__@@@@@@@

ν(B,g)
>>~~~~~~~

We write (C, ν) for this cone, and call C its vertex and the morphism
ν(A,h) the projection from C to (A, h). A UF -cone morphism g : (C, ν)→
(D,µ) between UF -cones (C, ν) and (D,µ) is a morphism g : C → D
in C such that for any F -algebra (A, h), we have µ(A,h) ◦ g = ν(A,h). We
call g a mediating morphism from C to D. A UF -limit is a UF -cone to
which there is a unique UF -cone morphism from any other UF -cone.
When they exist, UF -limits are unique up to isomorphism. Moreover,
no extra structure is required of either F or C for the UF -limit to exist
— it is simply the carrier of the initial F -algebra.

The characterisation of initial algebras as both limits and colimits is
what we call the extended initial algebra semantics. As shown in [15], an
initial F -algebra has a different universal property as a limit from the
one it inherits as a colimit. This alternate universal property ensures:

• For each F -algebra, the projection from the vertex of the UF -limit
(i.e., from µF) to the carrier of that F -algebra defines the fold
operator with type (Fx→ x)→ µF → x.

• A UF -cone with vertex C can be thought of as having the type
∀x.(Fx→ x)→ C → x. The unique mediating morphism from the
vertex C of a UF -cone to the vertex µF of the UF -limit defines the
build operator with type (∀x. (Fx→ x)→ C → x)→ C → µF .

• The correctness of the fold/build fusion rule fold h . build g = g h
then follows from the fact that fold after build is a projection after
a mediating morphism from C to µF , and is thus equal to the
projection from C to the carrier of h.

The extended initial algebra semantics thus shows that, given a para-
metric interpretation of universal quantification for types, there is an
isomorphism between the type C → µF and the “generalised Church
encoding” ∀x.(Fx→ x)→ C → x.

The term “generalised” reflects the presence of the parameter C,
which is absent in the usual Church encodings for inductive types [37].
Choosing C to be the unit type gives the usual isomorphism between an
inductive type and its usual Church encoding. This isomorphism com-
prises precisely the fold (up to order of arguments) and build operators

hosc.tex; 13/05/2009; 18:07; p.17

18 Johann and Ghani

for that type. Writing fold ′ m h for fold h m we have

fold ′ :: µF → ∀x.(Fx→ x)→ x
build :: (∀x.(Fx→ x)→ x)→ µF

From this we see that correctness of the fold/build rule for inductive
types is one half of the requirement that build and fold ′ are mutually
inverse. A generic build combinator and a generic Church encoding for
inductive types are essentially given in [37], but attention is restricted
there to “functors whose operation on functions are continuous.” By
contrast, our build combinator is entirely generic over all instances of
Haskell’s functor class. Moreover, the builds in [37] do not appear to
be derived from any universal property.

In the next section we will see that, in Haskell, nested types can be
defined as fixed points of higher-order functors. Categorically speak-
ing, higher-order functors are functors, and thus have associated folds,
builds, and fold/build rules. This observation can be used to derive
build combinators and fold/build rules for nested types in Haskell.
Our derivation will make use of the generalised Church encodings for
non-unit type parameters C.

3. Initial Algebra Semantics for Nested Types

Although many data types of interest can be expressed as inductive
types, these types are not expressive enough to capture all data struc-
tures of interest. Such data structures can, however, often be expressed
in terms of nested types in Haskell.

EXAMPLE 1. The type of perfect trees over type a is given by

data PTree a = PLeaf a | PNode (PTree (a,a))

Here, the recursive constructor PNode stores not pairs of trees, but
rather trees with data of pair types. Thus, PTree a is a nested type for
each a. Perfect trees are easily seen to be in one-to-one correspondence
with lists whose lengths are powers of two, and hence illustrate how
nested types can be used to capture structural constraints on data
types.

The data type of bushes [5] provides an additional example of a
nested type.

EXAMPLE 2. The type of bushes over type a is given by

data Bush a = BLeaf | BNode (a, Bush (Bush a))

hosc.tex; 13/05/2009; 18:07; p.18

Programming with Nested Types 19

Note the nested recursive call to Bush on the right-hand side of Bush’s
definition.

Finally, we recall the data type of untyped λ-terms from the intro-
duction.

EXAMPLE 3. The type of (α-equivalence classes of) untyped λ-terms
over variables of type a is given by

data Lam a = Var a
| App (Lam a) (Lam a)
| Abs (Lam (Maybe a))

Specific elements of type Lam a include Abs (Var Nothing), which
represents λx.x, and Abs (Var (Just x)), which represents λy.x.

We observed in the introduction that each nested type constructor
defines an inductive family of types, rather than a family of inductive
types. This leads us to consider type constructors which are themselves
defined inductively. Just as inductive types arise as least fixed points
of functors which map types to types, so inductive type constructors
arise as fixed points of functors which map functors to functors. This
observation amounts to recalling that a standard way to solve a pa-
rameterised equation is to regard it as a higher-order (in our setting,
fixed point) equation with its parameters abstracted.

We thus model nested types as least fixed points of functors on the
category of endofunctors on the base category C, i.e., as least fixed
points of higher-order functors on C. In the category of endofunctors
on C, which we write [C, C], objects are functors on C and morphisms
are natural transformations between functors on C. Thus higher-order
functors must preserve identity natural transformations and composi-
tions of natural transformations. From Section 2.4, we know that to
ensure that a higher-order functor F : [C, C] → [C, C] has an initial F -
algebra — and hence a least fixed point — the category [C, C] must have
an initial object and ω-colimits, and that F must preserve ω-colimits.
But only that F preserves ω-colimits actually needs to be verified since
the initial object of [C, C] and ω-colimits in [C, C] are inherited from
those in C. Specifically, the initial object of [C, C] is simply the functor
which maps every object in C to the initial object of C, and which maps
every morphism in C to the identity morphism on the initial object of
C. The ω-colimit of an ω-chain (G, f) in [C, C] is a functor H on C
together with a family of natural transformations µi : Gi → H such
that (i) for any A, the cocone (HA,µA) comprising HA and the (µi)A
is the ω-colimit of the ω-chain (GA, fA) comprising the GiA and the
(fi)A, and (ii) for any f : A → B, Hf : HA → HB is the unique
morphism such that (µi)B ◦ Gif = Hf ◦ (µi)A. The existence and

hosc.tex; 13/05/2009; 18:07; p.19

20 Johann and Ghani

uniqueness of this morphism follow from the facts that (HB, νB), where
(νi)B = (µi)B ◦Gif , is a cocone of the ω-chain (GA, fA) and (HA,µA)
is the colimit of this ω-chain.

Higher-order functors can be implemented by the following Haskell
type class, which is a higher-order analogue of Haskell’s Functor class.

class HFunctor f where
ffmap :: Functor g => (a -> b) -> f g a -> f g b
hfmap :: (Functor g, Functor h) =>

Nat g h -> Nat (f g) (f h)

A higher-order functor thus maps functors to functors and maps be-
tween functors to maps between functors, i.e., natural transformations
to natural transformations. The first of these observations is captured
by the requirement that a higher-order functor supports an ffmap
operation. While not explicit in the HFunctor class definition, the pro-
grammer is expected to verify that if g is a functor, then f g satisfies the
functor laws. The second observation is captured by the requirement
that a higher-order functor support an hfmap operation. To see this,
first observe that the type of natural transformations can be given in
Haskell by

type Nat g h = forall a. g a -> h a

Assuming a parametric interpretation of the forall quantifier, an el-
ement of the type Nat g h can be thought of as a uniform family of
maps from g to h. This ensures that the naturality square for g and h
commutes. Although not explicitly required by the Haskell definition
of Nat g h, both g and h are expected to be functors. Moreover, like
the fmap functions for functors, the hfmap functions for higher-order
functors are expected to preserve identities and composition. Here,
identities are identity natural transformations, and compositions are
compositions of natural transformations.

We can now implement nested types as fixed points of HFunctors
in Haskell. These are defined by

newtype Mu f a = In {unIn :: f (Mu f) a}

Note that because Haskell lacks polymorphic kinding, our implementa-
tion cannot use the constructor M introduced to represent fixed points
of first-order functors above. This is the reason for introducing the new
type constructor Mu to represent fixed points of higher-order functors.
We write Mu f for the fixed point of the higher-order functor f.

EXAMPLE 4. The nested types of perfect trees, bushes, and untyped λ-
terms from Examples 1, 2, and 3 arise as fixed points of the higher-order
functors

hosc.tex; 13/05/2009; 18:07; p.20

Programming with Nested Types 21

data HPTree f a = HPLeaf a | HPNode (f (a,a))

data HBush f a = HBLeaf | HBNode (a, f (f a))

data HLam f a = HVar a
| HApp (f a) (f a)
| HAbs (f (Maybe a))

respectively. Indeed, the types PTree a, Bush a, and Lam a are iso-
morphic to the types Mu HPTree a, Mu HBush a and Mu HLam a, re-
spectively.

We should check that HPTree, HBush, and HLam are instances of
the HFunctor class, and that all functor laws requiring programmer
verification are satisfied. Such checks are usually straightforward. For
example, in the case of HPTree we have

instance HFunctor HPTree where
ffmap f (HPLeaf a) = HPLeaf (f a)
ffmap f (HPNode a) = HPNode (fmap (pair f) a)
hfmap f (HPLeaf a) = HPLeaf a
hfmap f (HPNode a) = HPNode (f a)

Here, pair f (x,y) = (f x, f y). Verifying that if g is a functor
then HPTree g is a functor amounts to showing that ffmap id = id
and ffmap (k . l) = ffmap k . ffmap l for functions k and l. That
HPTree maps natural transformations to natural transformations fol-
lows from the type-correctness of hfmap under the aforementioned as-
sumption of a parametric model.

We now turn our attention to deriving fold and build combinators
and fold/build rules for nested types in Haskell. In fact, initial algebra
semantics makes this very easy. We simply instantiate all of the ideas
from Section 2 in our category of endofunctors. We begin by recalling
the standard fold combinators for nested types from the literature.

3.1. Folds for Nested Types

As we have seen, one of the strengths of the standard initial algebra
semantics for inductive data types is the uniform definition of folds for
consuming inductive structures. Categorically, a fold operator takes as
input an algebra for a functor and returns a morphism from the fixed
point of the functor to the carrier of the algebra. Since a nested type is
nothing more than a fixed point, albeit of a higher-order functor, the
same idea can be used to derive folds for nested types in Haskell. Of
course, an algebra must now be an algebra for a higher-order functor

hosc.tex; 13/05/2009; 18:07; p.21

22 Johann and Ghani

whose fixed point the nested type constructor is. The structure map
of such an algebra will thus be a natural transformation. Further, the
result of the fold will be a natural transformation from the nested type
to the carrier of the algebra. These definitions can be implemented in
Haskell as

type Alg f g = Nat (f g) g

hfold :: (HFunctor f, Functor g) => Alg f g -> Nat (Mu f) g
hfold m (In u) = m (hfmap (hfold m) u)

EXAMPLE 5. The hfold combinator for perfect trees is

hfoldPTree :: (forall a. a -> f a) ->
(forall a. f (a,a) -> f a) ->
PTree a -> f a

hfoldPTree f g (PLeaf x) = f x
hfoldPTree f g (PNode xs) = g (hfoldPTree f g xs)

EXAMPLE 6. The hfold combinator for bushes is

hfoldBush :: (forall a. f a) ->
(forall a. (a, f (f a)) -> f a)
Bush a -> f a

hfoldBush l n BLeaf = l
hfoldBush l n (BNode (x, b)) =

n (x, hfmap (hfoldBush l n) (hfoldBush l n b))

EXAMPLE 7. The hfold combinator for λ-terms is

hfoldLam :: (forall a. a -> f a) ->
(forall a. f a -> f a -> f a) ->

(forall a. f (Maybe a) -> f a) ->
Lam a -> f a

hfoldLam v ap ab (Var x) = v x
hfoldLam v ap ab (App d e) = ap (hfoldLam v ap ab d)

(hfoldLam v ap ab e)
hfoldLam v ap ab (Abs l) = ab (hfoldLam v ap ab l)

The uniqueness of hfold, guaranteed by its derivation from initial
algebra semantics, provides the basis for the correctness of fold fusion
for nested types [8]. As mentioned above, fold fusion is not the same

hosc.tex; 13/05/2009; 18:07; p.22

Programming with Nested Types 23

as fold/build fusion; in particular, the latter has not previously been
considered for nested types.

3.2. Church Encodings and Builds For Nested Types

The extended initial algebra semantics also gives us build combina-
tors for nested types in Haskell. To see this, we begin by recalling
the derivation of the generic build combinator for inductive types
as explained in Section 2.4. The key observation was that, given a
parametric interpretation of universal type quantification, there is an
isomorphism between C → µF and the generalised Church encod-
ing ∀x.(Fx → x) → C → x. But this isomorphism holds for all
functors, including higher-order ones. We should therefore be able to
instantiate this isomorphism for a higher-order functor F to derive a
generic Church encoding and a generic build combinator for nested
types. And indeed we can, provided we interpret the isomorphism in
an endofunctor category.

The Church encoding of a nested type which is representable in
Haskell as Mu f for a higher-order functor f can be written as

forall x. (Alg f x) -> Nat c x

We therefore define the generic build combinator for such nested types
to be

hbuild :: HFunctor f =>
(forall x. Alg f x -> Nat c x) -> Nat c (Mu f)

hbuild g = g In

It is worth noticing that the generic hbuild combinator follows the
definitional format of the generic build combinator for inductive types:
it applies its argument to the structure map In of the initial algebra of
the higher-order functor f over which it is parameterised. Of course, the
structure morphism of the initial algebra In is not a function of type
f (M f) -> M f in this setting, but rather a natural transformation of
type Nat (f (Mu f)) (Mu f).

We can instantiate the generic hbuild combinator for any particular
nested type of interest.

EXAMPLE 8. The Church encoding and hbuild combinator for per-
fect trees are given concretely by

forall x. (forall a. a -> x a) ->
(forall a. x (a,a) -> x a) ->
(forall a. c a -> x a)

hosc.tex; 13/05/2009; 18:07; p.23

24 Johann and Ghani

and

hbuildPTree :: (forall x. (forall a. a -> x a) ->
(forall a. x (a,a) -> x a) ->
(forall a. c a -> x a)) ->

Nat c PTree
hbuildPTree g = g PLeaf PNode

EXAMPLE 9. The Church encoding and hbuild combinator for bushes
are given concretely by

forall x. (forall a. x a) ->
(forall a. (a, x (x a)) -> x a) ->
(forall a. c a -> x a)

and

hbuildBush :: (forall x. (forall a. x a) ->
(forall a. (a, x (x a)) -> x a) ->
(forall a. c a -> x a)) ->

Nat c Bush
hbuildBush g = g BLeaf BNode

EXAMPLE 10. The Church encoding and hbuild combinator for λ-
terms are given concretely by

forall x. (forall a. a -> x a) ->
(forall a. x a -> x a -> x a) ->
(forall a. x (Maybe a) -> x a) ->
(forall a. c a -> x a)

and

hbuildLam :: (forall x. (forall a. a -> x a) ->
(forall a. x a -> x a -> x a) ->
(forall a. x (Maybe a) -> x a) ->
(forall a. c a -> x a)) ->

Nat c Lam
hbuildLam g = g Var App Abs

hosc.tex; 13/05/2009; 18:07; p.24

Programming with Nested Types 25

3.3. Short Cut Fusion for Nested Types

The extended initial algebra semantics ensures that hbuild and (an
argument-permuted version of) hfold are mutually inverse, and thus
that the following fold/build rule holds for nested types in Haskell:

FUSION RULE FOR NESTED TYPES If f is a higher-order functor,
c and x are functors, h is (the structure map of) an algebra Alg f x,
and g is any function of type forall x. Alg f x -> Nat c x, then

hfold h . hbuild g = g h (4)

Note that the application of ffold h to fbuild g in (3) has been
generalised by the composition of hfold h and hbuild g in (4). This
is because c remains uninstantiated in the nested setting, whereas it
was specialised to the unit type in the inductive one.

EXAMPLE 11. The instantiations of (4) for perfect trees, bushes, and
λ-terms are

hfoldPTree l n . (hbuildPTree g) = g l n

hfoldBush l n . (hbuildBush g) = g l n

hfoldLam v ap ab . (hbuildLam g) = g v ap ab

To give the flavour of short cut fusion in action, we consider the
non-trivial application of the bit reversal algorithm of Hinze [18]. The
bit reversal algorithm describes an operation on lists of length 2n which
swaps elements whose indices have binary representations that are the
reverses of one another. For example, the bit reversal algorithm trans-
forms the list [a0,a1,a2,...,a7] into [a0,a4,a2,a6,a1,a5,a3,a7].

We start with the simple and modular bit reversal protocol

brp1 :: [a] -> [a]
brp1 = shuffle . unshuffle

where shuffle, unshuffle, and the auxiliary functions in terms of
which they are defined are given in Figure 3. The function shuffle uni-
formly and recursively consumes a perfect tree in a “left-right inorder”
fashion, and prepends the list of data appearing as first elements of
pairs at the PNodes of subtrees onto the list of data appearing as second
elements of these pairs. The function unshuffle uniformly produces a
perfect tree by constructing, for each non-empty list of data, the PNode
obtained by first splitting that list into two sublists of roughly equal

hosc.tex; 13/05/2009; 18:07; p.25

26 Johann and Ghani

shuffle :: PTree a -> [a]
shuffle = hfoldPTree (\x -> [x]) (cat . unzip)

unshuffle :: [a] -> PTree a
unshuffle = hbuildPTree unsh

cat :: ([a],[a]) -> [a]
cat (xs,ys) = xs ++ ys

zip’ :: ([a],[b]) -> [(a,b)]
zip’ (xs,ys) = zip xs ys

unsh :: (forall a. a -> x a) ->
(forall a. x (a,a) -> x a) ->

(forall a. [a] -> x a)
unsh u z [e] = u e
unsh u z es = z (unsh u z (zip’ (uninter es)))

uninter :: [a] -> ([a],[a])
uninter [] = ([],[])
uninter (x:xs) = (x:as,bs)

where (bs,as) = uninter xs

Figure 3. Functions for a bit reversal protocol

size. This is done by alternating which sublist data elements are added
to the front of, and then zipping these sublists together. Unshuffling a
list to get a perfect tree and then shuffling the data in that tree thus
reverses the bits in the input list.

The function brp1 is typical of modularly constructed programs, in
that it produces and then immediately consumes a data structure, in
this case a perfect tree. We can use the instantiation of (4) to perfect
trees from Example 11 to transform brp1 into the following more ef-
ficient program brp2 which doesn’t construct the intermediate perfect
tree.

brp2 :: [a] -> [a]
brp2 [x] = [x]
brp2 xs = (cat . unzip . brp2 . zip’ . uninter) xs

This can be accomplished via the calculation

brp1 xs
= hfoldPTree (\x -> [x]) (cat . unzip) (hbuildPTree unsh xs)

hosc.tex; 13/05/2009; 18:07; p.26

Programming with Nested Types 27

= unsh (\x -> [x]) (cat . unzip) xs
= if length xs == 1 then [head xs]

else (cat . unzip) (unsh (\x -> [x])
(cat . unzip)
(zip’ (uninter xs)))

= if length xs == 1 then xs
else (cat . unzip . brp2 . zip’ . uninter) xs

4. Generalised Folds, Builds, and Short Cut Fusion

In the last section we derived generic hfold and hbuild combinators,
and a generic hfold/hbuild fusion rule for nested types definable in
Haskell. Our derivations are based on the very same initial algebra
semantics that underlies the analogous development for inductive types
discussed in Section 2.4. Both the theory underlying our development,
and its implementation, are clean, simple, and principled.

4.1. Generalised folds

In this section we recall the generalised fold combinators for nested
types in Haskell — here called gfolds — from the literature [4, 7]. We
also introduce a generic generalised build combinator gbuild and a
generic gfold/gbuild fusion rule which can be instantiated to give a
gbuild combinator and a gfold/gbuild rule for each nested type. We
show that the gfold combinator is an instance of the generic hfold
combinator, that the generic gbuild combinator is an instance of the
generic hbuild combinator, and that the generic gfold/gbuild rule is
an instance of the generic hfold/hbuild rule. These results are impor-
tant because, until now, it has been unclear which general principles
should underpin the definition of the gfold combinators for nested
types in Haskell, and because gbuild combinators and gfold/gbuild
rules for them have not heretofore existed. Our rendering of the gen-
eralised combinators and fusion rule as instances of their counterparts
from Section 3 shows that

the same principles of initial algebra semantics that govern
the behaviour of hfold, hbuild, and hfold/hbuild fusion
govern the behaviour of gfold, gbuild, and gfold/gbuild
fusion.

Our reduction of gfolds to hfolds can be seen as a counterpart for
nested types definable in Haskell to the results for rank-2 functors in

hosc.tex; 13/05/2009; 18:07; p.27

28 Johann and Ghani

the type-theoretic setting of [1]. On the other hand, [1] doesn’t mention
build combinators or fold/build rules for nested types at all.

Generalised folds arise when we want to consume a structure of type
Mu f a for a single type a. The canonical example from the literature
involves the function psum :: PTree Int -> Int which sums the (in-
teger) data in a perfect tree [18]. At first glance it seems psum cannot be
expressed in terms of hfold since hfold consumes data of polymorphic
type, and PTree Int is not such a type. At the same time, any naive
attempt to define psum will fail because the recursive call to psum must
consume a structure of type PTree (Int,Int) rather than PTree Int.
More generally, we often want to consume expressions involving one
specific instance of a nested type, rather than a polymorphic family of
elements of a nested type. This is precisely what generalised folds for
nested types are designed to do [4, 7].

Like the hfold combinator for a nested type in Haskell, its gener-
alised fold takes as input an algebra of type Alg f g for a higher-
order functor f whose fixed point the nested type constructor is. But
while the hfold returns a result of type Nat (Mu f) g, the corre-
sponding generalised fold returns a result of the more general type
Nat (Mu f ‘Comp‘ g) h, where Comp represents the composition of
functors:

newtype Comp g h a = Comp {icomp :: g (h a)}

instance (Functor g, Functor h) => Functor (g ‘Comp‘ h) where
fmap k (Comp t) = Comp (fmap (fmap k) t)

Note, however, that Mu f ‘Comp‘ g is not necessarily an inductive
type constructor. As a result, there is no clear theory upon which
the definition of gfolds can be based, and it is unclear what general
principles should underpin them. One practical consequence of this lack
of principled foundations for generalised folds is that it has not been
clear how to reason about these combinators for those higher-order
functors which have heretofore been known to support them.

A major contribution of this paper is to show that the hfold combi-
nators defined in Section 3.1 for nested types in Haskell are expressive
enough to implement their generalised folds. Indeed, we derive the
generic gfold combinator from the corresponding generic hfold com-
binator (and, trivially, vice-versa). In this way we extend the class of
higher-order functors for which generalised fold combinators can be
defined to include higher-order functors definable using all the features
of Haskell. In addition to providing structured recursion combinators
for such higher-order functors, our derivation of generalised folds as
particular standard folds for higher-order functors in Haskell makes it

hosc.tex; 13/05/2009; 18:07; p.28

Programming with Nested Types 29

possible to lift the reasoning principles supported by the hfold combi-
nators to reasoning principles for the generalised fold combinators. It
also allows us to define associated generalised build combinators and
generalised fold/build fusion rules for all nested types in Haskell.

We use the example of psum to illustrate our derivation. First note
that psum can be defined by specialising an auxiliary function whose
type generalises that of psum as follows:

psum :: PTree Int -> Int
psum xs = psumAux xs id

psumAux :: PTree a -> (a -> Int) -> Int
psumAux (PLeaf x) e = e x
psumAux (PNode xs) e = psumAux xs (\(x,y) -> e x + e y)

Here, psumAux generalises psum to take as input an environment of
type a -> Int which is updated to reflect the extra structure in the
recursive calls. Thus, psumAux is a polymorphic function which returns
a continuation of type (a -> Int) -> Int. To see that the generalised
fold for PTree is an instance of its hfold counterpart, we will actually
use a generalised form of continuation whose environment stores values
parameterised by a functor g and whose results are parameterised by
a functor h. We have

newtype Ran g h a = Ran {iran :: forall b. (a -> g b) -> h b}

This Ran-type was first introduced by Bird and Paterson [7], who used
it for meta-level reasoning about nested types. In addition, they intro-
duced the continuations metaphor for it. We show below that Ran-types
can also be used as object-level devices for structuring programs.

The categorical constructs represented by Ran-types are just right
Kan extensions, which can be defined as follows. Given endofunctors2

G and H on C, the right Kan extension of H along G, written RanGH,
is a pair (R, ε) comprising an endofunctor R on C and a natural trans-
formation ε from R ◦ G to H with the property that if (K,α) is
another such pair, then there exists a unique natural transformation σ
from K to R such that α = ε ◦ σG. If it exists, RanGH is unique up to
natural isomorphism. Moreover, the assignment σ 7→ ε ◦ σG constitutes
a natural isomorphism between natural transformations from K to R
and those from K ◦ G to H which is natural in K. This isomorphism
actually determines RanGH from G and H, and so can be seen as
characterising RanGH.

2 Although when viewed categorically G and H need not have the same domain
and codomain, they do in this research and so we take advantage of this to simplify
the presentation of Kan extensions.

hosc.tex; 13/05/2009; 18:07; p.29

30 Johann and Ghani

The classic representation of the right Kan extension RanGH =
(R, ε) defines R to be the functor which maps an object C to the end∫
B(C → GB)→ HB (and a morphism f : C → C ′ to the unique mor-

phism from
∫
B(C → GB)→ HB to

∫
B(C ′ → GB)→ HB, which exists

by the universal property of the end
∫
B(C ′ → GB) → HB) justifies

our implementation of RanGH in Haskell as a parameterised family of
universally quantified types (see [27] for details). We first use the fact
that (C → GB)→ HB is essentially the type of a polymorphic function
to implement the right Kan extension RanGH as the a-parameterised
family Ran g h a of types forall b. (a -> g b) -> h b. The proof
that this implementation really does satisfy the isomorphism char-
acterising RanGH then involves constructing a natural isomorphism
between Nat k (Ran g h) and Nat (k ‘Comp‘ g) h. The essence of
this construction is captured in the definitions of fromRan and toRan
below.

The psum example above illustrates how right Kan extensions can be
used to ensure that the hfold combinators derived from initial algebra
semantics are expressive enough to capture forms of recursion tradi-
tionally thought to require gfolds. One question worth asking is when
a category C has enough structure for right Kan extensions to exist.
As we have already observed, right Kan extensions can be expressed
as ends. Since ends can be expressed as limits, it suffices to require
that C have all limits. While this is not an overly strong condition,
it does exclude, for example, realisability models such as PER which
do not have all limits. This is a pity because PER is often thought of
as one of the canonical models of universal type quantification. Fortu-
nately the situation for PER is recoverable by observing that, as shown
in [3], forall-types are interpreted as ends in PER, and PER is thus
guaranteed to have at least those limits which are Kan extensions.

Although we have taken care to motivate our results categorically,
we stress that no categorical knowledge of Kan extensions is needed
to understand the remainder of this paper. Indeed, the few concepts
we use which involve Kan extensions will be implemented in Haskell.
However, we retain the terminology to highlight the mathematical
underpinnings of generalised continuations, and to bring to a wider
audience the computational usefulness of Kan extensions. We will in
fact do so throughout the paper to emphasise that our results are
inspired by category theory, and to illustrate how categorical ideas can
be transcribed into Haskell code.

With these definitions in place, the polymorphic function psumAux
can be represented as a natural transformation from the functor PTree

hosc.tex; 13/05/2009; 18:07; p.30

Programming with Nested Types 31

to the functor Ran (Con Int) (Con Int), where Con k is the con-
stantly k-valued functor defined by3

newtype Con k a = Con {icon :: k}

This suggests that an alternative to inventing a generalised fold combi-
nator to define psumAux is to endow the functor Ran (Con Int) (Con Int)
with an HPTree-algebra structure and then define psumAux to be the
application of hfold to that algebra. The functions

toRan :: Functor k => Nat (k ‘Comp‘ g) h -> Nat k (Ran g h)
toRan s t = Ran (\env -> s (Comp (fmap env t)))

fromRan :: Nat k (Ran g h) -> Nat (k ‘Comp‘ g) h
fromRan s (Comp t) = iran (s t) id

constitute a Haskell implementation of the isomorphism between Nat (k
‘Comp‘ g) h and Nat k (Ran g h) which characterises right Kan ex-
tensions. So if we can endow Ran g h with an f-algebra structure —
i.e., if we can construct a term of type Alg f (Ran g h) for the higher-
order functor f — then we can use fromRan to write the generalised
fold for f with return type Nat (Mu f ‘Comp‘ g) h in terms of the
instance of hfold for f with return type Nat (Mu f) (Ran g h). The
observation that this is indeed possible is the starting point for our
derivation of generalised folds as hfolds over Ran-types. It is worth
observing that the definition of toRan relies on the functoriality of k,
whereas that of fromRan does not. This asymmetry crucially informs
our choice of type for the generic fold combinator later in this section.

Giving a direct definition of an algebra structure for the generalised
continuation Ran g h turns out to be rather cumbersome. Instead,
we circumvent this difficulty by drawing on the intuition inherent in
the continuations metaphor for Ran g h. If y is a functor, then an
interpreter for y is a function of type

type Interp y g h = Nat y (Ran g h)

Such an interpreter uses a polymorphic environment which stores val-
ues parameterised by g and whose results are parameterised by h. It
therefore takes as input a term of type y a and an environment of type
a -> g b, and returns a result of type h b. Associated with the type
synonym Interp is the function

3 The use of constructors such as Con and Comp is required by Haskell. Although
the price of lengthier code and constructor pollution is unfortunate, we believe it is
outweighed by the benefits of having an implementation.

hosc.tex; 13/05/2009; 18:07; p.31

32 Johann and Ghani

runInterp :: Interp y g h -> y a -> (a -> g b) -> h b
runInterp k y e = iran (k y) e

An interpreter transformer can now be defined as a function which takes
as input a higher-order functor f and functors g and h, and returns a
map which takes as input an interpreter for the functor y and produces
an interpreter for the functor f y. We can define a type of interpreter
transformers in Haskell by

type InterpT f g h = forall y. Functor y =>
Interp y g h -> Interp (f y) g h

Types equivalent to Interp and InterpT appear in [1].
We can argue informally that interpreter transformers are relevant

to the study of nested types. Recall that the hfold combinator for
a higher-order functor f must compute a value for each term of type
Mu f a, and that the functor Mu f can be thought of as the colimit
of the sequence of approximations f^n 0 of n-fold compositions of f
applied to the functor 0 whose value is constantly the empty type
(which is the initial object in this setting). Clearly, we can define an in-
terpreter for the functor 0 since there is nothing to interpret. Moreover,
an interpreter transformer will allow us to next produce an interpreter
for f 0, then for f^2 0, and so on. Thus an interpreter transformer
contains all of the information necessary to produce an interpreter for
Mu f. This intuition that interpreter transformers contain all of the
information required to define generalised folds can now be formalised
by showing that interpreter transformers are algebras. In Haskell, we
have

toAlg :: InterpT f g h -> Alg f (Ran g h)
toAlg interpT = interpT idNat

fromAlg :: HFunctor f => Alg f (Ran g h) -> InterpT f g h
fromAlg h interp = h . hfmap interp

idNat :: Nat f f
idNat = id

The definition of toAlg requires that Ran g h is a member of the
Functor class. This is established via the instance declaration

instance Functor (Ran g h) where
fmap f (Ran c) = Ran (\d -> c (d . f))

Parametricity and naturality guarantee that toAlg and fromAlg are
mutually inverse. Indeed, we have

hosc.tex; 13/05/2009; 18:07; p.32

Programming with Nested Types 33

toAlg (fromAlg k)
= toAlg (\ interp -> k . hfmap interp)
= (\ interp -> k . hfmap interp) idNat
= k . hfmap idNat
= k . idNat
= k

and

fromAlg (toAlg interpT)
= fromAlg (interpT idNat)
= \ interp -> (interpT idNat) . (hfmap interp)
= \ interp -> interpT interp
= interpT

The fourth equality in the first derivation uses the fact that hfmap
preserves identity natural transformations. The third equality in the
second derivation uses the naturality in y of the type

forall y. Functor y => Interp y g h -> Interp (f y) g h

of interpT, and the fourth equality there holds by extensionality. Cat-
egorically, the fact that toAlg and fromAlg are mutual inverses is just
a specific instantiation of the Yoneda Lemma. Thus we see that inter-
preter transformers are simply more computationally intuitive presen-
tations of algebras whose carriers are right Kan extensions. Of course,
such transformers may also be interesting in their own right, with
applications other than the one mentioned here.

We now use these observations to give our generic gfold combina-
tor for nested types in Haskell. This gfold combinator will take as
input an algebra for Ran g h presented as an interpreter transformer,
and return a polymorphic function which consumes a nested type to
produce a generalised continuation. Concretely, we define our generic
gfold combinator by

gfold :: HFunctor f => InterpT f g h -> Nat (Mu f) (Ran g h)
gfold interpT = hfold (toAlg interpT)

The function

rungfold :: HFunctor f =>
InterpT f g h -> Mu f a -> (a -> g b) -> h b

rungfold interpT = iran . gfold interpT

removes the Ran constructor from the output of gfold to expose the
underlying continuation, which is more useful in practice.

hosc.tex; 13/05/2009; 18:07; p.33

34 Johann and Ghani

An alternative definition of gfold would have return type Nat (Mu f
‘Comp‘ g) h and use toRan to compute functions whose natural re-
turn types are of the form Nat (Mu f) (Ran g h). But, contrary to
expectation, a gfold combinator given by such an alternative defini-
tion is not expressive enough to represent all uniform consumptions
with return types of the form Nat (Mu f) (Ran g h). For example,
the function fmap :: (a -> b) -> Mu f a -> Mu f b in the Functor
instance declaration for Mu f given at the end of this section is easily
written in terms of the gfold combinator defined above. On the other
hand, defining fmap as the composition of toRan and a call to a gfold
combinator with return type of the form Nat (Mu f ‘Comp‘ g) h is not
possible. This is because the use of toRan assumes the functoriality of
Mu f — which is precisely what defining fmap establishes. Note that this
is not a semantic issue, but is a consequence of Haskell’s typechecking.

In summary, we have made good on our promise to show that the
generic gfold combinator for nested types in Haskell is interdefin-
able with the generic hfold combinator for such types. Our defini-
tion differs from all characterisations of generalised folds appearing in
the functional programming literature, since none of these establishes
interdefinability.

We come full circle by using the specialisation of the gfold combi-
nator to the higher-order functor HPTree to define a function sumPTree
which is equivalent to psum. For this, we first define an auxiliary func-
tion sumAuxPTree in terms of which sumPTree itself will be defined. To
define sumAuxPTree we must define an interpreter transformer, which
we do by giving its two unbundled components. We have

type PLeafT g h = forall y. forall a.
Nat y (Ran g h) -> a -> Ran g h a

type PNodeT g h = forall y. forall a.
Nat y (Ran g h) -> y (a,a) -> Ran g h a

gfoldPTree :: PLeafT g h -> PNodeT g h -> PTree a -> Ran g h a
gfoldPTree l n = hfoldPTree (l idNat) (n idNat)

psumL :: PLeafT (Con Int) (Con Int)
psumL pinterp x = Ran (\e -> e x)

psumN :: PNodeT (Con Int) (Con Int)
psumN pinterp x = Ran (\e -> runInterp pinterp x (update e))

update e (x,y) = e x ‘cplus‘ e y
where cplus (Con a) (Con b) = Con (a+b)

hosc.tex; 13/05/2009; 18:07; p.34

Programming with Nested Types 35

sumAuxPTree :: PTree a -> Ran (Con Int) (Con Int) a
sumAuxPTree = gfoldPTree psumL psumN

sumPTree :: PTree Int -> Int
sumPTree = icon . fromRan sumAuxPTree . Comp . fmap Con

Thus, sumPTree is essentially fromRan sumAuxPTree — ignoring the
constructor pollution introduced by Haskell, that is.

Rather than using the PTree data type declaration from Section 3,
we could instead have defined PTree to be Mu HPTree. In this case,
functoriality of PTree (which is required in the definition of sumPTree
above) would be obtained from Example 13 rather than directly. Similar
comments apply at several places below.

Because the gfold combinators are just particular instances of the
hfold combinators, and because we concretely gave the hfold combi-
nators for the nested types Bush and Lam in Section 3, we do not give
concrete presentations of the corresponding gfold combinators here.
Instead, we give two additional applications of generalised folds.

EXAMPLE 12. Generalised folds can be used to show that untyped
λ-terms are an instance of the monad class. The generalised fold can
be used to define the bind operation >>=, which captures substitution,
as follows:

subAlg :: InterpT HLam (Mu HLam) (Mu HLam)
subAlg k (HVar x) = Ran (\e -> e x)
subAlg k (HApp t u) = Ran (\e -> In (HApp (runInterp k t e)

(runInterp k u e)))
subAlg k (HAbs t) = Ran (\e -> In (HAbs

(runInterp k t (lift e))))

lift e (Just x) = fmap Just (e x)
lift e Nothing = In (HVar Nothing)

instance Monad (Mu HLam) where
return = In . HVar
t >>= f = rungfold subAlg t f

That the return and >>= operations for Mu HLam satisfy the monad
laws can established by direct calculation using the uniqueness of the
hfold operator.

EXAMPLE 13. Generalised folds can also be used to show that nested
types in Haskell are instances of the Functor class. We have

hosc.tex; 13/05/2009; 18:07; p.35

36 Johann and Ghani

mapAlg :: HFunctor f => InterpT f Id (Mu f)
mapAlg k t = let k1 t = runInterp k t Id

in Ran (\e -> In (hfmap k1 (ffmap (unid . e) t)))

instance HFunctor f => Functor (Mu f) where
fmap k t = rungfold mapAlg t (Id . k)

Here, Id is the identity functor, given in Haskell by

newtype Id a = Id {unid :: a}

instance Functor Id where
fmap f (Id x) = Id (f x)

That the fmap operation defined above for Mu f satisfies the functor
laws can be established by direct calculation.

4.2. Generalised Builds

In the previous section we noted that, at first glance, the standard
hfold combinators for nested types in Haskell appear to be too poly-
morphic to express a consumer of a structure of type Mu f a for a spe-
cific type a. The standard resolution of this problem from the functional
programming literature has been to define generalised fold combina-
tors for such types which, given appropriate inputs, return consumers
with types of the form Nat (Mu f ‘Comp‘ g) h. But, as we have just
shown, there is in fact no need to invent wholly new generalised fold
combinators. Instead, we can simply convert each generalised fold
combinator with return type Nat (Mu f ‘Comp‘ g) h to the corre-
sponding hfold combinator with return type Nat (Mu f) (Ran g h)
as needed.

It is natural to ask if there are generalised build combinators for
nested types in Haskell that correspond to their generalised folds.
Intuitively, such a generalised build should produce expressions of
type Mu f (g a) for some f, g, and a, so that if a generalised build
is followed by a generalised fold which consumes a structure of type
Mu f (g a), then an appropriate generalised fold/build rule can be
used to eliminate the intermediate structure of this type. But the fact
that generalised folds are representable as certain hfolds suggests
that we should be able to define such generalised builds in terms of
our hbuild combinators, rather then defining entirely new generalised
build combinators. We show in this section that we can indeed derive
generalised builds for nested types in Haskell in this way, and that we
can do so in a manner generic over the data type under consideration.

hosc.tex; 13/05/2009; 18:07; p.36

Programming with Nested Types 37

In the next section we will show that a generic generalised fold/build
rule can also be deduced from the generic hfold/hbuild rule for nested
types in Haskell that we have already considered in Section 3.3.

Since the generic gfold combinator returns results of type Nat (Mu f)
(Ran g h), its corresponding generic generalised build should pro-
duce results with types of the form Nat c (Mu f). Taking c to be the
existential type4

data Lan g h a = forall b. Lan (g b -> a, h b)

we have

gbuild :: HFunctor f =>
(forall x. Alg f x -> Nat (Lan g h) x)

-> Nat (Lan g h) (Mu f)
gbuild = hbuild

Computationally, the Lan-type forall b. Lan (g b -> a, h b) can
be regarded as comprising a hidden state b, an observation function of
type g b -> a, and an element of the type h b obtained by applying
the functor h to the hidden state b. Categorically, Lan-types are left Kan
extensions. Left Kan extensions are duals of right Kan extensions, and
can be defined as follows. Given endofunctors G and H on C, the left
Kan extension of H along G, written LanGH, is a pair (L, ε) comprising
an endofunctor L on C and a natural transformation ε from H to L ◦ G
with the property that if (S, α) is another such pair, then there exists
a unique natural transformation σ from L to S such that α = σG ◦ ε.
If it exists, LanGH is unique up to natural isomorphism. Moreover, the
assignment σ 7→ σG ◦ ε constitutes a natural isomorphism between
natural transformations from L to K and those from H to K ◦ G
which is natural in K. This isomorphism actually determines LanGH
from G and H, and so can be seen as characterising LanGH.

The classic representation of the left Kan extension LanGH = (L, ε)
as the functor which maps an object C to the coend

∫ B(GB → C)×HB
(and a morphism f : C → C ′ to the unique morphism from

∫ B(GB →
C)×HB to

∫ B(GB → C ′)×HB, which exists by the universal prop-
erty of the coend

∫ B(GB → C) × HB) justifies our implementation
of LanGH in Haskell as a parameterised family of existentially quan-
tified types (see [27] for details). The proof that this implementation
really does satisfy the isomorphism characterising LanGH then involves
constructing a natural isomorphism between Nat (Lan g h) k and
Nat h (k ‘Comp‘ g). The essence of this construction is captured in
the following definitions of fromLan and toLan:

4 In a data type declaration in Haskell, a universal quantifier outside a constructor
is read as existentially quantifying the variable it binds.

hosc.tex; 13/05/2009; 18:07; p.37

38 Johann and Ghani

toLan :: Functor f => Nat h (f ‘Comp‘ g) -> Nat (Lan g h) f
toLan s (Lan (val, v)) = fmap val (icomp (s v))

fromLan :: Nat (Lan g h) f -> Nat h (f ‘Comp‘ g)
fromLan s t = Comp (s (Lan (id, t)))

The simplicity of the definition of gbuild highlights the importance
of choosing an appropriate formalism — here, Kan extensions — to
reflect inherent structure. While it appears that defining the generic
gbuild combinator requires no effort at all once we have the generic
hbuild combinator, the key insight lies in introducing the abstrac-
tion Lan and using the bijection between Nat h (f ‘Comp‘ g) and
Nat (Lan g h) f.

We conclude this section by using the specialisation of the gbuild
combinator to the higher-order functor HPTree to define a function
mkTree :: Int -> PTree Int which takes an integer n as input and
returns the perfect tree of depth n storing n in all of its leaves. We have

gbuildPTree :: (forall x. (forall a. a -> x a) ->
(forall a. x (a,a) -> x a) ->
(forall a. Lan g h a -> x a)) ->

Lan g h a -> PTree a
gbuildPTree g = g PLeaf PNode

tree :: (forall a. a -> x a) ->
(forall a. x (a,a) -> x a) ->

Nat (Lan (Con Int) (Con Int)) x
tree l n (Lan (z, Con 0)) = l (z (Con 0))
tree l n x = n (tree l n (count x))

count :: Lan (Con Int) (Con Int) a ->
Lan (Con Int) (Con Int) (a,a)

count (Lan (z, Con n)) =
Lan (\i -> (z (s i), z (s i)), Con (n-1))

s :: Con Int a -> Con Int a
s (Con n) = Con (n+1)

mkTree :: Int -> PTree Int
mkTree n = gbuildPTree tree (Lan (icon, Con n))

hosc.tex; 13/05/2009; 18:07; p.38

Programming with Nested Types 39

4.3. Generalised Short Cut Fusion

As an immediate consequence of the fusion rule for nested types we
have

GENERALISED FUSION RULE FOR NESTED TYPES If f is a
higher-order functor, g, h and h’ are functors, k is an algebra presented
as an interpreter transformer of type InterpT f g h’, and l is a term
of type forall x. Alg f x -> Nat (Lan g h) x, then

gfold k . (gbuild l) = l (toAlg k) (5)

We can apply the specialisation of this rule to fuse the modular
function smTree = sumAuxPTree . mkTree. This gives

smTree (Lan (z, Con n))
= (gfoldPTree psumL psumN . gbuildPTree tree) (Lan (z, Con n))
= tree (psumL idNat) (psumN idNat) (Lan (z, Con n))
= if n == 0 then Ran (\e -> e (z (Con 0)))

else psumN idNat (tree (psumL idNat)
(psumN idNat)
(count (Lan (z, Con n))))

= if n == 0 then Ran (\e -> e (z (Con 0)))
else Ran (\e -> iran (tree (psumL idNat)

(psumN idNat)
(count (Lan (z, Con n))))

(update e))
= if n == 0 then Ran (\e -> e (z (Con 0)))

else Ran (\e -> iran (smTree (count (Lan (z, Con n))))
(update e))

Thus, we have

runInterp smTree (Lan (z, Con n)) e
= if n == 0 then e (z (Con 0))

else runInterp smTree (count (Lan (z, Con n))) (update e)

Although this fused version of the smTree looks more complicated, it
avoids construction of the intermediate perfect tree.

hosc.tex; 13/05/2009; 18:07; p.39

40 Johann and Ghani

5. Related Work

The first attempt to give initial algebra semantics for nested types goes
back to Bird and Meertens [5], who sought to marry the conceptual im-
portance of nested types in functional programming with the standard
initial algebra semantics for algebraic types. Their overall aim was to
expand the class of data types over which polytypic programming could
be performed. Although they base their semantics on higher-order func-
tors and use these to define folds for nested types, they conclude from
consideration of specific programs over nested types that initial algebra
semantics is limited and loses expressive power. Specifically, they assert
that standard folds can only express computations whose results are
natural transformations (see Section 6); this assertion is echoed in [7].
To overcome the perceived lack of expressiveness of standard folds,
Bird and Meertens introduce several alternative approaches to defining
folds for specific nested types. Unfortunately, it is not clear, even to
them, whether or not these approaches are generalisable to other such
types.

In another attempt to overcome the perceived limitations of stan-
dard folds for nested types, Bird and Paterson [7] introduced gener-
alised folds into the literature. They show how to construct a gener-
alised fold combinator for each member of a syntactically restricted
class of nested types, as well as how these combinators can be used to
express computations whose results are not natural transformations.
The importance of right Kan extensions to the study of generalised
folds and standard folds first appears in this paper — but they are
used only at the meta-level to prove uniqueness of generalised folds
and correctness of map fusion laws and fold fusion laws for generalised
folds, rather than as object-level programming structuring devices.
Kan extensions thus serve as a meta-tool in [7] to support the use of
generalised folds. By contrast, our work uses Kan extensions as an
object-level tool to eliminate the need for generalised folds in favour
of standard folds, and thus to return initial algebras to center stage as
a powerful and expressive foundation for structured programming with
nested types in Haskell.

We stress that the fusion laws proved for generalised folds by Bird
and Paterson — and by others for other notions of folds over nested
types — do not include fold/build fusion. Of course, this would be im-
possible given that builds have not heretofore been defined for nested
types. Specifically, fold fusion is concerned with when, for any notion
of a fold under consideration, a fold followed by another function can
be written as a fold, i.e., when the equivalence f . fold g = fold h
holds. This is quite different from, and only tangentially related to, the

hosc.tex; 13/05/2009; 18:07; p.40

Programming with Nested Types 41

issue of when fold h . build g = g h. Conditions under which fold
fusion can be applied typically derive from the uniqueness of the map
fold h under consideration.

Combinators other than folds have been defined for certain syntac-
tic classes of nested types as well. For example, [16] defines polytypic
map, equality, and reduction functions for a class of functors indexed
over so-called rational trees. The question of whether initial algebra
semantics of higher-order functors can serve as a viable basis for poly-
typism on nested types is raised in [16] but, interestingly, no attempt
is made there to answer the question. The thesis [4] trades a functional
approach to nested types for a relational approach, and uses the latter
to give three types of generic folds, as well as to define map, zip,
membership, and reduction functions, and map and fold fusion rules,
for nested types in Haskell.

A different approach to polytypic programming, involving modeling
types by terms of the simply typed lambda calculus augmented with
a family of recursion operators, and defining polytypic functions by
induction on the syntax of type constructors, is presented in [19]. This
approach succeeds in handling all nested types expressible in Haskell,
but places considerable demands on the type system. In [8], folds are
defined for nested types by folding over infinite structures, called alge-
bra families, that contain all possible values for data constructors. An
initial algebra semantics is given for algebra families, and algebra family
folds and maps are defined. In [4] it is shown that nested types represent
constraints on regular data types, and thus that nested data types can
always be removed from programs by embedding them into regular
data types. Our work shows that we can have the expressivity of nested
types and the benefits of initial algebra semantics, all without resorting
to such embeddings. In fact, all approaches to polytypic programming
with nested types in Haskell are based on the premise that the standard
folds derived from initial algebra semantics are insufficiently expressive
for solving practical problems — a premise we show in this paper to
have been erroneous from the outset.

A related line of inquiry concerns the efficiency of generalised folds
for nested types. Hinze [17] gives a variation, defined by induction on
the structure of data type definitions, of the generalised folds of Bird
and Paterson for a syntactically defined class of nested types. More effi-
cient versions of these alternative generalised folds are then derived by
observing that Bird and Paterson’s generalised folds require extra map
parameters, and that these parameters are the source of inefficiencies.
By giving more general types to some of these extra map parameters,
and the fusing generalised folds with these maps to get new folds,
these inefficiencies can be eliminated. Unfortunately, not all alternative

hosc.tex; 13/05/2009; 18:07; p.41

42 Johann and Ghani

generalised folds have corresponding efficient versions, and [17] leaves
open the question of whether the generalised folds of [7] are amenable
to the same efficiency improvements as Hinze’s variations are.

An affirmative answer to this question is provided in [28], which
uses initial algebra semantics to give unique characterisations of ef-
ficient counterparts to the generalised folds of [7]. Like the others,
this paper considers only a restricted class of functors, but it gives
efficient generalised folds inductively for this class, and then proves
their uniqueness. Also given are map and fold fusion rules, and a “fold
equivalence” result which relates the efficient generalised folds to the
ordinary generalised folds for the class of nested data types for which
both are defined. Similarities between the initial algebra definitions of
efficient generalised folds and Mendler-style inductive types are noted
in the conclusion, which suggests that it might be possible to extend
the framework of [38] to include them.

Picking up on this thread, [1] provides an in-depth study of iteration
for higher-ranked types definable in extensions of Fω with recursion
combinators and associated β-rewrite rules. It uses a type-theoretic
presentation of right Kan extensions to provide reduction-preserving
translations of these extensions into Fω, from which termination of
their reduction rules follows from strong normalisation of Fω. It also
establishes interdefinability of standard and generalised folds for all
nested types definable in the type theory considered there. By contrast,
we consider all nested types definable — using type classes, GADTs,
monads, and other features — in the Turing complete programming
language Haskell, and show how right Kan extensions can be used to
establish interdefinability of the generalised and standard fold com-
binators for such types. We also show how left Kan extensions can be
used at the object level to establish interdefinability of the gbuild and
hbuild combinators for nested types in Haskell. Analogues of our build
combinators and fold/build fusion rules are not discussed in [1], even
for the nested types expressible in the type theory considered there.

Applications involving nested types abound. The use of a nested
type to implement a bit reversal protocol goes back to [18], which
considers in detail the problem of programming with perfect trees, but
does not attempt to develop a theory of nested types. Data structure
implementations based on nested types appear in [31], as well as in [20]
and [21], which contain applications involving nested types and higher-
order nested types which capitalise on the use of nested types to record
constraints. Other applications appear in, for example, [6] and [22].

hosc.tex; 13/05/2009; 18:07; p.42

Programming with Nested Types 43

6. Conclusion and Future work

We have extended the standard initial algebra semantics for nested
types in Haskell to augment the standard hfold combinators for such
types with hbuild combinators and hfold/hbuild rules for them. In
fact, we have capitalised on the uniformity of the isomorphism between
such types and their Church encodings to give a single generic hbuild
combinator and a single generic hfold/hbuild rule, each of which can
be specialised to any such type of interest. We have also shown that the
generalised fold combinators from the literature are uniformly inter-
definable with appropriate instances of the generic hfold combinator
for nested types in Haskell, and we have defined generalised build
combinators and generalised fold/build rules for these types. Like the
definitions of the hbuild combinator and the hfold/hbuild rule, those
for gbuild and the gfold/gbuild rule can also be defined generically.

The uniformity of both the standard and generalised constructs de-
rives from a technical approach based on initial algebras of functors.
Our approach applies to all nested types definable in Haskell, and thus
provides a principled and elegant foundation for programming with
them. We give a completely generic Haskell implementation of these
combinators, and illustrate their use in several examples. We believe
this paper contributes to a settled foundation for programming with
nested types in Haskell.

This work reported in this paper can be seen as providing a means of
incorporating nested types and accompanying combinators into systems
based on initial algebra semantics of data types — such as the Haskell
extension PolyP [25] — in such a way that fundamental changes to the
basic framework of those systems are not required.

It is worth noting that our development also applies in the coinduc-
tive setting. In the case of coinductive types, it is now well known that
a generic unfold combinator can be defined:

unfold :: Functor f => (x -> f x) -> x -> M f
unfold k x = Inn (fmap (unfold k) (k x))

The uniformity of this definition entails that it can be specialised to any
functor definable in Haskell. The coinductive dual of build is known
as destroy, and in [15] a generic destroy combinator was given for
coinductive types:

destroy :: Functor f =>
(forall x . (x -> f x) -> x -> c) -> M f -> c

destroy g = g outt

outt (Inn t) = t

hosc.tex; 13/05/2009; 18:07; p.43

44 Johann and Ghani

This combinator can be used to define generic unfold and destroy
combinators for programming with nested types in Haskell. Like the
hfold and hbuild combinators, these are defined uniformly over in-
stances of the HFunctor class. We have

type CoAlg f g = Nat g (f g)

hunfold :: HFunctor f => CoAlg f g -> Nat g (Mu f)
hunfold k x = In (hfmap (hunfold k) (k x))

hdestroy :: HFunctor f =>
(forall g. Functor g =>

CoAlg f g -> Nat g c) -> Nat (Mu f) c
hdestroy g = g (out)

out :: Nat (Mu f) (f (Mu f))
out (In t) = t

Finally, we have the following unfold/destroy rule for nested types in
Haskell:

hdestroy g . hunfold k = g k

It is straightforward to derive generalised versions of these combinators
using the techniques of this paper.

The categorical semantics of [15] reduces correctness of fold/build
rules to the problem of constructing parametric models which respect
that semantics. The category-theoretic ideas underlying the results of
this paper entail a similar reduction, which we see as prescribing proper-
ties that any eventual categorical semantics of the underlying functional
language should satisfy. An alternative approach to correctness is taken
in [26], where the operational semantics-based parametric model of [34]
is used to validate the fusion rules for algebraic types introduced in that
paper. Extending these techniques to tie the correctness of fold/build
rules into an operational semantics of the underlying functional lan-
guage is one direction for future work. Benchmarking the rules and
developing a preprocessor for automatically locating instances where
fold/build rules for nested types can be applied are additional topics
of interest. Finally, the techniques of this paper may provide insights
into theories of folds, builds, and fusion rules for more advanced
data types, such as mixed variance data types, GADTs, and dependent
types [24].

hosc.tex; 13/05/2009; 18:07; p.44

Programming with Nested Types 45

References

1. Abel, A., Matthes, R., and Uustalu, T. Iteration and coiteration schemes
for higher-order and nested datatypes. Theoretical Computer Science
333(1-2) (2005), pp. 3–66.

2. Altenkirch, T., and Reus, B. Monadic presentations of lambda terms
using generalized inductive types. Proc., Computer Science Logic, pp.
453–468, 1999.

3. Bainbridge, E. S., Freyd, P. J., Scedrov, A., and Scott, P. J. Functorial
polymorphism. Theoretical Computer Science 70(1) (1990), pp. 35–64.
Corrigendum in 71(3) (1990) 431.

4. Bayley, I. Generic Operations on Nested Datatypes. Ph.D. Dissertation,
University of Oxford, 2001.

5. Bird, R. and Meertens, L. Nested datatypes. Proc., Mathematics of
Program Construction, pp. 52–67, 1998.

6. Bird, R. and Paterson, R. de Bruijn notation as a nested datatype.
Journal of Functional Programming 9(1) (1999), pp. 77–91.

7. Bird, R. and Paterson, R. Generalised folds for nested datatypes. Formal
Aspects of Computing 11(2) (1999), pp. 200–222.

8. Blampied, P. Structured Recursion for Non-uniform Data-types. Ph.D.
Dissertation, University of Nottingham, 2000.

9. Dybjer, P. Inductive Families. Formal Aspects of Computing 6(4) (1994),
pp. 440–465.

10. Fiore, M., Plotkin, G. D., and Turi, D. Abstract syntax and variable
binding. Proc., Logic in Computer Science, pp. 193–202, 1999.

11. Gill. A. Cheap Deforestation for Non-strict Functional Languages. Ph.D.
Dissertation, Glasgow University, 1996.

12. Gill, A., Launchbury, J. and Peyton Jones, S. L. A short cut to de-
forestation. Proc., Functional Programming Languages and Computer
Architecture, pp. 223–232, 1993.

13. Ghani, N., Haman, M., Uustalu, T., and Vene, V. Representing cyclic
structures as nested types. Presented at Trends in Functional Program-
ming, 2006.

14. Ghani, N., Johann, P., Uustalu, T., and Vene, V. Monadic augment
and generalised short cut fusion. Proc., International Conference on
Functional Programming, pp. 294–305, 2005.

15. Ghani, N., Uustalu, T., and Vene, V. Build, augment and destroy. Univer-
sally. Proc., Asian Symposium on Programming Languages, pp. 327–347,
2003.

16. Hinze, R. Polytypic functions over nested datatypes. Discrete Mathemat-
ics and Theoretical Computer Science 3(4) (1999), pp. 193–214.

17. Hinze, R. Efficient generalized folds. Proc., Workshop on Generic
Programming, pp. 1–16, 2000.

18. Hinze, R. Functional Pearl: Perfect trees and bit-reversal permutations.
Journal of Functional Programming 10(3) (2000), pp. 305–317.

hosc.tex; 13/05/2009; 18:07; p.45

46 Johann and Ghani

19. Hinze, R. A New Approach to Generic Functional Programming. Proc.,
Principles of Programming Languages, pp. 119–132, 2000.

20. Hinze, R. Manufacturing datatypes. Journal of Functional Programming
11(5) (2001), pp. 493–524.

21. Hinze, R. and Juering, J. Generic Haskell: Applications. In Generic
Programming: Advanced Lectures, pp. 57–97, 2003.

22. Hughes, R. J. M. and Swierstra, S. D. Polish parsers, step by step. Proc.,
International Conference on Functional Programming, pp. 239–248, 2003.

23. Johann, P. and Ghani, N. Initial algebra semantics is enough! Proc.,
Typed Lambda Calculi and Applications, pp. 207–222, 2007.

24. Johann, P. and Ghani, N. Foundations for Structured Programming with
GADTs. Proc., Principles of Programming Languages, pp. 297–308, 2008.

25. Jansson, P. and Juering, J. PolyP - a polytypic programming language
extension. Proc., Principles of Programming Languages, pp. 470–482,
1997.

26. Johann, P. A generalization of short-cut fusion and its correctness proof.
Higher-order and Symbolic Computation 15 (2002), pp. 273–300.

27. MacLane, S. Categories for the Working Mathematician. Springer-
Verlag, 1971.

28. Martin, C, Gibbons, J., and Bayley, I. Disciplined efficient generalised
folds for nested datatypes. Formal Aspects of Computing 16(1) (2004),
pp. 19–35.

29. McBride, C. and McKinna, J. View from the left. Journal of Functional
Programming 14(1) (2004), pp. 69–111.

30. Mycroft, A. Polymorphic type schemes and recursive definitions. Proc.,
International Symposium on Programming, pp. 217–228, 1984.

31. Okasaki, C. Purely Functional Data Structures. Cambridge University
Press, 1998.

32. Peyton Jones, S. L. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, 2003.

33. Pitts, A. Parametric polymorphism, recursive types, and operational
equivalence. Unpublished Manuscript.

34. Pitts, A. Parametric polymorphism and operational equivalence. Math-
ematical Structures in Computer Science 10 (2000), pp. 1–39.

35. Plotkin, G. and Power, J. Notions of computation determine monads.
Proc., Foundations of Software Science and Computation Structure, pp.
342–356, 2002.

36. Smyth, M. B. and Plotkin, G. The category-theoretic solution of recursive
domain equations. SIAM Journal on Computing 11(4) (1982), pp. 761–
783.

37. Takano, A. and Meijer, E. Shortcut deforestation in calculational form.
Proc., Functional Programming Languages and Computer Architecture,
pp. 306–313, 1995.

38. Uustalu, T. and Vene, V. Mendler-style inductive types. Nordic Journal
of Computing 6(3) (1999), pp. 343–361.

hosc.tex; 13/05/2009; 18:07; p.46

Programming with Nested Types 47

39. Wehr, M. Non-uniform recursion: The solution (minimal sorting for fold).
Available at www.citeseer.ist.psu.edu/wehr00nonuniform.html.

hosc.tex; 13/05/2009; 18:07; p.47

hosc.tex; 13/05/2009; 18:07; p.48

