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Overview of Lecture 1

• From Imperative to Functional Programming:

– What is imperative programming?

– What is functional programming?

• Key Ideas in Functional Programming:

– Types: Which model the data in our programs

– Functions: Which are our programs

– Evaluating Expressions: Which executes our programs

Neil Ghani Strathclyde, November 3, 2014
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How not to Fail CS316!

• Coursework: An easy way to pick up marks. Therefore

– Some coursework is assessed in the labs and hence you should

prepare it before the labs on Tuesday

– Always hand some coursework in since there will be some

simple questions on every practical.

• Plagiarism: Evidence suggests those who plagiarise will fail

– Departmental capping catches many who plagiarise.

– Penalties can be stiff, eg deduction of 10% of module mark/year

mark or termination of course

• Reading: The lecture notes!

Neil Ghani Strathclyde, November 3, 2014
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What is Imperative Program — Adding up square numbers

• Problem: Add up the first n square numbers

ssquares n = 0 2 + 1 2 + ... + n 2

• Program: We could write the following in Java

public int ssquares(int n){
private int s,i;

s=0; i=0;

while (i<n) {i:=i+1;s:=s+i*i;}
}

• Execution: We may visualize running the program as follows

Memory
s = ?? −→
i = ?? −→

ssquares 4
Memory

−→ s = 30

−→ i = 4

• Key Idea: Imperative programs transform the memory

Neil Ghani Strathclyde, November 3, 2014
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The Two Aspects of Imperative Programs

• Functional Content: What the program does

– Programs take some input values and returns an output value

– ssquares takes a number and returns the sum of the squares

upto that number

• Implementational Content: How the program does it

– Imperative programs transform the memory using assign-

ment etc

– ssquares uses variables i and s to represent locations in

memory. The program transforms the memory until s con-

tains the correct number.

Neil Ghani Strathclyde, November 3, 2014
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What is Functional Programming?

• Motivation: Problems arise as programs contain two aspects:

– High-level algorithms and low-level implementational features

– Humans are good at the former but not the latter

• Idea: The idea of functional programming is to

– Concentrate on the functional behaviour of programs

– Leave memory management to the language implementation

• Summary: Functional languages are more abstract and avoid

low level detail

Neil Ghani Strathclyde, November 3, 2014
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A Functional Program — Summing squares in Haskell

• Types: First we give the type of summing-squares

hssquares :: Int -> Int

• Functions: Our program is a function

hssquares 0 = 0

hssquares n = n*n + hssquares(n-1)

• Evalutation: Run the program by applying the function

hssquares 2 ⇒ 2*2 + hssquares 1

⇒ 4 + 1*1 + hssquares 0

⇒ 4 + 1 + 0

⇒ 5

Neil Ghani Strathclyde, November 3, 2014
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Key Ideas in Functional Programming I — Types

• Motivation: Recall that types model the data in our programs

• Integers: Int is the Haskell type {. . . ,−2,−1,0,1,2, . . .}

• Built in Operations:

– Arithmentic Operations: + * - div mod abs

– Ordering Operations: > >= == /= <= <

• Expressions: Some expressions using integers

5 * 4 (*) 5 4 mod 13 4 13 ‘mod‘ 4

5-(3*4) (5-3)*4 7 >= (3*3) 5 * (-1)

• Precedence: The rules about precedence and bracketing apply

Neil Ghani Strathclyde, November 3, 2014
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Key Ideas in Functional Programming II — Functions

• Intuition: Recall that a function associates to every input-value

a unique output-value

x ∈ A −→ Function f ?
−→ y ∈ B

• Example 1: The square and cube functions are written

square :: Int -> Int cube :: Int -> Int

square x = x * x cube x = x * square x

• In General: In Haskell, functions are defined as follows

〈function-name〉 :: 〈input type〉-> 〈output type〉

〈function-name〉 〈variable〉 = 〈expression〉

Neil Ghani Strathclyde, November 3, 2014
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Functions with Multiple Arguments

• Intuition: A function f with n inputs is written f::a1->...-> an-> a

x1 ∈ A1 −→
x2 ∈ A2 −→

... ...
xn ∈ An −→

Function f ?
−→ y ∈ A

• Examples: The difference between two integers

diff :: Int -> Int -> Int

diff x y = abs (x - y)

• In General:

〈function-name〉 :: 〈type 1〉-> . . . -> 〈type n〉-> 〈output-type〉

〈function-name〉 〈variable 1〉 . . . 〈variable n〉 = 〈expression〉

Neil Ghani Strathclyde, November 3, 2014
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Applying Functions to Expressions

• Motivation: Get the result of a function by applying it

– Write the function name followed by the input

• Examples: Here are some examples

square 4 square (3 + 1) square 3 + 1
cube (square 2) difference 6 7 square 2.2

• In General: Application is governed by the typing rule

– If f is a function of type a->b

– And, u is an expression of type a

– Then f u is the result of applying f to u and has type b

Neil Ghani Strathclyde, November 3, 2014
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Key Ideas in Functional Programming III — Evaluating Expressions

• Procedure:

– Find application of a function to an expression, eg square 5

– Substituted expression into function definition, eg 5 ∗ 5

– Repeat as often as possible

• Example:

cube (square 3) ⇒ (square 3) * square (square 3)

⇒ (3*3) * ((square 3) * (square 3))

⇒ 9 * ((3*3) * (3*3))

⇒ (9 * (9*9)

⇒ 729

Neil Ghani Strathclyde, November 3, 2014
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Summary — Comparing Functional and Imperative Programs

• Difference 1: Level of Abstraction

– Imperative Programs include low level memory details

– Functional Programs describe only high-level algorithms

• Difference 2: How exectution works

– Imperative Programming based upon memory transformation

– Functional Programming based upon expression evaluation

• Difference 3: Type systems

– Type systems play a key role in functional programming

Neil Ghani Strathclyde, November 3, 2014
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Advantages of Functional Programming

• Advantage 1: Functional Programs are easier to write

– The algorithm we concieve of is easier to write down in a

functional style. This is because functional programs are

more abstract

• Advantage 2: Functional Programs are easier to read

– Because they are shorter and not cluttered by implementa-

tional details, eg there is no public static blah blah blah!

• Advantage 3: Functional Programs are easier to prove correct,

– Becuase they are based on the mathematical theory of func-

tions, This is increasingly important in safety critical appli-

cations.

Neil Ghani Strathclyde, November 3, 2014
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Summary — Key ideas in Haskell

• Types: A type is a collection of data values

– Every expression has a type describing its nature

• Functions: Transform inputs to outputs

– We build complex expressions by defining functions and ap-

plying them to other expressions

• Evaluation: Calculates the result of applying a function to an

input

– Expressions can be evaluated by hand or by HUGS

• Now: Go and look at the first practical!

Neil Ghani Strathclyde, November 3, 2014
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Recall ....

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions: 0, True, ‘‘hello’’

– Functions allow us to build new expressions: square 3, 4+6

• Haskell Types: There are two kinds of types in Haskell

– Basic Types: Int, Float, Bool, Char, String

– Compound Types: Function types, Pair types, List types

Neil Ghani Strathclyde, November 3, 2014
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Overview of Lecture 2.1

• New Types: Today we shall learn about the following types

– The type of booleans: Bool

– The type of characters: Char

– The type of strings: String

– The type of fractions: Float

• New Functions: And also about the following functions

– Conditional expressions and Guarded functions

– Error Handling and Local Declarations

Neil Ghani Strathclyde, November 3, 2014
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Booleans and Logical Operators

• Values of Bool : Contains two values — True, False

• Logical Operations: Various built in functions

&& :: Bool -> Bool -> Bool

|| :: Bool -> Bool -> Bool

not :: Bool -> Bool

• Functions: Booleans can be used in expressions and functions

exOr :: Bool -> Bool -> Bool

exOr x y = (x || y) && not (x && y)

• Evaluation: As before substitute arguments for variables

exOr True False ⇒ (True || False) && not (True && False)

⇒ True && not False

⇒ True && True ⇒ True

Neil Ghani Strathclyde, November 3, 2014
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Conditionals — If statements

• Conditionals: A conditional expression has the form

if b then e1 else e2

where

– b is an expression of type Bool

– e1 and e2 are expressions with the same type

• Example: Maximum of two numbers

maxi :: Int -> Int -> Int

maxi n m = if n>=m then n else m

• Example: Testing if an integer is 0

isZero x :: Int -> Bool

isZero x = if (x == 0) then True else False

Neil Ghani Strathclyde, November 3, 2014
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Guarded functions — An alternative to if-statements

• Example: doubleMax returns double the maximum of its inputs

doubleMax :: Int -> Int -> Int

doubleMax x y

| x >= y = 2*x

| x < y = 2*y

• Definition: A guarded function is of the form

〈function-name〉 :: 〈type 1〉 -> 〈type n〉 -> 〈output type〉

〈function-name〉 〈var 1〉 . . . 〈var n〉
| 〈guard 1〉 = 〈expression 1〉
| . . . = . . .

| 〈guard n〉 = 〈expression n〉

where guard 1, ..., guard n :: Bool

Neil Ghani Strathclyde, November 3, 2014
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The Char type

• Elements of Char : Letters, digits and special characters

• Forming elements of Char : Single quotes form characters:

’d’ :: Char ’3’ :: Char

• Functions: Characters have codes and conversion functions

chr :: Int -> Char ord :: Char -> Int

• Examples: Expressions using these functions

offset :: Int

offset = ord ’A’ - ord ’a’

capitalize :: Char -> Char

capitalize ch = chr (ord ch + offset)

Neil Ghani Strathclyde, November 3, 2014
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The String type

• Elements of String : Contains lists of characters

• Forming elements of String : Double quotes form strings

‘‘Newcastle Utd’’ ‘‘1a’’

• Special Strings: Newline and Tab characters

‘‘cat\ndog’’ ‘‘1\t2\t3’’

• Combining Strings: Strings can be combined by ++

‘‘cat’’ ++ ‘‘n’’ ++ ‘‘fish’’ = ‘‘catnfish’’

• Strings and Lists: All list operations work as String = [Char]

Neil Ghani Strathclyde, November 3, 2014
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The type of Fractions Float

• Elements of Float : Contains decimals, eg -21.3, 23.1e-2

• Built in Functions: Arithmetic, Ordering, Trigonometric

• Conversions: Functions between Int and String

ceiling, floor, round :: Float -> Int

fromInt :: Int -> Float

show :: Float -> String

read :: String -> Float

• Overloading: Overloading is when values/functions belong to

several types

2 :: Int show :: Int -> String

2 :: Float show :: Float -> String

Neil Ghani Strathclyde, November 3, 2014
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Examples of some functions

• Example 1: isLower checks if a character is lower-case

isLower :: Char -> Bool

isLower x = (’a’ <= x) && (x <= ’z’)

• Example 2: toUpper capitalizes only lower case letters

• Example 3: threeLines prints 3 strings on successive lines

• Example 4: isDigit checks if a character is a digit

• Example 5: duplicate gives two copies of a string

• Example 6: Formatting pence

Neil Ghani Strathclyde, November 3, 2014
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Error-Handling

• Motivation: Informative error messages for run-time errors

• Example: Dividing by zero will cause a run-time error

myDiv :: Float -> Float -> Float

myDiv x y = x/y

• Solution: Use an error message in a guarded definition

myDiv :: Float -> Float -> Float

myDiv x y

| y /= 0 = x/y

| otherwise = error ‘‘Attempt to divide by 0’’

• Execution: If we try to divide by 0 we get

Prelude> mydiv 5 0

Program error: Attempt to divide by 0

Neil Ghani Strathclyde, November 3, 2014
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Local Declarations — where

• Motivation: Functions will often depend on other functions

• Example : Summing the squares of two numbers

sq :: Int -> Int

sq x = x * x

sumSquares :: Int -> Int -> Int

sumSquares x y = sq x + sq y

• Problem: Such definitions clutter the top-level environment

• Answer: Local definitions allow auxilluary functions

sumSquares2 :: Int -> Int -> Int

sumSquares2 x y = sq x + sq y

where sq z = z * z

Neil Ghani Strathclyde, November 3, 2014
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Extended Example

• Quadratic Equations: The solutions of ax2 + bx+ c = 0 are

−b±
√

b2 − 4ac

2a

• Types: Our program will have type

roots :: Float -> Float -> Float -> String

• Guards: There are 3 cases to check so use a guarded definition

roots a b c

| a == 0 = ....

| b*b-4*a*c == 0 = ....

| otherwise = ....

Neil Ghani Strathclyde, November 3, 2014
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The function roots — Stage II

• Code: Now we can add in the answers

roots a b c

| a == 0 = error ‘‘Not a quadratic eqn’’

| b*b-4*a*c == 0 = ‘‘One root: ’’ ++ show (-b/2*a)

| otherwise = ‘‘Two roots: ’’ ++

show ((-b + sqrt (b*b-4*a*c))/2*a) ++

‘‘and’’ ++

show ((-b - sqrt (b*b-4*a*c))/2*a)

• Problem: This program uses several expressions repeatedly

– Being cluttered, the program is hard to read

– Similarly the program is hard to understand

– Repeated evaluation of the same expression is inefficient

Neil Ghani Strathclyde, November 3, 2014
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The final version of roots

• Local decs: Expressions used repeatedly are made local

roots a b c

| a == 0 = error ‘‘Not a quadratic eqn’’

| disc == 0 = ‘‘One root: ’’ ++ show centre

| otherwise = ‘‘Two roots: ’’ ++

show (centre + offset) ++

‘‘and’’ ++

show (centre - offset)

where

disc = b*b-4*a*c

offset = (sqrt disc) / 2*a

centre = -b/2*a

Neil Ghani Strathclyde, November 3, 2014
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Summary — Basic Types in Haskell

• We have learnt about Haskell’s basic types.

• For each type we learnt

– Its basic values

– Its built in functions

• We learnt how to write expressions involving

– Conditional expressions and Guarded functions

– Error Handling and Local Declarations

Neil Ghani Strathclyde, November 3, 2014
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Recall ....

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions, eg 0, True, ‘‘hello’’

– Functions allow us to build new expressions

• Haskell Types: There are two kinds of types in Haskell

– Basic Types: Int, Float, Bool, Char, String

– Compound Types: Types built from other types

Neil Ghani Strathclyde, November 3, 2014
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Overview of Lecture 2.3

• Building New Types: Today we will learn about the following

compound types

– Pairs

– Tuples

– Type Synonyms

• Describing Types: As with basic types, for each type we want

to know

– What are the values of the type

– What expressions can we write and how to evaluate them

Neil Ghani Strathclyde, November 3, 2014
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From simple data values to complex data values

• Motivation: Data for programs modelled by values of a type

• Problem: Single values in basic types too simple for real data

• Example: A point on a plane can be specified by

– A number for the x-coordinate and another for the y-coordinate

• Example: A name could be specified by

– A string for the first name and another for the second name

• Example: The performance of a football team could be

– A string for the team and a number for the points

Neil Ghani Strathclyde, November 3, 2014
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New Types from Old I — Pair Types

• Key Idea: Pair types consist of two values.

• In Pascal: We write the following to model points

record

xcoord : integer;

ycoord : integer;

end

• In Haskell: We have the simpler notation

– If s is a type and t is a type, then (s,t) is a type

• Examples: For instance

– A point could have type (Int, Int)

– A name could have type (String, String)

– The performance of a team could have type (String,Int)

Neil Ghani Strathclyde, November 3, 2014
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New Types from Old I — Pair Expressions

• Question: What are the values of a pair type?

• Answer: A pair type contains pairs of values, ie

– If e1 has type s and e2 has type t

– Then (e1,e2) has type (s,t)

• Examples: For instance

– The point (5,3) has type (Int, Int)

– The name (‘‘Alan’’,‘‘Shearer’’) has type (String, String)

– The performance (‘‘Newcastle’’, 22) has type (String,Int)

Neil Ghani Strathclyde, November 3, 2014
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New Types from Old I — Functions using Pairs

• Types: Pair types can be used as input and/or output types

• Key Idea: If input is a pair-type, use (x,y) in definition

• Key Idea: If output is a pair-type, result is often (〈exp〉, 〈exp〉)

• Examples: The functions fst and snd are vital

fst :: (a,b) -> a

fst (x,y) = x

winUpdate :: (String,Int) -> (String,Int)

winUpdate (x,y) = (x,y+3)

movePoint :: Int -> Int -> (Int,Int) -> (Int,Int)

movePoint m n (x,y) = (x+m,y+n)

Neil Ghani Strathclyde, November 3, 2014
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New Types from Old II — Tuples

• Motivation: Some data consists of more than two parts

• Example: People on a mailing list

– Specified by name, telephone number, and age

– A person on the list can have type (String, Int, Int)

• Idea: Generalise pairs of types to collections of types

• Type Rule: Given types a1,...,an , then (a1,...,an) is a type

• Expression Formation: Given expressions e1::a1, ..., en::an ,

then (e1,...,en) is an expression of type (a1,...,an)

Neil Ghani Strathclyde, November 3, 2014
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Functions using Tuples

• Key Idea: As before, if input/output is a tuple use (...)

isAdult :: (String,Int,Int) -> Bool

isAdult (x,y,z) = if z>=18 then True else False

updateMove :: (String,Int,Int) -> Int -> (String,Int,Int)

updateMove (x,y,z) w = (x,w,z)

updateAge :: (String,Int,Int) -> (String,Int,Int)

updateAge (x,y,z) = (x,y,z+1)

• Calendar Dates: Represented by a triple of integers (Int,Int,Int)

isSummer :: (Int,Int,Int) -> Bool

isSummer (x, y, z) = (6<=y) && (y<=8)

Neil Ghani Strathclyde, November 3, 2014
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Pattern Matching

• Simple Functions: We started with functions of the form

〈function-name〉 〈variable〉 = 〈expression〉

• Generalisation: Then we allowed

– Multiple arguments

– Guarded definitions

– Local declarations

• Pattern Matching: Now we also replace variables by patterns

Neil Ghani Strathclyde, November 3, 2014
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General Definition of a Function

• Definition: Functions now have the form

<function-name> :: <type 1> -> ... -> <type n> -> <out-type>

<function-name> <pat 1> ... <pat n> = <exp n>

• Patterns: Patterns are

– Variables x : Use for any type

– Constants 0, True, ‘‘cherry’’ : Definition by cases

– Tuples (x,..,z) : If the argument has a tuple-type

– Wildcards : If the output doesnt use the input

• In general: Use several lines and mix patterns.

Neil Ghani Strathclyde, November 3, 2014
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More Examples

• Example: Using values and wildcards

isZero :: Int -> Bool

isZero 0 = True

isZero = False

• Example: Using tuples and multiple arguments

expand :: Int -> (Int,Int) -> (Int,Int)

expand n (x,y) = (n*x,n*y)

• Example: Days in the month

days :: String -> Int -> Int

days ‘‘January’’ x = 31

days ‘‘February’’ x = if isLeap x then 29 else 28

days ‘‘March’’ x = 31

.....

Neil Ghani Strathclyde, November 3, 2014
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New Types from Old III — Type Synonyms

• Motivation: More descriptive names for particular types.

• Definition: Type synonyms are declared with the keyword type .

type Team = String

type Goals = Int

type Result = String

type Match = ((Team,Goals), (Team,Goals))

nusw :: Match

nusw = ((‘‘Newcastle", 8), (‘‘Sheffield’’, 0))

• Functions: Types of functions are more descriptive, same code

homeTeam :: Match -> Team

totalGoals :: Match -> Goals

result :: Match -> Result

Neil Ghani Strathclyde, November 3, 2014
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Summary

• Tuples: Collections of data from other types

• Pairs: Pairs, triples etc are examples of tuples

• Type synonyms: Make programs easier to understand

• Pattern Matching: General description of functions covering
definition by cases, tuples etc.

• Pitfall! What is the difference between

addPair :: (Int,Int) -> Int

addPair (x,y) = x + y

addTwo :: Int -> Int -> Int

addTwo x y = x + y

Neil Ghani Strathclyde, November 3, 2014
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Recall ....

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions

– Functions allow us to build new expressions

• Haskell Types: There are two kinds of types in Haskell

– Basic Types: Int, Float, Bool, Char, String

– Compound Types: Types built from other types

Neil Ghani Strathclyde, November 3, 2014
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Overview of Lecture 4 — List Types

• Lists: What are lists?

– Forming list types

– Forming elements of list types

• Functions over lists: Some old freinds, some new friends

– Functions: cons, append, head, tail

– Some new functions: map, filter

• Clarity: Unlike Java, Haskell treatment of lists is clear

– No list iterators!

Neil Ghani Strathclyde, November 3, 2014
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The List Type Constructor

• Motivation: A key data-type in functional programming

• Type Formation: If a is any type, then [a] is a type

• Example 1: Lists of characters: [Char]

• Example 2: Lists of lists of integers: [[Int]]

• Example 3: Lists of functions on integers: [Int -> Int]

• Example 4: Lists of points: [Point]

Neil Ghani Strathclyde, November 3, 2014
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Building Lists

• List Expressions: Lists are written using square brackets [...]

– If e1 , . . . , en are expressions of type a

– Then [e1, ..., en] is an expression of type [a]

• Example 1: [3, 5, 14] :: [Int]

• Example 2: [3, 4+1, double 7] :: [Int]

• Example 3: [[’a’], [’a’,’b’], [’a’,’b’,’c’]] :: [[Char]]

• Example 4: [double, square, cube] :: [Int -> Int]

• Empty List: The empty list is [] and belongs to all list types

Neil Ghani Strathclyde, November 3, 2014
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Some built in functions - Two infix operators

• Cons: The cons function : adds an element to a list

: :: a -> [a] -> [a]

a = Int 1 : [2,3,4] = [1,2,3,4]

a = Int->Int addone : [square] = [addone, square]

a = Char ’a’ : [’b’, ’z’] = [’a’, ’b’, ’z’]

• Append: Append joins two lists together

++ :: [a] -> [a] -> [a]

a = Bool [True, True] ++ [False] = [True, True, False]

a = Int [1,2] ++ ([3] ++ [4,5]) = [1,2,3,4,5]

a = Int ([1,2] ++ [3]) ++ [4,5] = [1,2,3,4,5]

a = Float [] ++ [54.6, 67.5] = [54.6, 67.5]

a = Int [6,5] ++ (4 : [7,3]) = [6,5,4,7,3]

Neil Ghani Strathclyde, November 3, 2014
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More Built in Functions

• Head and Tail: Head gives the first element of a list, tail the

remainder

a = Int->Int head [double, square] = double

a = Int head ([5,6]++[6,7]) = 5

a = Int->Int tail [double, square] = [square]

a = Int tail ([5,6]++[6,7]) = [6,6,7]

• Length and Sum: The length of a list and the sum of a list

of integers

length (tail [1,2,3]) = 2

sum [1+4,8,45] = 58

• Sequences: The list of integers from 1 to n is written

[1 .. n]

Neil Ghani Strathclyde, November 3, 2014
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Two New Functions — Map And Filter

• Map: Map is a function which has two inputs.

– The first input is a function of type Int -> Int

– The second is a list of integers

The output is the list obtained by applying the function to every

element of the input list

• Filter: Filter is a function which has two inputs.

– The first input is a function of type Int -> Bool

– The second is a list of integers

The output is the list of those elements of the input list which

the function maps to True

Neil Ghani Strathclyde, November 3, 2014
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Using Map and Filter

• Even Numbers: The even numbers less than or equal to n

– evens::Int->[Int]

• Solution 1 — Using map.

• Solution 2 — Using filter

Neil Ghani Strathclyde, November 3, 2014
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More Examples

• Methodology: Develop algorithm by asking

– Can we apply a funciton to every member of a list

– Can we delete all members of a list not satisfying a property

• Example 1: factors calculate the factors of an integer

• Example 2: isPrime tests if an integer is prime

• Example 3: primesUpto calculates primes upto an integer

Neil Ghani Strathclyde, November 3, 2014
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Summary

• Types: We have looked at list types

– What list types and list exressions looks like

– What built in functions are availiable

• New Functions: Map and filter

– Apply a function to every member of a list

– Delete those that dont satisfy a properties

• Algorithms: Develop an algorithm by asking

– Can I solve this problem by applying a function to every

kmember of a list or by deleting certain elements.

Neil Ghani Strathclyde, November 3, 2014
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Recall ....

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions

– Functions allow us to build new expressions

• Haskell Types: There are two kinds of types in Haskell

– Basic Types: Int, Float, Bool, Char, String

– Compound Types: We are studying lists

Neil Ghani Strathclyde, November 3, 2014

58



Overview of Lecture 5

• Revision: What are lists

– A reminder about map and filter

• List comprehension: An alternative way of writing lists

– Definition of list comprehension

– Comparison with map and filter

• Examples: Which allow you to start practical 2
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Revision

• Type Formation: If a is any type, then [a] is a type

• List Expressions: Lists are written using square brackets [...]

– If e1 , . . . , en are expressions of type a

– Then [e1, ..., en] is an expression of type [a]

• Functions: Some useful built in functions

– Cons: Attaches an element to the front of a list : :: a -> [a] -> [a]

– Append: Append joins two lists together ++ :: [a] -> [a] -> [a]

– Head: Returns the first element of a list head :: [a] -> a

– Tail: Deletes the first element of a list tail :: [a] -> [a]
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Map And Filter

• Map: Map is a function which has two inputs.

– The first input is a function

– The second is a list of integers

The output is the list obtained by applying the function to every

element of the input list

• Filter: Filter is a function which has two inputs.

– The first input is a function returning a boolean

– The second is a list of integers

The output is the list of those elements of the input list which

the function maps to True
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List Comprehension — An alternative to map and filter

• Example 1: If ex = [2,4,7] then

[ 2*a | a <- ex ] = [4,8,14]

• Example 2: If isEven :: Int->Bool tests for even-ness

[ isEven a | a <- ex ] = [True,True,False]

• In General: List comprehensions are

[ 〈exp〉 | 〈variable〉 <- 〈list-exp〉 ]

• Evaluation: The meaning of a list comprehension is

– Take each element of list-exp and evaluate the expression

exp
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Using List Comprehensions Instead of map

• Example 1: A function which doubles a list’s elements

double :: [Int] -> [Int]

double l = [ 2*x | x <- l]

• Example 2: A function to tell if list elements are even

isEvenList :: [Int] -> [(Int,Bool)]

isEvenList l = [ (a, isEven a) | a <- l]

• Example 3: A function to add pairs of numbers

addpairs :: [(Int,Int)] -> [Int]

addpairs l = [ a+b | (a,b) <- l]

• In general: map f l = [f x | x <- l]
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Using List Comprehensions Instead of Filter

• Intuition: List Comprehension also selects elements from a list

• Example: We can select the even numbers in a list

[ a | a <- l, isEven a]

• Example: Selecting names beginning with A

names :: [String] -> [String]

names l :: [ a | a <- l , head a = ’A’ ]

• Example: Combining selection and applying functions

doubleEven :: [Int] -> [Int]

doubleEven l :: [ 2*a | a <- l , isEven a ]
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General Form of List Comprehension

• In General: These list comprehensions are of the form

[ 〈exp〉 | 〈variable〉 <- 〈list-exp〉 , 〈test〉 ]

• Example: We can also use several tests — if l = [2,5,8,10]

[ 2*a | a <- l , isEven a , a>3 ] = [16,20]

• Key Example: Cartesian product is the list of pairs, the first

component of which comes from the first list and the second

component from the second list. Use two generators

[ (x,y) | x<-[1,2,3], y<-[’a’,’b’,’c’] ] = [(1,’a’), (1,’b’) ... ]

league :: [Team]

fixtures = [ ?? | ?? ]

toonGames = [?? | ?? ]
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Erothosthenes Sieve — The algorithm

• Motivation: A more efficient way to calculate prime numbers

• Algorithm: Given a list of numbers

– Keep the first element and delete all multiples of the first

element from the tail.

– Repeat this procedure on the tail

• Example: Thus,

seive [2,3,4,5,6,7,8,9,10,11,12] = 2 : seive [3,5,7,9,11]

= 2 : 3 : seive [5,7,11]

= 2 : 3 : 5 : seive [7,11]
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Erothosthenes Sieve — The code

• Strategy: We implement the algorithm as follows

– Keep the first element — use head and :

– Delete all multiples of the first element — use list compre-

hension and a test

– Repeat this procedure — apply the function again

• Code: Here is the code

• Primes: Can then be calculated

priomes n = seive [1 .. n]
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Removing Duplicates

• Problem: Given a list remove all duplicate entries

• Algorithm: Given a list,

– Keep first element

– Delete all occurrences of the first element

– Repeat the process on the tail

• Code:
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Summary

• We have looked at list types

– What list types and list expressions looks like

– What built in functions are available

• List comprehensions are like filter and map. They allow us to

– Select elements of a list

– Delete those that dont satisfy certain properties

– Apply a function to each element of the remainder
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Recall ....

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions: 0, True, ‘‘hello’’

– Functions allow us to build new expressions

• Haskell Functions: Haskell funtions we have seen

– Simple definitions, Multiple Arguments, Local Declarations

– Guarded functions, Pattern matching
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Overview of Lecture 3.2 — Recursion over Natural Numbers

• Recursion: General features of recursion

– What is a recursive function

– How do we write recursive functions

– How do we evaluate recursive functions

• Recursion over Natural Numbers: Special features

– How can we guarantee evaluation works

– Recursion using patterns

– Avoiding negative input
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What is recursion?

• Example: Adding up the first n sqaures

hssquares n = 0 2 + 1 2 + ... + n 2

• Types: First we give the type of summing-squares

hssquares :: Int -> Int

• Definitions: Our program is a function

hssquares 0 = 0

hssquares n = n*n + hssquares(n-1)

• Key Idea: hssquares is recursive as its definition contains

hssquares in the right-hand side
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General Definitions

• Definition: A function is recursive if it occurs in its definition

• Intuition: You will have seen recursion in action before

– Imperative procedures which call themselves

– Divide-and-conquer algorithms

• Why Recursion: Recursive definitions tend to be

– Shorter, more understandable and easier to prove correct

– Compare with a non-recursive solution

nrssquares n = n * (n+0.5) * (n+1)/3
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Evaluating Recursive Functions

• Key Idea: Two cases when applying a recursive function

– Non-recursive call: Doesn’t mention the recursive function

– Recursive call: Does mention the recursive function

• Procedure: If a recursive function is applied to an argument

– As before, substitute the input into the function’s definition

– But, recursive calls re-introduce the function name

– Hence, carry-on until there are no more recursive calls

• Question: Will evaluation stop?
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Examples of evaluation

• Example 1: Lets calculate Hssquares 4

hssquares 4 ⇒ 4*4 + hssquares 3

⇒ 16 + (3*3 + hssquares 2)

. . .

⇒ 16 + (9 + .. (1 + hssquares 0))

⇒ 16 + (9 + ... (1 + 0)) ⇒ 30

• Example 2: Here is a non-terminating function

mydouble n = n + mydouble (n/2)

mydouble 4 ⇒ 4 + mydouble 2

⇒ 4 + 2 + mydouble 1

⇒ 4 + 2 + 1 + mydouble 0.5

⇒ ......
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Problems with Recursion

• Questions: There are some outstanding problems

– Is hssquares defined for every number

– Does evaluation of recursive functions terminate

– What happens if hssquares is applied to a negative number?

– Are these recursive definitions sensible: f n = f n , g n = g (n+1)

• Answers: Here are the answers

– Yes: The variable pattern matches every input

– Not always: See example

– Trouble: Evaluation doesnt terminate
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Primitive Recursion over Natural Numbers

• Motivation: Restrict definitions to get better behaviour

• Idea: Many functions defined by three cases

– A non-recursive call selected by the pattern 0

– A recursive call selected by n

• Example Our program now looks like

hssquares2 0 = 0

hssquares2 n = n*n + hssquares (n-1)
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Examples of recursive functions

• Example 1: star uses recursion over Int to return a string

star :: Int -> String

star 0 = []

star n = ’*’ : star (n-1)

• Example 2: power is recursive in its second argument

power :: Float -> Int -> Float

power x 0 = 1

power x n = x * power x (n-1)
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Primitive Recursion

• In General: Use the following style of definition

〈function-name〉 0 = 〈exp 1〉
〈function-name〉 n = 〈exp 2〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain 〈function-name〉 applied to n-1

• Evaluation: Termination guaranteed!

– If the input evaluates to 0 , evaluate 〈exp 1〉

– If not, if the input is greater than 0 , evaluate 〈exp 2〉
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Larger Example

• Problem: Produce a table for perf :: Int -> (String, Int)

• Stage 1: We need the headings and then the actual table

table :: Int -> String

table n = header ++ printTable n

• Stage 2: The heading is just a string

header = ‘‘Team \ t Points \ n’’

• Stage 3: Printing the table is a recursive function

printTable :: Int -> String

printTable 0 = .....

printTable n = .....
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The Function printTable

• Base Case: If we want no entries, then just return []

printTable 0 = []

• Recursive Case: Print n-entries by

– Print the first n-1 -entries

– Add on the n -th entry

• Code: Code for the recursive call

printTable n = printTable (n-1) ++

fst (perf n) ++ ‘‘\ t’’ ++

show (snd (perf n)) ++ ‘‘\ n’’
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The Final Version

• Code: Heres the final version

table :: Int -> String

table n = header ++ printTable n

header = ‘‘Team \ t Points \ n’’

printTable :: Int -> String

printTable 0 = []

printTable n = printTable (n-1) ++

fst (perf n) ++ ‘‘\ t’’ ++

show (snd (perf n)) ++ ‘‘\ n’’
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Summary

• Recursion allows new functions to be written.

– Advantages: Clarity, brevity, tractability

– Disadvantages: Evaluation may not stop

• Recursive functions on natural numbers avoid this by

– The values at 0 is non-recursive

– Each recursive call uses a smaller input

– An error-clause catches negative inputs
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Recall ....

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions: 0, True, ‘‘hello’’

– Functions allow us to build new expressions

• Haskell Functions: Haskell functions we have seen

– Simple definitions, Guarded functions, Pattern matching

– Recursion over integers and natural numbers
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Overview of Lecture 3.3

• Lists: Another look at lists

– Lists are a recursive structure

– Every list can be formed by [] and :

• List Recursion: Primitive recursion for Lists

– How do we write recursive functions

– Examples — ++, length, head, tail, take, drop, zip

• Avoiding Recursion?: List comprehensions revisited
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Recursion over lists

• Question: This lecture is about the following question

– We know what a recursive function over Int is

– What is a recursive function over lists

• Answer: In general, the answer is the same as before

– A recursive function mentions itself in its definition

– Evaluating the function may reintroduce the function

– Hopefully this will stop at the answer

• Question: Is there an analogue of primitive recursion for lists
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Another Look at Lists

• Recall: The two basic operations concerning lists

– The empty list []

– The cons operator (:) :: a -> [a] -> [a]

• Key Idea: Every list is either empty, or of the form a:xs

[2,3,7] = 2:3:7:[] [True, False] = True:False:[]

• Recursion: Define recursive functions using the scheme

– Non-recursive call: Define the function on the empty list []

– Recursive call: Define the function on (x:xs) using the func-

tion on xs
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The General Pattern

• Definition: Primitive Recursive List Functions are given by

〈function-name〉 [] = 〈expression 1〉
〈function-name〉 (x:xs) = 〈expression 2〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain expressions 〈function-name〉 xs

• Compare: Very similar to recursion over Int

〈function-name〉 0 = 〈expression 1〉
〈function-name〉 (n+1) = 〈expression 2〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain expressions 〈function-name〉 n
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Examples of Recursive Functions

• Example 1: Doubling every element of an integer list

double :: [Int] -> Int

double [] = []

double (x:xs) = (2*x) : double xs

• Example 2: Selecting the even members of a list

onlyEvens :: [Int] -> [Int]

onlyEvens [] = []

onlyEvens (a:xs) = if isEven a then a:rest else rest

where rest = onlyEvens xs

• Example 3: Flattening some lists

flatten :: [[a]] -> [a]

flatten [] = []

flatten (a:xs) = a ++ flatten xs
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More Examples:

• Example 4: Reversing a list

reverse :: [a] -> [a]

reverse [] = []

reverse (a:xs) = reverse xs ++ [a]

• Example 5: Append is defined recursively

append :: [a] -> [a] -> [a]

append [] ys = ys

append (a:xs) ys = a : (append xs ys)

• Example 6: Testing if an integer is an element of a list

member :: Int -> [Int] -> Bool

member n [] = FALSE

member n (x:xs) = (x==n) || member n xs
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Evaluation of Recursive Functions over Lists

• Procedure Same procedure as for recursive functions over Int .

– Evaluate the input and check which expression to evaluate

– Substitute input in definition. This can reintroduce function

– Being primitive recursive, this process will eventually stop

• Example: To evaluate member [4,3,6] 3

member [4,3,6] 3 ⇒ member (4:[3,6]) 3

⇒ (4==3) || member [3,6] 3

⇒ False || member [3,6] 3

⇒ member [3,6] 3

⇒ (3==3) || member [6] 3

⇒ True || member [6] 3 ⇒ True
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What can we do with a list?

• Folding: Combining the elements of the list

flatten [[2], [3,72], []] = [2] ++ [3,72] ++ [] = [2,3,72]

sumList [2,3,7,2,1] = 2 + 3 + 7 + 2 + 1

• Mapping: Applying a function to every member of the list

double [2,3,72,1] = [2*2, 2*3, 2*72, 2*1]

isEven [2,3,72,1] = [True, False, True, False]

• Filtering: Selecting particular elements

onlyEvens [2,3,72,1] = [2,72]

• Other types: Breaking lists up, combining lists

head, tail, take, drop, zip
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List Comprehension Revisited

• Recall: List comprehensions look like

[ 〈exp〉 | 〈variable〉 <- 〈list-exp〉 , 〈test〉 ]

• Intuition: Roughly speaking this means

– Take each element of the list 〈list-exp〉

– Check they satisfy 〈test〉

– Form a list by applying 〈exp〉 to those that do

• Idea: Equivalent to a bit of filtering and then mapping

Neil Ghani Strathclyde, November 3, 2014

95



Summary

• List are a recursive data-structure

• Hence, functions over lists tend to be recursive

• Primitive recursion over lists is similar to natural numbers

– A non-recursive call using the pattern []

– A recursive call using the pattern (a:xs)

• List comprehension is an alternative way of doing some recursion
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Recall ....

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions: 0, True, ‘‘hello’’

– Functions allow us to build new expressions

• Haskell Functions: Haskell functions we have seen

– Simple definitions, Guarded functions, Pattern matching

– Primitive recursion over natural numbers and lists
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Overview

• Problem: Our restrictions on recursive functions are too severe

• Solution: New definitional formats which keep termination

– Using new patterns

– Generalising the recursion scheme

• Examples: Applications to integers and lists

• Sorting Algorithms: What is a sorting algorithm?

– Insertion Sort

– Quicksort
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More general forms of primitive recursion

• Recall: Our primitive recursive functions follow the pattern

– Base Case: Defines the function non-recursively at 0

– Inductive Case: Defines the function at n in terms of the

function at n-1

〈function-name〉 0 = 〈exp 1〉
〈function-name〉 n = 〈exp 2〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain 〈function-name〉 applied to n-1

• Motivation: But some functions do not fit this shape
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Fibionacci Numbers

• Example: The first Fibionacci numbers are 0,1 . For subse-

quent Fibionacci numbers, add the previous two together

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

• Problem: Using the following gives possible non-termination

fib n = fib (n-1) + fib (n-2)

• Solution: Use another base case

fib :: Int -> Int

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

• In General: Use as many base cases as you need.
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A Second Idea

• Definition: We can use the more general scheme

– Base Case: Defines the function at 0 non-recursively

– Inductive Case: Defines the function at n in terms of the

function at SMALLER numbers, ie n-1, n-2, ..., 0

• Example: Calculating the highest common factor

hcf :: Int -> Int -> Int

hcf n m

|m==n = n

|m>n = hcf m n

|otherwise = hcf (n-m) m

• Key Idea: Evaluation still stops as eventually we always reach

the base case which is non-recursive.
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More general recursion on lists

• Recall: Our primitive recursive functions follow the pattern

– Base Case: Defines the function at [] non-recursively

– Inductive Case: Defines the function at (a:xs) in terms of

the function at xs

〈function-name〉 [] = 〈exp 1〉
〈function-name〉 (a:xs) = 〈exp 2〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain 〈function-name〉 applied to xs

• Motivation: As with integers, some functions don’t fit this

shape
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More General Patterns for Lists

• Recall: With integers, we used more general patterns.

• Idea: Use (a:(b:xs)) pattern to access first two elements

• Example: We want a function to delete every second element

delete [2,3,5,7,9,5,7] = [2,5,9,7]

• Solution: Here is the code

delete :: [a] -> [a]

delete [] = []

delete [x] = [x]

delete (a:(b:xs)) = a : delete xs

• Example: To delete every third element use pattern (a:(b:(c:xs)))
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Choosing your pattern?

• Patterns: In a function definition, every input receives a pattern

– If the input type is a pair, use (x,y) pattern

– If the input type is a list, use [] and (a:xs) patterns

– If different inputs have different code, use constant patterns

– If we use the same code for every input use variable

• Mixing patterns: Patterns can contain patterns

((x,y),z) (a:(b:xs)) ((x,y):zs) (0:xs)

• Recursion: The non-recursive call and recursive call use differ-

ent code. Hence recursive functions always use patterns
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Examples of Recursion and patterns — See how the typing helps

• Example 1: Summing pairs

• Example 2: Unzipping lists
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Some More Examples

• Example 3: Defining equality over lists

• Example 4: Checking if a list is a palindrome
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Sorting Algorithms on Lists

• Problem: Elements in a list can come in any order. A sorting

algorithm rearranges them in order

sort [2,7,13,5,0,4] = [0,2,4,5,7,13]

• Recursion: Sorting algorithms usually recursively sort a smaller

list

• Example: To sort a list, sort the tail recursively

inssort :: [Int] -> [Int]

inssort [] = []

inssort (a:xs) = insert a (inssort xs)

where insert puts the number a in the correct place
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The function insert

• Patterns: Insert takes two arguments

– The code for insert doesn’t depend on the number — use

a variable pattern

– The code for insert depends on whether the list is empty

or not — use the [] and (a:xs) patterns

• Code: Here is the final code

insert :: Int -> [Int] -> [Int]

insert n [] = [n]

insert n (a:xs)

| n <= a = n:a:xs

| otherwise = a:(insert n xs)
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Sorting Algorithms 2: Quicksort

• Idea: Given a list l and a number n

sort l = sort those elements less than n ++

number of occurrences of n ++

sort those elements greater than n

• Stage 1: The algorithm may be coded

qsort :: [Int] -> [Int]

qsort [] = []

qsort (a:xs) = qsort (less a xs) ++

occs a (a:xs) ++

qsort (more a xs)

where less, occs, more are auxilluary functions
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Defining the Auxiliary Functions

• Problem: The auxiliary functions can be specified

– less takes a number and a list and returns those elements

of the list less than the number

– occs takes a number and a list and returns the occurrences

of the number in the list

– more takes a number and a list and returns those elements

of the list more than the number

• Code: Using list comprehensions shorten code

less, occs, more :: Int -> [Int] -> [Int]

less n xs = [x | x <- xs, x < n]

occs n xs = [x | x <- xs, x == n]

more n xs = [x | x <- xs, x > n]
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Sorting Algorithms 3: Mergesort

• Idea: Chop a list in half, sort each half recursively, and then

merge the results together

• Implementation: As done in class

msort :: [Int] -> [Int]

msort [] = []

msort [x] = [x]

msort xs = merge (msort first) (msort second)

where frist = take n xs

second = drop n xs

n = length xs ‘div‘ 2

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys) =

if x<y then x : merge xs (y:ys) else y : merge (x:xs) ys
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Summary

• Recursion Schemes: We’ve generalised the recursion schemes

to allow more functions to be written

– More general patterns

– Recursive calls to ANY smaller value

• Examples: Applied to recursion over integers and lists

• Sorting Algorithms: We’ve put these ideas into practice by

defining three sorting algorithms

– Insertion Sort

– QuickSort

– Mergesort
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Recall ....

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions: 0, True, ‘‘hello’’

– Functions allow us to build new expressions

• Haskell Functions: Haskell functions we have seen

– Simple definitions, Pattern matching, Recursion

– Today — Higher Order Functions
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Overview of Lecture 9

• Motivation: Why do we want higher order functions

• Definition: What is a higher order function

• Examples: Three examples concerning lists

– Mapping: Applying a function to every memebr of a list

– Filtering: Selecting elements of a list satisfying a property

– Folding: Combining the elements of a list
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Motivation

• Example 1: A function to double the elements of a list

doubleList :: [Int] -> [Int]

doubleList [] = []

doubleList (x:xs) = (2*x) : doubleList xs

• Example 2: A function to square the elements of a list

squareList :: [Int] -> [Int]

squareList [] = []

squareList (x:xs) = (x*x) : squareList xs

• Example 3: A function to increment the elements of a list

incList :: [Int] -> [Int]

incList [] = []

incList (x:xs) = (x+1) : incList xs
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A Previous Slide — Advantages of Functional Programming

• Advantage 1: Functional Programs can be easier to write

– Functional programs are more abstract

– Functional programs reflect the algorithmic content

• Advantage 2: Functional Programs can be easier to read

– Functional programs have shorter

– Functional programs facilitate code-reuse

• Advantage 3: Functional programs can be easier to understand

– Usual mathematical laws apply to functional programs
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The Common Pattern

• Problem: Three separate definitions despite the clear pattern

• Intuition: Examples apply a function to each member of a list

function :: Int -> Int

functionList :: [Int] -> [Int]

functionList [] = []

functionList (x:xs) = (function x) : functionList xs

where in our previous examples function is

double square inc

• Key Idea: Make function an input to a higher order function

Neil Ghani Strathclyde, November 3, 2014

119



A Higher Order Function — mapInt

• Idea: Make the auxilluary function an argument

mapInt f [] = []

mapInt f (x:xs) = (fx) : mapInt f xs

• Advantages: There are several advantages

– Shortens code as previous examples are given by

doubleList xs = mapInt double xs

squareList xs = mapInt square xs

incList xs = mapInt inc xs

– Captures the algorithmic content and is easier to understand

– Easier code-modification and code re-use
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A Definition of Higher Order Functions

• Types: What is the type of mapInt

– First argument is a function with type Int -> Int

– Second argument is a list with type [Int]

– Result is a list with type [Int]

• Answer: So overall type is

mapInt :: (Int -> Int) -> [Int] -> [Int]

• Definition: A function is higher-order if an input is a function.

• Imperatively: Imperative programs cant do this
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Another Example — Filtering

• Recall: List comprehensions or recursion can be used to select
those elements of a list satisfying a certain property

• Example: Here are some examples

evens, odds, primes :: [Int] -> [Int]

evens l = [x | x <- l, isEven x]

odds l = [x | x <- l, isOdd x]

primes l = [x | x <- l, isPrime x]

• Idea: Each function satisfies the pattern

test :: Int -> Bool

testList :: [Int] -> [Int]

testList l = [x | x <- l, test x]

where test is isEven, isOdd, isPrime
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Filtering Via Higher Order Functions

• Question: Can we make test into an argument of a HOF

filterInt test xs = [x | x <- xs, test x]

• Types: What is the type of filterInt

– First argument is a function with type Int -> Bool

– Second argument is a list with type [Int]

– Result type is a list with type [Int]

• Answer: So overall type of filterInt is

filterInt :: (Int -> Bool) -> [Int] -> [Int]
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Summary

• Higher Order functions are an area where functional programs

are more general than their imperative counterparts

• Higher Order functions allow

– More concise code and also code reuse

– More abstract code, ie code closer to abstract algorithm

• Higher Order functions express algorithmic content more ab-

stractly

– Hence code is easier to understand
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Recall ....

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions: 0, True, ‘‘hello’’

– Functions allow us to build new expressions

• Haskell Functions: Haskell functions we have seen

– Simple definitions, Recursion, Higher Order Functions

– Today — Higher order sorting, folding
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Overview of Lecture 11

• Folding: What can we do with a list?

– Mapping: Applying a function to every member of a list

– Filtering: Selecting elements of a list satisfying a property

– Folding: Combining the elements of a list

• HO Sorting: A more powerful form of sorting

– What are the limitations of current sorting algorithms

– How can these limitations be overcome

– Examples from football
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Three Things to do with a List

• Mapping: Applying a function to every member of the list

map double [2,3,72,1] = [2*2, 2*3, 2*72, 2*1]

map isEven [2,3,72,1] = [True, False, True, False]

• Filtering: Selecting particular elements

filter isEven [2,3,72,1] = [2,72]

filter isOdd [2,3,72,1] = [3,1]

• Folding: Combining the elements of the list

sumList [2,3,7,2,1] = 2 + 3 + 7 + 2 + 1

allTrue [True, False, True] = True && False && True

flatten [[2], [3,72], []] = [2] ++ [3,72] ++ [] = [2,3,72]

• Question: Is folding a higher order function?
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Folding as a Higher Order Function - A First Stab

• Types: Lets restrict ourselves to lists of integers

– First argument takes two integers and returns an integer

– Second argument gives a value if the list is empty

– Third argument takes a list of integers

– Result type is an integers

• Answer: foldl is defined as follows

foldl :: (Int -> Int -> Int) -> Int -> [Int] -> Int

foldl f n [] = n

foldl f n (a:xs) = f a (foldl f xs n)
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Some Examples

• Usage: To use foldl, ask yourself

– What is the result of the function if the list is empty

– What is the function which is placed in between elements

• Examples: Here are some examples

length xs =

sumList xs =

prodList xs =

• Warning: There are two folds - see the book
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Quicksort Revisited

• Idea: Recall our implementation of quicksort

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (a:xs) = qsort less ++ occs ++ qsort more

where

less = [x | x<-xs, x<a]

occs = a : [x | x<-xs, x==a]

more = [x | x<-xs, x>a]

• Polymorphism: Quicksort requires an order on the elements

– So the resulting list depends upon the order on the elements

– This requirement is reflected in type class information Ord a

– Don’t worry about type classes as they are beyond this course
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Limitations of Quicksort

• Example: Football tables have type [(Team,Points,Goals,Played)]

• Problem: We might get something like

Arsenal 16 15 8

AVilla 8 10 8

Bradford 4 1 9

...

because order on (Team,Points,Goals,Played) is lexicographic

(x1,x2) < (y1,y2) iff x1<y1 or x1=y1 and x2<y2

• Solution: Write a new function for this problem

tSort [] = []

tSort (a:xs) = tSort less ++ [a] ++ tSort more

where more = [x| x<-xs, sec x =< sec a]

less = [x| x<-xs, sec x > sec a]

sec (t,p,g,pl) = p
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Higher Order Sorting

• Motivation: But what if we want different orders, eg

– If two teams have the same points, compare goals

– If two teams have the same points, compare goals per game

– Sort teams in order of goals scored, not points

• Key Idea: Make the comparison a parameter of quicksort

qsortBy :: Ord b => (a -> b) -> [a] -> [a]

qsortBy f [] = []

qsortBy f (x:xs) = qsortBy f less ++ occs ++ qsortBy f more

where less = [ y | y <- xs, f y < f x]

occs = x : [ y | y <- xs, f y == f x]

more = [ y | y <- xs, f x < f y]
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Higher Order Sorting Insertion Sort

• Key Idea: Only thing to remember: recursive calls and com-

parisons use the comparison function!

• Implementation: As done in class

msortBy :: Ord b => (a -> b) -> [a] -> [a]

msortBy f [] = []

msortBy f [x] = [x]

msortBy f xs = mergeBy f (msortBy f first) (msortBy f second)

where first = take n xs

second = drop n xs

n = length xs ‘div‘ 2

mergeBy f [] ys = ys

mergeBy f xs [] = xs

mergeBy f (x:xs) (y:ys) =

| f x < f y = x : mergeBy f xs (y:ys)

| otherwise = y : mergeBy f (x:xs) ys
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Higher Order Sorting - Insertion Sort

• Key Idea: Only thing to remember: recursive calls and com-

parisons use the comparison function!

inssortBy :: Ord b => (a -> b) -> [a] -> [b]

inssortBy f [] = []

inssortBy f (a:xs) = insertBy f a (inssortBy f xs)

insertBy :: Ord b => (a -> b) -> a -> [a] -> [a]

insertBy f n [] = [n]

insertBy f n (a:xs)

| f n <= f a = n:a:xs

| otherwise = a:(insertBy f n xs)
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Examples

• Key Idea: To use a higher order sorting algorithm, use the

required order to define the function to sort by

• Example 1: To sort by points and then goals scored

sort1 league =

• Example 2: To sort by points and then goals per game

sort2 league =

• Example 1: To sort by goals scored

sort3 league =
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Summary

• Folding: A new higher order function

– Use to combine elements of a list

– Many algorithms are either map,filter orfold

• HO Sorting: An application of higher order functions to sorting

– Produces more powerful sorting

– Order of resulting list determined by a function

– Lexicographic order allows us to try one order and then an-

other
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Recall ....

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions: 0, True, ‘‘hello’’

– Functions allow us to build new expressions

• Haskell Functions: Haskell functions we have seen

– Simple definitions, Pattern Matching, Recursion

– Higher Order Functions and Polymorphism
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Overview of Lecture 5.1

• Topics Covered: Today we (almost) finish our survey of Haskell

– Partial Application: Not giving all the inputs required

– Lambda Notation: Expressions of function type

– Composing Funtions: Sequential composition (functionally)

– Auxilluary Functions: Adding a bit of memory

• Reference: You can find out more on the net
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Part I — The Lies We Tell ....

• Recall 1: In Lecture 1, we defined functions with one input

〈function〉 :: 〈input type〉 -> 〈output type〉

〈function〉 〈variable〉 = 〈expression〉

• Application: (Monomorphic) Functions applied using rule

If 〈function〉 :: a -> b

And 〈expr〉 :: a

Then 〈function〉 〈expr〉 :: b

• Recall 2: Functions with several inputs are given by

〈function〉 :: 〈type 1〉 -> . . . -> 〈type n〉 -> 〈out-type〉
〈function〉 〈var 1〉 . . . 〈var n〉 = 〈expr〉

• Confession: There are no functions with more than one input!
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But What About times ?

• Key Idea: Functions with many inputs are actually functions

with one input and whose output is itself a function.

• Example: The times function has type

times :: Int -> (Int -> Int)

times x y = x * y

• Application: To multiply numbers, use application repeatedly

– Since 5 :: Int , times 5 :: Int -> Int

– Next, 7 :: Int , and so times 5 7 :: Int

• Summary: We have all the expressions we used to have. But

we also have some new ones.

Neil Ghani Strathclyde, November 3, 2014

142



Partial Application of Functions

• Code Re-use: As always we want to reduce effort

• Before: Defining the following functions is repetative

times2 :: Int -> Int times3 :: Int -> Int

times2 x = x + 2 times3 x = x + 3

• Now: Define times2 and times3 using code for times

times :: Int -> Int -> Int

times x y = x + y

times2 = times 2

times3 = times 3

• Key Idea: Partial application supports code-reuse
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Part II — Composing Functions

• Motivation: Some algorithms say “Do this, then do that.”

• Key Idea: Function composition implements such algorithms

• Intuition: The function g.f does the following

– Takes an input and applies f to it.

– Then applies g to the result

• Typing Rule: If f::a->b and g::b->c are functions:

(g.f) :: a->c

• Condition: The output of f and input of g have same type.
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Examples of Composing Functions

• Example 1:

length :: [a] -> Int

mysucc :: Int -> Int

mysucc x = x + 1

(mysucc . length) :: [a] -> Int

(mysucc . length) [2,3,4] ⇒ mysucc (length [2,3,4])

⇒ mysucc 3

⇒ 3+1 ⇒ 4
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Part III — Lambda Notation

• Recall: Expressions of list or pair type are written

( 〈expr1〉 , 〈expr2〉 ) [ 〈expr1〉 , . . . , 〈exprn〉 ]

• Motivation: How do we write expressions with function type

• Answer 1: Use local declarations to define the function

timesnum :: Int -> (Int -> Int)

timesnum n = timesn where timesn m = n*m

• Problem: This expression says timesnum n is the function timesn

and then timesn is defined. Too verbose!

• Solution: We want code for

“The function which takes a number m and multiplies it by n ”
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Writing down functions without names

• Answer 2: Use lambda notation

timesnum n = \ m -> n * m

• Definition: The expression

\ 〈variable-name〉 -> 〈expression〉

is shorthand for the expression

<function-name>

where <function-name> <variable-name> = <expression>

• Defining Functions: This gives a new way to define functions

double = \ x -> 2*x

atZero = \ f -> f 0
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Evaluating Lambda-Expressions

• Evaluation: How do we calculate with lambda-expressions?

– Again, substitute argument for variable after the \

• Examples: Here are some examples

timesnum 3 ⇒ \ m->3 * m

timesnum 3 5 ⇒ (\ m->3 * m) 5

⇒ 3 * 5 ⇒ 15

atZero square ⇒ (\ f->f 0) square

⇒ square 0 ⇒ 0*0 ⇒ 0

map (\ x->2*x) [4,5] ⇒ (\ x->2*x) 4 : map (\ x->2*x) [5]

⇒ 8: (\ x->2*x) 5 : map (\ x->2*x) []

⇒ [8,10]
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Part IV — Auxilluary Arguments

• For Loops: The sum of the first n numbers

total := 0; count:= 0;

while count <= n do

total := total + count; count := count + 1

• Functonally: Functionally we write a recursive program

sum 0 = 0

sum (n+1) = (n+1) + sum n

• Differences: The algorithms are different

– The imperative program uses the memory to store the result

– Functionally, we calculate the result directly

Neil Ghani Strathclyde, November 3, 2014

149



Adding State/Memory to Functional Programs

• State Model: Imperative programs transform the memory

• Key Idea: Memory is mimicked functionally as extra arguments

sumaux :: Int -> Int -> Int

sumaux 0 y = y

sumaux (n+1) y = sumaux n (n+1+y)

newsum n = sumaux n 0

• Example: Length of a list

lengthaux :: [a] -> Int -> Int

lengthaux [] n = n

lengthaux (a:xs) n = length xs (n+1)

newlength xs = lengthaux xs 0
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Summary of Todays Lecture

• Partial Application: Functions with many arguments are a

convenient explanation. Actually:

– They are really functions whose output is another function.

– Such functions can be applied to some of their arguments

• Lambda Expressions: Used when we want

– Expressions of function type

– An alternate way to define functions

• State: Memory is mimicked functionally by extra arguments

• Composition: Functional composition corresponds to ;
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