Lecture 1 - Functional Programming

Neil Ghani
Dept. of Computer and Information Sciences University of Strathclyde

November 3, 2014

- From Imperative to Functional Programming:
- What is imperative programming?
- What is functional programming?
- Key Ideas in Functional Programming:
- Types: Which model the data in our programs
- Functions: Which are our programs
- Evaluating Expressions: Which executes our programs
- Coursework: An easy way to pick up marks. Therefore
- Some coursework is assessed in the labs and hence you should prepare it before the labs on Tuesday
- Always hand some coursework in since there will be some simple questions on every practical.
- Plagiarism: Evidence suggests those who plagiarise will fail
- Departmental capping catches many who plagiarise.
- Penalties can be stiff, eg deduction of 10% of module mark/year mark or termination of course
- Reading: The lecture notes!
- Problem: Add up the first n square numbers

$$
\text { ssquares } \mathrm{n}=0^{2}+1^{2}+\ldots+\mathrm{n}^{2}
$$

- Program: We could write the following in Java

```
public int ssquares(int n){
private int s,i;
s=0; i=0;
        while (i<n) {i:=i+1;s:=s+i*i;}
}
```

- Execution: We may visualize running the program as follows

Memory
$\mathrm{s}=$??
i = ??

- Key Idea: Imperative programs transform the memory
- Functional Content: What the program does
- Programs take some input values and returns an output value
- ssquares takes a number and returns the sum of the squares upto that number
- Implementational Content: How the program does it
- Imperative programs transform the memory using assignment etc
- ssquares uses variables i and s to represent locations in memory. The program transforms the memory untils contains the correct number.
- Motivation: Problems arise as programs contain two aspects:
- High-level algorithms and low-level implementational features
- Humans are good at the former but not the latter
- Idea: The idea of functional programming is to
- Concentrate on the functional behaviour of programs
- Leave memory management to the language implementation
- Summary: Functional languages are more abstract and avoid low level detail
- Types: First we give the type of summing-squares

$$
\text { hssquares :: Int }->\text { Int }
$$

- Functions: Our program is a function

```
hssquares 0 = 0
hssquares n = n*n + hssquares(n-1)
```

- Evalutation: Run the program by applying the function

$$
\begin{aligned}
\text { hssquares } 2 & \Rightarrow 2 * 2+\text { hssquares } 1 \\
& \Rightarrow 4+1 * 1+\text { hssquares } 0 \\
& \Rightarrow 4+1+0 \\
& \Rightarrow 5
\end{aligned}
$$

Key Ideas in Functional Programming I - Types

- Motivation: Recall that types model the data in our programs
- Integers: Int is the Haskell type $\{\ldots,-2,-1,0,1,2, \ldots\}$
- Built in Operations:
- Arithmentic Operations: + * - div mod abs
- Ordering Operations: \gg= == /= <= <
- Expressions: Some expressions using integers
5 * 4
5-(3*4)
(*) 54
$\bmod 134$
13 'mod' 4
$(5-3) * 4 \quad 7>=(3 * 3)$
5 * (-1)
- Precedence: The rules about precedence and bracketing apply

Key Ideas in Functional Programming II - Functions

- Intuition: Recall that a function associates to every input-value a unique output-value

- Example 1: The square and cube functions are written

```
square :: Int -> Int cube :: Int -> Int
square x = x * x cube x = x * square x
```

- In General: In Haskell, functions are defined as follows

```
    <function-name\rangle :: <input type\rangle-> <output type\rangle
\langlefunction-name\rangle\langlevariable\rangle = \langleexpression\rangle
```

- Intuition: A function f with n inputs is written $\mathrm{f}:$:a1->...-> an-> a

- Examples: The difference between two integers

$$
\begin{aligned}
& \operatorname{diff}:: \text { Int -> Int -> Int } \\
& \text { diff } \mathrm{x} y \mathrm{abs}(\mathrm{x}-\mathrm{y})
\end{aligned}
$$

- In General:

$$
\begin{aligned}
& \left.\left.\langle\text { function-name }\rangle::\langle\text { type } 1\rangle-\rangle \ldots \text { - }{ }^{\text {- }} \text { type } \mathrm{n}\right\rangle-\right\rangle\langle\text { output-type }\rangle \\
& \langle\text { function-name }\rangle\langle\text { variable } 1\rangle \ldots\langle\text { variable } \mathrm{n}\rangle=\langle\text { expression }\rangle
\end{aligned}
$$

- Motivation: Get the result of a function by applying it
- Write the function name followed by the input
- Examples: Here are some examples

```
square 4 square (3+1) square 3+1
cube (square 2) difference 6 7 square 2.2
```

- In General: Application is governed by the typing rule
- If f is a function of type $a->b$
- And, u is an expression of type a
- Then $f u$ is the result of applying f to u and has type b

Key Ideas in Functional Programming III - Evaluating Expressions

- Procedure:
- Find application of a function to an expression, eg square 5
- Substituted expression into function definition, eg $5 * 5$
- Repeat as often as possible
- Example:

$$
\begin{aligned}
\text { cube }(\text { square } 3) & \Rightarrow(\text { square } 3) * \text { square }(\text { square } 3) \\
& \Rightarrow(3 * 3) *((\text { square } 3) * \text { (square } 3)) \\
& \Rightarrow 9 *((3 * 3) *(3 * 3)) \\
& \Rightarrow(9 *(9 * 9) \\
& \Rightarrow 729
\end{aligned}
$$

Summary - Comparing Functional and Imperative Programs

- Difference 1: Level of Abstraction
- Imperative Programs include low level memory details
- Functional Programs describe only high-level algorithms
- Difference 2: How exectution works
- Imperative Programming based upon memory transformation
- Functional Programming based upon expression evaluation
- Difference 3: Type systems
- Type systems play a key role in functional programming
- Advantage 1: Functional Programs are easier to write
- The algorithm we concieve of is easier to write down in a functional style. This is because functional programs are more abstract
- Advantage 2: Functional Programs are easier to read
- Because they are shorter and not cluttered by implementational details, eg there is no public static blah blah blah!
- Advantage 3: Functional Programs are easier to prove correct,
- Becuase they are based on the mathematical theory of functions, This is increasingly important in safety critical applications.
- Types: A type is a collection of data values
- Every expression has a type describing its nature
- Functions: Transform inputs to outputs
- We build complex expressions by defining functions and applying them to other expressions
- Evaluation: Calculates the result of applying a function to an input
- Expressions can be evaluated by hand or by HUGS
- Now: Go and look at the first practical!

Lecture 2 - More Types and Functions

Neil Ghani
Dept. of Computer and Information Sciences University of Strathclyde

November 3, 2014

- Basic Idea: Functional Programming is about
- Writing expressions - these are our programs
- Evaluating expressions - this gives the result of programs
- Building Expressions: Expressions are built from
- Types provide basic expressions: 0, True, 'hello'"
- Functions allow us to build new expressions: square 3, 4+6
- Haskell Types: There are two kinds of types in Haskell
- Basic Types: Int, Float, Bool, Char, String
- Compound Types: Function types, Pair types, List types
- New Types: Today we shall learn about the following types
- The type of booleans: Bool
- The type of characters: Char
- The type of strings: String
- The type of fractions: Float
- New Functions: And also about the following functions
- Conditional expressions and Guarded functions
- Error Handling and Local Declarations
- Values of Bool : Contains two values - True, False
- Logical Operations: Various built in functions

```
&& :: Bool -> Bool -> Bool
|| :: Bool -> Bool -> Bool
not :: Bool -> Bool
```

- Functions: Booleans can be used in expressions and functions

```
exOr :: Bool -> Bool -> Bool
exOr x y = (x || y) && not (x && y)
```

- Evaluation: As before substitute arguments for variables

```
exOr True False }=>\mathrm{ (True || False) && not (True && False)
    # True && not False
    True && True }=>\mathrm{ True
```

- Conditionals: A conditional expression has the form

$$
\text { if } b \text { then e1 else e2 }
$$

where

- b is an expression of type Bool
- e1 and e2 are expressions with the same type
- Example: Maximum of two numbers

```
maxi :: Int -> Int -> Int
maxi n m = if n>=m then n else m
```

- Example: Testing if an integer is 0

```
isZero x :: Int -> Bool
isZero x = if (x == 0) then True else False
```


Guarded functions - An alternative to if-statements

- Example: doubleMax returns double the maximum of its inputs

$$
\begin{aligned}
& \text { doubleMax : : Int } \rightarrow \text { Int } \rightarrow \text { Int } \\
& \text { doubleMax x y } \\
& \qquad \begin{array}{ll}
\mathrm{x}>=\mathrm{y} & =2 * \mathrm{x} \\
\mathrm{x}<\mathrm{y} & =2 * \mathrm{y}
\end{array}
\end{aligned}
$$

- Definition: A guarded function is of the form

```
\langlefunction-name\rangle :: <type 1\rangle -> <type n\rangle -> \langleoutput type\rangle
<function-name\rangle\langlevar 1\rangle...\langlevar n\rangle
    | \langleguard 1\rangle = \langleexpression 1\rangle
    | \langleguard n\rangle = \langleexpression n\rangle
where guard 1, ..., guard n :: Bool
```


The Char type

- Elements of Char : Letters, digits and special characters
- Forming elements of Char : Single quotes form characters:
'd' :: Char '3' :: Char
- Functions: Characters have codes and conversion functions
chr :: Int -> Char ord :: Char -> Int
- Examples: Expressions using these functions

```
offset :: Int
offset = ord 'A' - ord 'a'
capitalize :: Char -> Char
capitalize ch = chr (ord ch + offset)
```

- Elements of String : Contains lists of characters
- Forming elements of String : Double quotes form strings

> '‘Newcastle Utd', '‘1a''

- Special Strings: Newline and Tab characters

$$
\text { 'cat\ndog') '' } 1 \backslash \text { t2 } 2 \backslash \mathrm{t} 3 \text { ') }
$$

- Combining Strings: Strings can be combined by ++

```
''cat'' ++ ''n'' ++ ''fish'' = ''catnfish''
```

- Strings and Lists: All list operations work as String = [Char]
- Elements of Float : Contains decimals, eg -21.3, 23.1e-2
- Built in Functions: Arithmetic, Ordering, Trigonometric
- Conversions: Functions between Int and String

```
ceiling, floor, round :: Float -> Int
fromInt :: Int -> Float
show :: Float -> String
read :: String -> Float
```

- Overloading: Overloading is when values/functions belong to several types

$2::$	Int	show : $:$	Int -> String
$2:$	Float	show $::$	Float -> String

- Example 1: isLower checks if a character is lower-case

```
isLower :: Char -> Bool
isLower x = ('a' <= x) && ( }\textrm{x}<='\textrm{z}'
```

- Example 2: toUpper capitalizes only lower case letters
- Example 3: threeLines prints 3 strings on successive lines
- Example 4: isDigit checks if a character is a digit
- Example 5: duplicate gives two copies of a string
- Example 6: Formatting pence

Error-Handling

- Motivation: Informative error messages for run-time errors
- Example: Dividing by zero will cause a run-time error

$$
\begin{aligned}
& \text { myDiv :: Float -> Float -> Float } \\
& \text { myDiv x y = x/y }
\end{aligned}
$$

- Solution: Use an error message in a guarded definition

$$
\begin{array}{ll}
\text { myDiv : : Float } & \text {-> Float } \rightarrow \text { Float } \\
\text { myDiv x y } \\
\qquad \begin{array}{ll}
\mid y /=0 & =x / y \\
\mid \text { otherwise } & =\text { error 'Attempt to divide by } 0 \text { ', }
\end{array}
\end{array}
$$

- Execution: If we try to divide by 0 we get

$$
\begin{aligned}
& \text { Prelude> mydiv } 50 \\
& \text { Program error: Attempt to divide by } 0
\end{aligned}
$$

- Motivation: Functions will often depend on other functions
- Example : Summing the squares of two numbers

```
sq :: Int -> Int
sq x = x * x
sumSquares :: Int -> Int -> Int
sumSquares x y = sq x + sq y
```

- Problem: Such definitions clutter the top-level environment
- Answer: Local definitions allow auxilluary functions

```
sumSquares2 :: Int -> Int -> Int
    sumSquares2 x y = sq x + sq y
    where sq z = z * z
```

- Quadratic Equations: The solutions of $a x^{2}+b x+c=0$ are

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- Types: Our program will have type

```
roots :: Float -> Float -> Float -> String
```

- Guards: There are 3 cases to check so use a guarded definition

$$
\begin{aligned}
& \text { roots a b c } \\
& \qquad \begin{array}{ll}
\mid \mathrm{a}==0 & = \\
\mid \mathrm{b} * \mathrm{~b}-4 * \mathrm{a} * \mathrm{c}==0 \\
\text { otherwise } & =\ldots
\end{array}
\end{aligned}
$$

The function roots - Stage II

- Code: Now we can add in the answers

```
roots a b c
    a == 0 = error ''Not a quadratic eqn''
    b*b-4*a*c == 0 = ''One root: ,' ++ show ( }-\textrm{b}/2*\textrm{a}\mathrm{ )
    otherwise = ''Two roots: ,' ++
        show ((-b + sqrt (b*b-4*a*c))/2*a) ++
    ''and'' ++
        show ((-b - sqrt (b*b-4*a*c))/2*a)
```

- Problem: This program uses several expressions repeatedly
- Being cluttered, the program is hard to read
- Similarly the program is hard to understand
- Repeated evaluation of the same expression is inefficient

The final version of roots

- Local decs: Expressions used repeatedly are made local

```
roots a b c
    otherwise
```

 \(\mathrm{a}=0 \quad=\quad\) error ' 'Not a quadratic eqn''
 disc == \(0 \quad=\) ' 'One root: ,' ++ show centre
    ```
= ''Two roots: ,' ++
    show (centre + offset) ++
    ''and') ++
    show (centre - offset)
```

 where
 disc \(=b * b-4 * a * c\)
 offset \(=\) (sqrt disc) / \(2 * a\)
 centre \(=-\mathrm{b} / 2 * \mathrm{a}\)
 - We have learnt about Haskell's basic types.
- For each type we learnt
- Its basic values
- Its built in functions
- We learnt how to write expressions involving
- Conditional expressions and Guarded functions
- Error Handling and Local Declarations

Lecture 4 - New Types from Old

Neil Ghani
Dept. of Computer and Information Sciences University of Strathclyde

November 3, 2014

- Basic Idea: Functional Programming is about
- Writing expressions - these are our programs
- Evaluating expressions - this gives the result of programs
- Building Expressions: Expressions are built from
- Types provide basic expressions, eg 0, True, 'hello'"
- Functions allow us to build new expressions
- Haskell Types: There are two kinds of types in Haskell
- Basic Types: Int, Float, Bool, Char, String
- Compound Types: Types built from other types

Overview of Lecture 2.3

- Building New Types: Today we will learn about the following compound types
- Pairs
- Tuples
- Type Synonyms
- Describing Types: As with basic types, for each type we want to know
- What are the values of the type
- What expressions can we write and how to evaluate them
- Motivation: Data for programs modelled by values of a type
- Problem: Single values in basic types too simple for real data
- Example: A point on a plane can be specified by
- A number for the x-coordinate and another for the y-coordinate
- Example: A name could be specified by
- A string for the first name and another for the second name
- Example: The performance of a football team could be
- A string for the team and a number for the points
- Key Idea: Pair types consist of two values.
- In Pascal: We write the following to model points

```
record
    xcoord : integer;
    ycoord : integer;
end
```

- In Haskell: We have the simpler notation
- If s is a type and t is a type, then (s, t) is a type
- Examples: For instance
- A point could have type (Int, Int)
- A name could have type (String, String)
- The performance of a team could have type (String, Int)
- Question: What are the values of a pair type?
- Answer: A pair type contains pairs of values, ie
- If e1 has type s and e2 has type t
- Then (e1,e2) has type (s,t)
- Examples: For instance
- The point $(5,3)$ has type (Int, Int)
- The name ('‘Alan'),'‘Shearer'') has type (String, String)
- The performance ('Newcastle'’, 22) has type (String,Int)
- Types: Pair types can be used as input and/or output types
- Key Idea: If input is a pair-type, use (x, y) in definition
- Key Idea: If output is a pair-type, result is often ($\langle\exp \rangle,\langle\exp \rangle$)
- Examples: The functions fst and snd are vital

```
fst :: (a,b) -> a
fst (x,y) = x
winUpdate :: (String,Int) -> (String,Int)
winUpdate (x,y) = (x,y+3)
movePoint :: Int -> Int -> (Int,Int) -> (Int,Int)
movePoint m n (x,y) = (x+m,y+n)
```

- Motivation: Some data consists of more than two parts
- Example: People on a mailing list
- Specified by name, telephone number, and age
- A person on the list can have type (String, Int, Int)
- Idea: Generalise pairs of types to collections of types
- Type Rule: Given types $a 1, \ldots$, an , then (a1, ..., an) is a type
- Expression Formation: Given expressions e1::a1, ..., en::an , then ($\mathrm{e} 1, \ldots, \mathrm{en}$) is an expression of type ($\mathrm{a} 1, \ldots, \mathrm{an}$)
- Key Idea: As before, if input/output is a tuple use (...)

```
isAdult :: (String,Int,Int) -> Bool
isAdult (x,y,z) = if z>=18 then True else False
updateMove :: (String,Int,Int) -> Int -> (String,Int,Int)
updateMove (x,y,z) w = (x,w,z)
updateAge :: (String,Int,Int) -> (String,Int,Int)
updateAge ( }\textrm{x},\textrm{y},\textrm{z})=(\textrm{x},\textrm{y},\textrm{z}+1
```

- Calendar Dates: Represented by a triple of integers (Int, Int, Int)

```
isSummer :: (Int,Int,Int) -> Bool
isSummer (x, y, z) = (6<=y) && ( }\textrm{y}<=8\mathrm{ )
```

- Simple Functions: We started with functions of the form

$$
\langle\text { function-name }\rangle\langle\text { variable }\rangle=\langle\text { expression }\rangle
$$

- Generalisation: Then we allowed
- Multiple arguments
- Guarded definitions
- Local declarations
- Pattern Matching: Now we also replace variables by patterns
- Definition: Functions now have the form
<function-name> :: <type 1> -> ... -> <type n> -> <out-type>
<function-name> <pat 1> ... <pat n> = <exp n>
- Patterns: Patterns are
- Variables x : Use for any type
- Constants 0, True, 'cherry"' : Definition by cases
- Tuples (x, \ldots, z) : If the argument has a tuple-type
- Wildcards _: If the output doesnt use the input
- In general: Use several lines and mix patterns.
- Example: Using values and wildcards

```
isZero :: Int -> Bool
isZero 0 = True
isZero _ = False
```

- Example: Using tuples and multiple arguments

```
expand :: Int -> (Int,Int) -> (Int,Int)
expand n (x,y) = (n*x,n*y)
```

- Example: Days in the month

```
days :: String -> Int -> Int
    days ''January') x = 31
    days ''February') x = if isLeap x then 29 else 28
    days ''March') x = 31
```

- Motivation: More descriptive names for particular types.
- Definition: Type synonyms are declared with the keyword type .

```
type Team = String
type Goals = Int
type Result = String
type Match = ((Team,Goals), (Team,Goals))
nusw :: Match
nusw = ((''Newcastle", 8), ('`Sheffield'', 0))
```

- Functions: Types of functions are more descriptive, same code

```
homeTeam :: Match -> Team
totalGoals :: Match -> Goals
result :: Match -> Result
```

- Tuples: Collections of data from other types
- Pairs: Pairs, triples etc are examples of tuples
- Type synonyms: Make programs easier to understand
- Pattern Matching: General description of functions covering definition by cases, tuples etc.
- Pitfall! What is the difference between

```
addPair :: (Int,Int) -> Int
addPair (x,y) = x + y
addTwo :: Int -> Int -> Int
addTwo x y = x + y
```


Lecture 4 - List Types

Neil Ghani
Dept. of Computer and Information Sciences
University of Strathclyde

November 3, 2014

- Basic Idea: Functional Programming is about
- Writing expressions - these are our programs
- Evaluating expressions - this gives the result of programs
- Building Expressions: Expressions are built from
- Types provide basic expressions
- Functions allow us to build new expressions
- Haskell Types: There are two kinds of types in Haskell
- Basic Types: Int, Float, Bool, Char, String
- Compound Types: Types built from other types
- Lists: What are lists?
- Forming list types
- Forming elements of list types
- Functions over lists: Some old freinds, some new friends
- Functions: cons, append, head, tail
- Some new functions: map, filter
- Clarity: Unlike Java, Haskell treatment of lists is clear
- No list iterators!
- Motivation: A key data-type in functional programming
- Type Formation: If a is any type, then [a] is a type
- Example 1: Lists of characters: [Char]
- Example 2: Lists of lists of integers: [[Int]]
- Example 3: Lists of functions on integers: [Int -> Int]
- Example 4: Lists of points: [Point]
- List Expressions: Lists are written using square brackets [...]
- If e1,..., en are expressions of type a
- Then [e1, ..., en] is an expression of type [a]
- Example 1: [3, 5, 14] :: [Int]
- Example 2: [3, 4+1, double 7] :: [Int]
- Example 3: [['a'], ['a','b'], ['a','b','c']] :: [[Char]]
- Example 4: [double, square, cube] :: [Int -> Int]
- Empty List: The empty list is [] and belongs to all list types
- Cons: The cons function : adds an element to a list
: : : a -> [a] -> [a]

$$
\begin{aligned}
& \text { a = Int } 1 \quad: \quad[2,3,4] \quad=[1,2,3,4] \\
& \text { a = Int->Int addone : [square] = [addone, square] } \\
& a=\text { Char } \quad \text { 'a' }: \quad[' b ', ~ ' z ']=[' a ', ~ ' b ', ~ ' z '] ~
\end{aligned}
$$

- Append: Append joins two lists together

```
++ :: [a] -> [a] -> [a]
```

a = Bool [True, True] ++ [False] = [True, True, False]
$\mathrm{a}=$ Int $[1,2]++([3]++[4,5])=[1,2,3,4,5]$
$\mathrm{a}=$ Int $\quad([1,2]++[3])++[4,5]=[1,2,3,4,5]$
$\mathrm{a}=$ Float []$++[54.6,67.5] \quad=[54.6,67.5]$
$\mathrm{a}=$ Int $[6,5]++(4: \quad[7,3])=[6,5,4,7,3]$

- Head and Tail: Head gives the first element of a list, tail the remainder

$$
\begin{array}{lll}
\mathrm{a}=\text { Int->Int } & \text { head [double, square] } & =\text { double } \\
\mathrm{a}=\text { Int } & \text { head }([5,6]++[6,7]) & =5 \\
\mathrm{a}=\text { Int->Int } & \text { tail [double, square] } & =[\text { square }] \\
\mathrm{a}=\text { Int } & \text { tail }([5,6]++[6,7]) & =[6,6,7]
\end{array}
$$

- Length and Sum: The length of a list and the sum of a list of integers

```
length (tail [1,2,3]) = 2
sum [1+4,8,45] = 58
```

- Sequences: The list of integers from 1 to n is written

$$
\left[\begin{array}{lll}
1 & . . & \mathrm{n}
\end{array}\right]
$$

Two New Functions - Map And Filter

- Map: Map is a function which has two inputs.
- The first input is a function of type Int -> Int
- The second is a list of integers

The output is the list obtained by applying the function to every element of the input list

- Filter: Filter is a function which has two inputs.
- The first input is a function of type Int -> Bool
- The second is a list of integers

The output is the list of those elements of the input list which the function maps to True

- Even Numbers: The even numbers less than or equal to n
- evens: :Int->[Int]
- Solution 1 - Using map.
- Solution 2 - Using filter
- Methodology: Develop algorithm by asking
- Can we apply a funciton to every member of a list
- Can we delete all members of a list not satisfying a property
- Example 1: factors calculate the factors of an integer
- Example 2: isPrime tests if an integer is prime
- Example 3: primesUpto calculates primes upto an integer
- Types: We have looked at list types
- What list types and list exressions looks like
- What built in functions are availiable
- New Functions: Map and filter
- Apply a function to every member of a list
- Delete those that dont satisfy a properties
- Algorithms: Develop an algorithm by asking
- Can I solve this problem by applying a function to every kmember of a list or by deleting certain elements.

Lecture 5 - List Comprehensions

Neil Ghani
Dept. of Computer and Information Sciences University of Strathclyde

November 3, 2014

- Basic Idea: Functional Programming is about
- Writing expressions - these are our programs
- Evaluating expressions - this gives the result of programs
- Building Expressions: Expressions are built from
- Types provide basic expressions
- Functions allow us to build new expressions
- Haskell Types: There are two kinds of types in Haskell
- Basic Types: Int, Float, Bool, Char, String
- Compound Types: We are studying lists
- Revision: What are lists
- A reminder about map and filter
- List comprehension: An alternative way of writing lists
- Definition of list comprehension
- Comparison with map and filter
- Examples: Which allow you to start practical 2
- Type Formation: If a is any type, then [a] is a type
- List Expressions: Lists are written using square brackets [. . .]
- If e1,..., en are expressions of type a
- Then [e1, en] is an expression of type [a]
- Functions: Some useful built in functions
- Cons: Attaches an element to the front of a list : : : a -> [a] -> [a]
- Append: Append joins two lists together ++ :: [a] -> [a] -> [a]
- Head: Returns the first element of a list head : [a] -> a
- Tail: Deletes the first element of a list tail : : [a] -> [a]
- Map: Map is a function which has two inputs.
- The first input is a function
- The second is a list of integers

The output is the list obtained by applying the function to every element of the input list

- Filter: Filter is a function which has two inputs.
- The first input is a function returning a boolean
- The second is a list of integers

The output is the list of those elements of the input list which the function maps to True

- Example 1: If ex $=[2,4,7]$ then

$$
[2 * a \mid a<- \text { ex }]=[4,8,14]
$$

- Example 2: If isEven :: Int->Bool tests for even-ness

```
    [ isEven a | a <- ex ] = [True,True,False]
```

- In General: List comprehensions are

$$
[\langle\exp \rangle \mid\langle\text { variable }\rangle<-\langle\text { list-exp }\rangle]
$$

- Evaluation: The meaning of a list comprehension is
- Take each element of list-exp and evaluate the expression exp
- Example 1: A function which doubles a list's elements

$$
\begin{aligned}
& \text { double :: }[\text { Int] -> [Int] } \\
& \text { double } 1=[2 * x \mid x<-1]
\end{aligned}
$$

- Example 2: A function to tell if list elements are even

```
isEvenList :: [Int] -> [(Int,Bool)]
isEvenList l = [ (a, isEven a) | a <- l]
```

- Example 3: A function to add pairs of numbers

```
addpairs :: [(Int,Int)] -> [Int]
addpairs l = [ a+b | (a,b) <- l]
```

- In general: map $f=\left[\begin{array}{ll}\mathrm{f} & \mathrm{x} \\ \mathrm{x} & <-1]\end{array}\right.$
- Intuition: List Comprehension also selects elements from a list
- Example: We can select the even numbers in a list
[a | a <- l, isEven a]
- Example: Selecting names beginning with A

```
names :: [String] -> [String]
names l :: [ a | a <- l , head a = 'A' ]
```

- Example: Combining selection and applying functions

```
doubleEven :: [Int] -> [Int]
doubleEven l :: [ 2*a | a <- l , isEven a ]
```

- In General: These list comprehensions are of the form

$$
[\langle\exp \rangle \mid\langle\text { variable }\rangle<-\langle\text { list-exp }\rangle,\langle\text { test }\rangle]
$$

- Example: We can also use several tests - if $1=[2,5,8,10]$

$$
[2 * a \mid a<-1, \text { isEven } a, a>3]=[16,20]
$$

- Key Example: Cartesian product is the list of pairs, the first component of which comes from the first list and the second component from the second list. Use two generators

```
[(x,y) | x<-[1,2,3], y<-['a','b','c'] ] = [(1,'a'), (1,'b') ... ]
league :: [Team]
fixtures = [ ?? | ?? ]
toonGames = [?? | ?? ]
```

- Motivation: A more efficient way to calculate prime numbers
- Algorithm: Given a list of numbers
- Keep the first element and delete all multiples of the first element from the tail.
- Repeat this procedure on the tail
- Example: Thus,

$$
\begin{aligned}
\text { seive }[2,3,4,5,6,7,8,9,10,11,12] & =2: \text { seive }[3,5,7,9,11] \\
& =2: 3: \text { seive }[5,7,11] \\
& =2: 3: 5: \text { seive }[7,11]
\end{aligned}
$$

- Strategy: We implement the algorithm as follows
- Keep the first element - use head and :
- Delete all multiples of the first element - use list comprehension and a test
- Repeat this procedure - apply the function again
- Code: Here is the code
- Primes: Can then be calculated

$$
\text { priomes } \mathrm{n}=\text { seive }[1 \quad . \quad \mathrm{n}]
$$

- Problem: Given a list remove all duplicate entries
- Algorithm: Given a list,
- Keep first element
- Delete all occurrences of the first element
- Repeat the process on the tail
- Code:
- We have looked at list types
- What list types and list expressions looks like
- What built in functions are available
- List comprehensions are like filter and map. They allow us to
- Select elements of a list
- Delete those that dont satisfy certain properties
- Apply a function to each element of the remainder

3.2 - Recursion over Natural Numbers

Neil Ghani
Dept. of Computer and Information Sciences University of Strathclyde

November 3, 2014

- Basic Idea: Functional Programming is about
- Writing expressions - these are our programs
- Evaluating expressions - this gives the result of programs
- Building Expressions: Expressions are built from
- Types provide basic expressions: 0, True, 'hello'"
- Functions allow us to build new expressions
- Haskell Functions: Haskell funtions we have seen
- Simple definitions, Multiple Arguments, Local Declarations
- Guarded functions, Pattern matching

Overview of Lecture 3.2 - Recursion over Natural Numbers

- Recursion: General features of recursion
- What is a recursive function
- How do we write recursive functions
- How do we evaluate recursive functions
- Recursion over Natural Numbers: Special features
- How can we guarantee evaluation works
- Recursion using patterns
- Avoiding negative input
- Example: Adding up the first n sqaures

$$
\text { hssquares } \mathrm{n}=0^{2}+1^{2}+\ldots+\mathrm{n}^{2}
$$

- Types: First we give the type of summing-squares
hssquares :: Int -> Int
- Definitions: Our program is a function

```
hssquares 0 = 0
hssquares n = n*n + hssquares(n-1)
```

- Key Idea: hssquares is recursive as its definition contains hssquares in the right-hand side
- Definition: A function is recursive if it occurs in its definition
- Intuition: You will have seen recursion in action before
- Imperative procedures which call themselves
- Divide-and-conquer algorithms
- Why Recursion: Recursive definitions tend to be
- Shorter, more understandable and easier to prove correct
- Compare with a non-recursive solution

```
nrssquares n = n * (n+0.5) * (n+1)/3
```

- Key Idea: Two cases when applying a recursive function
- Non-recursive call: Doesn't mention the recursive function
- Recursive call: Does mention the recursive function
- Procedure: If a recursive function is applied to an argument
- As before, substitute the input into the function's definition
- But, recursive calls re-introduce the function name
- Hence, carry-on until there are no more recursive calls
- Question: Will evaluation stop?

Examples of evaluation

- Example 1: Lets calculate Hssquares 4

$$
\begin{aligned}
\text { hssquares } 4 & \Rightarrow 4 * 4+\text { hssquares } 3 \\
& \Rightarrow 16+(3 * 3+\text { hssquares } 2) \\
& \ldots \\
& \Rightarrow 16+(9+\ldots(1+\text { hssquares } 0)) \\
& \Rightarrow 16+(9+\ldots(1+0)) \quad \Rightarrow 30
\end{aligned}
$$

- Example 2: Here is a non-terminating function

$$
\begin{aligned}
\text { mydouble } \mathrm{n} & =\mathrm{n}+\text { mydouble (} \mathrm{n} / 2 \text {) } \\
\text { mydouble } 4 & \Rightarrow 4+\text { mydouble } 2 \\
& \Rightarrow 4+2+\text { mydouble } 1 \\
& \Rightarrow 4+2+1+\text { mydouble } 0.5 \\
& \Rightarrow \ldots \ldots
\end{aligned}
$$

- Questions: There are some outstanding problems
- Is hssquares defined for every number
- Does evaluation of recursive functions terminate
- What happens if hssquares is applied to a negative number?
- Are these recursive definitions sensible: $\mathrm{f} n=\mathrm{f} n, \mathrm{~g} \mathrm{n}=\mathrm{g}(\mathrm{n}+1)$
- Answers: Here are the answers
- Yes: The variable pattern matches every input
- Not always: See example
- Trouble: Evaluation doesnt terminate
- Motivation: Restrict definitions to get better behaviour
- Idea: Many functions defined by three cases
- A non-recursive call selected by the pattern 0
- A recursive call selected by n
- Example Our program now looks like

```
hssquares2 0 = 0
hssquares2 n = n*n + hssquares (n-1)
```

- Example 1: star uses recursion over Int to return a string

$$
\begin{array}{llll}
\operatorname{star} & :: ~ I n t ~ & \text { String } \\
\text { star } 0 & =[] & \\
\text { star } n & = & { }^{\prime}, & \text { star (n-1) }
\end{array}
$$

- Example 2: power is recursive in its second argument

```
power :: Float -> Int -> Float
power x 0 = 1
power x n = x * power x (n-1)
```

- In General: Use the following style of definition

$$
\begin{aligned}
\langle\text { function-name }\rangle 0 & =\langle\exp 1\rangle \\
\langle\text { function-name }\rangle \mathrm{n} & =\langle\exp 2\rangle
\end{aligned}
$$

where

```
<expression 1\rangle does not contain <function-name\rangle
<expression 2\rangle may contain \langlefunction-name\rangle applied to n-1
```

- Evaluation: Termination guaranteed!
- If the input evaluates to 0 , evaluate $\langle\exp 1\rangle$
- If not, if the input is greater than 0 , evaluate $\langle\exp 2\rangle$
- Problem: Produce a table for perf :: Int -> (String, Int)
- Stage 1: We need the headings and then the actual table

```
table :: Int -> String
table n = header ++ printTable n
```

- Stage 2: The heading is just a string

```
header = ''Team \ t Points \ n''
```

- Stage 3: Printing the table is a recursive function

```
printTable :: Int -> String
printTable 0 = .....
printTable n = .....
```


The Function printTable

- Base Case: If we want no entries, then just return []

$$
\text { printTable } 0=[]
$$

- Recursive Case: Print n-entries by
- Print the first n-1 -entries
- Add on the n -th entry
- Code: Code for the recursive call

```
    printTable n = printTable (n-1) ++
    fst (perf n) ++ '`\ t"' ++
    show (snd (perf n)) ++ '`\ n''
```

- Code: Heres the final version

```
table :: Int -> String
table n = header ++ printTable n
header = ''Team \ t Points \ n'"
    printTable :: Int -> String
    printTable 0 = []
    printTable n = printTable (n-1) ++
    fst (perf n) ++ '،\ t', ++
    show (snd (perf n)) ++ '،\ n''
```

- Recursion allows new functions to be written.
- Advantages: Clarity, brevity, tractability
- Disadvantages: Evaluation may not stop
- Recursive functions on natural numbers avoid this by
- The values at 0 is non-recursive
- Each recursive call uses a smaller input
- An error-clause catches negative inputs

3.3 - Recursion over lists

Neil Ghani
Dept. of Computer and Information Sciences University of Strathclyde

November 3, 2014

- Basic Idea: Functional Programming is about
- Writing expressions - these are our programs
- Evaluating expressions - this gives the result of programs
- Building Expressions: Expressions are built from
- Types provide basic expressions: 0, True, ''hello')
- Functions allow us to build new expressions
- Haskell Functions: Haskell functions we have seen
- Simple definitions, Guarded functions, Pattern matching
- Recursion over integers and natural numbers

Overview of Lecture 3.3

- Lists: Another look at lists
- Lists are a recursive structure
- Every list can be formed by [] and :
- List Recursion: Primitive recursion for Lists
- How do we write recursive functions
- Examples - ++, length, head, tail, take, drop, zip
- Avoiding Recursion?: List comprehensions revisited
- Question: This lecture is about the following question
- We know what a recursive function over Int is
- What is a recursive function over lists
- Answer: In general, the answer is the same as before
- A recursive function mentions itself in its definition
- Evaluating the function may reintroduce the function
- Hopefully this will stop at the answer
- Question: Is there an analogue of primitive recursion for lists
- Recall: The two basic operations concerning lists
- The empty list []
- The cons operator (:) :: a -> [a] -> [a]
- Key Idea: Every list is either empty, or of the form a:xs

$$
[2,3,7]=2: 3: 7:[] \quad[T r u e, \text { False] = True:False: [] }
$$

- Recursion: Define recursive functions using the scheme
- Non-recursive call: Define the function on the empty list []
- Recursive call: Define the function on (x:xs) using the function on xs
－Definition：Primitive Recursive List Functions are given by

$$
\begin{array}{ll}
\langle\text { function-name }\rangle[] & =\langle\text { expression 1 }\rangle \\
\langle\text { function-name }\rangle(x: x s) & =\langle\text { expression } 2\rangle
\end{array}
$$

where

| 〈expression 1〉 | does not contain | 〈function－name〉 |
| :--- | :--- | :--- |
| 〈expression 2〉 | may contain expressions | 〈function－name〉xs |

－Compare：Very similar to recursion over Int

$$
\begin{array}{ll}
\langle\text { function-name }\rangle 0 & = \\
\langle\text { expression 1 }\rangle \\
\langle\text { function-name }\rangle(n+1) & =
\end{array}\langle\text { expression } 2\rangle
$$

where

```
<expression 1\rangle does not contain \langlefunction-name\rangle
<expression 2\rangle may contain expressions \langlefunction-name\ranglen
```


Examples of Recursive Functions

- Example 1: Doubling every element of an integer list

```
double :: [Int] -> Int
double [] = []
double (x:xs) = (2*x) : double xs
```

- Example 2: Selecting the even members of a list

```
onlyEvens :: [Int] -> [Int]
    onlyEvens [] = []
    onlyEvens (a:xs) = if isEven a then a:rest else rest
    where rest = onlyEvens xs
```

- Example 3: Flattening some lists

```
flatten :: [[a]] -> [a]
flatten [] = []
flatten (a:xs) = a ++ flatten xs
```

- Example 4: Reversing a list

```
reverse :: [a] -> [a]
reverse [] = []
reverse (a:xs) = reverse xs ++ [a]
```

- Example 5: Append is defined recursively

```
append :: [a] -> [a] -> [a]
append [] ys = ys
append (a:xs) ys = a : (append xs ys)
```

- Example 6: Testing if an integer is an element of a list

```
member :: Int -> [Int] -> Bool
member n [] = FALSE
member n (x:xs) = ( }\textrm{x}==\textrm{n}\mathrm{ ) || member n xs
```


Evaluation of Recursive Functions over Lists

- Procedure Same procedure as for recursive functions over Int .
- Evaluate the input and check which expression to evaluate
- Substitute input in definition. This can reintroduce function
- Being primitive recursive, this process will eventually stop
- Example: To evaluate member $[4,3,6] 3$

$$
\begin{aligned}
\text { member }[4,3,6] 3 & \Rightarrow \text { member }(4:[3,6]) 3 \\
& \Rightarrow(4==3) \| \text { member }[3,6] 3 \\
& \Rightarrow \text { False \| member }[3,6] 3 \\
& \Rightarrow \text { member }[3,6] 3 \\
& \Rightarrow(3==3) \| \text { member }[6] 3 \\
& \Rightarrow \text { True }|\mid \text { member }[6] 3 \Rightarrow \text { True }
\end{aligned}
$$

- Folding: Combining the elements of the list

$$
\begin{aligned}
\text { flatten }[[2],[3,72],[]] & =[2]++[3,72]++[]=[2,3,72] \\
\text { sumList }[2,3,7,2,1] & =2+3+7+2+1
\end{aligned}
$$

- Mapping: Applying a function to every member of the list

$$
\begin{aligned}
& \text { double }[2,3,72,1]=[2 * 2,2 * 3,2 * 72,2 * 1] \\
& \text { isEven }[2,3,72,1]=[\text { True, False, True, False }]
\end{aligned}
$$

- Filtering: Selecting particular elements

$$
\text { onlyEvens }[2,3,72,1]=[2,72]
$$

- Other types: Breaking lists up, combining lists
head, tail, take, drop, zip
- Recall: List comprehensions look like

$$
[\langle\exp \rangle \mid\langle\text { variable }\rangle<-\langle\text { list-exp }\rangle,\langle\text { test }\rangle]
$$

- Intuition: Roughly speaking this means
- Take each element of the list 〈list-exp〉
- Check they satisfy \langle test \rangle
- Form a list by applying $\langle\exp \rangle$ to those that do
- Idea: Equivalent to a bit of filtering and then mapping
- List are a recursive data-structure
- Hence, functions over lists tend to be recursive
- Primitive recursion over lists is similar to natural numbers
- A non-recursive call using the pattern []
- A recursive call using the pattern (a:xs)
- List comprehension is an alternative way of doing some recursion

Lecture 8 - More Complex Recursion

Neil Ghani

Dept. of Computer and Information Sciences University of Strathclyde

November 3, 2014

- Basic Idea: Functional Programming is about
- Writing expressions - these are our programs
- Evaluating expressions - this gives the result of programs
- Building Expressions: Expressions are built from
- Types provide basic expressions: 0, True, 'hello'"
- Functions allow us to build new expressions
- Haskell Functions: Haskell functions we have seen
- Simple definitions, Guarded functions, Pattern matching
- Primitive recursion over natural numbers and lists
- Problem: Our restrictions on recursive functions are too severe
- Solution: New definitional formats which keep termination
- Using new patterns
- Generalising the recursion scheme
- Examples: Applications to integers and lists
- Sorting Algorithms: What is a sorting algorithm?
- Insertion Sort
- Quicksort
- Recall: Our primitive recursive functions follow the pattern
- Base Case: Defines the function non-recursively at 0
- Inductive Case: Defines the function at n in terms of the function at n-1

$$
\begin{aligned}
& \langle\text { function-name }\rangle 0=\langle\exp 1\rangle \\
& \langle\text { function-name }\rangle n=\langle\exp 2\rangle
\end{aligned}
$$

where

```
<expression 1\rangle does not contain <function-name\rangle
\langleexpression 2\rangle may contain \langlefunction-name\rangle applied to n-1
```

- Motivation: But some functions do not fit this shape
- Example: The first Fibionacci numbers are 0,1. For subsequent Fibionacci numbers, add the previous two together

$$
0,1,1,2,3,5,8,13,21,34
$$

- Problem: Using the following gives possible non-termination

$$
\text { fib } n=f i b(n-1)+f i b(n-2)
$$

- Solution: Use another base case

$$
\begin{aligned}
& \text { fib }:: \quad \text { Int }->\text { Int } \\
& \text { fib } 0=0 \\
& \text { fib } 1=1 \\
& \text { fib } n=\text { fib }(n-1)+\text { fib }(n-2)
\end{aligned}
$$

- In General: Use as many base cases as you need.

A Second Idea

- Definition: We can use the more general scheme
- Base Case: Defines the function at 0 non-recursively
- Inductive Case: Defines the function at n in terms of the function at SMALLER numbers, ie $n-1, n-2, \ldots, 0$
- Example: Calculating the highest common factor

$$
\begin{aligned}
& \text { hcf :: Int -> Int -> Int } \\
& \text { hcf } \mathrm{n} \text { m } \\
& \mid \mathrm{m}==\mathrm{n} \quad=\mathrm{n} \\
& \mid \mathrm{m}>\mathrm{n} \quad=\quad \mathrm{hcf} \mathrm{~m} \mathrm{n} \\
& \text { |otherwise }=\text { hcf (} n-m \text {) m }
\end{aligned}
$$

- Key Idea: Evaluation still stops as eventually we always reach the base case which is non-recursive.
－Recall：Our primitive recursive functions follow the pattern
－Base Case：Defines the function at［］non－recursively
－Inductive Case：Defines the function at（a：xs）in terms of the function at xs

$$
\begin{array}{ll}
\langle\text { function-name }\rangle[] & =\langle\exp 1\rangle \\
\langle\text { function-name }\rangle(\mathrm{a}: \mathrm{xs}) & =\langle\exp 2\rangle
\end{array}
$$

where
〈expression 1〉 does not contain 〈function－name〉
〈expression 2〉 may contain 〈function－name〉 applied to xs
－Motivation：As with integers，some functions don＇t fit this shape

- Recall: With integers, we used more general patterns.
- Idea: Use (a:(b:xs)) pattern to access first two elements
- Example: We want a function to delete every second element

$$
\text { delete }[2,3,5,7,9,5,7]=[2,5,9,7]
$$

- Solution: Here is the code

```
delete :: [a] -> [a]
delete [] = []
delete [x] = [x]
delete (a:(b:xs)) = a : delete xs
```

- Example: To delete every third element use pattern (a: (b: (c:xs)))
- Patterns: In a function definition, every input receives a pattern
- If the input type is a pair, use (x, y) pattern
- If the input type is a list, use [] and (a:xs) patterns
- If different inputs have different code, use constant patterns
- If we use the same code for every input use variable
- Mixing patterns: Patterns can contain patterns

$$
((\mathrm{x}, \mathrm{y}), \mathrm{z}) \quad(\mathrm{a}:(\mathrm{b}: \mathrm{xs})) \quad((\mathrm{x}, \mathrm{y}): \mathrm{zs}) \quad(0: \mathrm{xs})
$$

- Recursion: The non-recursive call and recursive call use different code. Hence recursive functions always use patterns

Examples of Recursion and patterns - See how the typing helps

- Example 1: Summing pairs
- Example 2: Unzipping lists
- Example 3: Defining equality over lists
- Example 4: Checking if a list is a palindrome
- Problem: Elements in a list can come in any order. A sorting algorithm rearranges them in order

$$
\text { sort }[2,7,13,5,0,4]=[0,2,4,5,7,13]
$$

- Recursion: Sorting algorithms usually recursively sort a smaller list
- Example: To sort a list, sort the tail recursively

```
inssort :: [Int] -> [Int]
inssort [] = []
inssort (a:xs) = insert a (inssort xs)
```

where insert puts the number a in the correct place

- Patterns: Insert takes two arguments
- The code for insert doesn't depend on the number - use a variable pattern
- The code for insert depends on whether the list is empty or not - use the [] and (a:xs) patterns
- Code: Here is the final code

```
insert :: Int -> [Int] -> [Int]
insert n [] = [n]
insert n (a:xs)
    n <= a = n:a:xs
    | otherwise = a:(insert n xs)
```

- Idea: Given a list 1 and a number n

```
sort l = sort those elements less than n ++
number of occurrences of n ++
sort those elements greater than n
```

- Stage 1: The algorithm may be coded

$$
\begin{aligned}
& \text { qsort :: [Int] -> [Int] } \\
& \text { qsort [] = [] } \\
& \text { qsort (a:xs) = qsort (less a xs) ++ } \\
& \text { occs a (a:xs) ++ } \\
& \text { qsort (more a xs) }
\end{aligned}
$$

where less, occs, more are auxilluary functions

- Problem: The auxiliary functions can be specified
- less takes a number and a list and returns those elements of the list less than the number
- occs takes a number and a list and returns the occurrences of the number in the list
- more takes a number and a list and returns those elements of the list more than the number
- Code: Using list comprehensions shorten code

```
less, occs, more :: Int -> [Int] -> [Int]
less n xs = [x | x <- xs, x < n]
occs n xs = [x | x <- xs, x == n]
more n xs = [x | x <- xs, x > n]
```

- Idea: Chop a list in half, sort each half recursively, and then merge the results together
- Implementation: As done in class

```
msort :: [Int] -> [Int]
msort [] = []
msort [x] = [x]
msort xs = merge (msort first) (msort second)
                                where frist = take n xs
                        second = drop n xs
                                n = length xs 'div' 2
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys) =
    if x<y then x : merge xs (y:ys) else y : merge (x:xs) ys
```

- Recursion Schemes: We've generalised the recursion schemes to allow more functions to be written
- More general patterns
- Recursive calls to ANY smaller value
- Examples: Applied to recursion over integers and lists
- Sorting Algorithms: We've put these ideas into practice by defining three sorting algorithms
- Insertion Sort
- QuickSort
- Mergesort

Lecture 9 - Higher Order Functions

Neil Ghani
Dept. of Computer and Information Sciences
University of Strathclyde

November 3, 2014

- Basic Idea: Functional Programming is about
- Writing expressions - these are our programs
- Evaluating expressions - this gives the result of programs
- Building Expressions: Expressions are built from
- Types provide basic expressions: 0, True, 'hello'"
- Functions allow us to build new expressions
- Haskell Functions: Haskell functions we have seen
- Simple definitions, Pattern matching, Recursion
- Today - Higher Order Functions

Overview of Lecture 9

- Motivation: Why do we want higher order functions
- Definition: What is a higher order function
- Examples: Three examples concerning lists
- Mapping: Applying a function to every memebr of a list
- Filtering: Selecting elements of a list satisfying a property
- Folding: Combining the elements of a list
- Example 1: A function to double the elements of a list

```
doubleList :: [Int] -> [Int]
doubleList [] = []
doubleList (x:xs) = (2*x) : doubleList xs
```

- Example 2: A function to square the elements of a list

```
squareList :: [Int] -> [Int]
squareList [] = []
squareList (x:xs) = (x*x) : squareList xs
```

- Example 3: A function to increment the elements of a list

```
incList :: [Int] -> [Int]
incList [] = []
incList (x:xs) = (x+1) : incList xs
```


A Previous Slide - Advantages of Functional Programming

- Advantage 1: Functional Programs can be easier to write
- Functional programs are more abstract
- Functional programs reflect the algorithmic content
- Advantage 2: Functional Programs can be easier to read
- Functional programs have shorter
- Functional programs facilitate code-reuse
- Advantage 3: Functional programs can be easier to understand
- Usual mathematical laws apply to functional programs
- Problem: Three separate definitions despite the clear pattern
- Intuition: Examples apply a function to each member of a list

```
function :: Int -> Int
functionList :: [Int] -> [Int]
functionList [] = []
functionList (x:xs) = (function x) : functionList xs
```

where in our previous examples function is
double square inc

- Key Idea: Make function an input to a higher order function

A Higher Order Function - mapInt

- Idea: Make the auxilluary function an argument

```
mapInt f [] = []
mapInt f (x:xs) = (fx) : mapInt f xs
```

- Advantages: There are several advantages
- Shortens code as previous examples are given by

```
doubleList xs = mapInt double xs
squareList xs = mapInt square xs
    incList xs = mapInt inc xs
```

- Captures the algorithmic content and is easier to understand
- Easier code-modification and code re-use
- Types: What is the type of mapInt
- First argument is a function with type Int -> Int
- Second argument is a list with type [Int]
- Result is a list with type [Int]
- Answer: So overall type is

```
mapInt :: (Int -> Int) -> [Int] -> [Int]
```

- Definition: A function is higher-order if an input is a function.
- Imperatively: Imperative programs cant do this
- Recall: List comprehensions or recursion can be used to select those elements of a list satisfying a certain property
- Example: Here are some examples

```
evens, odds, primes :: [Int] -> [Int]
evens l = [x | x <- l, isEven x]
odds l = [x | x <- l, isOdd x]
primes l = [x | x <- l, isPrime x]
```

- Idea: Each function satisfies the pattern

```
test :: Int -> Bool
testList :: [Int] -> [Int]
testList l = [x | x <- l, test x]
```

where test is isEven, isOdd, isPrime

- Question: Can we make test into an argument of a HOF

```
filterInt test xs = [x | x <- xs, test x]
```

- Types: What is the type of filterInt
- First argument is a function with type Int -> Bool
- Second argument is a list with type [Int]
- Result type is a list with type [Int]
- Answer: So overall type of filterInt is
filterInt :: (Int -> Bool) -> [Int] -> [Int]
- Higher Order functions are an area where functional programs are more general than their imperative counterparts
- Higher Order functions allow
- More concise code and also code reuse
- More abstract code, ie code closer to abstract algorithm
- Higher Order functions express algorithmic content more abstractly
- Hence code is easier to understand

Lecture 11 - Higher Order Sorting

Neil Ghani

Dept. of Computer and Information Sciences University of Strathclyde

November 3, 2014

- Basic Idea: Functional Programming is about
- Writing expressions - these are our programs
- Evaluating expressions - this gives the result of programs
- Building Expressions: Expressions are built from
- Types provide basic expressions: 0, True, 'hello'"
- Functions allow us to build new expressions
- Haskell Functions: Haskell functions we have seen
- Simple definitions, Recursion, Higher Order Functions
- Today — Higher order sorting, folding

Overview of Lecture 11

- Folding: What can we do with a list?
- Mapping: Applying a function to every member of a list
- Filtering: Selecting elements of a list satisfying a property
- Folding: Combining the elements of a list
- HO Sorting: A more powerful form of sorting
- What are the limitations of current sorting algorithms
- How can these limitations be overcome
- Examples from football

Three Things to do with a List

- Mapping: Applying a function to every member of the list

```
map double [2,3,72,1] = [2*2, 2*3, 2*72, 2*1]
map isEven [2,3,72,1] = [True, False, True, False]
```

- Filtering: Selecting particular elements

$$
\begin{aligned}
& \text { filter isEven }[2,3,72,1]=[2,72] \\
& \text { filter isOdd }[2,3,72,1]=[3,1]
\end{aligned}
$$

- Folding: Combining the elements of the list

```
sumList [2,3,7,2,1] = 2 + 3 + 7 + 2 + 1
allTrue [True, False, True] = True && False && True
flatten [[2], [3,72], []] = [2] ++ [3,72] ++ [] = [2,3,72]
```

- Question: Is folding a higher order function?
- Types: Lets restrict ourselves to lists of integers
- First argument takes two integers and returns an integer
- Second argument gives a value if the list is empty
- Third argument takes a list of integers
- Result type is an integers
- Answer: foldl is defined as follows

```
foldl :: (Int -> Int -> Int) -> Int -> [Int] -> Int
foldl f n [] = n
foldl f n (a:xs) = f a (foldl f xs n)
```

- Usage: To use foldl, ask yourself
- What is the result of the function if the list is empty
- What is the function which is placed in between elements
- Examples: Here are some examples

$$
\begin{aligned}
& \text { length xs }= \\
& \text { sumList xs }= \\
& \text { prodList xs }=
\end{aligned}
$$

- Warning: There are two folds - see the book

Quicksort Revisited

- Idea: Recall our implementation of quicksort

```
qsort :: Ord a => [a] -> [a]
qsort [] = []
    qsort (a:xs) = qsort less ++ occs ++ qsort more
        where
        less = [x | x<-xs, x<a]
        occs = a : [x | x<-xs, x==a]
        more = [x | x<-xs, x>a]
```

- Polymorphism: Quicksort requires an order on the elements
- So the resulting list depends upon the order on the elements
- This requirement is reflected in type class information Ord a
- Don't worry about type classes as they are beyond this course
- Example: Football tables have type [(Team,Points,Goals,Played)]
- Problem: We might get something like

| Arsenal | 16 | 15 | 8 |
| :--- | ---: | ---: | ---: |
| AVilla | 8 | 10 | 8 |
| Bradford | 4 | 1 | 9 |

because order on (Team,Points,Goals,Played) is lexicographic

$$
(x 1, x 2)<(y 1, y 2) \text { iff } x 1<y 1 \text { or } x 1=y 1 \text { and } x 2<y 2
$$

- Solution: Write a new function for this problem

```
tSort [] = []
tSort (a:xs) = tSort less ++ [a] ++ tSort more
    where more = [x| x<-xs, sec x =< sec a]
    less = [x| x<-xs, sec x > sec a]
    sec (t,p,g,pl) = p
```

- Motivation: But what if we want different orders, eg
- If two teams have the same points, compare goals
- If two teams have the same points, compare goals per game
- Sort teams in order of goals scored, not points
- Key Idea: Make the comparison a parameter of quicksort

```
qsortBy :: Ord b => (a -> b) -> [a] -> [a]
qsortBy f [] = []
qsortBy f (x:xs) = qsortBy f less ++ occs ++ qsortBy f more
    where less = [ y | y <- xs, f y < f x]
    occs = x : [ y | y <- xs, f y == f x]
    more = [ y | y<- xs, f x < f y]
```

- Key Idea: Only thing to remember: recursive calls and comparisons use the comparison function!
- Implementation: As done in class

```
msortBy :: Ord b => (a -> b) -> [a] -> [a]
msortBy f [] = []
msortBy f [x] = [x]
msortBy f xs = mergeBy f (msortBy f first) (msortBy f second)
                                    where first = take n xs
                                    second = drop n xs
                                    n = length xs 'div' 2
mergeBy f [] ys = ys
mergeBy f xs [] = xs
mergeBy f (x:xs) (y:ys) =
    | f x < f y = x : mergeBy f xs (y:ys)
    | otherwise = y : mergeBy f (x:xs) ys
```

- Key Idea: Only thing to remember: recursive calls and comparisons use the comparison function!

```
inssortBy :: Ord b => (a -> b) -> [a] -> [b]
inssortBy f [] = []
inssortBy f (a:xs) = insertBy f a (inssortBy f xs)
insertBy :: Ord b => (a -> b) -> a -> [a] -> [a]
insertBy f n [] = [n]
insertBy f n (a:xs)
    | n<= fa=n:a:xs
    |otherwise = a:(insertBy f n xs)
```

- Key Idea: To use a higher order sorting algorithm, use the required order to define the function to sort by
- Example 1: To sort by points and then goals scored sort1 league $=$
- Example 2: To sort by points and then goals per game sort2 league =
- Example 1: To sort by goals scored

```
sort3 league =
```

- Folding: A new higher order function
- Use to combine elements of a list
- Many algorithms are either map,filter orfold
- HO Sorting: An application of higher order functions to sorting
- Produces more powerful sorting
- Order of resulting list determined by a function
- Lexicographic order allows us to try one order and then another

5.1 - Finishing off Haskell (... Almost)

Neil Ghani

Dept. of Computer and Information Sciences University of Strathclyde

November 3, 2014

- Basic Idea: Functional Programming is about
- Writing expressions - these are our programs
- Evaluating expressions - this gives the result of programs
- Building Expressions: Expressions are built from
- Types provide basic expressions: 0, True, ''hello')
- Functions allow us to build new expressions
- Haskell Functions: Haskell functions we have seen
- Simple definitions, Pattern Matching, Recursion
- Higher Order Functions and Polymorphism
- Topics Covered: Today we (almost) finish our survey of Haskell
- Partial Application: Not giving all the inputs required
- Lambda Notation: Expressions of function type
- Composing Funtions: Sequential composition (functionally)
- Auxilluary Functions: Adding a bit of memory
- Reference: You can find out more on the net
－Recall 1：In Lecture 1，we defined functions with one input

$$
\begin{aligned}
&\langle\text { function }\rangle::\langle\text { input type }\rangle \text {-> }\langle\text { output type }\rangle \\
&\langle\text { function }\rangle\langle\text { variable }\rangle= \\
&\langle\text { expression }\rangle
\end{aligned}
$$

－Application：（Monomorphic）Functions applied using rule

| If | 〈function \rangle | $::$ | $\mathrm{a}->$ |
| :--- | :--- | :--- | :--- |
| And | 〈expr | $::$ | a |
| Then | 〈function $\rangle\langle$ expr \rangle | $::$ | b |

－Recall 2：Functions with several inputs are given by

| 〈function〉： | \langle type 1〉 | 〈type n〉－＞ | ＜out－type〉 |
| :---: | :---: | :---: | :---: |
| 〈function〉 | 〈var 1〉 | 〈var n〉 | ＜expr〉 |

－Confession：There are no functions with more than one input！

- Key Idea: Functions with many inputs are actually functions with one input and whose output is itself a function.
- Example: The times function has type

```
times :: Int -> (Int -> Int)
times x y = x * y
```

- Application: To multiply numbers, use application repeatedly
- Since 5 :: Int , times 5 :: Int -> Int
- Next, 7 :: Int, and so times 57 :: Int
- Summary: We have all the expressions we used to have. But we also have some new ones.
- Code Re-use: As always we want to reduce effort
- Before: Defining the following functions is repetative

```
times2 :: Int -> Int times3 :: Int -> Int
times2 x = x + 2 times3 x = x + 3
```

- Now: Define times2 and times3 using code for times

```
times :: Int -> Int -> Int
times x y = x + y
times2 = times 2
times3 = times 3
```

- Key Idea: Partial application supports code-reuse

Part II - Composing Functions

- Motivation: Some algorithms say "Do this, then do that."
- Key Idea: Function composition implements such algorithms
- Intuition: The function g.f does the following
- Takes an input and applies f to it.
- Then applies g to the result
- Typing Rule: If $\mathrm{f}:: \mathrm{a}->\mathrm{b}$ and $\mathrm{g}:: \mathrm{b}->\mathrm{c}$ are functions:
(g.f) :: a->c
- Condition: The output of f and input of g have same type.

Examples of Composing Functions

- Example 1:

$$
\left.\begin{array}{lll}
\text { length } & :: & \text { [a] -> Int } \\
\text { mysucc } & :: & \text { Int }->\text { Int } \\
\text { mysucc } x & & \\
& x+1
\end{array}\right] \begin{array}{ll}
\text { (mysucc . length) } & :: \\
\text { (mysucc . length }[2,3,4] & \Rightarrow \text { mysucc (length }[2,3,4] \text {) } \\
& \Rightarrow \text { mysucc } 3 \\
& \\
& \Rightarrow 3+1 \Rightarrow 4
\end{array}
$$

- Recall: Expressions of list or pair type are written

$$
(\langle\operatorname{expr} 1\rangle,\langle\operatorname{expr} 2\rangle) \quad[\langle\operatorname{expr} 1\rangle, \ldots,\langle\operatorname{expr}\rangle\rangle]
$$

- Motivation: How do we write expressions with function type
- Answer 1: Use local declarations to define the function

```
timesnum :: Int -> (Int -> Int)
    timesnum n = timesn where timesn m = n*m
```

- Problem: This expression says timesnum n is the function timesn and then timesn is defined. Too verbose!
- Solution: We want code for
"The function which takes a number m and multiplies it by n "
－Answer 2：Use lambda notation

$$
\text { timesnum } \mathrm{n}=\backslash \mathrm{m} \rightarrow \mathrm{n} * \mathrm{~m}
$$

－Definition：The expression
\〈variable-name〉 -> 〈expression〉
is shorthand for the expression

```
<function-name>
where <function-name> <variable-name> = <expression>
```

－Defining Functions：This gives a new way to define functions

$$
\begin{aligned}
& \text { double }=\backslash x->2 * x \\
& \text { atZero }=\backslash f->f 0
\end{aligned}
$$

Evaluating Lambda-Expressions

- Evaluation: How do we calculate with lambda-expressions?
- Again, substitute argument for variable after the \backslash
- Examples: Here are some examples

$$
\begin{aligned}
\text { timesnum } 3 & \Rightarrow \backslash \mathrm{~m}->3 * \mathrm{~m} \\
\text { timesnum } 35 & \Rightarrow(\backslash \mathrm{~m}->3 * \mathrm{~m}) 5 \\
& \Rightarrow 3 * 5 \Rightarrow 15 \\
\text { atZero square } & \Rightarrow(\backslash \mathrm{f}->\mathrm{f} 0) \text { square } \\
& \Rightarrow \text { square } 0 \Rightarrow 0 * 0 \Rightarrow 0 \\
\operatorname{map}(\backslash \mathrm{x}->2 * \mathrm{x})[4,5] & \Rightarrow(\backslash \mathrm{x}->2 * \mathrm{x}) 4: \operatorname{map}(\backslash \mathrm{x}->2 * \mathrm{x})[5] \\
& \Rightarrow 8:(\backslash \mathrm{x}->2 * \mathrm{x}) 5: \operatorname{map}(\backslash \mathrm{x}->2 * \mathrm{x}) \\
& \Rightarrow[8,10]
\end{aligned}
$$

- For Loops: The sum of the first n numbers

```
total := 0; count:= 0;
while count <= n do
    total := total + count; count := count + 1
```

- Functonally: Functionally we write a recursive program

```
sum 0 = 0
sum (n+1) = (n+1) + sum n
```

- Differences: The algorithms are different
- The imperative program uses the memory to store the result
- Functionally, we calculate the result directly

Adding State/Memory to Functional Programs

- State Model: Imperative programs transform the memory
- Key Idea: Memory is mimicked functionally as extra arguments

```
sumaux :: Int -> Int -> Int
sumaux 0 y = y
sumaux (n+1) y = sumaux n ( }n+1+y
newsum n = sumaux n 0
```

- Example: Length of a list

```
lengthaux :: [a] -> Int -> Int
lengthaux [] n = n
lengthaux (a:xs) n = length xs ( }\textrm{n}+1
newlength xs = lengthaux xs 0
```

- Partial Application: Functions with many arguments are a convenient explanation. Actually:
- They are really functions whose output is another function.
- Such functions can be applied to some of their arguments
- Lambda Expressions: Used when we want
- Expressions of function type
- An alternate way to define functions
- State: Memory is mimicked functionally by extra arguments
- Composition: Functional composition corresponds to ;

