
Lecture 1 — Functional Programming

Neil Ghani

Dept. of Computer and Information Sciences

University of Strathclyde

November 3, 2014

1

Overview of Lecture 1

• From Imperative to Functional Programming:

– What is imperative programming?

– What is functional programming?

• Key Ideas in Functional Programming:

– Types: Which model the data in our programs

– Functions: Which are our programs

– Evaluating Expressions: Which executes our programs

Neil Ghani Strathclyde, November 3, 2014

2

How not to Fail CS316!

• Coursework: An easy way to pick up marks. Therefore

– Some coursework is assessed in the labs and hence you should

prepare it before the labs on Tuesday

– Always hand some coursework in since there will be some

simple questions on every practical.

• Plagiarism: Evidence suggests those who plagiarise will fail

– Departmental capping catches many who plagiarise.

– Penalties can be stiff, eg deduction of 10% of module mark/year

mark or termination of course

• Reading: The lecture notes!

Neil Ghani Strathclyde, November 3, 2014

3

What is Imperative Program — Adding up square numbers

• Problem: Add up the first n square numbers

ssquares n = 0 2 + 1 2 + ... + n 2

• Program: We could write the following in Java

public int ssquares(int n){
private int s,i;

s=0; i=0;

while (i<n) {i:=i+1;s:=s+i*i;}
}

• Execution: We may visualize running the program as follows

Memory
s = ?? −→
i = ?? −→

ssquares 4
Memory

−→ s = 30

−→ i = 4

• Key Idea: Imperative programs transform the memory

Neil Ghani Strathclyde, November 3, 2014

4

The Two Aspects of Imperative Programs

• Functional Content: What the program does

– Programs take some input values and returns an output value

– ssquares takes a number and returns the sum of the squares

upto that number

• Implementational Content: How the program does it

– Imperative programs transform the memory using assign-

ment etc

– ssquares uses variables i and s to represent locations in

memory. The program transforms the memory until s con-

tains the correct number.

Neil Ghani Strathclyde, November 3, 2014

5

What is Functional Programming?

• Motivation: Problems arise as programs contain two aspects:

– High-level algorithms and low-level implementational features

– Humans are good at the former but not the latter

• Idea: The idea of functional programming is to

– Concentrate on the functional behaviour of programs

– Leave memory management to the language implementation

• Summary: Functional languages are more abstract and avoid

low level detail

Neil Ghani Strathclyde, November 3, 2014

6

A Functional Program — Summing squares in Haskell

• Types: First we give the type of summing-squares

hssquares :: Int -> Int

• Functions: Our program is a function

hssquares 0 = 0

hssquares n = n*n + hssquares(n-1)

• Evalutation: Run the program by applying the function

hssquares 2 ⇒ 2*2 + hssquares 1

⇒ 4 + 1*1 + hssquares 0

⇒ 4 + 1 + 0

⇒ 5

Neil Ghani Strathclyde, November 3, 2014

7

Key Ideas in Functional Programming I — Types

• Motivation: Recall that types model the data in our programs

• Integers: Int is the Haskell type {. . . ,−2,−1,0,1,2, . . .}

• Built in Operations:

– Arithmentic Operations: + * - div mod abs

– Ordering Operations: > >= == /= <= <

• Expressions: Some expressions using integers

5 * 4 (*) 5 4 mod 13 4 13 ‘mod‘ 4

5-(3*4) (5-3)*4 7 >= (3*3) 5 * (-1)

• Precedence: The rules about precedence and bracketing apply

Neil Ghani Strathclyde, November 3, 2014

8

Key Ideas in Functional Programming II — Functions

• Intuition: Recall that a function associates to every input-value

a unique output-value

x ∈ A −→ Function f ?
−→ y ∈ B

• Example 1: The square and cube functions are written

square :: Int -> Int cube :: Int -> Int

square x = x * x cube x = x * square x

• In General: In Haskell, functions are defined as follows

〈function-name〉 :: 〈input type〉-> 〈output type〉

〈function-name〉 〈variable〉 = 〈expression〉

Neil Ghani Strathclyde, November 3, 2014

9

Functions with Multiple Arguments

• Intuition: A function f with n inputs is written f::a1->...-> an-> a

x1 ∈ A1 −→
x2 ∈ A2 −→

... ...
xn ∈ An −→

Function f ?
−→ y ∈ A

• Examples: The difference between two integers

diff :: Int -> Int -> Int

diff x y = abs (x - y)

• In General:

〈function-name〉 :: 〈type 1〉-> . . . -> 〈type n〉-> 〈output-type〉

〈function-name〉 〈variable 1〉 . . . 〈variable n〉 = 〈expression〉

Neil Ghani Strathclyde, November 3, 2014

10

Applying Functions to Expressions

• Motivation: Get the result of a function by applying it

– Write the function name followed by the input

• Examples: Here are some examples

square 4 square (3 + 1) square 3 + 1
cube (square 2) difference 6 7 square 2.2

• In General: Application is governed by the typing rule

– If f is a function of type a->b

– And, u is an expression of type a

– Then f u is the result of applying f to u and has type b

Neil Ghani Strathclyde, November 3, 2014

11

Key Ideas in Functional Programming III — Evaluating Expressions

• Procedure:

– Find application of a function to an expression, eg square 5

– Substituted expression into function definition, eg 5 ∗ 5

– Repeat as often as possible

• Example:

cube (square 3) ⇒ (square 3) * square (square 3)

⇒ (3*3) * ((square 3) * (square 3))

⇒ 9 * ((3*3) * (3*3))

⇒ (9 * (9*9)

⇒ 729

Neil Ghani Strathclyde, November 3, 2014

12

Summary — Comparing Functional and Imperative Programs

• Difference 1: Level of Abstraction

– Imperative Programs include low level memory details

– Functional Programs describe only high-level algorithms

• Difference 2: How exectution works

– Imperative Programming based upon memory transformation

– Functional Programming based upon expression evaluation

• Difference 3: Type systems

– Type systems play a key role in functional programming

Neil Ghani Strathclyde, November 3, 2014

13

Advantages of Functional Programming

• Advantage 1: Functional Programs are easier to write

– The algorithm we concieve of is easier to write down in a

functional style. This is because functional programs are

more abstract

• Advantage 2: Functional Programs are easier to read

– Because they are shorter and not cluttered by implementa-

tional details, eg there is no public static blah blah blah!

• Advantage 3: Functional Programs are easier to prove correct,

– Becuase they are based on the mathematical theory of func-

tions, This is increasingly important in safety critical appli-

cations.

Neil Ghani Strathclyde, November 3, 2014

14

Summary — Key ideas in Haskell

• Types: A type is a collection of data values

– Every expression has a type describing its nature

• Functions: Transform inputs to outputs

– We build complex expressions by defining functions and ap-

plying them to other expressions

• Evaluation: Calculates the result of applying a function to an

input

– Expressions can be evaluated by hand or by HUGS

• Now: Go and look at the first practical!

Neil Ghani Strathclyde, November 3, 2014

15

Lecture 2 — More Types and Functions

Neil Ghani

Dept. of Computer and Information Sciences

University of Strathclyde

November 3, 2014

16

Recall

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions: 0, True, ‘‘hello’’

– Functions allow us to build new expressions: square 3, 4+6

• Haskell Types: There are two kinds of types in Haskell

– Basic Types: Int, Float, Bool, Char, String

– Compound Types: Function types, Pair types, List types

Neil Ghani Strathclyde, November 3, 2014

17

Overview of Lecture 2.1

• New Types: Today we shall learn about the following types

– The type of booleans: Bool

– The type of characters: Char

– The type of strings: String

– The type of fractions: Float

• New Functions: And also about the following functions

– Conditional expressions and Guarded functions

– Error Handling and Local Declarations

Neil Ghani Strathclyde, November 3, 2014

18

Booleans and Logical Operators

• Values of Bool : Contains two values — True, False

• Logical Operations: Various built in functions

&& :: Bool -> Bool -> Bool

|| :: Bool -> Bool -> Bool

not :: Bool -> Bool

• Functions: Booleans can be used in expressions and functions

exOr :: Bool -> Bool -> Bool

exOr x y = (x || y) && not (x && y)

• Evaluation: As before substitute arguments for variables

exOr True False ⇒ (True || False) && not (True && False)

⇒ True && not False

⇒ True && True ⇒ True

Neil Ghani Strathclyde, November 3, 2014

19

Conditionals — If statements

• Conditionals: A conditional expression has the form

if b then e1 else e2

where

– b is an expression of type Bool

– e1 and e2 are expressions with the same type

• Example: Maximum of two numbers

maxi :: Int -> Int -> Int

maxi n m = if n>=m then n else m

• Example: Testing if an integer is 0

isZero x :: Int -> Bool

isZero x = if (x == 0) then True else False

Neil Ghani Strathclyde, November 3, 2014

20

Guarded functions — An alternative to if-statements

• Example: doubleMax returns double the maximum of its inputs

doubleMax :: Int -> Int -> Int

doubleMax x y

| x >= y = 2*x

| x < y = 2*y

• Definition: A guarded function is of the form

〈function-name〉 :: 〈type 1〉 -> 〈type n〉 -> 〈output type〉

〈function-name〉 〈var 1〉 . . . 〈var n〉
| 〈guard 1〉 = 〈expression 1〉
| . . . = . . .

| 〈guard n〉 = 〈expression n〉

where guard 1, ..., guard n :: Bool

Neil Ghani Strathclyde, November 3, 2014

21

The Char type

• Elements of Char : Letters, digits and special characters

• Forming elements of Char : Single quotes form characters:

’d’ :: Char ’3’ :: Char

• Functions: Characters have codes and conversion functions

chr :: Int -> Char ord :: Char -> Int

• Examples: Expressions using these functions

offset :: Int

offset = ord ’A’ - ord ’a’

capitalize :: Char -> Char

capitalize ch = chr (ord ch + offset)

Neil Ghani Strathclyde, November 3, 2014

22

The String type

• Elements of String : Contains lists of characters

• Forming elements of String : Double quotes form strings

‘‘Newcastle Utd’’ ‘‘1a’’

• Special Strings: Newline and Tab characters

‘‘cat\ndog’’ ‘‘1\t2\t3’’

• Combining Strings: Strings can be combined by ++

‘‘cat’’ ++ ‘‘n’’ ++ ‘‘fish’’ = ‘‘catnfish’’

• Strings and Lists: All list operations work as String = [Char]

Neil Ghani Strathclyde, November 3, 2014

23

The type of Fractions Float

• Elements of Float : Contains decimals, eg -21.3, 23.1e-2

• Built in Functions: Arithmetic, Ordering, Trigonometric

• Conversions: Functions between Int and String

ceiling, floor, round :: Float -> Int

fromInt :: Int -> Float

show :: Float -> String

read :: String -> Float

• Overloading: Overloading is when values/functions belong to

several types

2 :: Int show :: Int -> String

2 :: Float show :: Float -> String

Neil Ghani Strathclyde, November 3, 2014

24

Examples of some functions

• Example 1: isLower checks if a character is lower-case

isLower :: Char -> Bool

isLower x = (’a’ <= x) && (x <= ’z’)

• Example 2: toUpper capitalizes only lower case letters

• Example 3: threeLines prints 3 strings on successive lines

• Example 4: isDigit checks if a character is a digit

• Example 5: duplicate gives two copies of a string

• Example 6: Formatting pence

Neil Ghani Strathclyde, November 3, 2014

25

Error-Handling

• Motivation: Informative error messages for run-time errors

• Example: Dividing by zero will cause a run-time error

myDiv :: Float -> Float -> Float

myDiv x y = x/y

• Solution: Use an error message in a guarded definition

myDiv :: Float -> Float -> Float

myDiv x y

| y /= 0 = x/y

| otherwise = error ‘‘Attempt to divide by 0’’

• Execution: If we try to divide by 0 we get

Prelude> mydiv 5 0

Program error: Attempt to divide by 0

Neil Ghani Strathclyde, November 3, 2014

26

Local Declarations — where

• Motivation: Functions will often depend on other functions

• Example : Summing the squares of two numbers

sq :: Int -> Int

sq x = x * x

sumSquares :: Int -> Int -> Int

sumSquares x y = sq x + sq y

• Problem: Such definitions clutter the top-level environment

• Answer: Local definitions allow auxilluary functions

sumSquares2 :: Int -> Int -> Int

sumSquares2 x y = sq x + sq y

where sq z = z * z

Neil Ghani Strathclyde, November 3, 2014

27

Extended Example

• Quadratic Equations: The solutions of ax2 + bx+ c = 0 are

−b±
√

b2 − 4ac

2a

• Types: Our program will have type

roots :: Float -> Float -> Float -> String

• Guards: There are 3 cases to check so use a guarded definition

roots a b c

| a == 0 =

| b*b-4*a*c == 0 =

| otherwise =

Neil Ghani Strathclyde, November 3, 2014

28

The function roots — Stage II

• Code: Now we can add in the answers

roots a b c

| a == 0 = error ‘‘Not a quadratic eqn’’

| b*b-4*a*c == 0 = ‘‘One root: ’’ ++ show (-b/2*a)

| otherwise = ‘‘Two roots: ’’ ++

show ((-b + sqrt (b*b-4*a*c))/2*a) ++

‘‘and’’ ++

show ((-b - sqrt (b*b-4*a*c))/2*a)

• Problem: This program uses several expressions repeatedly

– Being cluttered, the program is hard to read

– Similarly the program is hard to understand

– Repeated evaluation of the same expression is inefficient

Neil Ghani Strathclyde, November 3, 2014

29

The final version of roots

• Local decs: Expressions used repeatedly are made local

roots a b c

| a == 0 = error ‘‘Not a quadratic eqn’’

| disc == 0 = ‘‘One root: ’’ ++ show centre

| otherwise = ‘‘Two roots: ’’ ++

show (centre + offset) ++

‘‘and’’ ++

show (centre - offset)

where

disc = b*b-4*a*c

offset = (sqrt disc) / 2*a

centre = -b/2*a

Neil Ghani Strathclyde, November 3, 2014

30

Summary — Basic Types in Haskell

• We have learnt about Haskell’s basic types.

• For each type we learnt

– Its basic values

– Its built in functions

• We learnt how to write expressions involving

– Conditional expressions and Guarded functions

– Error Handling and Local Declarations

Neil Ghani Strathclyde, November 3, 2014

31

Lecture 4 — New Types from Old

Neil Ghani

Dept. of Computer and Information Sciences

University of Strathclyde

November 3, 2014

32

Recall

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions, eg 0, True, ‘‘hello’’

– Functions allow us to build new expressions

• Haskell Types: There are two kinds of types in Haskell

– Basic Types: Int, Float, Bool, Char, String

– Compound Types: Types built from other types

Neil Ghani Strathclyde, November 3, 2014

33

Overview of Lecture 2.3

• Building New Types: Today we will learn about the following

compound types

– Pairs

– Tuples

– Type Synonyms

• Describing Types: As with basic types, for each type we want

to know

– What are the values of the type

– What expressions can we write and how to evaluate them

Neil Ghani Strathclyde, November 3, 2014

34

From simple data values to complex data values

• Motivation: Data for programs modelled by values of a type

• Problem: Single values in basic types too simple for real data

• Example: A point on a plane can be specified by

– A number for the x-coordinate and another for the y-coordinate

• Example: A name could be specified by

– A string for the first name and another for the second name

• Example: The performance of a football team could be

– A string for the team and a number for the points

Neil Ghani Strathclyde, November 3, 2014

35

New Types from Old I — Pair Types

• Key Idea: Pair types consist of two values.

• In Pascal: We write the following to model points

record

xcoord : integer;

ycoord : integer;

end

• In Haskell: We have the simpler notation

– If s is a type and t is a type, then (s,t) is a type

• Examples: For instance

– A point could have type (Int, Int)

– A name could have type (String, String)

– The performance of a team could have type (String,Int)

Neil Ghani Strathclyde, November 3, 2014

36

New Types from Old I — Pair Expressions

• Question: What are the values of a pair type?

• Answer: A pair type contains pairs of values, ie

– If e1 has type s and e2 has type t

– Then (e1,e2) has type (s,t)

• Examples: For instance

– The point (5,3) has type (Int, Int)

– The name (‘‘Alan’’,‘‘Shearer’’) has type (String, String)

– The performance (‘‘Newcastle’’, 22) has type (String,Int)

Neil Ghani Strathclyde, November 3, 2014

37

New Types from Old I — Functions using Pairs

• Types: Pair types can be used as input and/or output types

• Key Idea: If input is a pair-type, use (x,y) in definition

• Key Idea: If output is a pair-type, result is often (〈exp〉, 〈exp〉)

• Examples: The functions fst and snd are vital

fst :: (a,b) -> a

fst (x,y) = x

winUpdate :: (String,Int) -> (String,Int)

winUpdate (x,y) = (x,y+3)

movePoint :: Int -> Int -> (Int,Int) -> (Int,Int)

movePoint m n (x,y) = (x+m,y+n)

Neil Ghani Strathclyde, November 3, 2014

38

New Types from Old II — Tuples

• Motivation: Some data consists of more than two parts

• Example: People on a mailing list

– Specified by name, telephone number, and age

– A person on the list can have type (String, Int, Int)

• Idea: Generalise pairs of types to collections of types

• Type Rule: Given types a1,...,an , then (a1,...,an) is a type

• Expression Formation: Given expressions e1::a1, ..., en::an ,

then (e1,...,en) is an expression of type (a1,...,an)

Neil Ghani Strathclyde, November 3, 2014

39

Functions using Tuples

• Key Idea: As before, if input/output is a tuple use (...)

isAdult :: (String,Int,Int) -> Bool

isAdult (x,y,z) = if z>=18 then True else False

updateMove :: (String,Int,Int) -> Int -> (String,Int,Int)

updateMove (x,y,z) w = (x,w,z)

updateAge :: (String,Int,Int) -> (String,Int,Int)

updateAge (x,y,z) = (x,y,z+1)

• Calendar Dates: Represented by a triple of integers (Int,Int,Int)

isSummer :: (Int,Int,Int) -> Bool

isSummer (x, y, z) = (6<=y) && (y<=8)

Neil Ghani Strathclyde, November 3, 2014

40

Pattern Matching

• Simple Functions: We started with functions of the form

〈function-name〉 〈variable〉 = 〈expression〉

• Generalisation: Then we allowed

– Multiple arguments

– Guarded definitions

– Local declarations

• Pattern Matching: Now we also replace variables by patterns

Neil Ghani Strathclyde, November 3, 2014

41

General Definition of a Function

• Definition: Functions now have the form

<function-name> :: <type 1> -> ... -> <type n> -> <out-type>

<function-name> <pat 1> ... <pat n> = <exp n>

• Patterns: Patterns are

– Variables x : Use for any type

– Constants 0, True, ‘‘cherry’’ : Definition by cases

– Tuples (x,..,z) : If the argument has a tuple-type

– Wildcards : If the output doesnt use the input

• In general: Use several lines and mix patterns.

Neil Ghani Strathclyde, November 3, 2014

42

More Examples

• Example: Using values and wildcards

isZero :: Int -> Bool

isZero 0 = True

isZero = False

• Example: Using tuples and multiple arguments

expand :: Int -> (Int,Int) -> (Int,Int)

expand n (x,y) = (n*x,n*y)

• Example: Days in the month

days :: String -> Int -> Int

days ‘‘January’’ x = 31

days ‘‘February’’ x = if isLeap x then 29 else 28

days ‘‘March’’ x = 31

.....

Neil Ghani Strathclyde, November 3, 2014

43

New Types from Old III — Type Synonyms

• Motivation: More descriptive names for particular types.

• Definition: Type synonyms are declared with the keyword type .

type Team = String

type Goals = Int

type Result = String

type Match = ((Team,Goals), (Team,Goals))

nusw :: Match

nusw = ((‘‘Newcastle", 8), (‘‘Sheffield’’, 0))

• Functions: Types of functions are more descriptive, same code

homeTeam :: Match -> Team

totalGoals :: Match -> Goals

result :: Match -> Result

Neil Ghani Strathclyde, November 3, 2014

44

Summary

• Tuples: Collections of data from other types

• Pairs: Pairs, triples etc are examples of tuples

• Type synonyms: Make programs easier to understand

• Pattern Matching: General description of functions covering
definition by cases, tuples etc.

• Pitfall! What is the difference between

addPair :: (Int,Int) -> Int

addPair (x,y) = x + y

addTwo :: Int -> Int -> Int

addTwo x y = x + y

Neil Ghani Strathclyde, November 3, 2014

45

Lecture 4 — List Types

Neil Ghani

Dept. of Computer and Information Sciences

University of Strathclyde

November 3, 2014

46

Recall

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions

– Functions allow us to build new expressions

• Haskell Types: There are two kinds of types in Haskell

– Basic Types: Int, Float, Bool, Char, String

– Compound Types: Types built from other types

Neil Ghani Strathclyde, November 3, 2014

47

Overview of Lecture 4 — List Types

• Lists: What are lists?

– Forming list types

– Forming elements of list types

• Functions over lists: Some old freinds, some new friends

– Functions: cons, append, head, tail

– Some new functions: map, filter

• Clarity: Unlike Java, Haskell treatment of lists is clear

– No list iterators!

Neil Ghani Strathclyde, November 3, 2014

48

The List Type Constructor

• Motivation: A key data-type in functional programming

• Type Formation: If a is any type, then [a] is a type

• Example 1: Lists of characters: [Char]

• Example 2: Lists of lists of integers: [[Int]]

• Example 3: Lists of functions on integers: [Int -> Int]

• Example 4: Lists of points: [Point]

Neil Ghani Strathclyde, November 3, 2014

49

Building Lists

• List Expressions: Lists are written using square brackets [...]

– If e1 , . . . , en are expressions of type a

– Then [e1, ..., en] is an expression of type [a]

• Example 1: [3, 5, 14] :: [Int]

• Example 2: [3, 4+1, double 7] :: [Int]

• Example 3: [[’a’], [’a’,’b’], [’a’,’b’,’c’]] :: [[Char]]

• Example 4: [double, square, cube] :: [Int -> Int]

• Empty List: The empty list is [] and belongs to all list types

Neil Ghani Strathclyde, November 3, 2014

50

Some built in functions - Two infix operators

• Cons: The cons function : adds an element to a list

: :: a -> [a] -> [a]

a = Int 1 : [2,3,4] = [1,2,3,4]

a = Int->Int addone : [square] = [addone, square]

a = Char ’a’ : [’b’, ’z’] = [’a’, ’b’, ’z’]

• Append: Append joins two lists together

++ :: [a] -> [a] -> [a]

a = Bool [True, True] ++ [False] = [True, True, False]

a = Int [1,2] ++ ([3] ++ [4,5]) = [1,2,3,4,5]

a = Int ([1,2] ++ [3]) ++ [4,5] = [1,2,3,4,5]

a = Float [] ++ [54.6, 67.5] = [54.6, 67.5]

a = Int [6,5] ++ (4 : [7,3]) = [6,5,4,7,3]

Neil Ghani Strathclyde, November 3, 2014

51

More Built in Functions

• Head and Tail: Head gives the first element of a list, tail the

remainder

a = Int->Int head [double, square] = double

a = Int head ([5,6]++[6,7]) = 5

a = Int->Int tail [double, square] = [square]

a = Int tail ([5,6]++[6,7]) = [6,6,7]

• Length and Sum: The length of a list and the sum of a list

of integers

length (tail [1,2,3]) = 2

sum [1+4,8,45] = 58

• Sequences: The list of integers from 1 to n is written

[1 .. n]

Neil Ghani Strathclyde, November 3, 2014

52

Two New Functions — Map And Filter

• Map: Map is a function which has two inputs.

– The first input is a function of type Int -> Int

– The second is a list of integers

The output is the list obtained by applying the function to every

element of the input list

• Filter: Filter is a function which has two inputs.

– The first input is a function of type Int -> Bool

– The second is a list of integers

The output is the list of those elements of the input list which

the function maps to True

Neil Ghani Strathclyde, November 3, 2014

53

Using Map and Filter

• Even Numbers: The even numbers less than or equal to n

– evens::Int->[Int]

• Solution 1 — Using map.

• Solution 2 — Using filter

Neil Ghani Strathclyde, November 3, 2014

54

More Examples

• Methodology: Develop algorithm by asking

– Can we apply a funciton to every member of a list

– Can we delete all members of a list not satisfying a property

• Example 1: factors calculate the factors of an integer

• Example 2: isPrime tests if an integer is prime

• Example 3: primesUpto calculates primes upto an integer

Neil Ghani Strathclyde, November 3, 2014

55

Summary

• Types: We have looked at list types

– What list types and list exressions looks like

– What built in functions are availiable

• New Functions: Map and filter

– Apply a function to every member of a list

– Delete those that dont satisfy a properties

• Algorithms: Develop an algorithm by asking

– Can I solve this problem by applying a function to every

kmember of a list or by deleting certain elements.

Neil Ghani Strathclyde, November 3, 2014

56

Lecture 5 — List Comprehensions

Neil Ghani

Dept. of Computer and Information Sciences

University of Strathclyde

November 3, 2014

57

Recall

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions

– Functions allow us to build new expressions

• Haskell Types: There are two kinds of types in Haskell

– Basic Types: Int, Float, Bool, Char, String

– Compound Types: We are studying lists

Neil Ghani Strathclyde, November 3, 2014

58

Overview of Lecture 5

• Revision: What are lists

– A reminder about map and filter

• List comprehension: An alternative way of writing lists

– Definition of list comprehension

– Comparison with map and filter

• Examples: Which allow you to start practical 2

Neil Ghani Strathclyde, November 3, 2014

59

Revision

• Type Formation: If a is any type, then [a] is a type

• List Expressions: Lists are written using square brackets [...]

– If e1 , . . . , en are expressions of type a

– Then [e1, ..., en] is an expression of type [a]

• Functions: Some useful built in functions

– Cons: Attaches an element to the front of a list : :: a -> [a] -> [a]

– Append: Append joins two lists together ++ :: [a] -> [a] -> [a]

– Head: Returns the first element of a list head :: [a] -> a

– Tail: Deletes the first element of a list tail :: [a] -> [a]

Neil Ghani Strathclyde, November 3, 2014

60

Map And Filter

• Map: Map is a function which has two inputs.

– The first input is a function

– The second is a list of integers

The output is the list obtained by applying the function to every

element of the input list

• Filter: Filter is a function which has two inputs.

– The first input is a function returning a boolean

– The second is a list of integers

The output is the list of those elements of the input list which

the function maps to True

Neil Ghani Strathclyde, November 3, 2014

61

List Comprehension — An alternative to map and filter

• Example 1: If ex = [2,4,7] then

[2*a | a <- ex] = [4,8,14]

• Example 2: If isEven :: Int->Bool tests for even-ness

[isEven a | a <- ex] = [True,True,False]

• In General: List comprehensions are

[〈exp〉 | 〈variable〉 <- 〈list-exp〉]

• Evaluation: The meaning of a list comprehension is

– Take each element of list-exp and evaluate the expression

exp

Neil Ghani Strathclyde, November 3, 2014

62

Using List Comprehensions Instead of map

• Example 1: A function which doubles a list’s elements

double :: [Int] -> [Int]

double l = [2*x | x <- l]

• Example 2: A function to tell if list elements are even

isEvenList :: [Int] -> [(Int,Bool)]

isEvenList l = [(a, isEven a) | a <- l]

• Example 3: A function to add pairs of numbers

addpairs :: [(Int,Int)] -> [Int]

addpairs l = [a+b | (a,b) <- l]

• In general: map f l = [f x | x <- l]

Neil Ghani Strathclyde, November 3, 2014

63

Using List Comprehensions Instead of Filter

• Intuition: List Comprehension also selects elements from a list

• Example: We can select the even numbers in a list

[a | a <- l, isEven a]

• Example: Selecting names beginning with A

names :: [String] -> [String]

names l :: [a | a <- l , head a = ’A’]

• Example: Combining selection and applying functions

doubleEven :: [Int] -> [Int]

doubleEven l :: [2*a | a <- l , isEven a]

Neil Ghani Strathclyde, November 3, 2014

64

General Form of List Comprehension

• In General: These list comprehensions are of the form

[〈exp〉 | 〈variable〉 <- 〈list-exp〉 , 〈test〉]

• Example: We can also use several tests — if l = [2,5,8,10]

[2*a | a <- l , isEven a , a>3] = [16,20]

• Key Example: Cartesian product is the list of pairs, the first

component of which comes from the first list and the second

component from the second list. Use two generators

[(x,y) | x<-[1,2,3], y<-[’a’,’b’,’c’]] = [(1,’a’), (1,’b’) ...]

league :: [Team]

fixtures = [?? | ??]

toonGames = [?? | ??]

Neil Ghani Strathclyde, November 3, 2014

65

Erothosthenes Sieve — The algorithm

• Motivation: A more efficient way to calculate prime numbers

• Algorithm: Given a list of numbers

– Keep the first element and delete all multiples of the first

element from the tail.

– Repeat this procedure on the tail

• Example: Thus,

seive [2,3,4,5,6,7,8,9,10,11,12] = 2 : seive [3,5,7,9,11]

= 2 : 3 : seive [5,7,11]

= 2 : 3 : 5 : seive [7,11]

Neil Ghani Strathclyde, November 3, 2014

66

Erothosthenes Sieve — The code

• Strategy: We implement the algorithm as follows

– Keep the first element — use head and :

– Delete all multiples of the first element — use list compre-

hension and a test

– Repeat this procedure — apply the function again

• Code: Here is the code

• Primes: Can then be calculated

priomes n = seive [1 .. n]

Neil Ghani Strathclyde, November 3, 2014

67

Removing Duplicates

• Problem: Given a list remove all duplicate entries

• Algorithm: Given a list,

– Keep first element

– Delete all occurrences of the first element

– Repeat the process on the tail

• Code:

Neil Ghani Strathclyde, November 3, 2014

68

Summary

• We have looked at list types

– What list types and list expressions looks like

– What built in functions are available

• List comprehensions are like filter and map. They allow us to

– Select elements of a list

– Delete those that dont satisfy certain properties

– Apply a function to each element of the remainder

Neil Ghani Strathclyde, November 3, 2014

69

3.2 — Recursion over Natural Numbers

Neil Ghani

Dept. of Computer and Information Sciences

University of Strathclyde

November 3, 2014

70

Recall

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions: 0, True, ‘‘hello’’

– Functions allow us to build new expressions

• Haskell Functions: Haskell funtions we have seen

– Simple definitions, Multiple Arguments, Local Declarations

– Guarded functions, Pattern matching

Neil Ghani Strathclyde, November 3, 2014

71

Overview of Lecture 3.2 — Recursion over Natural Numbers

• Recursion: General features of recursion

– What is a recursive function

– How do we write recursive functions

– How do we evaluate recursive functions

• Recursion over Natural Numbers: Special features

– How can we guarantee evaluation works

– Recursion using patterns

– Avoiding negative input

Neil Ghani Strathclyde, November 3, 2014

72

What is recursion?

• Example: Adding up the first n sqaures

hssquares n = 0 2 + 1 2 + ... + n 2

• Types: First we give the type of summing-squares

hssquares :: Int -> Int

• Definitions: Our program is a function

hssquares 0 = 0

hssquares n = n*n + hssquares(n-1)

• Key Idea: hssquares is recursive as its definition contains

hssquares in the right-hand side

Neil Ghani Strathclyde, November 3, 2014

73

General Definitions

• Definition: A function is recursive if it occurs in its definition

• Intuition: You will have seen recursion in action before

– Imperative procedures which call themselves

– Divide-and-conquer algorithms

• Why Recursion: Recursive definitions tend to be

– Shorter, more understandable and easier to prove correct

– Compare with a non-recursive solution

nrssquares n = n * (n+0.5) * (n+1)/3

Neil Ghani Strathclyde, November 3, 2014

74

Evaluating Recursive Functions

• Key Idea: Two cases when applying a recursive function

– Non-recursive call: Doesn’t mention the recursive function

– Recursive call: Does mention the recursive function

• Procedure: If a recursive function is applied to an argument

– As before, substitute the input into the function’s definition

– But, recursive calls re-introduce the function name

– Hence, carry-on until there are no more recursive calls

• Question: Will evaluation stop?

Neil Ghani Strathclyde, November 3, 2014

75

Examples of evaluation

• Example 1: Lets calculate Hssquares 4

hssquares 4 ⇒ 4*4 + hssquares 3

⇒ 16 + (3*3 + hssquares 2)

. . .

⇒ 16 + (9 + .. (1 + hssquares 0))

⇒ 16 + (9 + ... (1 + 0)) ⇒ 30

• Example 2: Here is a non-terminating function

mydouble n = n + mydouble (n/2)

mydouble 4 ⇒ 4 + mydouble 2

⇒ 4 + 2 + mydouble 1

⇒ 4 + 2 + 1 + mydouble 0.5

⇒

Neil Ghani Strathclyde, November 3, 2014

76

Problems with Recursion

• Questions: There are some outstanding problems

– Is hssquares defined for every number

– Does evaluation of recursive functions terminate

– What happens if hssquares is applied to a negative number?

– Are these recursive definitions sensible: f n = f n , g n = g (n+1)

• Answers: Here are the answers

– Yes: The variable pattern matches every input

– Not always: See example

– Trouble: Evaluation doesnt terminate

Neil Ghani Strathclyde, November 3, 2014

77

Primitive Recursion over Natural Numbers

• Motivation: Restrict definitions to get better behaviour

• Idea: Many functions defined by three cases

– A non-recursive call selected by the pattern 0

– A recursive call selected by n

• Example Our program now looks like

hssquares2 0 = 0

hssquares2 n = n*n + hssquares (n-1)

Neil Ghani Strathclyde, November 3, 2014

78

Examples of recursive functions

• Example 1: star uses recursion over Int to return a string

star :: Int -> String

star 0 = []

star n = ’*’ : star (n-1)

• Example 2: power is recursive in its second argument

power :: Float -> Int -> Float

power x 0 = 1

power x n = x * power x (n-1)

Neil Ghani Strathclyde, November 3, 2014

79

Primitive Recursion

• In General: Use the following style of definition

〈function-name〉 0 = 〈exp 1〉
〈function-name〉 n = 〈exp 2〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain 〈function-name〉 applied to n-1

• Evaluation: Termination guaranteed!

– If the input evaluates to 0 , evaluate 〈exp 1〉

– If not, if the input is greater than 0 , evaluate 〈exp 2〉

Neil Ghani Strathclyde, November 3, 2014

80

Larger Example

• Problem: Produce a table for perf :: Int -> (String, Int)

• Stage 1: We need the headings and then the actual table

table :: Int -> String

table n = header ++ printTable n

• Stage 2: The heading is just a string

header = ‘‘Team \ t Points \ n’’

• Stage 3: Printing the table is a recursive function

printTable :: Int -> String

printTable 0 =

printTable n =

Neil Ghani Strathclyde, November 3, 2014

81

The Function printTable

• Base Case: If we want no entries, then just return []

printTable 0 = []

• Recursive Case: Print n-entries by

– Print the first n-1 -entries

– Add on the n -th entry

• Code: Code for the recursive call

printTable n = printTable (n-1) ++

fst (perf n) ++ ‘‘\ t’’ ++

show (snd (perf n)) ++ ‘‘\ n’’

Neil Ghani Strathclyde, November 3, 2014

82

The Final Version

• Code: Heres the final version

table :: Int -> String

table n = header ++ printTable n

header = ‘‘Team \ t Points \ n’’

printTable :: Int -> String

printTable 0 = []

printTable n = printTable (n-1) ++

fst (perf n) ++ ‘‘\ t’’ ++

show (snd (perf n)) ++ ‘‘\ n’’

Neil Ghani Strathclyde, November 3, 2014

83

Summary

• Recursion allows new functions to be written.

– Advantages: Clarity, brevity, tractability

– Disadvantages: Evaluation may not stop

• Recursive functions on natural numbers avoid this by

– The values at 0 is non-recursive

– Each recursive call uses a smaller input

– An error-clause catches negative inputs

Neil Ghani Strathclyde, November 3, 2014

84

3.3 — Recursion over lists

Neil Ghani

Dept. of Computer and Information Sciences

University of Strathclyde

November 3, 2014

85

Recall

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions: 0, True, ‘‘hello’’

– Functions allow us to build new expressions

• Haskell Functions: Haskell functions we have seen

– Simple definitions, Guarded functions, Pattern matching

– Recursion over integers and natural numbers

Neil Ghani Strathclyde, November 3, 2014

86

Overview of Lecture 3.3

• Lists: Another look at lists

– Lists are a recursive structure

– Every list can be formed by [] and :

• List Recursion: Primitive recursion for Lists

– How do we write recursive functions

– Examples — ++, length, head, tail, take, drop, zip

• Avoiding Recursion?: List comprehensions revisited

Neil Ghani Strathclyde, November 3, 2014

87

Recursion over lists

• Question: This lecture is about the following question

– We know what a recursive function over Int is

– What is a recursive function over lists

• Answer: In general, the answer is the same as before

– A recursive function mentions itself in its definition

– Evaluating the function may reintroduce the function

– Hopefully this will stop at the answer

• Question: Is there an analogue of primitive recursion for lists

Neil Ghani Strathclyde, November 3, 2014

88

Another Look at Lists

• Recall: The two basic operations concerning lists

– The empty list []

– The cons operator (:) :: a -> [a] -> [a]

• Key Idea: Every list is either empty, or of the form a:xs

[2,3,7] = 2:3:7:[] [True, False] = True:False:[]

• Recursion: Define recursive functions using the scheme

– Non-recursive call: Define the function on the empty list []

– Recursive call: Define the function on (x:xs) using the func-

tion on xs

Neil Ghani Strathclyde, November 3, 2014

89

The General Pattern

• Definition: Primitive Recursive List Functions are given by

〈function-name〉 [] = 〈expression 1〉
〈function-name〉 (x:xs) = 〈expression 2〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain expressions 〈function-name〉 xs

• Compare: Very similar to recursion over Int

〈function-name〉 0 = 〈expression 1〉
〈function-name〉 (n+1) = 〈expression 2〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain expressions 〈function-name〉 n

Neil Ghani Strathclyde, November 3, 2014

90

Examples of Recursive Functions

• Example 1: Doubling every element of an integer list

double :: [Int] -> Int

double [] = []

double (x:xs) = (2*x) : double xs

• Example 2: Selecting the even members of a list

onlyEvens :: [Int] -> [Int]

onlyEvens [] = []

onlyEvens (a:xs) = if isEven a then a:rest else rest

where rest = onlyEvens xs

• Example 3: Flattening some lists

flatten :: [[a]] -> [a]

flatten [] = []

flatten (a:xs) = a ++ flatten xs

Neil Ghani Strathclyde, November 3, 2014

91

More Examples:

• Example 4: Reversing a list

reverse :: [a] -> [a]

reverse [] = []

reverse (a:xs) = reverse xs ++ [a]

• Example 5: Append is defined recursively

append :: [a] -> [a] -> [a]

append [] ys = ys

append (a:xs) ys = a : (append xs ys)

• Example 6: Testing if an integer is an element of a list

member :: Int -> [Int] -> Bool

member n [] = FALSE

member n (x:xs) = (x==n) || member n xs

Neil Ghani Strathclyde, November 3, 2014

92

Evaluation of Recursive Functions over Lists

• Procedure Same procedure as for recursive functions over Int .

– Evaluate the input and check which expression to evaluate

– Substitute input in definition. This can reintroduce function

– Being primitive recursive, this process will eventually stop

• Example: To evaluate member [4,3,6] 3

member [4,3,6] 3 ⇒ member (4:[3,6]) 3

⇒ (4==3) || member [3,6] 3

⇒ False || member [3,6] 3

⇒ member [3,6] 3

⇒ (3==3) || member [6] 3

⇒ True || member [6] 3 ⇒ True

Neil Ghani Strathclyde, November 3, 2014

93

What can we do with a list?

• Folding: Combining the elements of the list

flatten [[2], [3,72], []] = [2] ++ [3,72] ++ [] = [2,3,72]

sumList [2,3,7,2,1] = 2 + 3 + 7 + 2 + 1

• Mapping: Applying a function to every member of the list

double [2,3,72,1] = [2*2, 2*3, 2*72, 2*1]

isEven [2,3,72,1] = [True, False, True, False]

• Filtering: Selecting particular elements

onlyEvens [2,3,72,1] = [2,72]

• Other types: Breaking lists up, combining lists

head, tail, take, drop, zip

Neil Ghani Strathclyde, November 3, 2014

94

List Comprehension Revisited

• Recall: List comprehensions look like

[〈exp〉 | 〈variable〉 <- 〈list-exp〉 , 〈test〉]

• Intuition: Roughly speaking this means

– Take each element of the list 〈list-exp〉

– Check they satisfy 〈test〉

– Form a list by applying 〈exp〉 to those that do

• Idea: Equivalent to a bit of filtering and then mapping

Neil Ghani Strathclyde, November 3, 2014

95

Summary

• List are a recursive data-structure

• Hence, functions over lists tend to be recursive

• Primitive recursion over lists is similar to natural numbers

– A non-recursive call using the pattern []

– A recursive call using the pattern (a:xs)

• List comprehension is an alternative way of doing some recursion

Neil Ghani Strathclyde, November 3, 2014

96

Lecture 8 — More Complex Recursion

Neil Ghani

Dept. of Computer and Information Sciences

University of Strathclyde

November 3, 2014

97

Recall

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions: 0, True, ‘‘hello’’

– Functions allow us to build new expressions

• Haskell Functions: Haskell functions we have seen

– Simple definitions, Guarded functions, Pattern matching

– Primitive recursion over natural numbers and lists

Neil Ghani Strathclyde, November 3, 2014

98

Overview

• Problem: Our restrictions on recursive functions are too severe

• Solution: New definitional formats which keep termination

– Using new patterns

– Generalising the recursion scheme

• Examples: Applications to integers and lists

• Sorting Algorithms: What is a sorting algorithm?

– Insertion Sort

– Quicksort

Neil Ghani Strathclyde, November 3, 2014

99

More general forms of primitive recursion

• Recall: Our primitive recursive functions follow the pattern

– Base Case: Defines the function non-recursively at 0

– Inductive Case: Defines the function at n in terms of the

function at n-1

〈function-name〉 0 = 〈exp 1〉
〈function-name〉 n = 〈exp 2〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain 〈function-name〉 applied to n-1

• Motivation: But some functions do not fit this shape

Neil Ghani Strathclyde, November 3, 2014

100

Fibionacci Numbers

• Example: The first Fibionacci numbers are 0,1 . For subse-

quent Fibionacci numbers, add the previous two together

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

• Problem: Using the following gives possible non-termination

fib n = fib (n-1) + fib (n-2)

• Solution: Use another base case

fib :: Int -> Int

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

• In General: Use as many base cases as you need.

Neil Ghani Strathclyde, November 3, 2014

101

A Second Idea

• Definition: We can use the more general scheme

– Base Case: Defines the function at 0 non-recursively

– Inductive Case: Defines the function at n in terms of the

function at SMALLER numbers, ie n-1, n-2, ..., 0

• Example: Calculating the highest common factor

hcf :: Int -> Int -> Int

hcf n m

|m==n = n

|m>n = hcf m n

|otherwise = hcf (n-m) m

• Key Idea: Evaluation still stops as eventually we always reach

the base case which is non-recursive.

Neil Ghani Strathclyde, November 3, 2014

102

More general recursion on lists

• Recall: Our primitive recursive functions follow the pattern

– Base Case: Defines the function at [] non-recursively

– Inductive Case: Defines the function at (a:xs) in terms of

the function at xs

〈function-name〉 [] = 〈exp 1〉
〈function-name〉 (a:xs) = 〈exp 2〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain 〈function-name〉 applied to xs

• Motivation: As with integers, some functions don’t fit this

shape

Neil Ghani Strathclyde, November 3, 2014

103

More General Patterns for Lists

• Recall: With integers, we used more general patterns.

• Idea: Use (a:(b:xs)) pattern to access first two elements

• Example: We want a function to delete every second element

delete [2,3,5,7,9,5,7] = [2,5,9,7]

• Solution: Here is the code

delete :: [a] -> [a]

delete [] = []

delete [x] = [x]

delete (a:(b:xs)) = a : delete xs

• Example: To delete every third element use pattern (a:(b:(c:xs)))

Neil Ghani Strathclyde, November 3, 2014

104

Choosing your pattern?

• Patterns: In a function definition, every input receives a pattern

– If the input type is a pair, use (x,y) pattern

– If the input type is a list, use [] and (a:xs) patterns

– If different inputs have different code, use constant patterns

– If we use the same code for every input use variable

• Mixing patterns: Patterns can contain patterns

((x,y),z) (a:(b:xs)) ((x,y):zs) (0:xs)

• Recursion: The non-recursive call and recursive call use differ-

ent code. Hence recursive functions always use patterns

Neil Ghani Strathclyde, November 3, 2014

105

Examples of Recursion and patterns — See how the typing helps

• Example 1: Summing pairs

• Example 2: Unzipping lists

Neil Ghani Strathclyde, November 3, 2014

106

Some More Examples

• Example 3: Defining equality over lists

• Example 4: Checking if a list is a palindrome

Neil Ghani Strathclyde, November 3, 2014

107

Sorting Algorithms on Lists

• Problem: Elements in a list can come in any order. A sorting

algorithm rearranges them in order

sort [2,7,13,5,0,4] = [0,2,4,5,7,13]

• Recursion: Sorting algorithms usually recursively sort a smaller

list

• Example: To sort a list, sort the tail recursively

inssort :: [Int] -> [Int]

inssort [] = []

inssort (a:xs) = insert a (inssort xs)

where insert puts the number a in the correct place

Neil Ghani Strathclyde, November 3, 2014

108

The function insert

• Patterns: Insert takes two arguments

– The code for insert doesn’t depend on the number — use

a variable pattern

– The code for insert depends on whether the list is empty

or not — use the [] and (a:xs) patterns

• Code: Here is the final code

insert :: Int -> [Int] -> [Int]

insert n [] = [n]

insert n (a:xs)

| n <= a = n:a:xs

| otherwise = a:(insert n xs)

Neil Ghani Strathclyde, November 3, 2014

109

Sorting Algorithms 2: Quicksort

• Idea: Given a list l and a number n

sort l = sort those elements less than n ++

number of occurrences of n ++

sort those elements greater than n

• Stage 1: The algorithm may be coded

qsort :: [Int] -> [Int]

qsort [] = []

qsort (a:xs) = qsort (less a xs) ++

occs a (a:xs) ++

qsort (more a xs)

where less, occs, more are auxilluary functions

Neil Ghani Strathclyde, November 3, 2014

110

Defining the Auxiliary Functions

• Problem: The auxiliary functions can be specified

– less takes a number and a list and returns those elements

of the list less than the number

– occs takes a number and a list and returns the occurrences

of the number in the list

– more takes a number and a list and returns those elements

of the list more than the number

• Code: Using list comprehensions shorten code

less, occs, more :: Int -> [Int] -> [Int]

less n xs = [x | x <- xs, x < n]

occs n xs = [x | x <- xs, x == n]

more n xs = [x | x <- xs, x > n]

Neil Ghani Strathclyde, November 3, 2014

111

Sorting Algorithms 3: Mergesort

• Idea: Chop a list in half, sort each half recursively, and then

merge the results together

• Implementation: As done in class

msort :: [Int] -> [Int]

msort [] = []

msort [x] = [x]

msort xs = merge (msort first) (msort second)

where frist = take n xs

second = drop n xs

n = length xs ‘div‘ 2

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys) =

if x<y then x : merge xs (y:ys) else y : merge (x:xs) ys

Neil Ghani Strathclyde, November 3, 2014

112

Summary

• Recursion Schemes: We’ve generalised the recursion schemes

to allow more functions to be written

– More general patterns

– Recursive calls to ANY smaller value

• Examples: Applied to recursion over integers and lists

• Sorting Algorithms: We’ve put these ideas into practice by

defining three sorting algorithms

– Insertion Sort

– QuickSort

– Mergesort

Neil Ghani Strathclyde, November 3, 2014

113

Lecture 9 — Higher Order Functions

Neil Ghani

Dept. of Computer and Information Sciences

University of Strathclyde

November 3, 2014

114

Recall

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions: 0, True, ‘‘hello’’

– Functions allow us to build new expressions

• Haskell Functions: Haskell functions we have seen

– Simple definitions, Pattern matching, Recursion

– Today — Higher Order Functions

Neil Ghani Strathclyde, November 3, 2014

115

Overview of Lecture 9

• Motivation: Why do we want higher order functions

• Definition: What is a higher order function

• Examples: Three examples concerning lists

– Mapping: Applying a function to every memebr of a list

– Filtering: Selecting elements of a list satisfying a property

– Folding: Combining the elements of a list

Neil Ghani Strathclyde, November 3, 2014

116

Motivation

• Example 1: A function to double the elements of a list

doubleList :: [Int] -> [Int]

doubleList [] = []

doubleList (x:xs) = (2*x) : doubleList xs

• Example 2: A function to square the elements of a list

squareList :: [Int] -> [Int]

squareList [] = []

squareList (x:xs) = (x*x) : squareList xs

• Example 3: A function to increment the elements of a list

incList :: [Int] -> [Int]

incList [] = []

incList (x:xs) = (x+1) : incList xs

Neil Ghani Strathclyde, November 3, 2014

117

A Previous Slide — Advantages of Functional Programming

• Advantage 1: Functional Programs can be easier to write

– Functional programs are more abstract

– Functional programs reflect the algorithmic content

• Advantage 2: Functional Programs can be easier to read

– Functional programs have shorter

– Functional programs facilitate code-reuse

• Advantage 3: Functional programs can be easier to understand

– Usual mathematical laws apply to functional programs

Neil Ghani Strathclyde, November 3, 2014

118

The Common Pattern

• Problem: Three separate definitions despite the clear pattern

• Intuition: Examples apply a function to each member of a list

function :: Int -> Int

functionList :: [Int] -> [Int]

functionList [] = []

functionList (x:xs) = (function x) : functionList xs

where in our previous examples function is

double square inc

• Key Idea: Make function an input to a higher order function

Neil Ghani Strathclyde, November 3, 2014

119

A Higher Order Function — mapInt

• Idea: Make the auxilluary function an argument

mapInt f [] = []

mapInt f (x:xs) = (fx) : mapInt f xs

• Advantages: There are several advantages

– Shortens code as previous examples are given by

doubleList xs = mapInt double xs

squareList xs = mapInt square xs

incList xs = mapInt inc xs

– Captures the algorithmic content and is easier to understand

– Easier code-modification and code re-use

Neil Ghani Strathclyde, November 3, 2014

120

A Definition of Higher Order Functions

• Types: What is the type of mapInt

– First argument is a function with type Int -> Int

– Second argument is a list with type [Int]

– Result is a list with type [Int]

• Answer: So overall type is

mapInt :: (Int -> Int) -> [Int] -> [Int]

• Definition: A function is higher-order if an input is a function.

• Imperatively: Imperative programs cant do this

Neil Ghani Strathclyde, November 3, 2014

121

Another Example — Filtering

• Recall: List comprehensions or recursion can be used to select
those elements of a list satisfying a certain property

• Example: Here are some examples

evens, odds, primes :: [Int] -> [Int]

evens l = [x | x <- l, isEven x]

odds l = [x | x <- l, isOdd x]

primes l = [x | x <- l, isPrime x]

• Idea: Each function satisfies the pattern

test :: Int -> Bool

testList :: [Int] -> [Int]

testList l = [x | x <- l, test x]

where test is isEven, isOdd, isPrime

Neil Ghani Strathclyde, November 3, 2014

122

Filtering Via Higher Order Functions

• Question: Can we make test into an argument of a HOF

filterInt test xs = [x | x <- xs, test x]

• Types: What is the type of filterInt

– First argument is a function with type Int -> Bool

– Second argument is a list with type [Int]

– Result type is a list with type [Int]

• Answer: So overall type of filterInt is

filterInt :: (Int -> Bool) -> [Int] -> [Int]

Neil Ghani Strathclyde, November 3, 2014

123

Summary

• Higher Order functions are an area where functional programs

are more general than their imperative counterparts

• Higher Order functions allow

– More concise code and also code reuse

– More abstract code, ie code closer to abstract algorithm

• Higher Order functions express algorithmic content more ab-

stractly

– Hence code is easier to understand

Neil Ghani Strathclyde, November 3, 2014

124

Lecture 11 — Higher Order Sorting

Neil Ghani

Dept. of Computer and Information Sciences

University of Strathclyde

November 3, 2014

125

Recall

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions: 0, True, ‘‘hello’’

– Functions allow us to build new expressions

• Haskell Functions: Haskell functions we have seen

– Simple definitions, Recursion, Higher Order Functions

– Today — Higher order sorting, folding

Neil Ghani Strathclyde, November 3, 2014

126

Overview of Lecture 11

• Folding: What can we do with a list?

– Mapping: Applying a function to every member of a list

– Filtering: Selecting elements of a list satisfying a property

– Folding: Combining the elements of a list

• HO Sorting: A more powerful form of sorting

– What are the limitations of current sorting algorithms

– How can these limitations be overcome

– Examples from football

Neil Ghani Strathclyde, November 3, 2014

127

Three Things to do with a List

• Mapping: Applying a function to every member of the list

map double [2,3,72,1] = [2*2, 2*3, 2*72, 2*1]

map isEven [2,3,72,1] = [True, False, True, False]

• Filtering: Selecting particular elements

filter isEven [2,3,72,1] = [2,72]

filter isOdd [2,3,72,1] = [3,1]

• Folding: Combining the elements of the list

sumList [2,3,7,2,1] = 2 + 3 + 7 + 2 + 1

allTrue [True, False, True] = True && False && True

flatten [[2], [3,72], []] = [2] ++ [3,72] ++ [] = [2,3,72]

• Question: Is folding a higher order function?

Neil Ghani Strathclyde, November 3, 2014

128

Folding as a Higher Order Function - A First Stab

• Types: Lets restrict ourselves to lists of integers

– First argument takes two integers and returns an integer

– Second argument gives a value if the list is empty

– Third argument takes a list of integers

– Result type is an integers

• Answer: foldl is defined as follows

foldl :: (Int -> Int -> Int) -> Int -> [Int] -> Int

foldl f n [] = n

foldl f n (a:xs) = f a (foldl f xs n)

Neil Ghani Strathclyde, November 3, 2014

129

Some Examples

• Usage: To use foldl, ask yourself

– What is the result of the function if the list is empty

– What is the function which is placed in between elements

• Examples: Here are some examples

length xs =

sumList xs =

prodList xs =

• Warning: There are two folds - see the book

Neil Ghani Strathclyde, November 3, 2014

130

Quicksort Revisited

• Idea: Recall our implementation of quicksort

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (a:xs) = qsort less ++ occs ++ qsort more

where

less = [x | x<-xs, x<a]

occs = a : [x | x<-xs, x==a]

more = [x | x<-xs, x>a]

• Polymorphism: Quicksort requires an order on the elements

– So the resulting list depends upon the order on the elements

– This requirement is reflected in type class information Ord a

– Don’t worry about type classes as they are beyond this course

Neil Ghani Strathclyde, November 3, 2014

131

Limitations of Quicksort

• Example: Football tables have type [(Team,Points,Goals,Played)]

• Problem: We might get something like

Arsenal 16 15 8

AVilla 8 10 8

Bradford 4 1 9

...

because order on (Team,Points,Goals,Played) is lexicographic

(x1,x2) < (y1,y2) iff x1<y1 or x1=y1 and x2<y2

• Solution: Write a new function for this problem

tSort [] = []

tSort (a:xs) = tSort less ++ [a] ++ tSort more

where more = [x| x<-xs, sec x =< sec a]

less = [x| x<-xs, sec x > sec a]

sec (t,p,g,pl) = p

Neil Ghani Strathclyde, November 3, 2014

132

Higher Order Sorting

• Motivation: But what if we want different orders, eg

– If two teams have the same points, compare goals

– If two teams have the same points, compare goals per game

– Sort teams in order of goals scored, not points

• Key Idea: Make the comparison a parameter of quicksort

qsortBy :: Ord b => (a -> b) -> [a] -> [a]

qsortBy f [] = []

qsortBy f (x:xs) = qsortBy f less ++ occs ++ qsortBy f more

where less = [y | y <- xs, f y < f x]

occs = x : [y | y <- xs, f y == f x]

more = [y | y <- xs, f x < f y]

Neil Ghani Strathclyde, November 3, 2014

133

Higher Order Sorting Insertion Sort

• Key Idea: Only thing to remember: recursive calls and com-

parisons use the comparison function!

• Implementation: As done in class

msortBy :: Ord b => (a -> b) -> [a] -> [a]

msortBy f [] = []

msortBy f [x] = [x]

msortBy f xs = mergeBy f (msortBy f first) (msortBy f second)

where first = take n xs

second = drop n xs

n = length xs ‘div‘ 2

mergeBy f [] ys = ys

mergeBy f xs [] = xs

mergeBy f (x:xs) (y:ys) =

| f x < f y = x : mergeBy f xs (y:ys)

| otherwise = y : mergeBy f (x:xs) ys

Neil Ghani Strathclyde, November 3, 2014

134

Higher Order Sorting - Insertion Sort

• Key Idea: Only thing to remember: recursive calls and com-

parisons use the comparison function!

inssortBy :: Ord b => (a -> b) -> [a] -> [b]

inssortBy f [] = []

inssortBy f (a:xs) = insertBy f a (inssortBy f xs)

insertBy :: Ord b => (a -> b) -> a -> [a] -> [a]

insertBy f n [] = [n]

insertBy f n (a:xs)

| f n <= f a = n:a:xs

| otherwise = a:(insertBy f n xs)

Neil Ghani Strathclyde, November 3, 2014

135

Examples

• Key Idea: To use a higher order sorting algorithm, use the

required order to define the function to sort by

• Example 1: To sort by points and then goals scored

sort1 league =

• Example 2: To sort by points and then goals per game

sort2 league =

• Example 1: To sort by goals scored

sort3 league =

Neil Ghani Strathclyde, November 3, 2014

136

Summary

• Folding: A new higher order function

– Use to combine elements of a list

– Many algorithms are either map,filter orfold

• HO Sorting: An application of higher order functions to sorting

– Produces more powerful sorting

– Order of resulting list determined by a function

– Lexicographic order allows us to try one order and then an-

other

Neil Ghani Strathclyde, November 3, 2014

137

5.1 — Finishing off Haskell (... Almost)

Neil Ghani

Dept. of Computer and Information Sciences

University of Strathclyde

November 3, 2014

138

Recall

• Basic Idea: Functional Programming is about

– Writing expressions — these are our programs

– Evaluating expressions — this gives the result of programs

• Building Expressions: Expressions are built from

– Types provide basic expressions: 0, True, ‘‘hello’’

– Functions allow us to build new expressions

• Haskell Functions: Haskell functions we have seen

– Simple definitions, Pattern Matching, Recursion

– Higher Order Functions and Polymorphism

Neil Ghani Strathclyde, November 3, 2014

139

Overview of Lecture 5.1

• Topics Covered: Today we (almost) finish our survey of Haskell

– Partial Application: Not giving all the inputs required

– Lambda Notation: Expressions of function type

– Composing Funtions: Sequential composition (functionally)

– Auxilluary Functions: Adding a bit of memory

• Reference: You can find out more on the net

Neil Ghani Strathclyde, November 3, 2014

140

Part I — The Lies We Tell

• Recall 1: In Lecture 1, we defined functions with one input

〈function〉 :: 〈input type〉 -> 〈output type〉

〈function〉 〈variable〉 = 〈expression〉

• Application: (Monomorphic) Functions applied using rule

If 〈function〉 :: a -> b

And 〈expr〉 :: a

Then 〈function〉 〈expr〉 :: b

• Recall 2: Functions with several inputs are given by

〈function〉 :: 〈type 1〉 -> . . . -> 〈type n〉 -> 〈out-type〉
〈function〉 〈var 1〉 . . . 〈var n〉 = 〈expr〉

• Confession: There are no functions with more than one input!

Neil Ghani Strathclyde, November 3, 2014

141

But What About times ?

• Key Idea: Functions with many inputs are actually functions

with one input and whose output is itself a function.

• Example: The times function has type

times :: Int -> (Int -> Int)

times x y = x * y

• Application: To multiply numbers, use application repeatedly

– Since 5 :: Int , times 5 :: Int -> Int

– Next, 7 :: Int , and so times 5 7 :: Int

• Summary: We have all the expressions we used to have. But

we also have some new ones.

Neil Ghani Strathclyde, November 3, 2014

142

Partial Application of Functions

• Code Re-use: As always we want to reduce effort

• Before: Defining the following functions is repetative

times2 :: Int -> Int times3 :: Int -> Int

times2 x = x + 2 times3 x = x + 3

• Now: Define times2 and times3 using code for times

times :: Int -> Int -> Int

times x y = x + y

times2 = times 2

times3 = times 3

• Key Idea: Partial application supports code-reuse

Neil Ghani Strathclyde, November 3, 2014

143

Part II — Composing Functions

• Motivation: Some algorithms say “Do this, then do that.”

• Key Idea: Function composition implements such algorithms

• Intuition: The function g.f does the following

– Takes an input and applies f to it.

– Then applies g to the result

• Typing Rule: If f::a->b and g::b->c are functions:

(g.f) :: a->c

• Condition: The output of f and input of g have same type.

Neil Ghani Strathclyde, November 3, 2014

144

Examples of Composing Functions

• Example 1:

length :: [a] -> Int

mysucc :: Int -> Int

mysucc x = x + 1

(mysucc . length) :: [a] -> Int

(mysucc . length) [2,3,4] ⇒ mysucc (length [2,3,4])

⇒ mysucc 3

⇒ 3+1 ⇒ 4

Neil Ghani Strathclyde, November 3, 2014

145

Part III — Lambda Notation

• Recall: Expressions of list or pair type are written

(〈expr1〉 , 〈expr2〉) [〈expr1〉 , . . . , 〈exprn〉]

• Motivation: How do we write expressions with function type

• Answer 1: Use local declarations to define the function

timesnum :: Int -> (Int -> Int)

timesnum n = timesn where timesn m = n*m

• Problem: This expression says timesnum n is the function timesn

and then timesn is defined. Too verbose!

• Solution: We want code for

“The function which takes a number m and multiplies it by n ”

Neil Ghani Strathclyde, November 3, 2014

146

Writing down functions without names

• Answer 2: Use lambda notation

timesnum n = \ m -> n * m

• Definition: The expression

\ 〈variable-name〉 -> 〈expression〉

is shorthand for the expression

<function-name>

where <function-name> <variable-name> = <expression>

• Defining Functions: This gives a new way to define functions

double = \ x -> 2*x

atZero = \ f -> f 0

Neil Ghani Strathclyde, November 3, 2014

147

Evaluating Lambda-Expressions

• Evaluation: How do we calculate with lambda-expressions?

– Again, substitute argument for variable after the \

• Examples: Here are some examples

timesnum 3 ⇒ \ m->3 * m

timesnum 3 5 ⇒ (\ m->3 * m) 5

⇒ 3 * 5 ⇒ 15

atZero square ⇒ (\ f->f 0) square

⇒ square 0 ⇒ 0*0 ⇒ 0

map (\ x->2*x) [4,5] ⇒ (\ x->2*x) 4 : map (\ x->2*x) [5]

⇒ 8: (\ x->2*x) 5 : map (\ x->2*x) []

⇒ [8,10]

Neil Ghani Strathclyde, November 3, 2014

148

Part IV — Auxilluary Arguments

• For Loops: The sum of the first n numbers

total := 0; count:= 0;

while count <= n do

total := total + count; count := count + 1

• Functonally: Functionally we write a recursive program

sum 0 = 0

sum (n+1) = (n+1) + sum n

• Differences: The algorithms are different

– The imperative program uses the memory to store the result

– Functionally, we calculate the result directly

Neil Ghani Strathclyde, November 3, 2014

149

Adding State/Memory to Functional Programs

• State Model: Imperative programs transform the memory

• Key Idea: Memory is mimicked functionally as extra arguments

sumaux :: Int -> Int -> Int

sumaux 0 y = y

sumaux (n+1) y = sumaux n (n+1+y)

newsum n = sumaux n 0

• Example: Length of a list

lengthaux :: [a] -> Int -> Int

lengthaux [] n = n

lengthaux (a:xs) n = length xs (n+1)

newlength xs = lengthaux xs 0

Neil Ghani Strathclyde, November 3, 2014

150

Summary of Todays Lecture

• Partial Application: Functions with many arguments are a

convenient explanation. Actually:

– They are really functions whose output is another function.

– Such functions can be applied to some of their arguments

• Lambda Expressions: Used when we want

– Expressions of function type

– An alternate way to define functions

• State: Memory is mimicked functionally by extra arguments

• Composition: Functional composition corresponds to ;

Neil Ghani Strathclyde, November 3, 2014

151

