

Game Logic

— *Coalgebraic Completeness and Automata*
Helle Hvid Hansen, TU Delft

ALCOP, University of Strathclyde, 10-12 April 2017

Introduction

Modal logics:

- Versatile logics for reasoning about state-based systems.
- Good trade-off between expressiveness and decidability.
- Established as the logics of coalgebras.

Aim: Coalgebraic understanding of dynamic modal logics, like Propositional Dynamic Logic (PDL) and Game Logic.

- Identify relevant mathematical structure.
- Framework for developing dynamic coalgebraic logics.
- Transfer insights to other dynamic/game settings.
- Improve our understanding of fragments of fixpoint logics.

Game Logic (GL)

Rohit Parikh, "The Logic of Games and its Applications".

- Strategic ability in determined 2-player games.

$\langle \alpha \rangle \varphi$ expresses

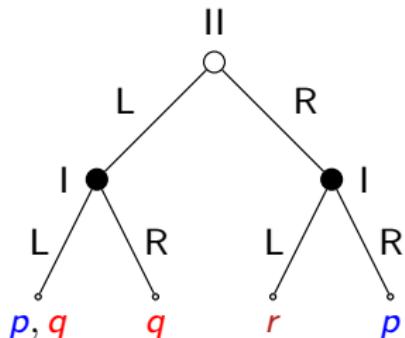
"player 1 has strategy in α to ensure outcome satisfies φ "

- Game version of PDL:
 - PDL: 1-player game (nondeterministic programs)
 - from program constructs to game constructs.

Determined 2-Player Games

Typical examples: 2-player, extensive games with perfect information.

Example: Players: I (black) and II (white), moves: L or R.



Strategic ability	formula	strategy
I can ensure p :	$\langle \alpha \rangle p$	LR
I cannot ensure q :	$\neg \langle \alpha \rangle q$	
I cannot ensure r :	$\neg \langle \alpha \rangle r$	
II can ensure q :	$[\alpha] q$	L
II can ensure $\neg r$:	$[\alpha] r$	L

Note that: $\langle \alpha \rangle (q \vee r)$, but $\neg \langle \alpha \rangle q$ and $\neg \langle \alpha \rangle r$.

Game modalities are not disjunctive.

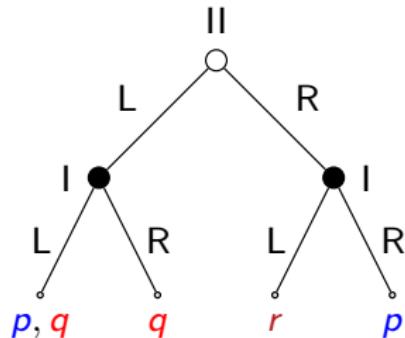
They are only monotonic: $\langle \alpha \rangle p \rightarrow \langle \alpha \rangle (p \vee q)$

Determined 2-Player Games

Typical examples: 2-player, extensive games with perfect information.

Example: Players: I (black) and II (white), moves: L or R.

Strategic normal form:



I \ II	L	R
LL	p, q	r
LR	p, q	p
RL	q	r
RR	q	p

$\langle \alpha \rangle p$

$[\alpha]q$

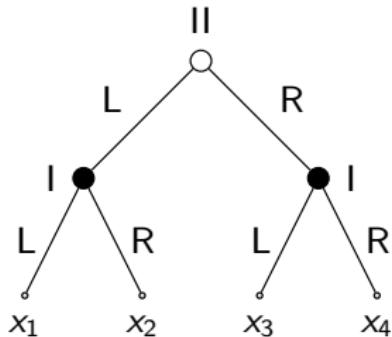
Determinacy: $\langle \alpha \rangle \varphi \leftrightarrow \neg[\alpha] \neg \varphi$

(“I can ensure φ iff II cannot avoid φ ”)

Effectivity in State-Based Game Models

- Games are played in the context of a state space X .
- Game outcomes are associated with states.

Player I is *effective for* $U \subseteq X$ if I has a strategy to ensure the outcome is in U .



- Player I is effective for:
 $\{x_1, x_3\}, \{x_1, x_4\}, \{x_2, x_3\}, \{x_2, x_4\}$
and all supersets of those.
- Player II is effective for:
 $\{x_1, x_2\}$ and $\{x_3, x_4\}$.
and all supersets of those.

Game Structures

- Let $E_\alpha(x) \subseteq \mathcal{P}(X)$ be defined by:
 $U \in E_\alpha(x)$ iff player 1 is effective for U in α starting in x .
Then: $U \in E_\alpha(x)$ and $U \subseteq U' \Rightarrow U' \in E_\alpha(x)$.
- Let \mathcal{M} be the monotone neighbourhood functor:
$$\mathcal{M}(X) = \{N \subseteq \mathcal{P}(X) \mid U \in N, U \subseteq U' \Rightarrow U' \in N\}$$
$$\mathcal{M}(f) = (f^{-1})^{-1}$$
- A **game frame** is
 - a multi-modal monotonic neighbourhood frame
 - $F = (X, \{E_\alpha : X \rightarrow \mathcal{M}(X) \mid \alpha \in A\})$ or equivalently,
 - a coalgebra $F : X \rightarrow (\mathcal{M}(X))^A$
- A **game model** $M = (F, V)$ is a game frame F with a valuation $V : X \rightarrow \mathcal{P}(P_0)$.

Game Logic Syntax

formulas $\varphi ::= p \in P_0 \mid \neg\varphi \mid \varphi \wedge \varphi \mid \langle \alpha \rangle \varphi$

games $\alpha ::= a \in A_0 \mid \alpha; \alpha \mid \alpha \cup \alpha \mid \alpha^* \mid \varphi? \mid \alpha^d$

Game operations:

- (composition) $\alpha_1; \alpha_2$: play α_1 then α_2 ,
- (angelic choice) $\alpha_1 \cup \alpha_2$: player 1 chooses between α_1 or α_2 ,
- (angelic iteration) α^* : α is played repeatedly (possibly 0 times), after each round, player 1 chooses whether to continue.
- (dual) α^d : players switch roles in α .
- (tests) $\varphi?$: if φ holds then continue, otherwise player 1 loses.

Standard Game Models

(similar to standard PDL model)

- (composition)

$$U \in E_{\alpha_1; \alpha_2}(x) \text{ iff } \exists V \in E_{\alpha_1}(x) : \forall v \in V : X \in E_{\alpha_2}(v).$$

- (angelic choice) $E_{\alpha_1 \cup \alpha_2}(x) = E_{\alpha_1}(x) \cup E_{\alpha_2}(x)$
- (angelic iteration)

$$U \in E_{\alpha^*}(x) \text{ iff } x \in \hat{E}_{\alpha^*}(U) \text{ where } \hat{E}_{\alpha^*}(U) = \mu X. U \cup \hat{E}_{\alpha}(X).$$

(after each round, player I chooses whether to continue).

- (dual)

$$U \in E_{\alpha^d}(x) \quad \text{iff} \quad X \setminus U \notin E_{\alpha}(x).$$

Axiomatisation and Completeness

- **GL** = monotonic modal logic **M** (ML of mon. nbhd. frames) plus

$$\begin{array}{ll} \langle \alpha; \delta \rangle \varphi \leftrightarrow \langle \alpha \rangle \langle \delta \rangle \varphi & \langle \alpha \cup \delta \rangle \varphi \leftrightarrow \langle \alpha \rangle \varphi \vee \langle \delta \rangle \varphi \\ \langle \psi ? \rangle \varphi \leftrightarrow (\psi \wedge \varphi) & \langle \alpha^d \rangle \varphi \leftrightarrow \neg \langle \alpha \rangle \neg \varphi \\ \varphi \vee \langle \alpha \rangle \langle \alpha^* \rangle \varphi \rightarrow \langle \alpha^* \rangle \varphi & \frac{\varphi \vee \langle \alpha \rangle \varphi \rightarrow \psi}{\langle \alpha^* \rangle \varphi \rightarrow \psi} \end{array}$$

- Without dual: sound and complete [Parikh 1985].
- Without iteration: sound and strongly complete [Pauly 2001].
- Completeness of full GL still open question.

Coalgebraic Dynamic Logic

Joint work with Clemens Kupke

A General Picture...?

PDL	GL	Basic set up
Kripke semantics $X \xrightarrow{\alpha} \mathcal{P}X$	Mon. nbhd. semantics $X \xrightarrow{\alpha} \mathcal{M}X$	T -Coalgebra semantics $X \xrightarrow{\alpha} TX$
$X \rightarrow (\mathcal{P}X)^A$; , \cup , $(-)^*$, ?	$X \rightarrow (\mathcal{M}X)^A$; , \cup , $(-)^*$, ?, $(-)^d$	$X \rightarrow (TX)^A$ T -coalg. operations (?)
Normal ML K plus reduction axioms	Monotonic ML M plus reduction axioms	T -Coalgebraic ML plus reduction axioms (?)
$f: X \rightarrow Y$ $\mathcal{P}(f) = f[]$ (direct image)	$f: X \rightarrow Y$ $\mathcal{M}(f) = (f^{-1})^{-1}$ (double-inv. image)	$f: X \rightarrow Y$ $T(f): TX \rightarrow TY$

Coalgebraic Modal Logic

Basic idea

$$\frac{\text{Basic Modal Logic}}{\text{Kripke frames } X \rightarrow \mathcal{P}(X)} = \frac{\text{Coalgebraic Modal Logic}}{T\text{-coalgebras } X \rightarrow \mathcal{T}(X)}$$

Develop modal logic for T -coalgebras, **parametric** in $T: C \rightarrow C$.

Syntax

Given a collection of modal operators Λ and a set P_0 of propositional variables. The set $\mathcal{F}(\Lambda)$ of formulas over Λ is defined as follows:

$$\mathcal{F}(\Lambda) \ni \varphi ::= p \in P_0 \mid \perp \mid \neg \varphi \mid \varphi \wedge \varphi \mid \heartsuit \varphi, \quad \heartsuit \in \Lambda$$

(We only consider unary modalities \heartsuit)

Coalgebraic Modal Logic: Semantics

cf. [Pattinson, Roessiger]

T -coalgebraic semantics consists of:

- a functor $T : \text{Set} \rightarrow \text{Set}$
- for every modal operator $\heartsuit \in \Lambda$, a natural transformation
$$\heartsuit : \mathcal{Q} \Rightarrow \mathcal{Q}T \quad (\text{predicate lifting})$$

where \mathcal{Q} denotes the **contravariant power set** functor ($\mathcal{Q}X = 2^X$, $\mathcal{Q}(f) = f^{-1}$), so $\heartsuit_X : 2^X \rightarrow 2^{TX}$.

Truth in T -model $(X, \gamma : X \rightarrow TX, V : P_0 \rightarrow \mathcal{P}X)$

$$[\![p]\!] = V(p) \quad \text{for } p \in P_0$$

\vdots

$$[\![\heartsuit\varphi]\!] = \gamma^{-1}(\heartsuit_X([\![\varphi]\!]))$$

Equivalently...

There is a well-known one-to-one correspondence between:

- $\heartsuit : \mathcal{Q} \Rightarrow \mathcal{Q}T$ ($\heartsuit_X : 2^X \rightarrow 2^{TX}$)
- $\widehat{\heartsuit} : T \Rightarrow \mathcal{Q}^{\text{op}}\mathcal{Q}$ (transpose $\widehat{\heartsuit}_X : TX \rightarrow 2^{2^X}$)
- $\check{\heartsuit} : T2 \rightarrow 2$ (Yoneda) ("allowed 0-1 patterns")

Examples:

- Kripke box:

$\heartsuit_X(U)$	$=$	$\{V \subseteq X \mid V \subseteq U\}$,
$\widehat{\heartsuit}_X(V)$	$=$	$\{U \subseteq X \mid V \subseteq U\}$ and
$\check{\heartsuit}(V \in \mathcal{P}2)$	$=$	1 iff $0 \notin V$
- Mon. nbhd. diamond:

$\heartsuit_X(U)$	$=$	$\{N \in \mathcal{M}X \mid U \in N\}$
$\widehat{\heartsuit}_X(N)$	$=$	N
$\check{\heartsuit}(N \in \mathcal{M}2)$	$=$	1 iff $\{1\} \in N$

3.1 Dynamic Syntax and Semantics

Coalgebra-Algebra

Two perspectives:

$$\xi: X \rightarrow (TX)^A \quad T^A\text{-coalgebra, modalities}$$

$$\hat{\xi}: A \rightarrow (TX)^X \quad \text{algebra homomorphism, program operations}$$

Dynamic Syntax

Given

- Σ , a signature (functor).
- P_0 , a countable set of atomic propositions.
- A_0 , a countable set of atomic programs.

we define

formulas $\mathcal{F} \ni \varphi ::= p \in P_0 \mid \neg\varphi \mid \varphi \vee \varphi \mid \langle \alpha \rangle \varphi$

programs $A \ni \alpha ::= a \in A_0 \mid \alpha; \alpha \mid \underline{\sigma}(\alpha_1, \dots, \alpha_n) \mid \alpha^* \mid \varphi?$

where $\underline{\sigma} \in \Sigma$ is n -ary operation symbol.

3.2 Operations on T -coalgebras

Program Operations from Monads

(cf. Moggi, and many others)

- Monad T encodes computational effects (non-determinism, exceptions, continuations, input/output,...)
- Kleisli arrows $X \rightarrow TY$ are functional programs.
- A **monad** is functor $T: \text{Set} \rightarrow \text{Set}$ together with natural transformations

$\eta: \text{Id} \Rightarrow T$ (**unit**) and $\mu: T \circ T \Rightarrow T$ (**multiplication**)

satisfying certain axioms...

- **Sequential composition** is **Kleisli composition**.

$$(X \xrightarrow{\alpha} TX) *_T (X \xrightarrow{\beta} TX) = X \xrightarrow{\alpha} TX \xrightarrow{T\beta} TTX \xrightarrow{\mu_X} TX$$

- **Skip program** is **unit**: $\eta_X: X \rightarrow TX$.

\mathcal{P} and \mathcal{M} are monads

- \mathcal{P} is monad (\mathcal{P}, η, μ) with:

$$\eta_X(x) = \{x\},$$

$$\mu_X(\{U_i \mid i \in I\}) = \bigcup_{i \in I} U_i.$$

(* \mathcal{P} is relation composition, $\eta_X = \text{Id}_X$)

- \mathcal{M} is a monad (\mathcal{M}, η, μ) with:

$$\eta_X(x) = \{U \subseteq X \mid x \in U\}$$

$$\mu_X(W) = \{U \subseteq X \mid \eta_{\mathcal{P}(X)}(U) \in W\}$$

(* \mathcal{M} is composition of effectivity functions)

- $\mathcal{N} = \mathcal{Q}^{\text{op}} \mathcal{Q}$ is a monad (η and μ as for \mathcal{M}):

Dynamic Monads

Iteration requires extra structure.

A monad (T, μ, η) is called **dynamic** if

- For all sets X , TX can be equipped with a sup-lattice structure (TX, \vee) (i.e., a complete join semilattice).
(We denote the empty join in TX by \perp_{TX} .)
- Lift \vee pointwise to the Kleisli Hom-sets $\mathcal{Kl}(T)(X, X)$, then **Kleisli-composition is monotone**:

$$\forall f, g_1, g_2 : X \rightarrow TX : g_1 \leq g_2 \quad \Rightarrow \quad f * g_1 \leq f * g_2.$$

In FICS 2015 paper: we assumed that $*$ left-distributes over join.

- Bad news: Doesn't seem to hold for \mathcal{M} .
- Good news: We don't need it! (Monotonicity suffices)

Iteration and Tests

Let (T, η, μ) be a dynamic monad.

Iteration: For a map $\alpha : X \rightarrow TX$, we define $\alpha^* = LFP . \Phi_\alpha$ where

$$\begin{aligned}\Phi_\alpha : \mathcal{Kl}(T) &\rightarrow \mathcal{Kl}(T) \\ g &\mapsto \eta_X \vee (\alpha * g)\end{aligned}$$

Tests: For a formula φ , we define $\alpha = \varphi?$ via Kleisli identity and empty join $\perp = \bigvee \emptyset \in TX$:

$$\varphi?(x) = \eta_X(x) \quad \text{if } x \in \llbracket \varphi \rrbracket^{\mathfrak{M}}, \quad \text{else } \perp.$$

Pointwise Operations

- An *n*-ary natural operation on T is a natural transformation

$$\sigma: T^n \Rightarrow T \quad (Tf \text{ preserves } \sigma)$$

- $\sigma: T^n \Rightarrow T$ yields pointwise operation on $(TX)^X$, e.g.,

$$\sigma_X^X(c_1, c_2)(x) = \sigma_X(c_1(x), c_2(x))$$

- Given finitary signature functor Σ ,
a natural Σ -algebra is natural transformation $\theta: \Sigma T \Rightarrow T$
and yields pointwise Σ -algebra on $(TX)^X$:

$$\theta_X^X: \Sigma((TX)^X) \rightarrow (TX)^X$$

Natural Pointwise Operations: Examples

Natural operations on \mathcal{P} :

- Union $\cup: \mathcal{P} \times \mathcal{P} \Rightarrow \mathcal{P}$ is natural operation, since

$$f[U \cup U'] = f[U] \cup f[U'] \quad (\mathcal{P}f(U) = f[U])$$

The pointwise extension of $\cup: \mathcal{P} \times \mathcal{P} \Rightarrow \mathcal{P}$ is union of relations $(R_1 \cup R_2)(x) = R_1(x) \cup R_2(x)$.

- Note: Intersection, complement are not natural on \mathcal{P} .

Natural operations on \mathcal{M} :

- All Boolean operations (since preserved by f^{-1}).
- Dual operation $d: \mathcal{M} \Rightarrow \mathcal{M}$ where for all $N \in \mathcal{M}(X)$, and $U \subseteq X$, $U \in d_X(N)$ iff $X \setminus U \notin N$.
Game operation $(-)^d$ is the pointwise extension.

Summary of Requirements for Coalgebraic Dynamic Semantics

We assume given:

- set A_0 of atomic programs.
- set P_0 of atomic propositions.

We require for **dynamic T -coalgebra semantics**:

- $\heartsuit: \mathcal{Q} \Rightarrow \mathcal{Q} \circ T$ is predicate lifting (for modalities)
- $\mathbb{T} = (T, \eta, \mu)$, a **monad** (for sequential comp.)
- $\mathbb{T} = (T, \eta, \mu)$, is a **dynamic monad** (for iteration and tests)
- $\theta: \Sigma T \Rightarrow T$, a natural Σ -algebra (for pointwise ops)

Standard Dynamic Models

Def. A θ -dynamic \mathbb{T} -model is a triple $\mathfrak{M} = (X, \gamma: X \rightarrow (TX)^A, V)$ where

- $\widehat{\gamma}|_{A_0} = \widehat{\gamma}_0: A_0 \rightarrow (TX)^X$ interprets atomic programs,
- sequential composition, iteration, tests and pointwise operations are defined compositionally from γ_0 as described.
- $V: P_0 \rightarrow \mathcal{P}(X)$ is a valuation of atomic propositions.
- Modalities are interpreted by \heartsuit :

$$[\![\langle \alpha \rangle \varphi]\!] = \widehat{\gamma}(\alpha)^{-1}(\heartsuit_X([\![\varphi]\!]))$$

3.3 Axiomatising Standard Dynamic Models

Axiomatising Sequential Composition

Sequential composition axiom: $\langle\alpha;\beta\rangle p \leftrightarrow \langle\alpha\rangle\langle\beta\rangle p$.

Recall: $\heartsuit : \mathcal{Q} \Rightarrow \mathcal{Q} \circ T \quad \overset{1-1}{\leftrightarrow} \quad \widehat{\heartsuit} : T \Rightarrow \mathcal{Q}^{\text{op}} \mathcal{Q}$

Lemma (Soundness for sequential composition)

If $\widehat{\heartsuit} : T \Rightarrow \mathcal{Q}^{\text{op}} \mathcal{Q}$ is a **monad morphism**, and $\gamma : X \rightarrow (TX)^A$ is **γ -standard**, then $\langle\alpha;\beta\rangle p \leftrightarrow \langle\alpha\rangle\langle\beta\rangle p$ is valid in γ .

Note: Holds for \heartsuit iff holds for $\neg\heartsuit\neg$.

Examples

Remark:
$$\frac{\text{Monad morphism } T \Rightarrow \mathcal{Q}^{\text{op}}\mathcal{Q}}{\text{Eilenberg-Moore algebra } T2 \rightarrow 2} \quad [\text{Kelly \& Power, 1993}]$$

- **Kripke diamond** ($T = \mathcal{P}$):

$\diamond: \mathcal{Q} \Rightarrow \mathcal{Q}\mathcal{P}$ corr. to $\diamond: \mathcal{P}\mathcal{P}(1) \rightarrow \mathcal{P}(1)$ (free \mathcal{P} -algebra)

so $\widehat{\diamond}: \mathcal{P} \rightarrow \mathcal{Q}^{\text{op}}\mathcal{Q}$ is a monad morphism.

- **Monotonic nbhd diamond** ($T = \mathcal{M}$):

$\heartsuit: \mathcal{Q} \Rightarrow \mathcal{Q}\mathcal{M}$ corr. to $\widehat{\heartsuit}: \mathcal{M} \Rightarrow \mathcal{Q}^{\text{op}}\mathcal{Q}$ (inclusion)

hence a monad morphism.

Axiomatising Pointwise Operations

- Example: PDL axiom for choice $[\alpha \cup \beta]p \leftrightarrow [\alpha]p \wedge [\beta]p$.
- Idea: $\widehat{\heartsuit}: T \Rightarrow \mathcal{N}$ turns operation σ on T into operation χ on \mathcal{N} .

$$T^n \xrightarrow{\widehat{\heartsuit}^n} \mathcal{N}^n \quad \text{For example: } \mathcal{P} \times \mathcal{P} \xrightarrow{\widehat{\square} \times \widehat{\square}} \mathcal{N} \times \mathcal{N}$$
$$\begin{array}{ccc} \downarrow \sigma & & \downarrow \chi \\ T & \xrightarrow{\widehat{\heartsuit}} & \mathcal{N} \end{array} \quad \begin{array}{ccc} \downarrow \cup & & \downarrow \cap \\ \mathcal{P} & \xrightarrow{\widehat{\square}} & \mathcal{N} \end{array}$$

- Need: $\chi: \mathcal{N}^n \Rightarrow \mathcal{N}$ such that the diagram commutes.
- From $\chi: \mathcal{N}^n \Rightarrow \mathcal{N}$, we get rank-1 formula $\varphi(\chi, \alpha_1, \dots, \alpha_n, p)$ (details in paper).
- Def. φ is rank 1 if $\varphi \in \text{Prop}(\Lambda(\text{Prop}(P_0)))$.
Example: $\square(p \rightarrow q) \rightarrow (\square p \rightarrow \square q)$

Axiomatising Pointwise Operations

Lemma (Soundness)

If $\gamma: X \rightarrow (TX)^A$ is θ -standard, and there exists $\chi: \mathcal{N}^n \Rightarrow \mathcal{N}$ such that $\widehat{\heartsuit} \circ \sigma = \chi \circ \widehat{\heartsuit}^n$, then the rank-1 formula $\langle \underline{\sigma}(\alpha_1, \dots, \alpha_n) \rangle p \leftrightarrow \varphi(\chi, \alpha_1, \dots, \alpha_n, p)$ is valid in γ .

Positive operations

- $\chi: \mathcal{N}^n \Rightarrow \mathcal{N}$ corr. to $\check{\chi} \in \mathcal{N}(n \cdot \mathcal{Q}(2))$, the free Boolean algebra on $n \cdot \mathcal{Q}(2)$, i.e. n copies of elements of $\mathcal{Q}(2)$.
- Def. σ is *positive*, if corresponding $\check{\chi}$ can be expressed without \neg .

Axiomatising Tests

In PDL: $[\varphi?]p \leftrightarrow (\varphi \rightarrow p)$ or $\langle\varphi?\rangle p \leftrightarrow (\varphi \wedge p)$

In GL: $\langle\varphi?\rangle p \leftrightarrow (\varphi \wedge p)$

Axioms (when $\langle\alpha\rangle$ interpreted by \heartsuit):

- If \heartsuit is “box-like”,
then add $\langle\varphi?\rangle p \leftrightarrow (\varphi \rightarrow p)$ as frame condition.
- If \heartsuit is “diamond-like”,
then add $\langle\varphi?\rangle p \leftrightarrow (\varphi \wedge p)$ as frame condition.

Axiomatising Tests: \heartsuit is diamond/box-like

Let $\heartsuit: \mathcal{Q} \Rightarrow \mathcal{Q} \circ T$ be a predicate lifting. We say that

- \heartsuit is **diamond-like** if for all sets X , all $U \subseteq X$, and all $\{t_i \mid i \in I\} \subseteq TX$:

$$\bigvee_{i \in I} t_i \in \heartsuit_X(U) \quad \text{iff} \quad \exists i \in I : t_i \in \heartsuit_X(U).$$

- \heartsuit is **box-like** if for all sets X , all $U \subseteq X$, and all $\{t_i \mid i \in I\} \subseteq TX$:

$$\bigvee_{i \in I} t_i \in \heartsuit_X(U) \quad \text{iff} \quad \forall i \in I : t_i \in \heartsuit_X(U).$$

Note: this has nothing to do with requiring the modality to preserve disjunctions or conjunctions!

Axiomatising Iteration (diamond-like ♦)

(Following GL axiomatisation)

For $\alpha \in A$:

axiom: $\langle \alpha^* \rangle p \leftrightarrow p \vee \langle \alpha \rangle \langle \alpha^* \rangle p$ $\langle \alpha^* \rangle p$ is fixed point

rule:
$$\frac{p \vee \langle \alpha \rangle q \rightarrow q}{\langle \alpha^* \rangle p \rightarrow q}$$
 $\langle \alpha^* \rangle p$ is least prefixed point

Soundness over standard models: ✓

Logic and Derivability

Def. A **modal logic** $\mathcal{L} = (\Lambda, \text{Ax}, \text{Fr}, \text{Ru})$ consists of

- a modal signature Λ ,
- a set of rank-1 axioms $\text{Ax} \subseteq \text{Prop}(\Lambda(\text{Prop}(P_0)))$,
- a set of frame conditions $\text{Fr} \subseteq \mathcal{F}(\Lambda, P_0)$,
- a set of inference rules $\text{Ru} \subseteq \mathcal{F}(\Lambda, P_0) \times \mathcal{F}(\Lambda, P_0)$.

Def. (Hilbert system derivability)

- $\vdash_{\mathcal{L}} \varphi$ if φ is derivable from $\text{Ax} \cup \text{Fr}$ using propositional reasoning, uniform substitution, rules in Ru , and the congruence rule:

$$\frac{\varphi \leftrightarrow \psi}{\heartsuit\varphi \leftrightarrow \heartsuit\psi} \quad (\heartsuit \in \Lambda)$$

Coalgebraic Dynamic Logic (diamond-like \heartsuit)

Given

- “base” logic $\mathcal{L} = (\{\diamond\}, \text{Ax}(\diamond, T), \emptyset, \emptyset)$ for T
- $\theta: \Sigma T \Rightarrow T$ and set A_0 of atomic actions.

we define the dynamic logic $\mathcal{L}(\theta, ;, ^*, ?) = (\Lambda, \text{Ax}, \text{Fr}, \text{Ru})$ by taking

$$\begin{aligned}\Lambda &= \{\langle \alpha \rangle \mid \alpha \in A\}, \\ \text{Ax} &= \text{Ax}(\diamond, T) \cup \text{“}\theta\text{-axioms“} \\ \text{Fr} &= \{\langle \alpha; \beta \rangle p \leftrightarrow \langle \alpha \rangle \langle \beta \rangle p \mid \alpha, \beta \in A\} \\ &\quad \cup \{\langle \alpha^* \rangle p \leftrightarrow p \vee \langle \alpha \rangle \langle \alpha^* \rangle p \mid \alpha \in A\} \\ &\quad \cup \{\langle q? \rangle p \leftrightarrow (q \wedge p)\} \\ \text{Ru} &= \left\{ \frac{p \vee \langle \alpha \rangle q \rightarrow q}{\langle \alpha^* \rangle p \rightarrow q} \right\}\end{aligned}$$

Strong Completeness for Iteration-Free Logics

Theorem

If base logic \mathcal{L} satisfies conditions for quasi-canonical T -model [Schröder&Pattinson, 2009], then dynamic logic $\mathcal{L}(\theta, ;, ?)$ is sound and strongly complete wrt θ -dynamic T -models.

- Strong completeness of PDL^{-*} and GL^{-*} recovered.
- Modest new result for “lift” monad $L(X) = 1 + X$.
- cf. HH, C. Kupke, R. A. Leal, IFIP-TCS 2014.

Weak Completeness Needs Strong Coherence

- Standard weak completeness argument:
 - ① build model on collection S of finite maximally consistent sets of “relevant” formulas (needs the definition of **closure** - a generalised notion of a subformula)
 - ② prove **truth lemma** for this finite model
- any subset $U \subseteq S$ of the constructed finite model can be characterised with a formula

$$\xi_U = \bigvee_{\Delta \in U} \bigwedge \Delta$$

Key for completeness: “strong coherence” property

We say that $\gamma: S \rightarrow (TS)^A$ is **strongly coherent** for $\alpha \in A$ if for all $\Gamma \in S$ and all $U \subseteq S$:

$$\hat{\gamma}(\alpha)(\Gamma) \in \heartsuit_S(U) \quad \text{iff} \quad \langle \alpha \rangle \xi_U \wedge \Gamma \text{ is } \mathcal{L}\text{-consistent.}$$

Weak Completeness with Iteration and Positive Operations

(Recall: PDL is not compact, hence not strongly complete.)

Theorem

If base logic \mathcal{L} is one-step complete for T , and θ consists of positive operations, then $\mathcal{L}(\theta, ;, ^*, ?)$ is complete wrt standard, dynamic T -models.

- Completeness of PDL and dual-free GL recovered.
- Modest new result for dual-free GL with intersection.
- cf. HH, C. Kupke, FICS 2015.

Summary of Requirements

We require for semantics:

- $\mathbb{T} = (T, \eta, \mu)$, a Set-monad.
- TX carries sup-lattice structure.
- $\heartsuit: \mathcal{Q} \Rightarrow \mathcal{Q} \circ T$ is predicate lifting for T .
- $\theta: \Sigma T \Rightarrow T$, a natural Σ -algebra.

We require for soundness and completeness:

- for each $\sigma: T^n \Rightarrow T$, a $\chi: \mathcal{N}^n \Rightarrow \mathcal{N}$ s.t. $\widehat{\heartsuit} \circ \sigma = \chi \circ \widehat{\heartsuit}^n$.
- $\widehat{\heartsuit}$ is monad morphism.
- \heartsuit is monotone.
- Kleisli composition is monotone.
- θ consists of “positive operations” (χ negation-free)

Game Logic Automata

Joint work with:

Clemens Kupke, Johannes Marti, Yde Venema

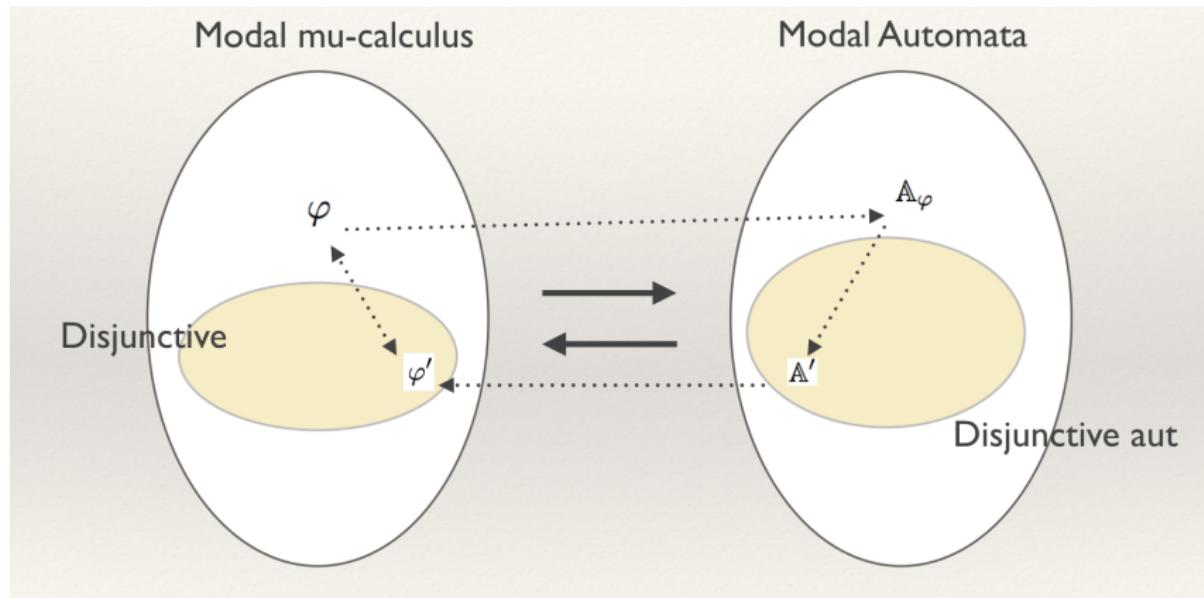
Work in progress...

Game Logic, Completeness and μ -Calculus

- Game Logic can be translated into (monotonic) μ ML.
- Game Logic spans all levels of the alternation hierarchy μ ML [Berwanger, 2003] (by interleaving $*$ and d)
- μ ML completeness is hard....but automata can help.

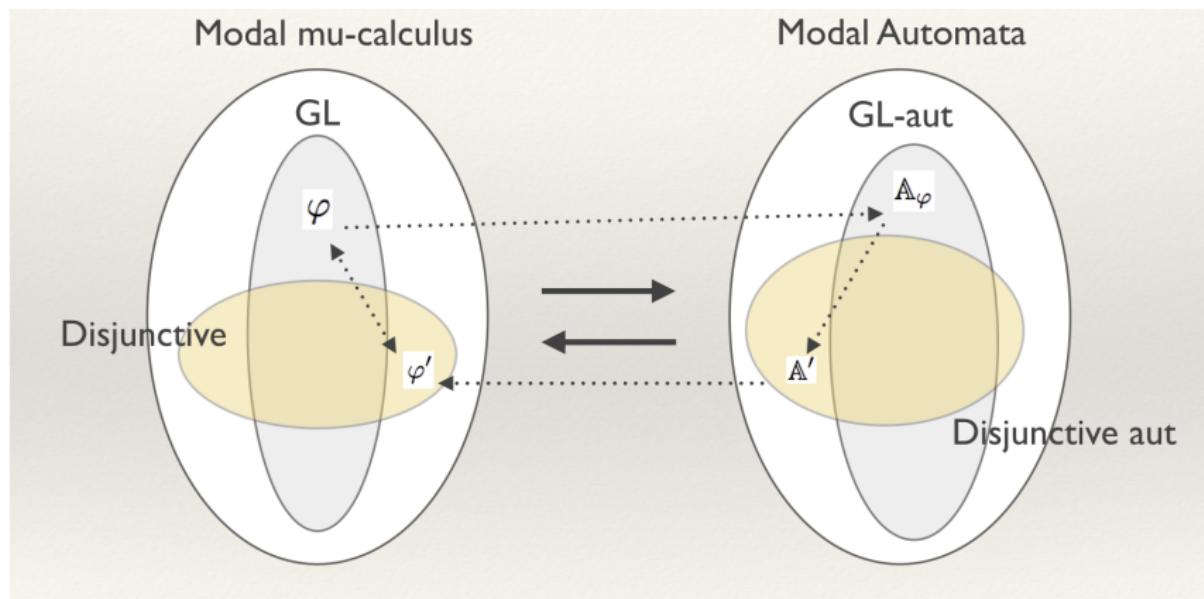
Completeness via Modal Parity Automata

Completeness of the (coalgebraic) modal μ -calculus
(Enqvist, Seifan, Venema)



Completeness via Modal Parity Automata

Completeness of the (coalgebraic) modal μ -calculus
(Enqvist, Seifan, Venema)



Modal Parity Automata for μ ML

- Let P be a set of atomic propositions, and
- $\text{Lit} = \{p, \neg p \mid p \in P\}$.
- For a set S , $1ML(P, S) = \text{Prop}(\text{Lit} \cup \{\square t, \diamond t \mid t \in \text{Latt}(S)\})$

Def. A **modal parity automaton** $\mathbb{A} = (S, \Theta, \Omega, s_I)$ consists of

- a set S of states,
- a 1-step transition structure $\Theta: S \rightarrow 1ML(P, S)$,
- a priority function $\Omega: S \rightarrow \omega$,
- an initial state $s_I \in S$.

Acceptance of Kripke structures defined via parity game.

Pre-Automata for Game Logic

Game Logic

- Both formulas and games must be “decomposed” (use reduction axioms).
- Assigning priorities to all vertices is problematic.

We work with pre-automata.

Def. A **pre-automaton** (or modal graph) $\mathbb{G} = (V, E, L, \Omega)$ consists of

- a finite graph (V, E) ,
- a labelling $L: V \rightarrow \text{Lit} \cup \{\vee, \wedge\} \cup \{\langle \alpha \rangle, \langle \alpha^d \rangle \mid \alpha \in A_0\}$,
- a priority function $\Omega: S \rightarrow \omega$ where $S \subseteq V$

such that

- Arities match: if $L(v) \in \{\vee, \wedge\}$ then $|E(v)| \leq 2$, etc.
- On every cycle there is at least one state from S .

Pre-Automata for Game Logic

We have (to be checked and possibly tweaked):

- Construction from pre-automaton to automaton.
- Correspondence between GL formulas and game pre-automata.
- Conditions that characterise game pre-automata
(conditions on cycles, sharing paths and maximal priorities)
- Evaluation game for pre-automata.

Conclusion

Summary:

- General coalgebraic completeness of PDL and dual-free Game Logic.
- Modest “new” results as instantiations.
- Need more examples...

Future Work:

- Extend to quantitative setting.
Problem: for $T = \mathcal{D}_\omega$ the distribution monad, the only EM-algebras $\mathcal{D}_\omega(2) \rightarrow 2$ seem to be $\Diamond_{>0}$ and $\Diamond_{=0}$.
~~> Switch to multi-valued logic.
- Extend to other types of operations (e.g. Coalition Logic).
- Completeness of full GL and coalgebraic CML.

THANKS!