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Data trees

a, 2

c, 7

c , 3 b, 7

a, 1 a, 5

a, 1

b, 0

trees finite, unranked, ordered

labels a, b, c , . . . from a finite alphabet (tags)

data values 0, 1, 2, . . . from an infinite data domain (contents)



Schemas describe allowed shapes of data trees

Define several types of trees, each specified (recursively) by

I the label of the root,
I possible sequences of immediate subtree types (regexp);

and choose some of the types as allowed.

Example: a-only path from root to leaf, b’s elsewhere

I type τ : root label a, immediate subtree types σ∗τσ∗ + ε ;
I type σ: root label b, immediate subtree types σ∗ ;
I choose: τ .
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Conjunctive queries over data trees

a

a

c −→

a, 2

c , 7

c , 3 b, 7

a, 1 a, 5

a, 1

b, 0

∃x1 · · · ∃x5
child(x1, x2) ∧ child(x2, x3) ∧ child(x3, x4)∧

∧ desc(x1, x5) ∧ desc(x5, x4)∧
∧ a(x1) ∧ a(x4) ∧ c(x5)∧
∧ x2 ∼ x3



Datalog on data trees

a

a

...

a

b

c

c

c

a

c

b

p(x)← a(x)∧
desc(x , y) ∧ c(y) ∧ x ∼ y ∧
child(x , z) ∧ p(z)

p(x)← b(x)

extensional predicates child , desc , ∼, a, b, c , . . . ;

intensional predicates defined recursively using conjunctive queries;

monadic only unary intensional predicates;

linear at most one intensional atom per rule.



Static analysis problems

Satisfiability: Is query P (CQ, UCQ, Datalog, FO, etc.) satisfied in
some data tree (conforming to given schema)?

Equivalence: Are queries P,Q equivalent on all data trees?

Containment: Does P imply Q on all data trees?

The staple of data management: query optimization, consistency
tests, evaluation modulo constraints, constraint entailment, . . .

By Trakhtenbrot’s theorem, all undecidable for FO queries.

P sat iff not P⇔⊥ iff not P⇒⊥
P∧¬Q, Q∧¬P unsat iff P⇔Q iff P⇒Q, Q⇒P

P∧¬Q unsat iff P⇔P∧Q iff P⇒Q
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Containment of CQs over arbitrary structures
[Chandra, Merlin ’77]

Def: Q ∈ CQ  AQ : universe VarQ,
relations given by atoms of Q

Fact: A |= Q iff exists h : AQ → A

Thm: P ⇒ Q iff exists g : AQ → AP

AQ AP A

(⇐) If g : AQ → AP and h : AP → A, then h ◦ g : AQ → A.

(⇒) AP |= P and P ⇒ Q, so AP |= Q. Exists h : AQ → AP .

To decide containment, test existence of a homomorphism.
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Containment for UCQs over trees without data
[Miklau, Suciu ’04]

Each UCQ is equivalent to a union of tree-shaped CQs:

ba c ≡
a b

c
∨

a c

b

For a tree shaped CQ π build an equivalent tree automaton:

I it computes bottom-up the set of matched subtrees of π;

I knowing which subtrees of π match at the children of node v or
strictly below, one can tell which match at v or strictly below.

Tree automata are effectively closed under Boolean combinations.

Test emptiness of the automaton corresponding to P ∧ ¬Q.
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Containment for UCQs over data trees
[Björklund, Martens, Schwentick ’08]

Can restrict to trees with data values c1, . . . , c‖P‖ and distinct nulls.

I Let T be a tree satisfying P and not Q.

I P touches ≤ ‖P‖ data values in T ; replace with c1, . . . , c‖P‖.

I In each node not touched by P put a unique fresh data value.

I The resulting tree T ′ still satisfies P and not Q.

In such trees, x ∼ y holds iff either x = y or x ∼ ci and y ∼ ci .

By considering all possibilities, replace P,Q with P ′,Q ′ using only
x = y , x ∼ ci , y ∼ ci .

Check containment over the finite alphabet Σ× {⊥, c1, . . . , cn}.
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Equivalence for Datalog

Equivalence for Datalog is undecidable:

I with descendant [Abiteboul, Bourhis, Muscholl, Wu 2013]

I for non-linear programs [Mazowiecki, Murlak, Witkowski 2014]

I for non-monadic programs (descendant is easily simulated).

Theorem (Mazowiecki, Murlak, Witkowski 2014)

Equivalence for linear monadic Datalog without desc is decidable.

Can’t we restrict reused datavalues like before?

I Let T be a tree satisfying P and not Q.

I Then T satisfies some CQ P0, an unravelling of P.

I P0 touches ≤ ‖P0‖ data values in T , like before,

I but ‖P0‖ can be arbitrarily large...
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Example

a

a b

a, 1 b, 2 a, 3 b, 4

b

ba

b, 8a, 7b, 6a, 5

c , 1 . . . c , 8

N = 3

P ← DOWN0(x)

DOWNi (x)← child(x , y) ∧ a(y) ∧ DOWNi+1(y)

DOWNN(x)← UPN(x) ∧ (N+1)-parent(x , y) ∧ child(y , z) ∧ c(z) ∧ x ∼ z

UPi (x)← a(x) ∧ parent(x , y) ∧ child(y , z) ∧ b(z) ∧ DOWNi (z)

UPi (x)← b(x) ∧ parent(x , y) ∧ UPi−1(y)

UP0(x)← true

Q ← x ∼ y ∧ i-parent(x , x ′) ∧ i-parent(y , y ′) ∧ a(x ′) ∧ b(y ′)
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Clique-width

Instead of processing structures, process their hierarchical
decompositions (derivations).

Construct (derive) coloured structures using operations:

i – create a new node of colour i ;

R(i1, . . . , ir ) – add to R all tuples of nodes with colours (i1, . . . , ir );

i 7→ j – change colour i to j ;

⊕ – take disjoint union of two structures.

clique-width(A) = least number of colours sufficient to construct A



Examples

Linear orders: clique-width 2

yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

Paths: clique-width 3

Trees: clique-width 3

Cographs: clique-width 2

Distance-hereditary graphs: clique-width 3

Graphs of tree-width k : clique-width 3 · 2k−1
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Bounded clique-width means simple

Many NP-complete problems are in P for graphs of bounded
clique-width.

Fixed-parameter tractable with clique-width as parameter:
time f (k) · nc on inputs of size n and clique-width at most k ,
where f is some function, and c is an absolute constant.

Hamiltonicity

Is there a path in graph G that visits each node exactly once?

3-colorability

Can nodes of the graph G be coloured so that each edge connects
nodes of different colours?



Courcelle’s theorem

Monadic second order logic (MSO)

ϕ,ψ ::= R(x1, . . . , xr ) | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ∃x ϕ | ∀x ϕ |
| ∃X ϕ | ∀X ϕ | X (x)

3-colorability

∃X1 ∃X2 ∃X3 ∀x X1(x) ∨ X2(x) ∨ X3(x)

∧∀x ∀y E (x , y)⇒
∧
i

¬(Xi (x) ∧ Xi (y))

Theorem (Courcelle)

For every k ∈ N and ϕ ∈ MSO one can construct an automaton
recognizing k-derivations yielding models of ϕ.



Courcelle’s theorem applied to parametrized complexity

Theorem (Courcelle)

For every k ∈ N and ϕ ∈ MSO one can construct an automaton
recognizing k-derivations yielding models of ϕ.

Corollary

Each set of structures definable in MSO can be decided in polynomial
time over graphs of bounded cliquewidth.

I Compute k-derivation e for the input structure (poly-time);

I construct the automaton A for k and the defining formula ϕ;

I run the automaton A on e.



Courcelle’s theorem applied to static analysis

Theorem (Courcelle)

For every k ∈ N and ϕ ∈ MSO one can construct an automaton
recognizing k-derivations yielding models of ϕ.

Corollary

For every k ∈ N, it is decidable if given ϕ ∈ MSO has a model of
clique-width at most k.

I Construct the automaton A for k and the formula ϕ;

I test emptiness of the automaton A (poly-time).



Datalog containment via bounded clique-width
[Bojańczyk, Murlak, Witkowski ’15]

Theorem
Let P,Q be monadic, linear Datalog programs without descendant.
If P ∧ ¬Q is satisfiable, it is satisfiable in a data tree of clique-width
at most 10 · ‖P‖2.

Corollary

Containment for linear monadic Datalog programs without
descendant is decidable.

I Rewrite monadic programs P,Q into ϕP , ϕQ ∈ MSO.

I Write ϕdatatree ∈ MSO saying that the structure is a data tree.

I Test satisfiability of ϕP ∧ ¬ϕQ ∧ ϕdatatree .

I For tight complexity, adjust Courcelle’s theorem to Datalog.
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Containment for downward Datalog
[Bojańczyk, Murlak, Witkowski ’15]

A monadic Datalog program is downward if in all rules for S(x),
all mentioned nodes are descendants of x .

Theorem
Let P,Q be downward Datalog programs. If P ∧ ¬Q is satisfiable,
it is satisfiable in a data tree of clique-width at most 5 · ‖P‖.

Corollary

Containment for downward Datalog programs is decidable.



Non-mixing constraints
[Czerwiński, David, Murlak, Parys ’16]

In database systems, correctness of data is expressed with integrity
constraints:

ϕ(x̄)⇒ α∼(x̄) and ϕ(x̄)⇒ α�(x̄)

with ϕ ∈ UCQ(child , desc ,Σ), α∼ ∈ UCQ(∼), α� ∈ UCQ(�).

Validity: Does each data tree of schema S satisfy set ∆ of
non-mixing constraints?

Entailment: Does each data tree of schema S that sastisfies ∆ also
satisfies constraint δ?

Theorem
Both problems allow counter-examples of bounded clique-width.
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Open problems

Containment of Datalog programs

I in the presence of a schema;

I with sibling order.

Non-mixing constraints with

I free use of comparisons with constants;

I Skolem functions.


