
Static analysis over tree-structured data
using graph decompositions

Filip Murlak

University of Warsaw, Poland

Contains joint work with Miko laj Bojańczyk, Wojciech Czerwiński,

Claire David, Filip Mazowiecki, Pawel Parys, and Adam Witkowski.

ALCOP 2017
Glasgow, Scotland

Problems

Old solutions

New solution

More problems with solutions

Some problems without solutions

Data

Data

Data trees

a, 2

c, 7

c , 3 b, 7

a, 1 a, 5

a, 1

b, 0

trees finite, unranked, ordered

labels a, b, c , . . . from a finite alphabet (tags)

data values 0, 1, 2, . . . from an infinite data domain (contents)

Schemas describe allowed shapes of data trees

Define several types of trees, each specified (recursively) by

I the label of the root,
I possible sequences of immediate subtree types (regexp);

and choose some of the types as allowed.

Example: a-only path from root to leaf, b’s elsewhere

I type τ : root label a, immediate subtree types σ∗τσ∗ + ε ;
I type σ: root label b, immediate subtree types σ∗ ;
I choose: τ .

Schemas describe allowed shapes of data trees

Define several types of trees, each specified (recursively) by

I the label of the root,
I possible sequences of immediate subtree types (regexp);

and choose some of the types as allowed.

Example: a-only path from root to leaf, b’s elsewhere

I type τ : root label a, immediate subtree types σ∗τσ∗ + ε ;
I type σ: root label b, immediate subtree types σ∗ ;
I choose: τ .

Conjunctive queries over data trees

a

a

c −→

a, 2

c , 7

c , 3 b, 7

a, 1 a, 5

a, 1

b, 0

∃x1 · · · ∃x5
child(x1, x2) ∧ child(x2, x3) ∧ child(x3, x4)∧

∧ desc(x1, x5) ∧ desc(x5, x4)∧
∧ a(x1) ∧ a(x4) ∧ c(x5)∧
∧ x2 ∼ x3

Datalog on data trees

a

a

...

a

b

c

c

c

a

c

b

p(x)← a(x)∧
desc(x , y) ∧ c(y) ∧ x ∼ y ∧
child(x , z) ∧ p(z)

p(x)← b(x)

extensional predicates child , desc , ∼, a, b, c , . . . ;

intensional predicates defined recursively using conjunctive queries;

monadic only unary intensional predicates;

linear at most one intensional atom per rule.

Static analysis problems

Satisfiability: Is query P (CQ, UCQ, Datalog, FO, etc.) satisfied in
some data tree (conforming to given schema)?

Equivalence: Are queries P,Q equivalent on all data trees?

Containment: Does P imply Q on all data trees?

The staple of data management: query optimization, consistency
tests, evaluation modulo constraints, constraint entailment, . . .

By Trakhtenbrot’s theorem, all undecidable for FO queries.

P sat iff not P⇔⊥ iff not P⇒⊥
P∧¬Q, Q∧¬P unsat iff P⇔Q iff P⇒Q, Q⇒P

P∧¬Q unsat iff P⇔P∧Q iff P⇒Q

Static analysis problems

Satisfiability: Is query P (CQ, UCQ, Datalog, FO, etc.) satisfied in
some data tree (conforming to given schema)?

Equivalence: Are queries P,Q equivalent on all data trees?

Containment: Does P imply Q on all data trees?

The staple of data management: query optimization, consistency
tests, evaluation modulo constraints, constraint entailment, . . .

By Trakhtenbrot’s theorem, all undecidable for FO queries.

P sat iff not P⇔⊥ iff not P⇒⊥
P∧¬Q, Q∧¬P unsat iff P⇔Q iff P⇒Q, Q⇒P

P∧¬Q unsat iff P⇔P∧Q iff P⇒Q

Problems

Old solutions

New solution

More problems with solutions

Some problems without solutions

Containment of CQs over arbitrary structures
[Chandra, Merlin ’77]

Def: Q ∈ CQ AQ : universe VarQ,
relations given by atoms of Q

Fact: A |= Q iff exists h : AQ → A

Thm: P ⇒ Q iff exists g : AQ → AP

AQ AP A

(⇐) If g : AQ → AP and h : AP → A, then h ◦ g : AQ → A.

(⇒) AP |= P and P ⇒ Q, so AP |= Q. Exists h : AQ → AP .

To decide containment, test existence of a homomorphism.

Containment of CQs over arbitrary structures
[Chandra, Merlin ’77]

Def: Q ∈ CQ AQ : universe VarQ,
relations given by atoms of Q

Fact: A |= Q iff exists h : AQ → A

Thm: P ⇒ Q iff exists g : AQ → AP

AQ AP A

(⇐) If g : AQ → AP and h : AP → A, then h ◦ g : AQ → A.

(⇒) AP |= P and P ⇒ Q, so AP |= Q. Exists h : AQ → AP .

To decide containment, test existence of a homomorphism.

Containment of CQs over arbitrary structures
[Chandra, Merlin ’77]

Def: Q ∈ CQ AQ : universe VarQ,
relations given by atoms of Q

Fact: A |= Q iff exists h : AQ → A

Thm: P ⇒ Q iff exists g : AQ → AP

AQ AP A

(⇐) If g : AQ → AP and h : AP → A, then h ◦ g : AQ → A.

(⇒) AP |= P and P ⇒ Q, so AP |= Q. Exists h : AQ → AP .

To decide containment, test existence of a homomorphism.

Containment for UCQs over trees without data
[Miklau, Suciu ’04]

Each UCQ is equivalent to a union of tree-shaped CQs:

ba c ≡
a b

c
∨

a c

b

For a tree shaped CQ π build an equivalent tree automaton:

I it computes bottom-up the set of matched subtrees of π;

I knowing which subtrees of π match at the children of node v or
strictly below, one can tell which match at v or strictly below.

Tree automata are effectively closed under Boolean combinations.

Test emptiness of the automaton corresponding to P ∧ ¬Q.

Containment for UCQs over trees without data
[Miklau, Suciu ’04]

Each UCQ is equivalent to a union of tree-shaped CQs:

ba c ≡
a b

c
∨

a c

b

For a tree shaped CQ π build an equivalent tree automaton:

I it computes bottom-up the set of matched subtrees of π;

I knowing which subtrees of π match at the children of node v or
strictly below, one can tell which match at v or strictly below.

Tree automata are effectively closed under Boolean combinations.

Test emptiness of the automaton corresponding to P ∧ ¬Q.

Containment for UCQs over trees without data
[Miklau, Suciu ’04]

Each UCQ is equivalent to a union of tree-shaped CQs:

ba c ≡
a b

c
∨

a c

b

For a tree shaped CQ π build an equivalent tree automaton:

I it computes bottom-up the set of matched subtrees of π;

I knowing which subtrees of π match at the children of node v or
strictly below, one can tell which match at v or strictly below.

Tree automata are effectively closed under Boolean combinations.

Test emptiness of the automaton corresponding to P ∧ ¬Q.

Containment for UCQs over data trees
[Björklund, Martens, Schwentick ’08]

Can restrict to trees with data values c1, . . . , c‖P‖ and distinct nulls.

I Let T be a tree satisfying P and not Q.

I P touches ≤ ‖P‖ data values in T ; replace with c1, . . . , c‖P‖.

I In each node not touched by P put a unique fresh data value.

I The resulting tree T ′ still satisfies P and not Q.

In such trees, x ∼ y holds iff either x = y or x ∼ ci and y ∼ ci .

By considering all possibilities, replace P,Q with P ′,Q ′ using only
x = y , x ∼ ci , y ∼ ci .

Check containment over the finite alphabet Σ× {⊥, c1, . . . , cn}.

Containment for UCQs over data trees
[Björklund, Martens, Schwentick ’08]

Can restrict to trees with data values c1, . . . , c‖P‖ and distinct nulls.

I Let T be a tree satisfying P and not Q.

I P touches ≤ ‖P‖ data values in T ; replace with c1, . . . , c‖P‖.

I In each node not touched by P put a unique fresh data value.

I The resulting tree T ′ still satisfies P and not Q.

In such trees, x ∼ y holds iff either x = y or x ∼ ci and y ∼ ci .

By considering all possibilities, replace P,Q with P ′,Q ′ using only
x = y , x ∼ ci , y ∼ ci .

Check containment over the finite alphabet Σ× {⊥, c1, . . . , cn}.

Equivalence for Datalog

Equivalence for Datalog is undecidable:

I with descendant [Abiteboul, Bourhis, Muscholl, Wu 2013]

I for non-linear programs [Mazowiecki, Murlak, Witkowski 2014]

I for non-monadic programs (descendant is easily simulated).

Theorem (Mazowiecki, Murlak, Witkowski 2014)

Equivalence for linear monadic Datalog without desc is decidable.

Can’t we restrict reused datavalues like before?

I Let T be a tree satisfying P and not Q.

I Then T satisfies some CQ P0, an unravelling of P.

I P0 touches ≤ ‖P0‖ data values in T , like before,

I but ‖P0‖ can be arbitrarily large...

Equivalence for Datalog

Equivalence for Datalog is undecidable:

I with descendant [Abiteboul, Bourhis, Muscholl, Wu 2013]

I for non-linear programs [Mazowiecki, Murlak, Witkowski 2014]

I for non-monadic programs (descendant is easily simulated).

Theorem (Mazowiecki, Murlak, Witkowski 2014)

Equivalence for linear monadic Datalog without desc is decidable.

Can’t we restrict reused datavalues like before?

I Let T be a tree satisfying P and not Q.

I Then T satisfies some CQ P0, an unravelling of P.

I P0 touches ≤ ‖P0‖ data values in T , like before,

I but ‖P0‖ can be arbitrarily large...

Equivalence for Datalog

Equivalence for Datalog is undecidable:

I with descendant [Abiteboul, Bourhis, Muscholl, Wu 2013]

I for non-linear programs [Mazowiecki, Murlak, Witkowski 2014]

I for non-monadic programs (descendant is easily simulated).

Theorem (Mazowiecki, Murlak, Witkowski 2014)

Equivalence for linear monadic Datalog without desc is decidable.

Can’t we restrict reused datavalues like before?

I Let T be a tree satisfying P and not Q.

I Then T satisfies some CQ P0, an unravelling of P.

I P0 touches ≤ ‖P0‖ data values in T , like before,

I but ‖P0‖ can be arbitrarily large...

Example

a

a b

a, 1 b, 2 a, 3 b, 4

b

ba

b, 8a, 7b, 6a, 5

c , 1 . . . c , 8

N = 3

P ← DOWN0(x)

DOWNi (x)← child(x , y) ∧ a(y) ∧ DOWNi+1(y)

DOWNN(x)← UPN(x) ∧ (N+1)-parent(x , y) ∧ child(y , z) ∧ c(z) ∧ x ∼ z

UPi (x)← a(x) ∧ parent(x , y) ∧ child(y , z) ∧ b(z) ∧ DOWNi (z)

UPi (x)← b(x) ∧ parent(x , y) ∧ UPi−1(y)

UP0(x)← true

Q ← x ∼ y ∧ i-parent(x , x ′) ∧ i-parent(y , y ′) ∧ a(x ′) ∧ b(y ′)

Problems

Old solutions

New solution

More problems with solutions

Some problems without solutions

Clique-width

Instead of processing structures, process their hierarchical
decompositions (derivations).

Construct (derive) coloured structures using operations:

i – create a new node of colour i ;

R(i1, . . . , ir) – add to R all tuples of nodes with colours (i1, . . . , ir);

i 7→ j – change colour i to j ;

⊕ – take disjoint union of two structures.

clique-width(A) = least number of colours sufficient to construct A

Examples

Linear orders: clique-width 2

yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

Paths: clique-width 3

Trees: clique-width 3

Cographs: clique-width 2

Distance-hereditary graphs: clique-width 3

Graphs of tree-width k : clique-width 3 · 2k−1

Examples

Linear orders: clique-width 2

yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

Paths: clique-width 3

Trees: clique-width 3

Cographs: clique-width 2

Distance-hereditary graphs: clique-width 3

Graphs of tree-width k : clique-width 3 · 2k−1

Examples

Linear orders: clique-width 2

yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

Paths: clique-width 3

Trees: clique-width 3

Cographs: clique-width 2

Distance-hereditary graphs: clique-width 3

Graphs of tree-width k : clique-width 3 · 2k−1

Examples

Linear orders: clique-width 2

yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

Paths: clique-width 3

Trees: clique-width 3

Cographs: clique-width 2

Distance-hereditary graphs: clique-width 3

Graphs of tree-width k : clique-width 3 · 2k−1

Examples

Linear orders: clique-width 2

yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

Paths: clique-width 3

Trees: clique-width 3

Cographs: clique-width 2

Distance-hereditary graphs: clique-width 3

Graphs of tree-width k : clique-width 3 · 2k−1

Examples

Linear orders: clique-width 2

yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

Paths: clique-width 3

Trees: clique-width 3

Cographs: clique-width 2

Distance-hereditary graphs: clique-width 3

Graphs of tree-width k : clique-width 3 · 2k−1

Examples

Linear orders: clique-width 2

yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

Paths: clique-width 3

Trees: clique-width 3

Cographs: clique-width 2

Distance-hereditary graphs: clique-width 3

Graphs of tree-width k : clique-width 3 · 2k−1

Examples

Linear orders: clique-width 2

yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

Paths: clique-width 3

Trees: clique-width 3

Cographs: clique-width 2

Distance-hereditary graphs: clique-width 3

Graphs of tree-width k : clique-width 3 · 2k−1

Examples

Linear orders: clique-width 2

yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

Paths: clique-width 3

Trees: clique-width 3

Cographs: clique-width 2

Distance-hereditary graphs: clique-width 3

Graphs of tree-width k : clique-width 3 · 2k−1

Examples

Linear orders: clique-width 2

yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

Paths: clique-width 3

Trees: clique-width 3

Cographs: clique-width 2

Distance-hereditary graphs: clique-width 3

Graphs of tree-width k : clique-width 3 · 2k−1

Examples

Linear orders: clique-width 2

yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

Paths: clique-width 3

Trees: clique-width 3

Cographs: clique-width 2

Distance-hereditary graphs: clique-width 3

Graphs of tree-width k : clique-width 3 · 2k−1

Examples

Linear orders: clique-width 2

yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

Paths: clique-width 3

Trees: clique-width 3

Cographs: clique-width 2

Distance-hereditary graphs: clique-width 3

Graphs of tree-width k : clique-width 3 · 2k−1

Examples

Linear orders: clique-width 2

yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

⊕

red

yellow ≤ red

red 7→ yellow

Paths: clique-width 3

Trees: clique-width 3

Cographs: clique-width 2

Distance-hereditary graphs: clique-width 3

Graphs of tree-width k : clique-width 3 · 2k−1

Bounded clique-width means simple

Many NP-complete problems are in P for graphs of bounded
clique-width.

Fixed-parameter tractable with clique-width as parameter:
time f (k) · nc on inputs of size n and clique-width at most k ,
where f is some function, and c is an absolute constant.

Hamiltonicity

Is there a path in graph G that visits each node exactly once?

3-colorability

Can nodes of the graph G be coloured so that each edge connects
nodes of different colours?

Courcelle’s theorem

Monadic second order logic (MSO)

ϕ,ψ ::= R(x1, . . . , xr) | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ∃x ϕ | ∀x ϕ |
| ∃X ϕ | ∀X ϕ | X (x)

3-colorability

∃X1 ∃X2 ∃X3 ∀x X1(x) ∨ X2(x) ∨ X3(x)

∧∀x ∀y E (x , y)⇒
∧
i

¬(Xi (x) ∧ Xi (y))

Theorem (Courcelle)

For every k ∈ N and ϕ ∈ MSO one can construct an automaton
recognizing k-derivations yielding models of ϕ.

Courcelle’s theorem applied to parametrized complexity

Theorem (Courcelle)

For every k ∈ N and ϕ ∈ MSO one can construct an automaton
recognizing k-derivations yielding models of ϕ.

Corollary

Each set of structures definable in MSO can be decided in polynomial
time over graphs of bounded cliquewidth.

I Compute k-derivation e for the input structure (poly-time);

I construct the automaton A for k and the defining formula ϕ;

I run the automaton A on e.

Courcelle’s theorem applied to static analysis

Theorem (Courcelle)

For every k ∈ N and ϕ ∈ MSO one can construct an automaton
recognizing k-derivations yielding models of ϕ.

Corollary

For every k ∈ N, it is decidable if given ϕ ∈ MSO has a model of
clique-width at most k.

I Construct the automaton A for k and the formula ϕ;

I test emptiness of the automaton A (poly-time).

Datalog containment via bounded clique-width
[Bojańczyk, Murlak, Witkowski ’15]

Theorem
Let P,Q be monadic, linear Datalog programs without descendant.
If P ∧ ¬Q is satisfiable, it is satisfiable in a data tree of clique-width
at most 10 · ‖P‖2.

Corollary

Containment for linear monadic Datalog programs without
descendant is decidable.

I Rewrite monadic programs P,Q into ϕP , ϕQ ∈ MSO.

I Write ϕdatatree ∈ MSO saying that the structure is a data tree.

I Test satisfiability of ϕP ∧ ¬ϕQ ∧ ϕdatatree .

I For tight complexity, adjust Courcelle’s theorem to Datalog.

Problems

Old solutions

New solution

More problems with solutions

Some problems without solutions

Containment for downward Datalog
[Bojańczyk, Murlak, Witkowski ’15]

A monadic Datalog program is downward if in all rules for S(x),
all mentioned nodes are descendants of x .

Theorem
Let P,Q be downward Datalog programs. If P ∧ ¬Q is satisfiable,
it is satisfiable in a data tree of clique-width at most 5 · ‖P‖.

Corollary

Containment for downward Datalog programs is decidable.

Non-mixing constraints
[Czerwiński, David, Murlak, Parys ’16]

In database systems, correctness of data is expressed with integrity
constraints:

ϕ(x̄)⇒ α∼(x̄) and ϕ(x̄)⇒ α�(x̄)

with ϕ ∈ UCQ(child , desc ,Σ), α∼ ∈ UCQ(∼), α� ∈ UCQ(�).

Validity: Does each data tree of schema S satisfy set ∆ of
non-mixing constraints?

Entailment: Does each data tree of schema S that sastisfies ∆ also
satisfies constraint δ?

Theorem
Both problems allow counter-examples of bounded clique-width.

Problems

Old solutions

New solution

More problems with solutions

Some problems without solutions

Open problems

Containment of Datalog programs

I in the presence of a schema;

I with sibling order.

Non-mixing constraints with

I free use of comparisons with constants;

I Skolem functions.

