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1. Moessner’s Theorem



Moessner’s Theorem (k = 2)

nat 1 2 3 4 5 6 7 8 9 10 11 12 · · ·

Drop2 1 3 5 7 9 11 · · ·

Σ 1 4 9 16 25 36 · · ·

=

nat2 12 22 32 42 52 62 · · ·
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Moessner’s Theorem (k = 3)

nat 1 2 3 4 5 6 7 8 9 10 11 12 · · ·

Drop3 1 2 4 5 7 8 10 11 · · ·

Σ 1 3 7 12 19 27 37 48 · · ·

Drop2 1 7 19 37 · · ·

Σ 1 8 27 64 · · ·

=

nat3 13 23 33 43 · · ·



Moessner’s Theorem (k = 4)

nat 1 2 3 4 5 6 7 8 9 10 11 · · ·

Drop4 1 2 3 5 6 7 9 10 11 · · ·

Σ 1 3 6 11 17 24 33 43 54 · · ·

Drop3 1 3 11 17 33 43 67 81 · · ·

Σ 1 4 15 32 65 108 175 · · ·

Drop2 1 15 65 175 · · ·

Σ 1 16 81 256 · · ·

= 14 24 34 44 · · ·



Moessner’s Theorem (k = 5)

nat 1 2 3 4 5 6 7 8 9 10 11 · · ·

Drop5 1 2 3 4 6 7 8 9 11 · · ·

Σ 1 3 6 10 16 23 31 40 51 · · ·

Drop4 1 3 6 16 23 31 51 · · ·

etc. . . .

= 15 25 35 45 · · ·



Moessner’s Theorem: history

• Conjectured by A. Moessner (1951),
first proved by O. Perron (1951),
generalised by I. Paasche (1952) and H. Salie (1952).

• Proof in functional programming by R. Hinze (2008, 2011).

• First coinductive proof by M. Niqui and J.R. (2011).

• New proof using multivariate generating functions,
by D. Kozen and A. Silva (2013).

• Formalisation in COQ
of the coinductive proof of M. Niqui and J.R.,
by R. Krebbers, L. Parlant and A. Silva (2016).



Moessner’s Theorem: history

• Today: a new coinductive proof (J.R. 2016, unpublished).

• Very simple, a student’s exercise.

• We prove that streams are the same by showing that they
behave the same.

• Cf. classical proofs use complicated bookkeeping,
involving binomial coefficients and falling factorials.



2. Streams and coinduction



Streams of natural numbers

Nω

〈head, tail〉
��

N× Nω

where

head(σ) = σ(0)

tail(σ) = (σ(1), σ(2), σ(3), . . .)

for any stream σ = (σ(0), σ(1), σ(2), . . .) ∈ Nω.



Streams of natural numbers

Nω

〈head, tail〉
��

N× Nω

where

head(σ) = σ(0)

tail(σ) = (σ(1), σ(2), σ(3), . . .)

which we will typically write as

head(σ) = σ(0) (initial value)
tail(σ) = σ′ (derivative)



Finality of streams

X

∀ 〈out, tr〉
��

∃! h // Nω

〈head, tail〉
��

N× X // N× Nω

The function h, defined by

h(x) = (out(x), out(tr(x)), out(tr(tr(x))), . . . )

is the unique function making the diagram commute.



Streams and bisimulation

A relation R ⊆ Nω × Nω is a stream bisimulation if

Nω

��

R
γ∃
��

π1oo
π2 // Nω

��

N× Nω N× Roo // N× Nω

Equivalently, R ⊆ Nω × Nω is a bisimulation if
for all (σ, τ) ∈ R:

(i) σ(0) = τ(0) and
(ii) (σ′, τ ′) ∈ R
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Streams and coinduction

A relation R ⊆ Nω × Nω is a bisimulation if
for all (σ, τ) ∈ R,

(i) σ(0) = τ(0) and
(ii) (σ′, τ ′) ∈ R

Theorem [Coinduction proof principle]

Let R ⊆ Nω × Nω be a bisimulation. For all streams σ, τ ∈ Nω,

(σ, τ) ∈ R ⇒ σ = τ

Proof: straightforward, by showing that σ(n) = τ(n), for all
n ≥ 0, by induction on n.
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Example

Define

zip : Nω × Nω → Nω even : Nω → Nω odd : Nω → Nω

by

zip(σ, τ) = (σ(0), τ(0), σ(1), τ(1), σ(2), τ(2), . . .)

even(σ) = (σ(0), σ(2), σ(4), . . .)

odd(σ) = (σ(1), σ(3), σ(5), . . .)

Their initial values and derivatives satisfy:

zip(σ, τ)(0) = σ(0) zip(σ, τ)′ = zip(τ, σ′)

even(σ)(0) = σ(0) even(σ)′ = even(σ′′)

odd(σ)(0) = σ(1) odd(σ)′ = odd(σ′′)
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A quick aside: definitions by coinduction

Equivalently: let the functions

zip : Nω × Nω → Nω even : Nω → Nω odd : Nω → Nω

be defined by the following stream differential equations:

zip(σ, τ)(0) = σ(0) zip(σ, τ)′ = zip(τ, σ′)

even(σ)(0) = σ(0) even(σ)′ = even(σ′′)

odd(σ)(0) = σ(1) odd(σ)′ = odd(σ′′)

Then we can show that

zip(σ, τ) = (σ(0), τ(0), σ(1), τ(1), σ(2), τ(2), . . .)

even(σ) = (σ(0), σ(2), σ(4), . . .)

odd(σ) = (σ(1), σ(3), σ(5), . . .)



Example: a proof by coinduction

Proposition: for all σ, τ ∈ Nω, even( zip(σ, τ) ) = σ

Proof: we define

R = { 〈 even( zip(σ, τ) ) , σ 〉 | σ, τ ∈ Nω }

and prove that R is a bisimulation. First note that

(i) even( zip(σ, τ) )(0) = zip(σ, τ)(0) = σ(0)

Then observe that

even(zip(σ, τ))′ = even(zip(σ, τ)′′) =

even(zip(τ, σ′)′) = even(zip(σ′, τ ′))

which implies: (ii) 〈even( zip(σ, τ) )′ , σ′ 〉 ∈ R.
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Example: a proof by coinduction

Proposition: for all σ, τ ∈ Nω, even( zip(σ, τ) ) = σ

Proof: we define

R = { 〈 even( zip(σ, τ) ) , σ 〉 | σ, τ ∈ Nω }

and prove that R is a bisimulation. First note that
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3. Formalising Moessner’s Theorem



Moessner’s theorem (k = 3)

nat 1 2 3 4 5 6 7 8 9 10 11 12 · · ·

Drop3 1 2 4 5 7 8 10 11 · · ·

Σ 1 3 7 12 19 27 37 48 · · ·

Drop2 1 7 19 37 · · ·

Σ 1 8 27 64 · · ·

=

nat3 13 23 33 43 · · ·
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nat = (1,2,3, . . .)

nat3 = (13,23,33, . . .) = nat� nat� nat

with

σ � τ = (σ(0) · τ(0), σ(1) · τ(1), σ(2) · τ(2), . . .)
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Formalising Moessner’s theorem (k = 3)
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On the right, we have:
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Formalising Moessner’s theorem (k = 3)

nat3 = Σ ◦ D2 ◦ Σ ◦ D3 (nat)

On the right, we have:

Σ σ = (σ(0), σ(0) + σ(1), σ(0) + σ(1) + σ(2), . . .)

D2 σ = (σ(0), σ(2), σ(4), . . .)

D3 σ = (σ(0), σ(1), σ(3), σ(4), σ(6), σ(7), . . .)



A more convenient formulation

nat3 = Σ ◦ D2 ◦ Σ ◦ D3 (nat)

= Σ ◦ D2 ◦ Σ ◦ D3 ◦ Σ ◦ D4 (1)

where
1 = (1,1,1, . . .)

since

Σ ◦ D4 (1) = Σ ◦ D4 (1,1,1, . . .)
= Σ (1,1,1, . . .)
= (1, 1 + 1, 1 + 1 + 1, . . .)
= (1,2,3, . . .)
= nat



A more convenient formulation

nat3 = Σ ◦ D2 ◦ Σ ◦ D3 (nat)

= Σ ◦ D2 ◦ Σ ◦ D3 ◦ Σ ◦ D4 (1)

where
1 = (1,1,1, . . .)

since

Σ ◦ D4 (1) = Σ ◦ D4 (1,1,1, . . .)
= Σ (1,1,1, . . .)
= (1, 1 + 1, 1 + 1 + 1, . . .)
= (1,2,3, . . .)
= nat



4. Proving Moessner’s Theorem



A proof by coinduction

nat3 = Σ ◦ D2 ◦ Σ ◦ D3 ◦ Σ ◦ D4 (1)

The aim is to construct a bisimulation relation containing the
pair

〈 nat3 , Σ ◦ D2 ◦ Σ ◦ D3 ◦ Σ ◦ D4 (1) 〉

Towards that end, let us investigate
the derivatives of the streams and operators above.

(Initial values will all be straightforward.)
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Inspecting derivatives

For the stream nat = (1,2,3, . . .), we have

nat′ = (2,3,4, . . .)
= (1 + 1, 1 + 2, 1 + 3, . . .)
= (1,1,1, . . .)⊕ (1,2,3, . . .)

= 1⊕ nat

where ⊕ denotes the elementwise sum of streams.



Inspecting derivatives

For the product σ � τ , we have

(σ � τ)′ = (σ(0) · τ(0), σ(1) · τ(1), σ(2) · τ(2), . . .)′

= (σ(1) · τ(1), σ(2) · τ(2), σ(3) · τ(3), . . .)

= σ′ � τ ′



Inspecting derivatives

These properties of nat′ and (σ � τ)′ imply:

(nat3)′ = (nat� nat� nat)′

= nat′ � nat′ � nat′

= (1⊕ nat)� (1⊕ nat)� (1⊕ nat)

=

(
3
0

)
· 1 ⊕

(
3
1

)
· nat ⊕

(
3
2

)
· nat2 ⊕

(
3
3

)
· nat3

using some elementary properties of ⊕ and �,
and defining k · σ by

k · σ = (k · σ(0), k · σ(1), k · σ(2), . . .)



Inspecting derivatives

nat3 = Σ ◦ D2 ◦ Σ ◦ D3 ◦ Σ ◦ D4 (1)

So for the stream on the left, we have:

(nat3)′ =

(
3
0

)
· 1 ⊕

(
3
1

)
· nat ⊕

(
3
2

)
· nat2 ⊕

(
3
3

)
· nat3



Inspecting derivatives

nat3 = Σ ◦ D2 ◦ Σ ◦ D3 ◦ Σ ◦ D4 (1)

Turning to the right hand side, we observe:

1
′

= 1



Inspecting derivatives

For the drop operators, we have

(D2 σ)′ = (σ(0), σ(2), σ(4), . . .)′

= (σ(2), σ(4), σ(6), . . .)

= D2 σ
′′

And, similarly,

(D3 σ)(2) = D3 σ
(3)

(D4 σ)(3) = D4 σ
(4)

where the repeated derivatives are defined as usual:

σ(0) = σ

σ(k+1) = (σ(k))′



Inspecting derivatives

For the drop operators, we have

(D2 σ)′ = (σ(0), σ(2), σ(4), . . .)′

= (σ(2), σ(4), σ(6), . . .)

= D2 σ
′′

And, similarly,

(D3 σ)(2) = D3 σ
(3)

(D4 σ)(3) = D4 σ
(4)

where the repeated derivatives are defined as usual:

σ(0) = σ

σ(k+1) = (σ(k))′



Inspecting derivatives

(Σ σ)′ = (σ(0), σ(0) + σ(1), σ(0) + σ(1) + σ(2), . . .)′

= (σ(0) + σ(1), σ(0) + σ(1) + σ(2), . . .)

= (σ(0), σ(0), σ(0), . . .) ⊕

(σ(1), σ(1) + σ(2), σ(1) + σ(2) + σ(3), . . .)

= σ(0) ⊕ Σ (σ′)

where

σ(0) = (σ(0), σ(0), σ(0), . . .)



Inspecting derivatives

Together, these properties imply:

( Σ ◦ D2 ◦ Σ ◦ D3 ◦ Σ ◦ D4 (1) )′

=

(
3
0

)
· 1

⊕
(

3
1

)
· Σ ◦ D2 (1)

⊕
(

3
2

)
· Σ ◦ D2 ◦ Σ ◦ D3 (1)

⊕
(

3
3

)
· Σ ◦ D2 ◦ Σ ◦ D3 ◦ Σ ◦ D4 (1)

(The details would fill 1 or 2 additional slides.)
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Proving Moessner’s theorem (k = 3)

nat3 = Σ ◦ D2 ◦ Σ ◦ D3 ◦ Σ ◦ D4 (1)

All in all, we have found:

(nat3)′ ( Σ ◦ D2 ◦ Σ ◦ D3 ◦ Σ ◦ D4 (1) )′

=

(
3
0

)
· 1 =

(
3
0

)
· 1

⊕
(

3
1

)
· nat ⊕

(
3
1

)
· Σ ◦ D2 (1)

⊕
(

3
2

)
· nat2 ⊕

(
3
2

)
· Σ ◦ D2 ◦ Σ ◦ D3 (1)

⊕
(

3
3

)
· nat3 ⊕

(
3
3

)
· Σ ◦ D2 ◦ Σ ◦ D3 ◦ Σ ◦ D4 (1)



Proving Moessner’s theorem (k = 3)

nat3 = Σ ◦ D2 ◦ Σ ◦ D3 ◦ Σ ◦ D4 (1)

All in all, we have found:

(nat3)′ ( Σ ◦ D2 ◦ Σ ◦ D3 ◦ Σ ◦ D4 (1) )′ M3′

=

(
3
0

)
· 1 =

(
3
0

)
· 1 M0

⊕
(

3
1

)
· nat ⊕

(
3
1

)
· Σ ◦ D2 (1) M1

⊕
(

3
2

)
· nat2 ⊕

(
3
2

)
· Σ ◦ D2 ◦ Σ ◦ D3 (1) M2

⊕
(

3
3

)
· nat3 ⊕

(
3
3

)
· Σ ◦ D2 ◦ Σ ◦ D3 ◦ Σ ◦ D4 (1) M3



Moessner’s theorem: the general case

natk = Σ ◦ D2 ◦ · · · ◦ Σ ◦ Dk+1 (1)

(natk )′ ( Σ ◦ D2 ◦ · · · ◦ Σ ◦ Dk+1 (1) )′ Mk′

=

(
k
0

)
· 1 =

(
k
0

)
· 1 M0

⊕
(

k
1

)
· nat1 ⊕

(
k
1

)
· Σ ◦ D2 (1) M1

⊕
(

k
2

)
· nat2 ⊕

(
k
2

)
· Σ ◦ D2 ◦ Σ ◦ D3 (1) M2

⊕ · · · ⊕ · · · · · ·

⊕
(

k
k

)
· natk ⊕

(
k
k

)
· Σ ◦ D2 ◦ · · · ◦ Σ ◦ Dk+1 (1) Mk



Moessner’s theorem: the general case

And so we define R ⊆ Nω × Nω by

R = { 〈 natk , Σ ◦ D2 ◦ · · · ◦ Σ ◦ Dk+1 (1) 〉 | k ≥ 0 }

Is R a bisimulation relation?

No, but almost: R is a bisimulation relation up to sum!
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Bisimulations up to sum

A relation R ⊆ Nω × Nω is a bisimulation relation up to sum if,
for all (σ, τ) ∈ R ,
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Coinduction up to sum

Theorem

Let R ⊆ Nω × Nω be a bisimulation up to sum.

∀σ, τ ∈ Nω : (σ, τ) ∈ R ⇒ σ = τ

Proof: We define Rc ⊆ Nω × Nω as the smallest relation s.t.

1. R ⊆ Rc

2. if (σ, τ) ∈ Rc then (n · σ, n · τ) ∈ Rc (all n ∈ N)
3. if (σ1, τ1) , (σ2, τ2) ∈ Rc then (σ1 ⊕ σ2, τ1 ⊕ τ2) ∈ Rc

It is easy to see that Rc is an (ordinary) bisimulation.
Now the theorem follows by (ordinary) coinduction.
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Moessner’s theorem: the general case

R = { 〈 natk , Σ ◦ D2 ◦ · · · ◦ Σ ◦ Dk+1 (1) 〉 | k ≥ 0 }
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5. The heart of the matter: circularity



Derivatives in a picture

σ // σ′ // σ(2) // σ(3) // · · ·

More generally, if

σ′ = n1 · σ1 ⊕ · · · ⊕ nl · σl

then we will write

σn1

��

nl

��
σ1 · · · σl
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Circularity

Since
1
′

= (1,1,1, . . .)′ = 1

we write:

1 // 1 // 1 // · · ·

or, equivalently,
1
yy



Circularity

Since for the stream nat = (1,2,3, . . .), we have

nat′ = (2,3,4, . . .)
= (1 + 1, 1 + 2, 1 + 3, . . .)
= (1,1,1, . . .)⊕ (1,2,3, . . .)

= 1⊕ nat (algebra and coalgebra!)

we have

nat // 1⊕ nat // 1⊕ 1⊕ nat // · · ·

and, equivalently,

nat1
++ 1 // 1 1ee
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Circularity

And similarly, we have found
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The proof of Moessner, in other words

natk = Σ ◦ D2 ◦ · · · ◦ Σ ◦ Dk+1 (1)

Both streams are the same . . .

because they behave the same . . .

because they are represented by:

s0
(0

0

) ''

s1

(1
0

)
oo

(1
1

)
��

· · ·
(2

1

)
oo sk

(k
k

)
��

( k
k−1

)
oo(k

1

)kk

(k
0

)
dd

the same weighted automaton.
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6. Paasche’s Theorem

Dropping at increasing distance as in

drop (1,2,3,4,5,6,7,8,9, . . .) = (1, 6 2,3,4, 6 5,6,7,8, 6 9, . . .)



1 2 3 4 5 6 7 8 9 10 11 · · ·

der 2 3 4 5 6 7 8 9 10 11 12 · · ·
drop 2 4 5 7 8 9 11 12 13 14 16 · · ·
Σ 2 6 11 18 26 35 46 58 71 85 101 · · ·

der 6 11 18 26 35 46 58 71 85 101 · · ·
drop 6 18 26 46 58 · · ·
Σ 6 24 50 96 · · ·

der 24 50 96 · · ·
drop 24 96 · · ·
Σ 24 120 · · ·

der 120 · · ·
...
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7. Discussion

• We take streams σ as basic entities, instead of focussing
on their individual elements σ(n).

• This prevents lots of unnecessary bookkeeping (cf.
binomial coefficients).

• The (final) coalgebra structure of the set of streams has a
natural interpretation in terms of a calculus, in analogy to
classical calculus.

• There is initial evidence that this leads to efficient proofs
that can be easily automated.
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