

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment

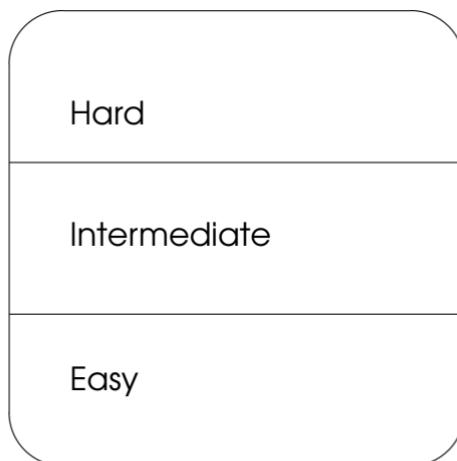
Frank Wolter

University of Liverpool

Based on joint work with A. Hernich, C. Lutz and F. Papacchini (PODS 2017)

Dichotomy Theorems

Given a class of problems, we would like to classify them into the hard and the easy problems. Ideally, there shouldn't be any intermediate problems.

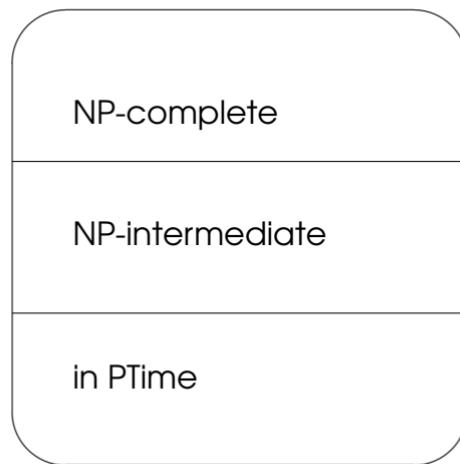


We focus on P/NP Dichotomy Theorems

By Ladner's Theorem, there are NP-intermediate problems (if $P \neq NP$).

Moreover, being in P is undecidable for problems in NP (if $P \neq NP$).

Thus, we can expect P/NP dichotomy theorems only for rather restricted classes of problems.



Homomorphism (or CSP) Problems

Consider an undirected graph H . How hard is the following problem:

- Input: an undirected graph G .
- Question: is there a homomorphism h from G to H ?

$((h(a), h(b))$ is an edge in H if (a, b) is an edge in G .)

Homomorphism (or CSP) Problems

Consider an undirected graph H . How hard is the following problem:

- Input: an undirected graph G .
- Question: is there a homomorphism h from G to H ?

$((h(a), h(b))$ is an edge in H if (a, b) is an edge in G .)

- if H is a single self-loop?

Homomorphism (or CSP) Problems

Consider an undirected graph H . How hard is the following problem:

- Input: an undirected graph G .
- Question: is there a homomorphism h from G to H ?

$((h(a), h(b))$ is an edge in H if (a, b) is an edge in G .)

- if H is a single self-loop?
- if $H = K_2$ (K_2 complete graph on two vertices)?

Homomorphism (or CSP) Problems

Consider an undirected graph H . How hard is the following problem:

- Input: an undirected graph G .
- Question: is there a homomorphism h from G to H ?

(($h(a), h(b)$) is an edge in H if (a, b) is an edge in G .)

- if H is a single self-loop?
- if $H = K_2$ (K_2 complete graph on two vertices)?
- if $H = K_3$?

Homomorphism (or CSP) Problems

Consider an undirected graph H . How hard is the following problem:

- Input: an undirected graph G .
- Question: is there a homomorphism h from G to H ?

$((h(a), h(b))$ is an edge in H if (a, b) is an edge in G .)

- if H is a single self-loop?
- if $H = K_2$ (K_2 complete graph on two vertices)?
- if $H = K_3$?

Hell and Nešetřil (1990): This problem is in PTime iff H contains a self-loop or is bipartite. Otherwise this problem is NP-complete.

Generalization to Relational Structures (CSP)

Let \mathcal{H} be a finite relational structure (also called template). The constraint satisfaction problem for \mathcal{H} ,

$\text{CSP}(\mathcal{H})$

is the following decision problem:

- Input: a finite relational structure \mathcal{D} .
- Question: is there a homomorphism from \mathcal{D} to \mathcal{H} ?

Generalization to Relational Structures (CSP)

Let \mathcal{H} be a finite relational structure (also called template). The constraint satisfaction problem for \mathcal{H} ,

$\text{CSP}(\mathcal{H})$

is the following decision problem:

- Input: a finite relational structure \mathcal{D} .
- Question: is there a homomorphism from \mathcal{D} to \mathcal{H} ?

Feder-Vardi Conjecture (1993): There is a P/NP dichotomy for CSPs. Equivalently, there is such a dichotomy for digraphs.

Generalization to Relational Structures (CSP)

Let \mathcal{H} be a finite relational structure (also called template). The constraint satisfaction problem for \mathcal{H} ,

$\text{CSP}(\mathcal{H})$

is the following decision problem:

- Input: a finite relational structure \mathcal{D} .
- Question: is there a homomorphism from \mathcal{D} to \mathcal{H} ?

Feder-Vardi Conjecture (1993): There is a P/NP dichotomy for CSPs. Equivalently, there is such a dichotomy for digraphs.

Lots of progress over the past 20 years (mainly due to algebraic reformulation):

- Early result: There is a P/NP Dichotomy for CSPs with two elements (Schaefer 1978).
- Example: There is a P/NP Dichotomy for CSPs with three elements (Bulatov 2006).

Ontology Mediated Querying of Data (Example 1)

- **Data \mathcal{D}** : finite set of ground atoms (often regarded as finite relational structure); e.g.,

`LiverpoolAcademic(peter), HasLiverpoollId(sue, Liv123)`

Ontology Mediated Querying of Data (Example 1)

- **Data** \mathcal{D} : finite set of ground atoms (often regarded as finite relational structure); e.g.,

`LiverpoolAcademic(peter), HasLiverpoollId(sue, Liv123)`

- **Ontology** \mathcal{O} : a finite set of FO-sentences; e.g.,

$\forall x \text{ (LiverpoolAcademic}(x) \rightarrow \exists y \text{ HasLiverpoollId}(x, y))$

Ontology Mediated Querying of Data (Example 1)

- **Data** \mathcal{D} : finite set of ground atoms (often regarded as finite relational structure); e.g.,

`LiverpoolAcademic(peter), HasLiverpoollId(sue, Liv123)`

- **Ontology** \mathcal{O} : a finite set of FO-sentences; e.g.,

$\forall x \text{ (LiverpoolAcademic}(x) \rightarrow \exists y \text{ HasLiverpoollId}(x, y))$

- **Query** $q(\vec{x})$: an FO-formula; e.g.,

$q(x) = \exists y \text{ HasLiverpoollId}(x, y)$

Ontology Mediated Querying of Data (Example 1)

- **Data** \mathcal{D} : finite set of ground atoms (often regarded as finite relational structure); e.g.,

`LiverpoolAcademic(peter), HasLiverpoollId(sue, Liv123)`

- **Ontology** \mathcal{O} : a finite set of FO-sentences; e.g.,

$\forall x \text{ (LiverpoolAcademic}(x) \rightarrow \exists y \text{ HasLiverpoollId}(x, y))$

- **Query** $q(\vec{x})$: an FO-formula; e.g.,

$q(x) = \exists y \text{ HasLiverpoollId}(x, y)$

A tuple $\vec{a} \in \text{dom}(\mathcal{D})$ is a **certain answer** for q and \mathcal{O} over \mathcal{D} if

$\mathcal{D} \cup \mathcal{O} \models q(\vec{a})$

Ontology Mediated Querying of Data (Example 1)

- **Data** \mathcal{D} : finite set of ground atoms (often regarded as finite relational structure); e.g.,

LiverpoolAcademic(peter), **HasLiverpoollId(sue, Liv123)**

- **Ontology** \mathcal{O} : a finite set of FO-sentences; e.g.,

$\forall x \text{ (LiverpoolAcademic}(x) \rightarrow \exists y \text{ HasLiverpoollId}(x, y))$

- **Query** $q(\vec{x})$: an FO-formula; e.g.,

$q(x) = \exists y \text{ HasLiverpoollId}(x, y)$

A tuple $\vec{a} \in \text{dom}(\mathcal{D})$ is a **certain answer** for q and \mathcal{O} over \mathcal{D} if

$$\mathcal{D} \cup \mathcal{O} \models q(\vec{a})$$

Here

$$\mathcal{D} \cup \mathcal{O} \models q(a) \Leftrightarrow a \in \{\text{sue, peter}\}$$

Ontology Mediated Querying of Data (Reachability)

- **Ontology \mathcal{O} :**

$$\{\forall x \ (\exists y \ (\mathbf{H}(y) \wedge \mathbf{parent}(x, y)) \rightarrow \mathbf{H}(x))\}$$

Ontology Mediated Querying of Data (Reachability)

- **Ontology \mathcal{O} :**

$$\{\forall x \ (\exists y \ (\mathbf{H}(y) \wedge \mathbf{parent}(x, y)) \rightarrow \mathbf{H}(x))\}$$

- **Query q :**

$$q(x) = \mathbf{H}(x)$$

Ontology Mediated Querying of Data (Reachability)

- **Ontology \mathcal{O} :**

$$\{\forall x \ (\exists y \ (\mathbf{H}(y) \wedge \mathbf{parent}(x, y)) \rightarrow \mathbf{H}(x))\}$$

- **Query q :**

$$q(x) = \mathbf{H}(x)$$

- **Data \mathcal{D} :**

$$\mathbf{parent}(b_0, b_1), \dots, \mathbf{parent}(b_5, b_6), \quad \mathbf{H}(b_6)$$

Ontology Mediated Querying of Data (Reachability)

- **Ontology \mathcal{O} :**

$$\{\forall x (\exists y (\mathbf{H}(y) \wedge \mathbf{parent}(x, y)) \rightarrow \mathbf{H}(x))\}$$

- **Query q :**

$$q(x) = \mathbf{H}(x)$$

- **Data \mathcal{D} :**

$$\mathbf{parent}(b_0, b_1), \dots, \mathbf{parent}(b_5, b_6), \quad \mathbf{H}(b_6)$$

- **Certain answers** for $q(x)$ and \mathcal{O} over \mathcal{D} are:

$$\mathcal{D} \cup \mathcal{O} \models q(a) \iff a \in \{b_0, b_1, b_2, b_3, b_4, b_5, b_6\}.$$

Ontology Mediated Querying of Data (Colorability)

- **Ontology \mathcal{O} :**
 - $\forall x (\mathbf{red}(x) \vee \mathbf{blue}(x) \vee \mathbf{green}(x))$.
 - $\forall x (\mathbf{red}(x) \wedge E(x, y) \wedge \mathbf{red}(y) \rightarrow \mathbf{clash}(x))$ (same for **blue**, **green**).

Ontology Mediated Querying of Data (Colorability)

- **Ontology** \mathcal{O} :

- $\forall x (\mathbf{red}(x) \vee \mathbf{blue}(x) \vee \mathbf{green}(x))$.
- $\forall x (\mathbf{red}(x) \wedge E(x, y) \wedge \mathbf{red}(y) \rightarrow \mathbf{clash}(x))$ (same for **blue**, **green**).

- **Query** q :

$$q() = \exists x \mathbf{clash}(x)$$

Ontology Mediated Querying of Data (Colorability)

- **Ontology** \mathcal{O} :

- $\forall x (\mathbf{red}(x) \vee \mathbf{blue}(x) \vee \mathbf{green}(x))$.
- $\forall x (\mathbf{red}(x) \wedge E(x, y) \wedge \mathbf{red}(y) \rightarrow \mathbf{clash}(x))$ (same for **blue**, **green**).

- **Query** q :

$$q() = \exists x \mathbf{clash}(x)$$

- **Data** \mathcal{D} : undirected graph

$$\mathcal{D} = (W, E)$$

Ontology Mediated Querying of Data (Colorability)

- **Ontology** \mathcal{O} :

- $\forall x (\mathbf{red}(x) \vee \mathbf{blue}(x) \vee \mathbf{green}(x))$.
- $\forall x (\mathbf{red}(x) \wedge E(x, y) \wedge \mathbf{red}(y) \rightarrow \mathbf{clash}(x))$ (same for **blue**, **green**).

- **Query** q :

$$q() = \exists x \mathbf{clash}(x)$$

- **Data** \mathcal{D} : undirected graph

$$\mathcal{D} = (W, E)$$

- **Certain Answers** to q and \mathcal{O} over \mathcal{D} :

$$\mathcal{O} \cup \mathcal{D} \models q \quad \text{iff} \quad \mathcal{D} \text{ is not 3-colorable}$$

Ontology Mediated Querying of Data (Colorability)

- **Ontology** \mathcal{O} :

- $\forall x (\mathbf{red}(x) \vee \mathbf{blue}(x) \vee \mathbf{green}(x))$.
- $\forall x (\mathbf{red}(x) \wedge E(x, y) \wedge \mathbf{red}(y) \rightarrow \mathbf{clash}(x))$ (same for **blue**, **green**).

- **Query** q :

$$q() = \exists x \mathbf{clash}(x)$$

- **Data** \mathcal{D} : undirected graph

$$\mathcal{D} = (W, E)$$

- **Certain Answers** to q and \mathcal{O} over \mathcal{D} :

$$\mathcal{O} \cup \mathcal{D} \models q \quad \text{iff} \quad \mathcal{D} \text{ is not 3-colorable}$$

- One can do this for every CSP(\mathcal{H}).

Relevant Languages for Ontology-Mediated Querying

Lots of results over the past 15 years on the complexity of deciding

$$\mathcal{D} \cup \mathcal{O} \models q(\vec{a}),$$

Relevant Languages for Ontology-Mediated Querying

Lots of results over the past 15 years on the complexity of deciding

$$\mathcal{D} \cup \mathcal{O} \models q(\vec{a}),$$

where q typically a **conjunctive query** (or **primitive positive sentence**), that is an FO-sentence of the form:

$$\exists \vec{x} \bigwedge_{i \in I} R_i(\vec{x}_i)$$

Relevant Languages for Ontology-Mediated Querying

Lots of results over the past 15 years on the complexity of deciding

$$\mathcal{D} \cup \mathcal{O} \models q(\vec{a}),$$

where q typically a **conjunctive query** (or **primitive positive sentence**), that is an FO-sentence of the form:

$$\exists \vec{x} \bigwedge_{i \in I} R_i(\vec{x}_i)$$

\mathcal{O} often in a fragment of the **guarded fragment (GF)** of FO only admit guarded quantifiers

$$\forall \vec{y}(\alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y})), \quad \exists \vec{y}(\alpha(\vec{x}, \vec{y}) \wedge \varphi(\vec{x}, \vec{y}))$$

where $\varphi(\vec{x}, \vec{y})$ is in GF and $\alpha(\vec{x}, \vec{y})$ is an atomic formula containing all variables in $\vec{x} \cup \vec{y}$.

Relevant Languages for Ontology-Mediated Querying

Lots of results over the past 15 years on the complexity of deciding

$$\mathcal{D} \cup \mathcal{O} \models q(\vec{a}),$$

where q typically a **conjunctive query** (or **primitive positive sentence**), that is an FO-sentence of the form:

$$\exists \vec{x} \bigwedge_{i \in I} R_i(\vec{x}_i)$$

\mathcal{O} often in a fragment of the **guarded fragment (GF)** of FO only admit guarded quantifiers

$$\forall \vec{y}(\alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y})), \quad \exists \vec{y}(\alpha(\vec{x}, \vec{y}) \wedge \varphi(\vec{x}, \vec{y}))$$

where $\varphi(\vec{x}, \vec{y})$ is in GF and $\alpha(\vec{x}, \vec{y})$ is an atomic formula containing all variables in $\vec{x} \cup \vec{y}$.

GF inherits many nice properties from modal and description logics.

Relevant Languages for Ontology-Mediated Querying

Lots of results over the past 15 years on the complexity of deciding

$$\mathcal{D} \cup \mathcal{O} \models q(\vec{a}),$$

where q typically a **conjunctive query** (or **primitive positive sentence**), that is an FO-sentence of the form:

$$\exists \vec{x} \bigwedge_{i \in I} R_i(\vec{x}_i)$$

\mathcal{O} often in a fragment of the **guarded fragment (GF)** of FO only admit guarded quantifiers

$$\forall \vec{y}(\alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y})), \quad \exists \vec{y}(\alpha(\vec{x}, \vec{y}) \wedge \varphi(\vec{x}, \vec{y}))$$

where $\varphi(\vec{x}, \vec{y})$ is in GF and $\alpha(\vec{x}, \vec{y})$ is an atomic formula containing all variables in $\vec{x} \cup \vec{y}$.

GF inherits many nice properties from modal and description logics.

We also consider the **2-variable guarded fragment of FO with counting (GC₂)**:

$$\forall x(x = x \rightarrow (\exists^{\geq 200} y \text{ author_of}(x, y) \rightarrow \text{ProlificAuthor}(x)))$$

Some Complexity Results

Deciding

$$\mathcal{D} \cup \mathcal{O} \models q(\vec{a})$$

for q a conjunctive query and

- \mathcal{O} empty: NP-complete (homomorphism problem).

Some Complexity Results

Deciding

$$\mathcal{D} \cup \mathcal{O} \models q(\vec{a})$$

for q a conjunctive query and

- \mathcal{O} empty: NP-complete (homomorphism problem).
- \mathcal{O} in GF or GC_2 : 2ExpTime-complete (Baranyi et al 2010).

Some Complexity Results

Deciding

$$\mathcal{D} \cup \mathcal{O} \models q(\vec{a})$$

for q a conjunctive query and

- \mathcal{O} empty: NP-complete (homomorphism problem).
- \mathcal{O} in GF or GC_2 : 2ExpTime-complete (Baranyi et al 2010).
- \mathcal{O} in 2-variable fragment of FO: undecidable (Rosati 2007).

Some Complexity Results

Deciding

$$\mathcal{D} \cup \mathcal{O} \models q(\vec{a})$$

for q a conjunctive query and

- \mathcal{O} empty: NP-complete (homomorphism problem).
- \mathcal{O} in GF or GC_2 : 2ExpTime-complete (Baranyi et al 2010).
- \mathcal{O} in 2-variable fragment of FO: undecidable (Rosati 2007).

Slightly misleading!

Data Complexity

When deciding

$$\mathcal{D} \cup \mathcal{O} \models q(\vec{a})$$

assume that \mathcal{O} and q are **small** and \mathcal{D} is **large**.

Data Complexity

When deciding

$$\mathcal{D} \cup \mathcal{O} \models q(\vec{a})$$

assume that \mathcal{O} and q are **small** and \mathcal{D} is **large**.

Then it is reasonable to assume that

- \mathcal{O} and q are fixed and \mathcal{D} is the only input; thus focus on **data complexity**.

Data Complexity

When deciding

$$\mathcal{D} \cup \mathcal{O} \models q(\vec{a})$$

assume that \mathcal{O} and q are **small** and \mathcal{D} is **large**.

Then it is reasonable to assume that

- \mathcal{O} and q are fixed and \mathcal{D} is the only input; thus focus on **data complexity**.

We obtain:

- \mathcal{O} empty: AC_0 .

Data Complexity

When deciding

$$\mathcal{D} \cup \mathcal{O} \models q(\vec{a})$$

assume that \mathcal{O} and q are **small** and \mathcal{D} is **large**.

Then it is reasonable to assume that

- \mathcal{O} and q are fixed and \mathcal{D} is the only input; thus focus on **data complexity**.

We obtain:

- \mathcal{O} empty: AC_0 .
- \mathcal{O} in GF or GC_2 : coNP-complete (Baranyi et al 2010).

Data Complexity

When deciding

$$\mathcal{D} \cup \mathcal{O} \models q(\vec{a})$$

assume that \mathcal{O} and q are **small** and \mathcal{D} is **large**.

Then it is reasonable to assume that

- \mathcal{O} and q are fixed and \mathcal{D} is the only input; thus focus on **data complexity**.

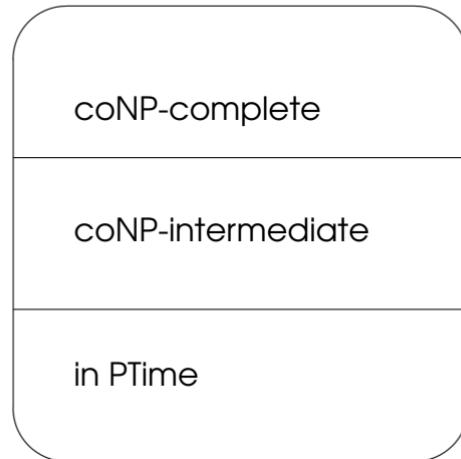
We obtain:

- \mathcal{O} empty: AC_0 .
- \mathcal{O} in GF or GC_2 : coNP -complete (Baranyi et al 2010).

For data complexity coNP -hardness is very bad news! It has become a huge industry to determine fragments of GF and GC_2 in PTime (or even better FO or **datalog rewritable fragments**)

P/coNP Dichotomy Theorems for Ontology Mediated Querying in GF and GC₂

- **\mathcal{O} is in PTime** if for every conjunctive query q deciding $\mathcal{O} \cup \mathcal{D} \models q$ is in PTime in data complexity.
- **\mathcal{O} is coNP-hard** if there exists a conjunctive query q such that deciding $\mathcal{O} \cup \mathcal{D} \models q$ is coNP-hard in data complexity.



Relevant Fragments

We consider the fragments uGF and uGC_2 of GF and GC_2 which are **invariant under disjoint unions**.

Relevant Fragments

We consider the fragments uGF and uGC₂ of GF and GC₂ which are **invariant under disjoint unions**.

Modulo logical equivalence uGF and uGC₂ sentences take the form

$$\forall x(x = x \rightarrow \varphi(x)), \quad \forall \vec{x}(R(\vec{x}) \rightarrow \varphi(\vec{x}))$$

where φ contains no closed subformulas and does not use equality as a guard.

Relevant Fragments

We consider the fragments uGF and uGC₂ of GF and GC₂ which are **invariant under disjoint unions**.

Modulo logical equivalence uGF and uGC₂ sentences take the form

$$\forall x(x = x \rightarrow \varphi(x)), \quad \forall \vec{x}(R(\vec{x}) \rightarrow \varphi(\vec{x}))$$

where φ contains no closed subformulas and does not use equality as a guard.

The **depth** of a uGF or uGC₂ sentence is the number of nestings of guarded quantifiers without the outermost universal guarded quantifier. The following sentence has depth 1:

$$\forall x(x = x \rightarrow \forall y(\mathbf{author_of}(x, y) \rightarrow \mathbf{Book}(y)))$$

Relevant Fragments

We consider the fragments uGF and uGC_2 of GF and GC_2 which are **invariant under disjoint unions**.

Modulo logical equivalence uGF and uGC_2 sentences take the form

$$\forall x(x = x \rightarrow \varphi(x)), \quad \forall \vec{x}(R(\vec{x}) \rightarrow \varphi(\vec{x}))$$

where φ contains no closed subformulas and does not use equality as a guard.

The **depth** of a uGF or uGC_2 sentence is the number of nestings of guarded quantifiers without the outermost universal guarded quantifier. The following sentence has depth 1:

$$\forall x(x = x \rightarrow \forall y(\text{author_of}(x, y) \rightarrow \text{Book}(y)))$$

In uGF^- and uGC_2^- we admit only $x = x$ as the outermost guard.

Relevant Fragments

We consider the fragments uGF and uGC₂ of GF and GC₂ which are **invariant under disjoint unions**.

Modulo logical equivalence uGF and uGC₂ sentences take the form

$$\forall x(x = x \rightarrow \varphi(x)), \quad \forall \vec{x}(R(\vec{x}) \rightarrow \varphi(\vec{x}))$$

where φ contains no closed subformulas and does not use equality as a guard.

The **depth** of a uGF or uGC₂ sentence is the number of nestings of guarded quantifiers without the outermost universal guarded quantifier. The following sentence has depth 1:

$$\forall x(x = x \rightarrow \forall y(\mathbf{author_of}(x, y) \rightarrow \mathbf{Book}(y)))$$

In **uGF⁻** and **uGC₂⁻** we admit only $x = x$ as the outermost guard.

385 out of 411 ontologies in the **Bioportal** repository are in GC₂⁻ (depth 1)

Illustration (all in $\mathbf{GC}_2^-(1)$)

- The ontology

$$\mathcal{O}_1 = \{\forall x (\exists^{\geq 200} y \text{ author_of}(x, y) \rightarrow \mathbf{ProlificWriter}(x))\}$$

is in PTime.

Illustration (all in $\text{GC}_2^-(1)$)

- The ontology

$$\mathcal{O}_1 = \{\forall x(\exists^{\geq 200} y \text{ author_of}(x, y) \rightarrow \text{ProlificWriter}(x))\}$$

is in PTime.

- The ontology

$$\mathcal{O}_2 = \{\forall x(\text{Writer}(x) \rightarrow \exists y(\text{author_of}(x, y) \wedge \text{Book}(y)))\}$$

is in PTime.

Illustration (all in $\text{GC}_2^-(1)$)

- The ontology

$$\mathcal{O}_1 = \{\forall x(\exists y^{>200} \mathbf{author_of}(x, y) \rightarrow \mathbf{ProlificWriter}(x))\}$$

is in PTime.

- The ontology

$$\mathcal{O}_2 = \{\forall x(\mathbf{Writer}(x) \rightarrow \exists y(\mathbf{author_of}(x, y) \wedge \mathbf{Book}(y)))\}$$

is in PTime.

- The ontology $\mathcal{O}_1 \cup \mathcal{O}_2$ is coNP-hard.

Illustration (all in $\text{GC}_2^-(1)$)

- The ontology

$$\mathcal{O}_1 = \{\forall x(\exists^{\geq 200} y \text{ author_of}(x, y) \rightarrow \text{ProlificWriter}(x))\}$$

is in PTime.

- The ontology

$$\mathcal{O}_2 = \{\forall x(\text{Writer}(x) \rightarrow \exists y(\text{author_of}(x, y) \wedge \text{Book}(y)))\}$$

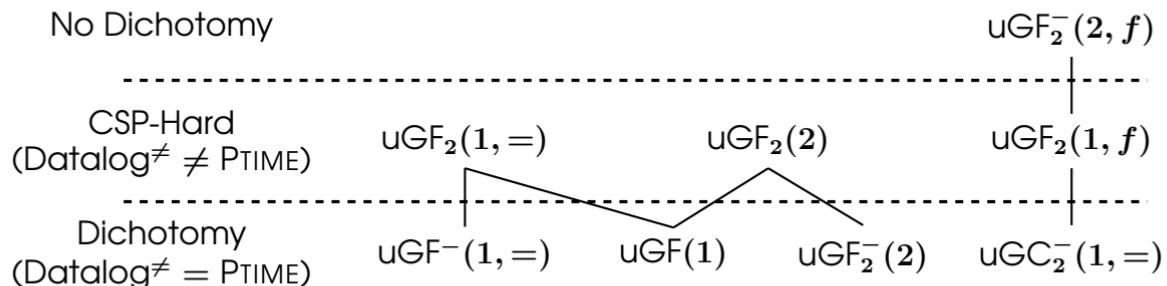
is in PTime.

- The ontology $\mathcal{O}_1 \cup \mathcal{O}_2$ is coNP-hard.
- The ontology

$$\mathcal{O}_1 \cup \mathcal{O}_2 \cup \{\forall xy(\text{author_of}(x, y) \rightarrow \text{Book}(y))\}$$

is again in PTime.

Summary of Results



Number in brackets indicates

- depth,
- f presence of partial functions,
- \cdot_2 restriction to two variables,
- \cdot^- restricts outermost guards to be equality.

Necessary condition for PTime: Materializability

An ontology \mathcal{O} is **materializable** if for every \mathcal{D} there exists a model \mathcal{A} of $\mathcal{O} \cup \mathcal{D}$ such that for all conjunctive queries q :

$$\mathcal{O} \cup \mathcal{D} \models q \Leftrightarrow \mathcal{A} \models q$$

Necessary condition for PTime: Materializability

An ontology \mathcal{O} is **materializable** if for every \mathcal{D} there exists a model \mathcal{A} of $\mathcal{O} \cup \mathcal{D}$ such that for all conjunctive queries q :

$$\mathcal{O} \cup \mathcal{D} \models q \Leftrightarrow \mathcal{A} \models q$$

Let \mathcal{O} be an FO ontology invariant under disjoint unions. If \mathcal{O} is not materializable, then \mathcal{O} is coNP-hard.

Materializability is not a sufficient for PTime

We construct a materializable ontology from the ontology \mathcal{O} encoding three-colorability:

- $\forall x (\mathbf{red}(x) \vee \mathbf{blue}(x) \vee \mathbf{green}(x))$.
- $\forall x (\mathbf{red}(x) \wedge E(x, y) \wedge \mathbf{red}(y) \rightarrow \mathbf{clash}(x))$ (same for **blue**, **green**).

Clearly \mathcal{O} itself is not materializable.

Replace **red**(x), **blue**(x), and **green**(x) by complex formulas that are not directly visible to conjunctive queries, e.g.

$$\exists y (R_{\mathbf{red}}(x, y) \wedge \forall z (S_{\mathbf{red}}(y, z) \rightarrow \mathbf{red}(z)))$$

Then the resulting ontology is still coNP-hard but materializable.

A sufficient condition for PTime (even datalog-rewritability)

Every relational structure \mathcal{D} can be unravelled into a

guarded tree-decomposable

structure \mathcal{D}^* (sometimes also called **acyclic**).

A sufficient condition for PTime (even datalog-rewritability)

Every relational structure \mathcal{D} can be unravelled into a

guarded tree-decomposable

structure \mathcal{D}^* (sometimes also called acyclic).

This unravelling preserves formulas in GF and GC_2 .

A sufficient condition for PTime (even datalog-rewritability)

Every relational structure \mathcal{D} can be unravelled into a

guarded tree-decomposable

structure \mathcal{D}^* (sometimes also called **acyclic**).

This unravelling preserves formulas in GF and GC₂.

An ontology \mathcal{O} is **unravelling tolerant** if for every \mathcal{D} the following holds for the unravelling \mathcal{D}^* of \mathcal{D} : for all acyclic conjunctive queries q :

$$\mathcal{O} \cup \mathcal{D} \models q \Leftrightarrow \mathcal{O} \cup \mathcal{D}^* \models q$$

A sufficient condition for PTime (even datalog-rewritability)

Every relational structure \mathcal{D} can be unravelled into a

guarded tree-decomposable

structure \mathcal{D}^* (sometimes also called **acyclic**).

This unravelling preserves formulas in GF and GC_2 .

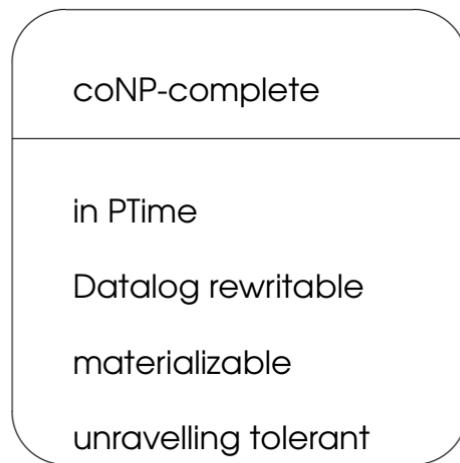
An ontology \mathcal{O} is **unravelling tolerant** if for every \mathcal{D} the following holds for the unravelling \mathcal{D}^* of \mathcal{D} : for all acyclic conjunctive queries q :

$$\mathcal{O} \cup \mathcal{D} \models q \Leftrightarrow \mathcal{O} \cup \mathcal{D}^* \models q$$

Let \mathcal{O} be a uGF or uGC_2 ontology. If \mathcal{O} is unravelling tolerant, then \mathcal{O} is in PTime (actually datalog-rewritable).

The Dichotomy Theorem

Let \mathcal{O} be in any of the languages $u\text{GF}^-(1,=)$, $u\text{GF}(1)$, $u\text{GF}_2^-(2)$, $u\text{GC}_2^-(1,=)$. Then we have the following classification:



Undecidability and Non-Dichotomy

In $\text{uGF}_2^-(2, f)$ we have symbols for partial functions (weak counting), depth 2 formulas, and at most two variables.

For $\text{uGF}_2^-(2, f)$ ontologies it is undecidable whether they are in PTime and whether they are coNP-hard (unless P=NP). Materializability and datalog rewritability are undecidable.

Undecidability and Non-Dichotomy

In $\text{uGF}_2^-(2, f)$ we have symbols for partial functions (weak counting), depth 2 formulas, and at most two variables.

For $\text{uGF}_2^-(2, f)$ ontologies it is undecidable whether they are in PTime and whether they are coNP-hard (unless P=NP). Materializability and datalog rewritability are undecidable.

To show non-dichotomy we prove a variation of Ladner's Theorem: There exists a Turing machine whose run fitting problem

can a partial run be extended to a full run of the machine

is neither in PTime nor NP-hard (unless P=NP).

Undecidability and Non-Dichotomy

In $\text{uGF}_2^-(2, f)$ we have symbols for partial functions (weak counting), depth 2 formulas, and at most two variables.

For $\text{uGF}_2^-(2, f)$ ontologies it is undecidable whether they are in PTime and whether they are coNP-hard (unless P=NP). Materializability and datalog rewritability are undecidable.

To show non-dichotomy we prove a variation of Ladner's Theorem: There exists a Turing machine whose run fitting problem

can a partial run be extended to a full run of the machine

is neither in PTime nor NP-hard (unless P=NP).

Using this result we show:

For $\text{uGF}_2^-(2, f)$ ontologies there is no P/coNP dichotomy (unless P=NP).

Problems

- Is there a P/coNP dichotomy for uGF? Many smaller steps...
- Decidability: assume we have a dichotomy for a class of ontologies. Is it decidable whether an ontology \mathcal{O} from the class is in PTime?