
Dichotomies in Ontology-Mediated Querying with the
Guarded Fragment

Frank Wolter

University of Liverpool

Based on joint work with A. Hernich, C. Lutz and F. Papacchini (PODS 2017)



Dichotomy Theorems

Given a class of problems, we would like to classify them into the hard and the
easy problems. Ideally, there shouldn’t be any intermediate problems.
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We focus on P/NP Dichotomy Theorems

By Ladner’s Theorem, there are NP-intermediate problems (if P6=NP).

Moreover, being in P is undecidable for problems in NP (if P6=NP).

Thus, we can expect P/NP dichotomy theorems only for rather restricted classes
of problems.
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Homomorphism (or CSP) Problems

Consider an undirected graph H. How hard is the following problem:

• Input: an undirected graph G.

• Question: is there a homomorphism h from G to H?

((h(a), h(b)) is an edge in H if (a, b) is an edge in G.)
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Homomorphism (or CSP) Problems

Consider an undirected graph H. How hard is the following problem:

• Input: an undirected graph G.

• Question: is there a homomorphism h from G to H?

((h(a), h(b)) is an edge in H if (a, b) is an edge in G.)

• if H is a single self-loop?

• if H = K2 (K2 complete graph on two vertices)?

• if H = K3?

Hell and Nesetril (1990): This problem is in PTime iff H contains a self-loop
or is bipartite. Otherwise this problem is NP-complete.
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Generalization to Relational Structures (CSP)

LetH be a finite relational structure (also called template). The constraint satis-
faction problem forH,

CSP(H)

is the following decision problem:

• Input: a finite relational structure D.

• Question: is there a homomorphism from D toH?

Feder-Vardi Conjecture (1993): There is a P/NP dichotomy for CSPs. Equiv-
alently, the is such a dichotomy for digraphs.

Lots of progress over the past 20 years (mainly due to algebraic reformulation):

• Early result: There is a P/NP Dichotomy for CSPs with two elements (Schae-
fer 1978).

• Example: There is a P/NP Dichotomy for CSPs with three elements (Bulatov
2006).
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Ontology Mediated Querying of Data (Example 1)

• DataD: finite set of ground atoms (often regarded as finite relational struc-
ture); e.g.,

LiverpoolAcademic(peter), HasLiverpoolId(sue, Liv123)

• Ontology O: a finite set of FO-sentences; e.g.,

∀x (LiverpoolAcademic(x)→ ∃y HasLiverpoolId(x, y))

• Query q(~x): an FO-formula; e.g.,

q(x) = ∃y HasLiverpoolId(x, y)

A tuple ~a ∈ dom(D) is a certain answer for q and O over D if

D ∪O |= q(~a)

Here
D ∪O |= q(a) ⇔ a ∈ {sue, peter}
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Ontology Mediated Querying of Data (Reachability)

• Ontology O:
{∀x (∃y (H(y) ∧ parent(x, y))→ H(x))}

• Query q:
q(x) = H(x)

• Data D:
parent(b0, b1), · · · , parent(b5, b6), H(b6)

• Certain answers for q(x) and O over D are:

D ∪O |= q(a) ⇔ a ∈ {b0, b1, b2, b3, b4, b5, b6}.
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Ontology Mediated Querying of Data (Colorability)

• Ontology O:

– ∀x (red(x) ∨ blue(x) ∨ green(x)).

– ∀x (red(x) ∧ E(x, y) ∧ red(y)→ clash(x)) (same for blue, green).

• Query q:
q() = ∃x clash(x)

• Data D: undirected graph
D = (W,E)

• Certain Answers to q and O over D:

O ∪D |= q iff D is not 3-colorable

• One can do this for every CSP(H).
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Relevant Languages for Ontology-Mediated Querying

Lots of results over the past 15 years on the complexity of deciding

D ∪O |= q(~a),

where q typically a conjunctive query (or primitive positive sentence), that is an
FO-sentence of the form:

∃~x
∧
i∈I
Ri(~xi)

O often in a fragment of the guarded fragment (GF) of FO only admit guarded
quantifiers

∀~y(α(~x, ~y)→ ϕ(~x, ~y)), ∃~y(α(~x, ~y) ∧ ϕ(~x, ~y))
where ϕ(~x, ~y) is in GF and α(~x, ~y) is an atomic formula containing all variables
in ~x ∪ ~y.

GF inherits many nice properties from modal and description logics.

We also consider the 2-variable guarded fragment of FO with counting (GC2):

∀x(x = x→ (∃≥200y author of(x, y)→ ProlificAuthor(x)))
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Some Complexity Results

Deciding
D ∪O |= q(~a)

for q a conjunctive query and

• O empty: NP-complete (homomorphism problem).

• O in GF or GC2: 2ExpTime-complete (Baranyi et al 2010).

• O in 2-variable fragment of FO: undecidable (Rosati 2007).

Slightly misleading!
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Data Complexity

When deciding
D ∪O |= q(~a)

assume that O and q are small and D is large.

Then it is reasonable to assume that

• O and q are fixed and D is the only input; thus focus on data complexity.

We obtain:

• O empty: AC0.

• O in GF or GC2: coNP-complete (Baranyi et al 2010).

For data complexity coNP-hardness is very bad news! It has become a huge
industry to determine fragments of GF and GC2 in PTime (or even better FO or

datalog rewritable fragments)

.



P/coNP Dichotomy Theorems for Ontology Mediated Querying in
GF and GC2

• O is in PTime if for every conjunctive query q deciding O ∪ D |= q is in
PTime in data complexity.

• O is coNP-hard if there exists a conjunctive query q such that deciding
O ∪D |= q is coNP-hard in data complexity.
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Relevant Fragments

We consider the fragments uGF and uGC2 of GF and GC2 which are invariant
under disjoint unions.

Modulo logical equivalence uGF and uGC2 sentences take the form

∀x(x = x→ ϕ(x)), ∀~x(R(~x)→ ϕ(~x))

where ϕ contains no closed subformulas and does not use equality as a guard.

The depth of a uGF or uGC2 sentence is the number of nestings of guarded
quantifiers without the outermost universal guarded quantifier. The following
sentence has depth 1:

∀x(x = x→ ∀y(author of(x, y)→ Book(y)))

In uGF− and uGC−2 we admit only x = x as the outermost guard.

385 out of 411 ontologies in the Bioportal repository are in GC−2 (depth 1)
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Illustration (all in GC−2 (1))

• The ontology

O1 = {∀x(∃≥200y author of(x, y)→ ProlificWriter(x))}

is in PTime.

• The ontology

O2 = {∀x(Writer(x)→ ∃y(author of(x, y) ∧ Book(y)))}

is in PTime.

• The ontology O1 ∪ O2 is coNP-hard.

• The ontology

O1 ∪ O2 ∪ {∀xy(author of(x, y)→ Book(y))}

is again in PTime.



Summary of Results

No Dichotomy

CSP-Hard
(Datalog6= 6= PTIME)

Dichotomy
(Datalog6= = PTIME)

uGF−2 (2, f)

uGF2(1,=) uGF2(2) uGF2(1, f)

uGF−(1,=) uGF(1) uGF−2 (2) uGC−2 (1,=)

Number in brackets indicates

• depth,

• f presence of partial functions,

• ·2 restriction to two variables,

• ·− restricts outermost guards to be equality.
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Necessary condition for PTime: Materializability

An ontology O is materializable if for every D there exists a model A of O ∪ D
such that for all conjunctive queries q:

O ∪D |= q ⇔ A |= q

Let O be an FO ontology invariant under disjoint unions. If O is not materi-
alizable, then O is coNP-hard.



Materializability is not a sufficient for PTime

We construct a materializable ontology from the ontology O encoding three-
colorability:

• ∀x (red(x) ∨ blue(x) ∨ green(x)).

• ∀x (red(x) ∧ E(x, y) ∧ red(y)→ clash(x)) (same for blue, green).

Clearly O itself is not materializable.

Replace red(x), blue(x), and green(x) by complex formulas that are not directly
visible to conjunctive queries, e.g.

∃y(Rred(x, y) ∧ ∀z(Sred(y, z)→ red(z)))

Then the resulting ontology is still coNP-hard but materializable.
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A sufficient condition for PTime (even datalog-rewritability)

Every relational structure D can be unravelled into a

guarded tree-decomposable

structure D∗ (sometimes also called acyclic).

This unravelling preserves formulas in GF and GC2.

An ontology O is unravelling tolerant if for every D the following holds for the
unravelling D∗ of D: for all acyclic conjunctive queries q:

O ∪D |= q ⇔ O ∪D∗ |= q

Let O be a uGF or uGC2 ontology. If O is unravelling tolerant, then O is in
PTime (actually datalog-rewritable).



The Dichotomy Theorem

Let O be in any of the languages uGF−(1,=), uGF(1), uGF−2 (2), uGC−2 (1,=).
Then we have the following classification:'
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Undecidability and Non-Dichotomy
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Undecidability and Non-Dichotomy

In uGF−2 (2, f) we have symbols for partial functions (weak counting), depth 2
formulas, and at most two variables.

For uGF−2 (2, f) ontologies it is undecidable whether they are in PTime and
whether they are coNP-hard (unless P=NP). Materializability and datalog
rewritability are undecidable.

To show non-dichotomy we prove a variation of Ladner’s Theorem: The exists a
Turing machine whose run fitting problem

can a partial run be extended to a full run of the machine

is neither in PTime nor NP-hard (unless P=NP).

Using this result we show:

For uGF−2 (2, f) ontologies there is no P/coNP dichotomy (unless P=NP).



Problems

• Is there a P/coNP dichotomy for uGF? Many smaller steps...

• Decidability: assume we have a dichotomy for a class of ontologies. Is it
decidable whether an ontology O from the class is in PTime?


