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Abstract

We give a brief introduction to the theory of coalgebras and discuss the connection between
coalgebra and modal logic. In the second more technical part of this paper - summarizing known
results - we prove that the finitary version of Moss’ coalgebraic logic has the Hennessy-Milner
property.

Summary

The purpose of this short paper is twofold. On the one hand we want to draw the attention of the
more general audience to the relatively young field of universal coalgebra and its relationship with
modal logics. On the other hand we present two facts about coalgebras which might be interesting
for the part of the audience that has already some background knowledge in coalgebra. Therefore
in the first part of the paper we will try to explain the notion of a coalgebra and of coalgebraic
bisimulations by stating the definitions and by providing several examples. Nevertheless the paper
cannot be seen as a proper introduction to coalgebras. The interested reader is referred to [4, 11]
for an introduction to the field of universal coalgebra. Readers whose background lies in modal
logic and its algebraic semantics are recommended to consult the recently published [13].

The paper also contains two technical results: In Section 2 we establish a link between the
bisimilarity game and the final sequence of a functor (cf. Theorem 2.9). In Section 4 we obtain - fol-
lowing the ideas of Moss in [7] - the result that finitary coalgebraic logics have the Hennessy-Milner
property on coalgebras for an ω-accessible, weak pullback preserving set functor (cf. Theorem 4.1).

1 Coalgebras

A coalgebra consists of a set of states 1 and a coalgebra map which can be used to make observations
about coalgebra states. The type of these observations is specified by a functor. Often it is
possible to assign to every coalgebra state x its behavior which can be thought of as a sequence
of observations generated by repeatedly applying the coalgebra map to x and its successors. For
example we can think of a coalgebra in which we can observe for each state x a letter a of some
alphabet Σ and some successor state x�. In this case the behaviour of x will be an infinite Σ-word.
Unlike in algebra, elements of a coalgebra are not constructed from generators and operations.
In fact one should think of the elements of the coalgebra as given from the outset. Using the
coalgebra map one can obtain (limited) information about them. This makes it possible to use
coalgebras for modeling objects with infinite or non-wellfounded “behavior” such as infinite words,
trees or graphs. A reader familiar with functional programming languages such as Haskell could
obtain some intuition about coalgebras by thinking of them as of lazy implementations of infinite
objects.

1.1 The formal definition

When introducing coalgebras it is almost inevitable to use category theoretic terminology. It
should be noted, however, that for the understanding of this paper only an intuitive understanding

1This is not the most general definition, but we will only consider coalgebras that have a carrier set.
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of the notion of a category and of a functor between categories is necessary. In fact we will
mostly work in the category Set that has sets as objects and functions as arrows. A functor is a
structure preserving map between categories. A set functor F : Set → Set maps sets to sets and
functions to functions. Furthermore F preserves the composition of functions and identities, i.e.
F(f ◦ g) = Ff ◦ Fg and FidX = idFX where for an arbitrary set X we denote by idX the identity
function on X.

Definition 1.1 Let F : Set → Set be a functor. Then an F-coalgebra is a pair (X, γ) where
X ∈ Set and γ : X → FX ∈ Set. A pointed F-coalgebra (�X, γ�, x) is an F-coalgebra �X, γ�
together with a designated point x ∈ X. �
Example 1.2 1. Let Σ be a set (of colors). Furthermore let BΣ be the functor that maps a

set X to the set Σ × X × X and a function f : X → Y to the function that maps a triple
(c, x, x�) ∈ Σ×X ×X to the triple (c, f(x), f(x�)). Then infinite Σ-labeled binary trees are
pointed BΣ-coalgebras: a given Σ-labeled tree t : 2∗ → Σ corresponds to the coalgebra with
carrier set 2∗ and coalgebra map w �→ (t(w), w0, w1).

2. Deterministic, finite Σ-word automata can be modeled as pointed coalgebras for the functor
AΣ = 2 × ( )Σ, where Σ is the finite alphabet and 2 is the two-element set, i.e. the functor
AΣ maps a set X to the set 2 × XΣ and a function f : X → Y to the function that maps
a pair (o, t) ∈ 2 × XΣ to the pair (o, f ◦ t). More about this fundamental example can be
found in [9].

3. Image-finite Kripke frames correspond to coalgebras of the power set functor Pω. The functor
Pω maps a set to its collection of finite subsets, and a function f : X → Y to its direct image
function Pωf : PωX → PωY given by (Pωf)(U) := {f(x) ∈ Y | x ∈ U}. An image-finite
Kripke frame (W, R) is then modeled as the coalgebra (W, λx.R[x]), that is, the relation R
is given by the function mapping a state x to the collection R[x] of its (direct) successors.2

4. Let Φ be a set (of propositional variables) and consider the functor PΦ × Pω, that maps a
set X to the set PΦ × PωX and a function f : X → Y to the function idPΦ × Pωf . Then
an image finite Kripke model (W, R, V : Φ → P(W )) corresponds to the PΦ×Pω-coalgebra
�W, �V �, λx.R[x]� : W → PΦ× PωW � where p ∈ V �(w) if w ∈ V (p).

5. Let Dω be the functor that maps a set S to the set

DωS :=
n

ρ : S � [0, 1] | ρ has finite support and
P

s∈Sρ(s) = 1
o

where we say that a (partial) function ρ has finite support if ρ(s) �= 0 for only finitely many
elements s of S. Then coalgebras for the functor 1 + Dω correspond to the probabilistic
transition systems by Larsen and Skou in [6]. Here 1 + Dω denotes the functor that maps
a set S to the disjoint union of the one-element set and the set DωS. Further details about
this example can be found in [7, 12].

The message of these examples should be clear: coalgebras can be used to uniformly model various
types of transition systems. The advantage of such a uniform approach lies in the fact that notions,
that are usually studied in isolation for different system types, can now be seen as instances of one
coalgebraic concept. As examples for this phenomenon we are now going to present the notions
of a coalgebra morphism and of a coalgebraic bisimulation. After that we look at some concrete
instances of these coalgebraic notions.

Definition 1.3 Let X = �X, γ� and Y = �Y, δ� be two F-coalgebras then a function f : X → Y
is an F-coalgebra morphism from X to Y if δ ◦ f = Ff ◦ γ, i.e. if the left diagram in Figure 1
commutes.

A relation Z ⊆ X ×Y is an F-bisimulation between X and Y if there exists a function µ : Z →
FZ such that the projection maps π1 : Z → X and π2 : Z → Y are coalgebra morphisms, i.e.,
such that the right diagram in Figure 1 commutes. Two states are (F-)bisimilar if they are linked
by some bisimulation. We write x ↔F y if the states x and y are F-bisimilar. �

2If we drop the finiteness condition from the definition of the functor Pω we obtain the power set functor P. P-
coalgebras are Kripke frames.
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Figure 1: F-coalgebra morphism and F-bisimulation

Let us have a look at some concrete instances of F-coalgebra morphisms and F-bisimulations.

Example 1.4 1. Let F = BΣ (cf. Example 1.2(1)) for some set of labels Σ. Then f : X → Y
is a BΣ-coalgebra morphism between two BΣ-coalgebras �X, �c, γ� : X → Σ× (X ×X)� and
�Y, �d, δ� : Y → Σ× (Y × Y )� if for all x ∈ X we have c(x) = d(f(x)) and if γ(x) = (x1, x2)
implies δ(f(x)) = (f(x1), f(x2)). In words, f has to preserve the labeling and the binary
tree structure. It is not difficult to check that two binary trees t1 and t2 are BΣ-bisimilar iff
they are identical.

2. Let F = AΣ = 2×( )Σ. Then pointed F-coalgebras with finite carrier set correspond to finite,
deterministic automata (cf. Example 1.2(2)). Two automata accept the same language iff
the corresponding pointed F-coalgebras are F-bisimilar (cf. [9]).

3. Recall from Example 1.2(4) that F-coalgebras for the functor F = PΦ × Pω correspond to
image-finite Kripke models. Then F-coalgebra morphisms are precisely the bounded mor-
phisms between Kripke models. F-bisimulations correspond exactly to the bisimulations
from modal logic, i.e. a relation R between two (image-finite) Kripke models (W1, R1, V )
and (W2, R2, V ) is a modal bisimulation iff R is a PΦ×Pω-bisimulation between the corre-
sponding PΦ× Pω-coalgebras.

4. Let F be the functor 1 + Dω (cf. Example 1.2(5)). It can be shown that F-bisimulations
between F-coalgebras coincide with the probabilistic bisimulations from [6] between the cor-
responding probabilistic transition systems. For the details we again refer to [7, 12].

In Section 2 we will continue our discussion of bisimilarity by showing that coalgebraic bisimilarity
has also a nice game-theoretic interpretation. Furthermore in Section 3 we will recall the definition
of some logical language that can be used for reasoning about F-coalgebras. In the remainder of
this section we will fix the technical preliminaries.

1.2 Technicalities

In the following we will make some assumptions on the functor F under consideration. Readers
who are not interested in all the technical details are advised to skip this section and to think of
F in the sequel as of some functor in Example 1.2.

The first assumption we make is that all our functors are set functors. Furthermore we will
assume the functors we are working with to be

• standard: for all set X and Y such that X ⊆ Y we have that FX ⊆ FY and the inclusion
map ιX,Y from X into Y is mapped by F to the inclusion map ιFX,FY from FX into FY .

• ω-accessible: for all sets Y and all elements t ∈ FY there is a finite set X ⊆ω Y such that
t ∈ FX.

Moreover all the functors that we are considering are weak pullback preserving. This is a property
which often occurs in the coalgebraic literature. For details about this important, but rather
technical condition we refer the reader to [11]. From now on we assume F to be a standard,
ω-accessible and weak pullback preserving set functor.
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1.3 Relation Lifting

A useful property of F is that it has a well-behaved relation lifting. We will first define this relation
lifting, then list the properties we need. In the sequel this relation lifting allows us to use a concise
formulation of the notion of a coalgebraic bisimulation. In addition to that it is central in the
definition of the coalgebraic logic we are considering.

Definition 1.5 Given two sets X and Y , and a binary relation Z between X × Y , we define the
lifted relation F(Z) ⊆ FX × FY as follows:

F(Z) := {((Fπ)(φ), (Fπ�)(φ)) | φ ∈ FZ},

where π : Z → X and π� : Z → Y are the projection functions given by π(x, y) = x and
π�(x, y) = y. �

Example 1.6 1. Let Σ be a set of colors and let F = BΣ and let R ⊆ X × Y be a re-
lation. Then for arbitrary elements (c, x1, x2) ∈ BΣX and (d, y1, y2) ∈ BΣY we have
((c, x1, x2), (d, y1, y2)) ∈ FR iff c = d and (xi, yi) ∈ R for i = 1, 2.

2. Let Φ be a set (of propositional variables), let F := PΦ×Pω and let R ⊆ X×Y be a relation.
Then for arbitrary P ⊆ Φ, U ⊆ω X, Q ⊆ Φ and V ⊆ω Y we have

((P, U), (Q, V )) ∈ FR iff
(Prop) P = Q and
(Forth) ∀u ∈ U.∃v ∈ V s.t.(u, v) ∈ R and
(Back) ∀v ∈ V.∃u ∈ U s.t.(u, v) ∈ R.

Readers familiar with modal logic or process algebra will recognize the similarity of the rela-
tion lifting for the functor PΦ × Pω and the usual definition of a bisimulation between Kripke
frames/transition systems. This is not a coincidence as we will see when looking at the formulation
of the notion of an F-bisimulation in terms of the relation lifting (cf. Fact 2.1 below). For now
we just list some properties of the relation lifting of a standard and weak pullback preserving set
functor.

Fact 1.7 The relation lifting F satisfies the following properties, for all functions f : X → Y , all
relations R, Q ⊆ X × Y , and all subsets U ⊆ X, V ⊆ Y :
(1) F extends F: F(Gr(f)) = Gr(Ff); (Gr(f) denotes the graph of f)
(2) F commutes with relation converse: F(R )̆ = (FR)̆ ; (R˘ denotes the converse of R)
(3) F is monotone: if R ⊆ Q then F(R) ⊆ F(Q);
(4) F distributes over composition: F(R ◦Q) = F(R) ◦ F(Q);
(5) F commutes with restrictions, i.e. F(R�U×V ) = (FR)�FU×FV .

For proofs we refer to [7, 1], and references therein.

2 Finite approximations of bisimilarity

In this section we state the definition of the bisimilarity game for coalgebras. Furthermore we
discuss a variation of the bisimilarity game, the n-bisimilarity game. Finally we link the game-
theoretic perspective to the categorical notion of the final sequence of a functor.

As a preparation we recall that F-bisimulations can be characterized using the relation lifting
of the functor F.3

Fact 2.1 [10] Let X = �X, γ� and Y = �Y, δ� be two F-coalgebras. A relation Z ⊆ X × Y is an
F-bisimulation between X and Y if (γ(x), δ(y)) ∈ F(Z) for all (x, y) ∈ Z.

This fact plays an important rôle in the definition of the bisimilarity game.

3This fact goes back to the work by Hermida and Jacobs in [3].
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2.1 Bisimilarity game

The definition of the bisimilarity game for coalgebras goes back to Baltag (cf. [1]). The idea is
as follows: the game is played between the two players ∃ (Éloise) and ∀ (Abélard). Given two
pointed F-coalgebras (X, x) and (Y, y), ∃ claims that (x, y) are bisimilar, i.e. her claim is that there
exists some F-bisimulation Z between X and Y that relates x and y. The game board consists
of pairs of coalgebra states (x, y) (∃’s positions) and relations Z ⊆ X × Y (∀’s positions). At a
position (x, y) ∈ X × Y it is ∃’s turn and she has to move to a ”local bisimulation”, i.e. a relation
Z such that (γ(x), δ(y)) ∈ FZ (hence Z fulfills the condition from Fact 2.1 ”locally”). In turn,
∀ has to move from a position Z to a pair of states (x�, y�) ∈ Z. A match of the game is lost by
a player who cannot move. All infinite plays are won by ∃. The following definition introduces
the bisimilarity game more formally - readers who are not so familiar with the game-theoretic
notions are referred to [14] for a short summary of the necessary details and to [2] for a detailed
introduction to infinite (parity) graph games.

Definition 2.2 Let X := �X, γ� and Y := �Y, δ� be F -coalgebras. Then the arena of the image-
finite F -bisimilarity game B(X, Y) is given by the bipartite graph (B∃, B∀, E) that is described by
the following table:

Position: b Player Admissible moves: E[b]

(x, y) ∈ X × Y ∃ {Z ⊆ X × Y | (γ(x), δ(y)) ∈ FZ}

Z ∈ P(X × Y ) ∀ {(x�, y�) | (x�, y�) ∈ Z}
Here the second column indicates whether a given position b belongs to player ∃ or ∀, i.e. whether
b ∈ B∃ or b ∈ B∀, and FZ is the relation lifting of Z. A match of B(X, Y) starts at some position
b0 ∈ B∃ ∪ B∀ and proceeds as follows: at position b ∈ B∃ player ∃ has to move to a position
b� ∈ E[b] and likewise at position b ∈ B∀ player ∀ has to move to some b� ∈ E[b]. A player who
cannot move (”gets stuck”) loses the match and all infinite matches are won by ∃. Two successive
moves in a match are called a round of the game. �

Fact 2.3 Let X := �X, γ�, Y := �Y, δ� be F-coalgebras and let x ∈ X, y ∈ Y . Then �X, γ�, x ↔
�Y, δ�, y iff ∃ has a winning strategy in the game B(X, Y) starting at position (x, y).

For a sketch of the proof of this fact cf. [14]. The game-theoretic analysis of F-bisimulations
naturally leads to the notion of n-bisimilarity.

Definition 2.4 We say that x and y are n-bisimilar (notation: (�X, γ�, x) ↔n (�Y, δ�, y)) if ∃ has
a strategy in the game B(X, Y) starting at position (x, y) such that ∃ does not lose the game in
less than n rounds. �
The next subsection will be devoted to proving that n-bisimilarity coincides with bisimilarity given
our assumption that the functor F is ω-accessible.

2.2 Final sequence

We now introduce the ”finitary part” of the final sequence of a functor, i.e. its first ω elements.
This final sequence plays an important rôle in the theory of coalgebras where it is used in order to
compute or approximate the final F-coalgebra. We only state and motivate the basic definition.
For more details about the final sequence of a functor we refer the reader to [15] and references
therein.

Definition 2.5 Given a set functor F we inductively define functions pi : Fi+11 → Fi1 for all
i ∈ N by putting p0 :=!F1 and pi+1 := Fpi. Here 1 denote the one-element set, !X denotes the
(unique) function from a set X to the one-element set 1 and for a set X we write F0X := X and
Fi+1X := F(FiX). For all n ∈ N elements of the set Fn1 will be called n-step behavior. �

The sequence is depicted in the lower part of Figure 2. Let us give an example which illustrates
why we chose the name ”n-step behavior” for members of the nth element of the sequence.
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Figure 2: Final sequence and n-step behavior maps

Example 2.6 Let Σ be set of labels and let F = BΣ. Then it is not difficult to see that for all
n ∈ N the set Fn1 is isomorphic to the set of finite Σ-labeled binary trees of depth n.

We will make use of the fact that given an F-coalgebra �X, γ� one can easily define a sequence
{γn}n∈N of functions that map any coalgebra state x ∈ X to its n-step behavior. We now give the
formal definition of these γn’s, Figure 2 provides a picture of the situation.

Definition 2.7 Given an F-coalgebra X = �X, γ� and a state x ∈ X we define a family of maps
{γn : X → Fn1}n∈N by putting

γ0(x) := !X
γi+1(x) := Fγn ◦ γ �

Intuitively for each n ∈ N the map γn maps a state x to its n-step behavior.

Example 2.8 In the above example for F = BΣ recall from Example 1.2 that a Σ-labeled infinite
binary tree t corresponds to a BΣ-coalgebra. In this case, intuitively speaking, the map γn maps
t to the Σ-tree of depth n that consists of the first n levels of t.

For much more information and results about the final sequence of an ω-accessible functor the
reader is referred to [15]. We now make a connection between the bisimilarity game and the final
sequence of F.

Theorem 2.9 Let (�X, γ�, x) and (�Y, δ�, y) be pointed F-coalgebras. Then for all n ∈ N we have

γn(x) = δn(y) iff x ↔n y.

Proof. For i ∈ N let Zi := Gr(γi) ◦ Gr(δi)̆ and put Bi := {(x�, y�) ∈ X × Y | (�X, γ�, x) ↔n

(�Y, δ�, y)}. The claim of the proposition is equivalent to saying that

Zi = Bi for all n ∈ N (1)

In order to facilitate the proof of (1) we first show that the following holds for all (x, y) ∈ X × Y
and all i ∈ N:

(x, y) ∈ Zi+1 iff (γ(x), δ(y)) ∈ FZi. (2)

This can be seen by just spelling out the definitions and by using Fact 1.7:

(x, y) ∈ Zi+1 iff (x, y) ∈ Gr(γi+1) ◦Gr(δi+1)̆ (Def. of Zi+1)
iff (x, y) ∈ Gr(Fγi ◦ γ) ◦Gr(Fδi ◦ δ)̆ (Def. of γi+1, δi+1)
iff (x, y) ∈ Gr(γ) ◦Gr(Fγi) ◦Gr(Fδi)̆ ◦Gr(δ)̆
iff (γ(x), δ(y)) ∈ Gr(Fγi) ◦Gr(Fδi)̆

iff (γ(x), δ(y)) ∈ F(Gr(γi) ◦Gr(δi)) = FZi (Fact 1.7)

We now prove (1) by induction on n. For n = 0 there is nothing to prove, because Z0 = B0 = X×Y .
Inductively assume that Zi = Bi for some i ∈ N. We have to show that Zi+1 = Bi+1.

6
NVTI Nieuwsbrief   33



⊆ Let (x, y) ∈ Zi+1, i.e. γi+1(x) = δi+1(y). This implies by (2) that (γ(x), δ(y)) ∈ FZi. Therefore
∃ can move in the bisimilarity game B(X, Y) from position (x, y) to position Zi. By I.H.
we know that all positions (x�, y�) ∈ Zi are in Bi, i.e. ∃ has a strategy such that for all
(x�, y�) ∈ Zi she does not lose any match starting at (x�, y�) in less than i rounds. As a
consequence by moving from (x, y) to Zi she has a strategy in B(X, Y) such that she does
not lose in less than i + 1 rounds which means that (x, y) ∈ Bi+1.

⊇ Suppose (x, y) ∈ Bi+1, i.e. ∃ has a strategy in B(X, Y) such that she does not lose any match
starting at position (x, y) in less than i + 1 rounds. In particular she can move from (x, y)
to some relation R ⊆ X × Y such that (γ(x), δ(y)) ∈ FR and such that R ⊆ Bi. Therefore,
by monotonicity of F, (γ(x), δ(y)) ∈ FBi and thus by I.H. (γ(x), δ(y)) ∈ FZi. This implies
by (2) that (x, y) ∈ Zi+1.

qed

As a corollary we obtain the earlier announced result that the game-theoretically defined notion
of n-bisimilarity forms a good finite approximation of bisimilarity.

Corollary 2.10 Let F be a set functor that meets the requirements in Section 1.2. Furthermore
let X = �X, γ�, Y = �Y, δ� be two F-coalgebras with designated points x ∈ X and y ∈ Y . Then

x ↔F y iff ∀n. x ↔n y.

Proof. It has been shown in [15] that γn(x) = δn(y) for all n ∈ N implies X, x ↔F Y, y under
the assumption that F is ω-accessible. Therefore the claim of the proposition is an immediate
consequence of 2.9. qed

3 Modal logic in a coalgebraic shape

In the first section of this paper we showed that coalgebras provide a framework for modeling
various types of transition systems. The natural question to ask is whether we can also develop
logical languages to reason about coalgebras. Modal languages have been successfully employed
for reasoning about transition systems. Hence these languages are a good candidate for the
specification of coalgebras. The various coalgebraic modal languages that have been proposed to
talk about coalgebras can roughly be split into two groups.

1. Languages whose modalities are given by so-called predicate liftings. For an introduction to
these languages we refer the reader to [5, 8, 13] and references therein.

2. Languages that are defined via the relation lifting of F. This approach has originally been
introduced by Moss in [7].

We will now present the definition of a version of Moss’ coalgebraic logic that has a finitary syntax.
This logic has been introduced in [14]. Unlike loc.cit. we do not consider fixed point operators.
Furthermore, as mentioned before, we work under the general requirement that we are given a set
functor F that is ω-accessible, standard and weak pullback preserving.

Definition 3.1 The language of (finitary) coalgebraic logic LF is defined inductively as follows:

LF
0 � φ ::= ⊥| � | φ ∧ φ | φ ∨ φ

LF
i+1 � φ ::= ψ ∈ LF

i | φ ∧ φ | φ ∨ φ | ∇π, π ∈ FLF
i

LF :=
[

i∈N
LF

i

The depth of a formula φ ∈ LF is defined as the smallest natural number iφ such that φ ∈ LF
iφ

. �

Remark 3.2 From the definition it is clear that LF is a set (in contrast to Moss’ original language
which consisted of a proper class of formulas). The difference with Moss’ original definition is
that the syntax only contains finite conjunctions and, in addition to that, finite disjunctions.
Furthermore Venema defines the notion of a subformula and shows in [14] that every formula of
LF has a finite number of subformulas. These facts justify to say that LF has a finitary syntax.
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The semantics of the logic is defined as follows.

Definition 3.3 Let X = �X, γ� be an F-coalgebra We inductively define a relation |=X⊆ X × LF

with the intended meaning that (x, φ) ∈ |=X if φ is satisfied at x ∈ X. In this case we also write
x |=X φ. The inductive definition of |=X is as follows: We put x �|=X⊥, x |=X � and

x |=X φ1 ∧ φ2 if x |=X φ1 and x |=X φ2,

x |=X φ1 ∨ φ2 if x |=X φ1 or x |=X φ2,

x |=X ∇π if (γ(x), π) ∈ F(|=X).

If the X is clear from the context we simply write |= for the relation |=X⊆ X × LF. Furthermore
we write Th(x) for the theory of x, i.e. Th(x) := {φ ∈ LF | x |= φ}. �

Remark 3.4 The definition of the semantics of a formula ∇π ∈ LF
i+1 is not circular because

(γ(x), π) ∈ F(|=) iff (γ(x), π) ∈ F
“
(|=)�X×LF

i

”
,

where (|=) �X×LF
i

denotes the restriction of |=X⊆ X × LF to X × LF
i . This can be seen by using

that π ∈ FLF
i and by using Fact 1.7(5). The depth of formulas in Li is strictly smaller than the

depth of ∇π and thus we can inductively assume that (|=)�X×LF
i

has been already defined.

Example 3.5 Let Φ be a set of propositional variables and consider the functor F = PΦ× Pω .
Then the ∇-formulas in LF are of the form ∇(P, Ψ) where P ⊆ Φ is a set of propositional variables
and Ψ is a set of formulas. Informally speaking such a formula∇(P, Ψ) corresponds to the following
formula in the usual syntax of modal logic:

∇(P, Ψ) ≡
^

p∈P

p ∧
^

p�∈P

¬p ∧
^

ψ∈Ψ

♦ψ ∧�
“ _

ψ∈Ψ

ψ
”
.

Similarly one can translate modal formulas into formulas of LF (cf. [14, Sec. 5]).

4 Expressivity of finitary coalgebraic logics

In this section we prove that the finitary coalgebraic logic as defined in Def. 3.1 has the Hennessy-
Milner property, i.e. we prove Theorem 4.1 below. Let us once more stress that despite the fact
that we think that Theorem 4.1 has not been proven before, its proof can be seen as a rather
straightforward adaptation of the proof of an analogue result for infinitary coalgebraic logic in [7].

Theorem 4.1 Let F be an ω-accessible set functor. Then the language LF has the Hennessy-
Milner property, i.e. for all pointed F-coalgebras (�X, γ�, x) and (�Y, δ�, y) we have

Th(x) = Th(y) iff (�X, γ�, x) ↔F (�Y, δ�, y),

i.e. two pointed F-coalgebras satisfy the same LF-formulas iff they are F-bisimilar.

As usual the easier part of proving the Hennessy-Milner property is to prove the invariance of the
semantics of a formula under bisimilarity.

Fact 4.2 ([14]) Let F be an ω-accessible functor and let (�X, γ�, x) and (�Y, δ�, y) be pointed F-
coalgebras such that (�X, γ�, x) ↔F (�Y, δ�, y). Then for all formulas φ ∈ LF we have

(�X, γ�, x) |= φ iff (�Y, δ�, y) |= φ.

For the proof of the fact that logical equivalence implies bisimilarity we use our result from the
previous section, where we saw that n-bisimilarity for all n and bisimilarity coincide if the functor is
ω-accessible. The idea is to define for each n ∈ N a set of characteristic formulas that characterize
the behavior of a given pointed F-coalgebra up-to depth n. These formulas have been introduced
in [7] in order to prove the analogue of Theorem 4.1 for infinitary coalgebraic logic.
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Definition 4.3 For i ∈ N we define a function ∇i : Fi1 → LF by putting

∇0(∗) := � for ∗ ∈ 1
∇i+1(x) := ∇ (F∇i(x)) for x ∈ Fi+11 �

The intended meaning of the ∇i-maps is that they map a given state x ∈ Fi1, which represents
some possible i-step behavior, to its characteristic formula ∇i(x) of depth i. Let us have a look
at an example.

Example 4.4 Let Φ be a set. For the functor F = PΦ × Pω the characteristic formulas look of
depth ≤ 1 can be computed as follows:

Ψ0 = {�}, Ψ1 = {∇(P, {∗}) | P ∈ PΦ} ∪ {∇(P, ∅) | P ∈ Φ}

where Ψi denotes the image of ∇i. We can easily see that formulas in Ψ1 precisely determine the
1-step behavior of a given pointed F-coalgebra: the formula ∇(P, ∅) will be true at any state in
which exactly the propositional variables in P are true and which has no successors. Likewise the
formula ∇(P, {∗}) expresses that precisely the p’s in Φ are true and there is a successor.

The following observations about the ∇i-maps form the justification for calling the formulas of
the form ∇i(θ) “characterizing formulas”: a coalgebra state x that has a certain n-step behavior
θ satisfies precisely the formula ∇n(θ), i.e. no other formula of the form ∇n(θ�) for some θ� �= θ is
true at x.

Lemma 4.5 Let n ∈ N and let θ be an element of Fn1. Furthermore let (�X, γ�, x). Then

x |= ∇nθ iff θ = γn(x),

where γn(x) denotes the n-step behavior of x as defined in Definition 2.7 above.

Proof. The claim of the lemma can be written in terms of relations in the following way:

(|=X ◦Gr(∇n)̆ ) = Gr(γn). (3)

We define Rn := (|=X ◦Gr(∇n)̆ ). Equation (3) will be proven by induction on n. The base case
n = 0 is easy to check.

Inductively assume now that (3) is true for some i ∈ N. We show that in this case our claim
also holds for n = i + 1. In order to see this note that by definition of Ri+1 we have (x, θ) ∈ Ri+1

iff x |=X ∇i+1(θ). Unfolding the definition of ∇i+1 we obtain

(x, θ) ∈ Ri+1 iff x |=X ∇ (F∇i(θ))

iff (γ(x), F∇i(θ)) ∈ F(|=X) (Def. of |=)

iff (γ(x), θ) ∈ F(|=X) ◦Gr(F∇i)̆

iff (γ(x), θ) ∈ F(|=X ◦Gr(∇i)̆ ) (Fact 1.7)

iff (γ(x), θ) ∈ FRi = FGr(γi) (Def. of Ri + I.H.)
iff (x, θ) ∈ Gr(γ) ◦Gr(Fγi) (Fact 1.7)
iff θ = (Fγi ◦ γ)(x) = γi+1(x) (Def. of γi+1)

qed

We are now well prepared for finishing the proof of Theorem 4.1.

Proof of Theorem 4.1. The fact that two F-bisimilar pointed F-coalgebras are also logically
equivalent was proven in Proposition 4.2. This is the implication from right to left in the theorem.

For the converse direction let (�X, γ�, x) and (�Y, δ�, y) be pointed F-coalgebras. We show that
x �↔ y implies that Th(x) �= Th(y). By Corollary 2.10 we know that x �↔ y entails that there
is some n ∈ N such that (�X, γ�, x) �↔n (�Y, δ�, y), i.e. such that the given pointed coalgebras
are not n-bisimilar. By Thm. 2.9 this implies γn(x) �= δn(y). Therefore by Lemma 4.5 we have
x |= ∇n(γn(x)) and y �|= ∇n(γn(x)), i.e. Th(x) �= Th(y) as required. qed
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5 Conclusion

We clarified the connection between the n-bisimilarity game and the final sequence of the functor.
Furthermore we showed that Moss’ arguments in [7] can be used to prove that finitary coalge-
braic logics have the Hennessy-Milner property over coalgebras for an ω-accessible, weak pullback
preserving functor.

The watchful reader will have noted that we did not make use of the game-theoretic inter-
pretation of bisimilarity at all. We could provide a direct game-theoretic proof of Cor. 2.10 but
did not do so due to lack of space. Furthermore we hope to obtain a better understanding of
the bisimilarity game by further exploring the connection between the n-bisimilarity game and
the final sequence that has been established in Thm. 2.9. As an example consider the functor
F = Pω(X)A for some infinite set A. This functor is not ω-accessible but, using Worrell’s results
on the final sequence of F, bisimilarity can be approximated by n-bisimulations. This fact is not
immediately obvious when looking only at the bisimilarity game.
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