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Abstract
This paper introduces a small but useful generalisation to the
‘derivative’ operation on datatypes underlying Huet’s notion of
‘zipper’ (Huet 1997; McBride 2001; Abbott et al. 2005b), giv-
ing a concrete representation to one-hole contexts in data which
is undergoing transformation. This operator, ‘dissection’, turns a
container-like functor into a bifunctor representing a one-hole con-
text in which elements to the left of the hole are distinguished in
type from elements to its right.
I present dissection here as a generic program, albeit for polyno-

mial functors only. The notion is certainly applicable more widely,
but here I prefer to concentrate on its diverse applications. For a
start, map-like operations over the functor and fold-like operations
over the recursive data structure it induces can be expressed by tail
recursion alone. Further, the derivative is readily recovered from
the dissection. Indeed, it is the dissection structure which delivers
Huet’s operations for navigating zippers.
The original motivation for dissection was to define ‘division’,

capturing the notion of leftmost hole, canonically distinguishing
values with no elements from those with at least one. Division gives
rise to an isomorphism corresponding to the remainder theorem
in algebra. By way of a larger example, division and dissection
are exploited to give a relatively efficient generic algorithm for
abstracting all occurrences of one term from another in a first-order
syntax.
The source code for the paper is available online1 and compiles

with recent extensions to the Glasgow Haskell Compiler.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; I.1.1 [Symbolic
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tion

General Terms Algorithms, Design, Languages, Theory

Keywords Datatype, Differentiation, Dissection, Division, Generic
Programming, Iteration, Polynomial, Stack, Tail Recursion, Traver-
sal, Zipper

1 http://www.cs.nott.ac.uk/∼ctm/CloJo/CJ.lhs
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1. Introduction
There’s an old Stealer’s Wheel song with the memorable chorus:

‘Clowns to the left of me, jokers to the right,
Here I am, stuck in the middle with you.’

Joe Egan, Gerry Rafferty

In this paper, I examine what it’s like to be stuck in the middle
of traversing and transforming a data structure. I’ll show both you
and the Glasgow Haskell Compiler how to calculate the datatype of
a ‘freezeframe’ in a map- or fold-like operation from the datatype
being operated on. That is, I’ll explain how to compute a first-class
data representation of the control structure underlying map and fold
traversals, via an operator which I call dissection. Dissection turns
out to generalise both the derivative operator underlying Huet’s
‘zippers’ (Huet 1997; McBride 2001) and the notion of division
used to calculate the non-constant part of a polynomial. Let me
take you on a journey into the algebra and differential calculus of
datatypes, in search of functionality from structure.
Here’s an example traversal—evaluating a very simple language

of expressions:

data Expr = Val Int | Add Expr Expr

eval :: Expr → Int
eval (Val i) = i
eval (Add e1 e2) = eval e1 + eval e2

What happens if we freeze a traversal? Typically, we shall have
one piece of data ‘in focus’ and a hole in the expression where
it belongs, with unprocessed data ahead of us and processed data
behind. We should expect something a bit like Huet’s ‘zipper’ rep-
resentation of a one-hole context (Huet 1997), a stack-like structure
carrying position information and cacheing all the out-of-focus data
for each node between the hole and the root. However, now we need
different sorts of stuff on either side of the hole.
In the case of our evaluator, suppose we proceed left-to-right.

Whenever we face an Add, we start by going left into the first
operand, recording the second Expr to process later; once we
have finished with the former, we must go right into the second
operand, recording the Int returned from the first; as soon as we
have both values, we can add them. Correspondingly, a Stack of
these direction-with-cache choices completely determines where
we are in the evaluation process. Let’s make this structure explicit:2

type Stack = [Expr + Int]

Now we can implement an ‘eval machine’—a tail-recursive pro-
gram, at each stage stuck in the middle with either an expression to
decompose, in which case we load the stack and go left, or a value
to return, in which case we unload the stack and try to move right.

2 For brevity, I write · + · for Either, L for Left and R for Right



eval :: Expr → Int
eval e = load e [ ]

load :: Expr → Stack → Int
load (Val i) stk = unload i stk
load (Add e1 e2) stk = load e1 (L e2 : stk)

unload :: Int → Stack → Int
unload v [ ] = v
unload v1 (L e2 : stk ) = load e2 (R v1 : stk )
unload v2 (R v1 : stk ) = unload (v1 + v2) stk

Each layer of this Stack structure is a dissection of Expr’s recursion
pattern. We have two ways to be stuck in the middle: we’re either
L e2, on the left with an Expr waiting to the right of us, or R v1, on
the right with an Int cached to the left of us. Danvy and colleagues
have shown us how to calculate abstract machines from programs
by transforming them into a sequential, continuation-passing style,
then defunctionalising the result (Ager et al. 2003). Here, however,
the structure of the program comes from the structure of its data.
Correspondingly, we can mechanize the stack construction more
directly, by working from the types.

2. Polynomial Functors and Bifunctors
This section briefly recapitulates material which is quite standard. I
hope to gain some generic leverage by exploiting the characterisa-
tion of recursive datatypes as fixpoints of polynomial functors. For
more depth and detail, I refer the reader to the excellent ‘Algebra
of Programming’ (Bird and de Moor 1997).
If we are to work in a generic way with data structures, we need

to present them in a generic way. Rather than giving an individual
data declaration for each type we want, let us see how to build
them from a fixed repertoire of components. I’ll begin with the
polynomial type constructors in one parameter. These are generated
by constants, the identity, sum and product. I label them with a 1

subscript to distinguish them their bifunctorial cousins.

data K1 a x = K1 a -- constant
data Id x = Id x -- element
data (p +1 q) x = L1 (p x) | R1 (q x) -- choice
data (p ×1 q) x = (p x , q x)1 -- pairing

Allow me to abbreviate one of my favourite constant functors, at
the same time bringing it into line with our algebraic style.

type 11 = K1 ()

Some very basic ‘container’ type constructors can be expressed
as polynomials, with the parameter giving the type of ‘elements’.
For example, the Maybe type constructor gives a choice between
‘Nothing’, a constant, and ‘Just’, embedding an element.

type Maybe = 11 +1 Id

Nothing = L1 (K1 ())
Just x = R1 (Id x)

Whenever I reconstruct a datatype from this kit, I shall make a
habit of ‘defining’ its constructors linearly in terms of the kit con-
structors. To aid clarity, I use these pattern synonyms on either side
of a functional equation, so that the coded type acquires the same
programming interface as the original. This is an old idea (Aitken
and Reppy 1992), but it is not standard Haskell: these definitions
may readily be expanded to code which is fully compliant, if less
readable.
The ‘kit’ approach allows us to establish properties of whole

classes of datatype at once, using Haskell’s rather powerful facili-
ties for ad hoc polymorphism (Wadler and Blott 1989). For exam-
ple, the polynomials are all functorial: we can make the standard
Functor class

class Functor p where
fmap :: (s → t) → p s → p t

respect the polynomial constructs.
instance Functor (K1 a) where

fmap f (K1 a) = K1 a

instance Functor Id where
fmap f (Id s) = Id (f s)

instance (Functor p, Functor q) ⇒ Functor (p +1 q) where
fmap f (L1 p) = L1 (fmap f p)
fmap f (R1 q) = R1 (fmap f q)

instance (Functor p, Functor q) ⇒ Functor (p ×1 q) where
fmap f (p, q)1 = (fmap f p, fmap f q)1

Our reconstructed Maybe is functorial without further ado.

2.1 Datatypes as Fixpoints of Polynomial Functors
The Expr type is not itself a polynomial, but its branching structure
is readily described by a polynomial. Think of each node of an Expr
as a container whose elements are the immediate sub-Exprs:

type ExprP = K1 Int +1 Id ×1 Id

ValP i = L1 (K1 i)
AddP e1 e2 = R1 (Id e1, Id e2)1

Correspondingly, we should hope to establish the isomorphism
Expr ∼= ExprP Expr

but we cannot achieve this just by writing
type Expr = ExprP Expr

for this creates an infinite type expression, rather than an infinite
type. Rather, we must define a recursive datatype which ‘ties the
knot’: µ p instantiates p’s element type with µ p itself.

data µ p = In (p (µ p))

Now we may complete our reconstruction of Expr

type Expr = µ ExprP

Val i = In (ValP i)
Add e1 e2 = In (AddP e1 e2)

The container-like quality of polynomials allows us to define a
fold-like recursion operator for them, sometimes called the iterator
or the catamorphism.3 How can we compute a value in v from
recursive data in µ p? First, we can expand a µ p tree as a p (µ p)
container of subtrees; next, we can use p’s fmap operator to deliver
a p v , recursively computing the value for each subtree; finally, we
can post-process the p v value container to produce a final result in
v . The behaviour of the recursion is thus uniquely determined by
the p-algebra φ :: p v → v which does the post-processing.

(| · |) :: Functor p ⇒ (p v → v) → µ p → v
(|φ|) (In p) = φ (fmap (|φ|) p)

For example, we can write our evaluator as a catamorphism, with
an algebra which implements each construct of our language for
values rather than expressions. The pattern synonyms for ExprP
help us to see what is going on:

eval :: µ ExprP → Int
eval = (|φ|) where

φ (ValP i) = i
φ (AddP v1 v2) = v1 + v2

3 Terminology is a minefield here: some people think of ‘fold’ as threading
a binary operator through the elements of a container, others as replacing
the constructors with an alternative algebra. The confusion arises because
the two coincide for lists. There is no resolution in sight.



A catamorphism may appear to have a complex higher-order
recursive structure, but we shall soon see how to turn it into a first-
order tail-recursion whenever p is polynomial. We shall do this by
dissecting p, distinguishing the ‘clown’ elements left of a chosen
position from the ‘joker’ elements to the right.

2.2 Polynomial Bifunctors
Before we can start dissecting, however, we shall need to be able
to manage two sorts of elements. To this end, we shall need to in-
troduce the polynomial bifunctors, which are just like the functors,
but with two parameters.

data K2 a x y = K2 a
data Fst x y = Fst x
data Snd x y = Snd y
data (p +2 q) x y = L2 (p x y) | R2 (q x y)
data (p ×2 q) x y = (p x y , q x y)2
type 12 = K2 ()

We have the analogous notion of ‘mapping’, except that we must
supply one function for each parameter.

class Bifunctor p where
bimap :: (s1 → t1) → (s2 → t2) → p s1 s2 → p t1 t2

instance Bifunctor (K2 a) where
bimap f g (K2 a) = K2 a

instance Bifunctor Fst where
bimap f g (Fst x) = Fst (f x)

instance Bifunctor Snd where
bimap f g (Snd y) = Snd (g y)

instance (Bifunctor p, Bifunctor q) ⇒
Bifunctor (p +2 q) where

bimap f g (L2 p) = L2 (bimap f g p)
bimap f g (R2 q) = R2 (bimap f g q)

instance (Bifunctor p, Bifunctor q) ⇒
Bifunctor (p ×2 q) where

bimap f g (p, q)2 = (bimap f g p, bimap f g q)2

It’s certainly possible to take fixpoints of bifunctors to obtain re-
cursively constructed container-like data: one parameter stands for
elements, the other for recursive sub-containers. These structures
support both fmap and a suitable notion of catamorphism. I can
recommend Gibbons (2007) as a useful tutorial for this ‘origami’
style of programming.

2.3 Nothing is Missing
We are still short of one basic component: Nothing. We shall be
constructing types which organise ‘the ways to split at a position’,
but what if there are no ways to split at a position (because there
are no positions)? We need a datatype to represent impossibility
and here it is:

data Zero

Elements of Zero are hard to come by—elements worth speak-
ing of, that is. If you can reduce an element of Zero to a well-
defined value, you can exchange it for anything you want!

refute :: Zero → a
refute x = x ‘seq‘ error "we never get this far"

I have used Haskell’s seq operator to insist that refute evaluate its
argument. This is necessarily undefined, hence the error clause can
never be executed. In effect, refute rejects its input.
We can use p Zero to represent ‘ps with no elements’. For ex-

ample, the only inhabitant of [Zero ] mentionable in polite society
is [ ]. Zero gives us a convenient way to get our hands on exactly the

constants, common to every instance of p. Accordingly, we should
be able to embed these constants into any other instance:4

inflate :: Functor p ⇒ p Zero → p x
inflate = fmap refute

Now that we have Zero, allow me to abbreviate
type 01 = K1 Zero
type 02 = K2 Zero

3. Clowns, Jokers and Dissection
Let us now develop this idea of ‘dissecting’ functors with the help
of some visual stimuli. If we consider functors parametrised by
elements, depicted •, we can draw a typical value in some p x
as a container of •s:

〈−•−•−•−•−•−〉
We shall need to relate these functors to bifunctors which refine the
notion of element into two kinds: clowns (!) to the left and jokers
(") to the right of some hole (©). More particularly, we shall
need three operators which take polynomial functors to bifunctors,
classifying their elements as clowns, jokers or the hole.
Firstly, ‘all clowns’ p lifts p uniformly to the bifunctor which

uses its left parameter for the elements of p.

〈−!−!−!−!−!−〉
We can define this uniformly:

data p c j = (p c)

instance Functor f ⇒ Bifunctor ( f ) where
bimap f g ( pc) = (fmap f pc)

Note that Id ∼= Fst.
Secondly, ‘all jokers’ p is the analogue for the right parameter.

〈−"−"−"−"−"−〉

data p c j = (p j )

instance Functor f ⇒ Bifunctor ( f ) where
bimap f g ( pj ) = (fmap g pj )

Note that Id ∼= Snd.
Thirdly, ‘dissection’ p takes p to the bifunctor which chooses

a position in a p, storing clowns to the left of it and jokers to the
right.

〈−!−!−©−"−"−〉
We must clearly define dissection case by case. Let us work in-
formally and think through what to do for each polynomial type
constructor. Constants have no positions for elements,

〈−〉
so there is no way to dissect them:

(K1 a) = 02

The Id functor has just one position, so there is just one way to
dissect it, and no room for clowns or jokers, left or right.

〈−•−〉 −→ 〈−©−〉

Id = 12

Dissecting a p +1 q , we get either a dissected p or a dissected q .
L1 〈−•−•−•−〉 −→ L2 〈−!−©−"−〉
R1 〈−•−•−•−〉 −→ R2 〈−!−©−"−〉

4 If the compiler adopts a uniform representation for polymorphic data, it
may be profitable to replace inflate by an ‘unsafe’ cast.



(p +1 q) = p +2 q

So far, these have just followed Leibniz’s rules for the derivative,
but for pairs p×1q we see the new twist. When dissecting a pair, we
choose to dissect either the left component (in which case the right
component is all jokers) or the right component (in which case the
left component is all clowns).

(〈−•−•−•−〉 , 〈−•−•−•−〉)1 −→


L2 (〈−!−©−"−〉 , 〈−"−"−"−〉)2
R2 (〈−!−!−!−〉 , 〈−!−©−"−〉)2

(p ×1 q) = p ×2 q +2 p ×2 q

How can we implement this? Fortunately, Haskell supports the
overloading of functions involving classes of related types (Pey-
ton Jones et al. 1997). Instance declarations resemble logic pro-
grams and constraint-solving proceeds by type-directed backchain-
ing, rather like Prolog but without backtracking. It pays to think of
type classes as a programming language (Hallgren 2001; McBride
2002). Allow me to abuse notation very slightly, giving dissection
constraints a slightly more functional notation, after the manner
of Neubauer et al. (2001):

class (Functor p, Bifunctor p̂) ⇒ p )→ p̂ | p → p̂ where
-- methods to follow

In ASCII, p )→ p̂ is rendered relationally as Diss p p’’, but
the annotation |p → p̂ is a functional dependency, indicating that
p determines p̂, so it is appropriate to think of · as a functional
operator, even if we can’t quite treat it as such in practice.5
I shall extend this definition and its instances with operations

shortly, but let’s start by translating our informal program into
‘type-class Prolog’:

instance (K1 a) )→ 02

instance Id )→ 12

instance ( p )→ p̂, q )→ q̂) ⇒
(p +1 q) )→ p̂ +2 q̂

instance ( p )→ p̂, q )→ q̂) ⇒
(p ×1 q) )→ p̂ ×2 q +2 p ×2 q̂

Before we move on, let’s just check that we get the answer we
expect for our expression example.

(K1 Int +1 Id ×1 Id) )→ 02 +2 12 ×2 Id +2 Id ×2 12

A bit of simplification tells us:

ExprP Int Expr ∼= Expr + Int

Dissection (with values to the left and expressions to the right) has
calculated the type of layers of our stack!

4. How to Creep Gradually to the Right
If we’re serious about representing the state of a traversal by a
dissection, we had better make sure that we have some means to
move from one position to the next. In this section, we’ll develop
a method for the p )→ p̂ class which lets us move rightward one
position at a time. I encourage you to develop the leftward move
for yourselves.
What should be the type of this operation? Consider, firstly,

where our step might start. If we follow the usual trajectory, we’ll
start at the far left—and to our right, all jokers.

↓〈−"−"−"−"−"−〉

5 Recent unsupported extensions of GHC support ‘associated type families’,
a more functional approach to type-level programming. I am grateful to
Brandon Moore for the news that the code in this paper ports seamlessly.

Once we’ve started our traversal, we’ll be in a dissection. To be
ready to move, we must have a clown to put into the hole.

!
↓

〈−!−!−©−"−"−〉

Now, think about where our step might take us. If we end up at
the next position, out will pop the next joker, leaving the new hole.

〈−!−!−!−©−"−〉
↓"

But if there are no more positions, we’ll emerge at the far right, all
clowns.

〈−!−!−!−!−!−〉↓

Putting this together, we add to class p )→ p̂ the method

right :: p j + (p̂ c j , c) → (j , p̂ c j ) + p c

Let me show you how to implement the instances of right.
I shall adopt the style of polytypic programming (Jansson and
Jeuring 1997), pretending to match on the polynomial parameter
as if it were a special kind of argument.

right{-p -} :: p j + ( p c j , c) → (j , p c j ) + p c

Sadly, these ‘arguments’ are just Haskell comments, but they serve
a useful documentary purpose. In particular, they show in which
instance each clause belongs. If you paste each clause of right{-p-}
into the corresponding p )→ p̂ instance, Haskell’s type class
mechanism can interpret each appeal to right{-p-} by compile-time
recursion on p.
For constants, we jump all the way from far left to far right in

one go; we cannot be in the middle, so we refute that case.

right{-K1 a -} x = case x of
L (K1 a) → R (K1 a)
R (K2 z , c) → refute z

We can step into a single element, or step out.

right{-Id x -} x = case x of
L (Id j ) → L (j ,K2 ())
R (K2 (), c) → R (Id c)

For sums, we make use of the instance for whichever branch is
appropriate, being careful to strip tags beforehand and replace them
afterwards.

right{-p +1 q -} x = case x of
L (L1 pj ) → mindp (right{-p -} (L pj ))
L (R1 qj ) → mindq (right{-q -} (L qj ))
R (L2 pd , c) → mindp (right{-p -} (R (pd , c)))
R (R2 qd , c) → mindq (right{-q -} (R (qd , c)))
where

mindp (L (j ,pd)) = L (j ,L2 pd)
mindp (R pc) = R (L1 pc)
mindq (L (j , qd)) = L (j ,R2 qd)
mindq (R qc) = R (R1 qc)

For products, we must start at the left of the first component and
end at the right of the second, but we also need to make things
join up in the middle. When we reach the far right of the first
component, we must continue from the far left of the second.



right{-p ×1 q -} x = case x of
L (pj , qj )1 → mindp (right{-p -} (L pj )) qj
R (L2 (pd , qj )2, c) → mindp (right{-p -} (R (pd , c))) qj
R (R2 ( pc, qd)2, c) → mindq pc (right{-q -} (R (qd , c)))
where

mindp (L (j ,pd)) qj = L (j ,L2 (pd , qj )2)
mindp (R pc) qj = mindq pc (right{-q -} (L qj ))
mindq pc (L (j , qd)) = L (j ,R2 ( pc, qd)2)
mindq pc (R qc) = R (pc, qc)1

Let’s put this operation straight to work. If we can dissect p,
then we can make its fmap operation tail recursive. Here, the jokers
are the source elements and the clowns are the target elements.

tmap :: p )→ p̂ ⇒ (s → t) → p s → p t
tmap f ps = continue (right (L ps)) where

continue (L (s, pd)) = continue (right (R (pd , f s)))
continue (R pt) = pt

These programs may seem fiddly, but in fact they’re remarkably
easy to write because they’re precisely typed and abstract. By mak-
ing clowns and jokers separate parameters, we distinguish them
from other data and from each other. The types attract us towards
the programs which make sense, a virtuous tendency which could
only be strengthened by improving access to ‘live’ type information
during the editing process.

4.1 Tail-Recursive Catamorphism
If we want to define the catamorphism via dissection, we could just
replace fmap by tmap in the definition of (| · |), but that would
be cheating! The point, after all, is to turn a higher-order recursive
program into a tail-recursive machine. We need some kind of stack.
Suppose we have a p-algebra, φ::p v → v , and we’re traversing

a µ p depth-first, left-to-right, in order to compute a value in v . At
any given stage, we’ll be processing a given node, in the middle of
traversing her mother, in the middle of traversing her grandmother,
and so on in a maternal line back to the root.

〈−"v−©−"−· · ·−〉...
↘
In 〈−•−· · ·−•−〉

〈−"v−©−"−· · ·−〉
↑
|

↘
In 〈−•−· · ·−•−〉

〈−"v−©−"−· · ·−〉
↑
|

↘
In 〈−•−· · ·−•−〉

We’ll have visited all the nodes left of this line and thus have
computed vs for them; right of the line, each node will contain
a µ p waiting for her turn. Correspondingly, our stack is a list of
dissections:

[ p v (µ p)]

We start, ready to load a tree, with an empty stack.
tcata :: p )→ p̂ ⇒ (p v → v) → µ p → v
tcata φ t = load φ t [ ]

To load a node, we unpack her container of children and step in
from the far left.

load :: p )→ p̂ ⇒ (p v → v) → µ p → [p̂ v (µ p)] → v
load φ (In pt) stk = next φ (right (L pt)) stk

After a step, we might arrive at another child, in which case we had
better load her, suspending our traversal of her mother by pushing
the dissection on the stack.

next :: p )→ p̂ ⇒ (p v → v) →
(µ p, p̂ v (µ p)) + p v → [p̂ v (µ p)] → v

next φ (L (t , pd)) stk = load φ t (pd : stk)
next φ (R pv) stk = unload φ (φ pv) stk

Alternatively, our step might have taken us to the far right of a node,
in which case we have all her children’s values: we are ready to
apply the algebra φ to get her own value, and start unloading.
Once we have a child’s value, we may resume the traversal of

her mother, pushing the value into her place and moving on.

unload :: p )→ p̂ ⇒ (p v → v) → v → [p̂ v (µ p)] → v
unload φ v (pd : stk) = next φ (right (R (pd , v))) stk
unload φ v [ ] = v

On the other hand, if the stack is empty, then we’re holding the
value for the root node, so we’re done! As we might expect:

eval :: µ ExprP → Int
eval = tcata φ where

φ (ValP i) = i
φ (AddP v1 v2) = v1 + v2

By design, dissection captures the notion of state for the left-to-
right transformation of a (necessarily finite) container-like struc-
ture. As a consequence, a stack of dissections captures the state of
the natural recursion over finite trees built from such containers,
turning its control structure into data. I can imagine a number of
motivations for doing this, besides mathematical curiosity.
Firstly, you might be programming with recursive data struc-

tures in a resource-aware setting, such as that of Hofmann and Jost
(2003). By turning the control structure into data, you eliminate
stack in favour of heap, bringing the necessary resources under
control of the type system. If you build the stack by consuming
the input and the output by consuming the stack, you might arrive
at a rationalised reconstruction of the pointer reversal technique for
traversing trees without fear of stack overflow.
Secondly, you might want your traversal process to support sus-

pension and resumption. Dissection makes the state of a traversal
into first-class data, bringing the schedule of the computation under
much finer control.
Thirdly, and perhaps most interestingly, your program might

benefit from manipulating its control structures more directly. For
example, you might handle exceptional values by discarding a
chunk of stack, rather than propagating them layer by layer. In
effect, more possibilities open when your control structure is not
only first-class, but also first-order. Filliâtre’s work on ‘backtrack-
ing iterators’ (2006), also closely connected with zippers, shows
interesting possibilities in this direction.

5. Derivative Derived by Diagonal Dissection
If we’re interested in the possibility to manipulate first-order rep-
resentations of contexts, it seems appropriate to revisit the zipper.
In his seminal functional pearl, Huet (1997) not only shows how to
represent one-hole contexts as stack-like structures, but also how to
navigate efficiently around a tree decomposed as the pair of a zip-
per and a subtree in focus. In this section, I’ll examine the way the
derivative of a functor, now a special case of dissection, gives rise
to the zipper datatype (McBride 2001; Abbott et al. 2005b). More-
over, I’ll show how the dissection’s explicit left-to-right analysis
delivers Huet-style navigation.
The dissection of a functor is its bifunctor of one-hole contexts

distinguishing ‘clown’ elements left of the hole from ‘joker’ ele-
ments to its right. As we’ve already seen, the rules for computing
dissections just refine the centuries-old rules of the differential cal-
culus with this left-right distinction. We can undo this refinement
by taking the diagonal of the dissection, identifying clowns with
jokers.

∂p x = p x x

Let us now develop the related operations.



5.1 Plugging In
We can add another method to class p )→ p̂,

plug :: x → p̂ x x → p x

saying, in effect, that if clowns and jokers coincide, we can fill the
hole directly, with no need to traverse and replace, all the way to
the end.

•
↓

〈−•−•−©−•−•−〉 )→ 〈−•−•−•−•−•−〉
The implementation is straightforward. As with right, the com-

ments show you which instance declaration should receive each
clause.

plug{-K1 a -} x (K2 z) = refute z

plug{-Id-} x (K2 ()) = Id x

plug{-p +1 q -} x (L2 pd) = L1 (plug{-p -} x pd)
plug{-p +1 q -} x (R2 qd) = R1 (plug{-q -} x qd)
plug{-p ×1 q -} x (L2 (pd , qx )2) = (plug{-p -} x pd , qx)1
plug{-p ×1 q -} x (R2 ( px , qd)2) = (px , plug{-q -} x qd)1

5.2 Zipping Around
We now have almost all the equipment we need to reconstruct
Huet’s operations, navigating a tree of type µ p for some dissectable
functor p.

zUp, zDown, zLeft, zRight :: p )→ p̂ ⇒
(µ p, [p̂ (µ p) (µ p)]) → Maybe (µ p, [p̂ (µ p) (µ p)])

I leave zLeft as an exercise, to follow your implementation of the
leftward step operation, but the other three are straightforward uses
of plug and right. This implementation corresponds quite closely to
the Generic Haskell version from Hinze et al. (2004), but requires
a little less machinery.

zUp (t , [ ]) = Nothing
zUp (t , pd : pds) = Just (In (plug t pd), pds)

zDown (In pt , pds) = case right (L pt) of
L (t , pd) → Just (t , pd : pds)
R → Nothing

zRight (t , [ ]) = Nothing
zRight (t :: µ p, pd : pds) = case right (R (pd , t)) of

L (t ′, pd ′) → Just (t ′, pd ′ : pds)
R ( :: p (µ p)) → Nothing

Notice that I had to give the typechecker a little help in the
definition of zRight. The trouble is that · is not invertible. When
we say right (R (pd , t)), the type of pd is given by some p̂ which
does not actually determine the corresponding p, and thence the
appropriate instance of · )→ p̂. I’ve forced the issue by collecting
p from the type of the input tree and using it to fix the type of
the ‘all clowns’ failure case emerging from the appeal to right,
thus forcing the selection of the p )→ p̂ instance in a less than
perspicuous manner. I wish I didn’t have to be this devious, but
there is currently no direct notation for me to be explicit about
which instance I want—it must be inferred!

6. Division: No Clowns!
I originally stumbled into dissection whilst trying to to find an
operator $· (for ‘leftmost’) on suitable functors p which would
induce an isomorphism reminiscent of the ‘remainder theorem’ in
algebra.

p x ∼= (x , $p x) + p Zero

This $p x is the ‘quotient’ of p x on division by x , and it
represents whatever can remain after the leftmost element in a p x

has been removed. Meanwhile, the ‘remainder’, p Zero, represents
those ps with no elements at all. We can see this choice as follows:

〈−•−· · ·−•−〉 #

8
><

>:

• (x ,
↑

〈−© •−· · ·−•−〉 $p x)

〈−〉 p Zero

Certainly, the finitely-sized containers should give us this isomor-
phism, but what is $·? It’s the context of the leftmost hole. It should
not be possible to move any further left, so there should be no
clowns! We need

$p x = p Zero x

For the polynomials, we shall certainly have
divide :: p )→ p̂ ⇒ p x → (x , p̂ Zero x) + p Zero
divide px = right (L px )

To compute the inverse, I could try waiting for you to implement
the leftward step: I know we are sure to reach the far left, for your
only alternative is to produce a clown! However, an alternative is at
the ready. I can turn a leftmost hole into any old hole if I have6

inflateFst :: Bifunctor p ⇒ p Zero y → p x y
inflateFst = bimap refute id

Now, we may invert divide as follows:
unite :: p )→ p̂ ⇒ (x , p̂ Zero x) + p Zero → p x
unite (L (x , pl)) = plug x (inflateFst pl)
unite (R pz) = inflate pz

It is straightforward to show that divide and unite are mutually
inverse by induction on polynomials.
To see why dissection is a necessary precursor to division, think

about dividing a composition. The leftmost x in a p (q x) might
not be in a leftmost p position: there might be q-leaves to the left
of the q-node containing the first element. For example,

(Id Nothing, Id (Just x))1 :: (Id ×1 Id) (Maybe x)

has its leftmost element in the second component. We need to be
able to express the idea that we have only q-leaves left of the p-
hole, which could be anywhere, but with different stuff to the left
and to the right. By generalising to dissection, we get the correct
behaviour for composition—the chain rule.

(p ◦1 q) = q ×2 ( p) ◦2 ( q ; q)

where
data (p ◦2 (q ; r)) c j = (p (q c j ) (r c j )) ◦2 (·; ·)

That is, we have a dissected p, with clown-filled qs left of the hole,
joker-filled qs right of the hole, and a dissected q in the hole. If you
specialise this to division, you get

$(p ◦1 q) x ∼= $q x × p (q Zero) (q x)

which exactly captures the ‘leaves left of the hole’ intuition. Let us
now put division and dissection to work!

7. Generic Generalisation
By way of a finale, let me present a more realistic use-case for
dissection, where we exploit the first-order representation of the
context by inspecting it in the course of a recursive computation.
The task is to implement a generalisation mechanism, transforming
an expression by replacing all occurrences of a given subexpression
by a variable. This is a common technique in proof by induction:
generalisation strengthens inductive hypotheses. The Coq proof
assistant, for example, has a tactic for generalsation. Let us now

6Again, in some systems inflateFst can effectively be replaced by a cast.



develop an efficient generalisation algorithm for a generic first-
order syntax.

7.1 Free Monads and Substitution
What is a ‘generic first-order syntax’? A standard way to get hold
of such a thing is to define the free monad p∗ of a (container-like)
functor p (Barr and Wells 1984).

data p∗ x = V x | C (p (p∗ x))

The idea is that p represents the signature of constructors in our
syntax, just as it represented the constructors of a datatype in the
µ p representation. The difference here is that p∗ x also contains
free variables chosen from the set x . The monadic structure of p∗

is that of substitution.
instance Functor p ⇒ Monad (p∗) where

return x = V x
V x >>= σ = σ x
C pt >>= σ = C (fmap (>>=σ) pt)

Here >>= is the simultaneous substitution from variables in one set
to terms over another. However, it’s easy to build substitution for a
single variable on top of this. Following Bird and Paterson (1999),
we can useMaybe x to represent a variable set which distinguishes
a new, bound variable Nothing from old, free variables Just x .
Let us rename Maybe to S, ‘successor’, for this purpose. We may
readily eliminate the bound variable by instantiating it with a term
constructed over the free variables, as follows:

type S = Maybe

($) :: Functor p ⇒ p∗ (S x) → p∗ x → p∗ x
t $ s = t >>= σ where

σ Nothing = s
σ (Just x) = V x

Generalisation can now be seen as the task of computing the ‘most
abstract’ inverse to ($s). That is, for suitable p and x , we need some

(%) :: ... ⇒ p∗ x → p∗ x → p∗ (S x)

such that (t % s) $ s = t , and moreover that fmap Just s occurs
nowhere in t %s . In order to achieve this, we’ve got to abstract every
occurrence of s in t as V Nothing and apply Just to all the other
variables. Taking t % s = fmap Just t is definitely wrong!

7.2 Indiscriminate Stop-and-Search
The obvious approach to computing t % s is to traverse t checking
everywhere if we’ve found s .

(%) :: (Functor p, PresEq p, Eq x) ⇒ p∗ x → p∗ x → p∗ (S x)
t % s | t ≡ s = V Nothing
V x % s = V (Just x)
C pt % s = C (fmap (%s) pt)

Here, I’m exploiting Haskell’s Boolean guards to test for a match at
the root. I write≡ for Haskell’s Boolean equality test (== in ASCII),
which is available for types in the Eq class. Only if the match fails
do we fall through and try to search more deeply inside the term.
How do we know we can test equality of terms? We first must

confirm that our signature functor p preserves equality, i.e., that we
can lift equality eq on x to equality · /eq0 · on p x .

instance (PresEq p, Eq x) ⇒ Eq (p∗ x) where
V x ≡ V y = x ≡ y
C ps ≡ C pt = ps /≡0 pt

≡ = False

Lifting equality is quite mechanical. The only interesting case is for
sums, where structural difference is actually possible.

class PresEq p where
· /·0 · ::(x → x → Bool) → p x → p x → Bool

instance Eq a ⇒ PresEq (K1 a) where
K1 a1 /eq0 K1 a2 = a1 ≡ a2

instance PresEq Id where
Id x1 /eq0 Id x2 = eq x1 x2

instance (PresEq p, PresEq q) ⇒ PresEq (p +1 q) where
L1 p1 /eq0 L1 p2 = p1 /eq0 p2

R1 q1 /eq0 R1 q2 = q1 /eq0 q2

/eq0 = False

instance (PresEq p, PresEq q) ⇒ PresEq (p ×1 q) where
(p1, q1)1 /eq0 (p2, q2)1 = p1 /eq0 p2 ∧ q1 /eq0 q2

Our first attempt at generalisation is short and obviously correct,
but it’s rather inefficient. If s is small and t is large, we shall
repeatedly compare s with terms which are far too large to stand
a chance of matching. We search for s’s root everywhere, whether
or not its leaves reach the edge, as shown below.

t

•s?

It’s rather like testing if a list xs has suffix ys like this.

hasSuffix :: Eq x ⇒ [x ] → [x ] → Bool
hasSuffix xs ys | xs ≡ ys = True
hasSuffix [ ] ys = False
hasSuffix (x : xs) ys = hasSuffix xs ys

If we ask hasSuffix "xxxxxxxxxxxx" "xxx", we shall test if
’x’ ≡ ’x’ thirty times, not three. It’s more efficient to reverse
both lists and check once for a prefix. With fast reverse, this takes
linear time.

hasSuffix :: Eq x ⇒ [x ] → [x ] → Bool
hasSuffix xs ys = hasPrefix (reverse xs) (reverse ys)

hasPrefix :: Eq x ⇒ [x ] → [x ] → Bool
hasPrefix xs [ ] = True
hasPrefix (x : xs) (y : ys) | x ≡ y = hasPrefix xs ys
hasPrefix = False

7.3 Hunting for a Needle in a Stack
We can adapt the ‘reversal’ idea to our more arboreal problem.
The divide function tells us how to find the leftmost position in
a polynomial container, if it has one. By iterating divide, we can
navigate our way down the left spine of a term to its leftmost leaf,
stacking the contexts as we go. That’s a way to reverse a tree! A
leaf is either a variable or a constant. A term either is a leaf or has
a leftmost subterm. To see this, we just need to adapt divide for the
possibility of variables.

data Leaf p x = VL x | CL (p Zero)

leftOrLeaf :: p )→ p̂ ⇒
p∗ x → (p∗ x , p̂ Zero (p∗ x)) + Leaf p x

leftOrLeaf (V x) = R (VL x)
leftOrLeaf (C pt) = fmap CL (divide pt)

Now we can reverse the term we seek into the form of a ‘needle’—
the leftmost leaf with a straight spine of leftmost holes running all



the way back to the root, as shown schematically, and in detail:

•
given by

〈−© •−· · ·−•−〉...
〈−© •−· · ·−•−〉
↑

〈−© •−· · ·−•−〉
↗

z }| {
V x C 〈−〉

needle :: p )→ p̂ ⇒ p∗ x → (Leaf p x , [p̂ Zero (p∗ x)])
needle t = grow t [ ] where

grow t pls = case leftOrLeaf t of
L (t ′, pl) → grow t ′ (pl : pls)
R l → (l , pls)

Given this ‘needle’ representation of the search term, we can im-
plement the abstraction as a stack-driven traversal, hunt (below),
which tries for a match only when it reaches a suitable leaf. As our
point of focus corresponds to a leaf in s, it’s now easy to rule out
internal positions in t:

t

•
s? No!

Moreover, we need only check for our needle when we’re stand-
ing at the end of a left spine at least as long.

t

•
s? No!

t

•
s? Perhaps.

Let us therefore split our ‘state’ into an inner left spine and an outer
stack of dissections.

(%) :: ( p )→ p̂, PresEq p, PresEq2 p̂, Eq x) ⇒
p∗ x → p∗ x → p∗ (S x)

t % s = hunt t [ ] [ ] where
(neel ,nees) = needle s
hunt t spi stk = case leftOrLeaf t of

L (t ′, pl) → hunt t (pl : spi) stk
R l → check spi nees (l ≡ neel)

where
check = · · ·

Haskell’s restricted technology for type annotations makes it hard
for me to write hunt’s type in the code. Informally, it’s this:

hunt :: p∗ x → -- term in focus
[$p (p∗ x)] → -- local spine
[ p (p∗ (S x)) (p∗ x)] → -- stack to root
p∗ (S x)

Now, check is rather like hasPrefix, except that I’ve used a lazy
accumulator to ensure that the expensive equality tests for the rest
of the term are evaluated only as soon as we know that the spine is
at least as long as the needle.

check spi ′ [ ] True =
next (V Nothing) (fmap inflateFst spi ′ ++ stk)

check (spl : spi ′) (npl : nees ′) b =
check spi ′ nees ′ (b ∧ spl /refute |≡0 npl)

check = next (leafS l) (fmap inflateFst spi ++ stk)
where

leafS (VL x) = V (Just x)
leafS (CL pz ) = C (inflate pz )

For the equality tests we need ·/· | ·0 ·, the bifunctorial analogue of
· /·0 ·, although as we’re working with $p, we can just use refute to
test equality of clowns. The same trick works for Leaf equality:

instance (PresEq p, Eq x) ⇒ Eq (Leaf p x) where
VL x ≡ VL y = x ≡ y
CL a ≡ CL b = a /refute0 b

≡ = False

Now, instead of returning a Bool, check must explain how to
move on. If our test succeeds, we must move on from our matching
subterm’s position, abstracting it: we throw away the matching
prefix of the spine and stitch its suffix onto the stack—to stitch,
just inflate the spine to a stack, then append. However, if the test
fails, we must move right from the current leaf ’s position, injecting
it into p∗ (S x) and stitching the original spine to the stack.
Correspondingly, next tries to move rightwards given a ‘new’

term and a stack. If we can go right, we get the next ‘old’ term
along, so we start hunting again with an empty spine.

next t ′ (pd : stk) = case right{-p -} (R (pd , t ′)) of
L (t , pd ′) → hunt t [ ] (pd ′ : stk)
R pt ′ → next (C pt ′) stk

next t ′ [ ] = t ′

If we reach the far right of a p, we pack it up and pop on out. If we
run out of stack, we’re done!

8. Discussion
The story of dissection has barely started, but I hope I have com-
municated the intuition behind it and sketched some of its poten-
tial applications. Dissection is the structure which supports nav-
igation of first-order, first-class contexts, for more flexible man-
agement of both data and control in a purely functional setting.
In my other work—implementing typecheckers for interactive pro-
gramming environments—dissection-based control structures are
invaluable in managing what is effectively a process of term traver-
sal interruptable non-locally by fresh information at any time.
On a more theoretical note, what’s clearly missing here is a se-

mantic characterisation of dissection, with respect to which the op-
erational rules for p may be justified. It is certainly straightfor-
ward to give a shapes-and-positions analysis of dissection in the
categorical setting of containers (Abbott et al. 2005a), much as we
did with the derivative (Abbott et al. 2005b). The basic point is that
where the derivative requires element positions to have decidable
equality (‘am I in the hole?’), dissection requires a total order on
positions with decidable trichotomy (‘am I in the hole, to the left,
or to the right?’).
The induced notion of division can be used to calculate power

series representations for data structures, establishing a significant
connection with the notion of combinatorial species as studied by
Joyal (1986) and others. The details, however, deserve a paper of
their own.
I have shown dissection for polynomials here, but it is clear that

we can go further. For example, the dissection of list gives a list of
clowns and a list of jokers:

[ ] = [ ] ×2 [ ]



Moreover, if p has a dissection, it is an interesting exercise to con-
struct the dissection of its free monad p∗. However, if we want
to address more complex phenomena, such as mutually recur-
sive datatypes (requiring multiple parameters) or iterated dissec-
tion (representing multiple holes), we shall rapidly reach the limits
of the Haskell techniques I’ve shown here. But it’s a delight that
Haskell allows us to come even this close to implementing the
general pattern, rather than its individual instances.
In principle, and in dependently typed practice, the whole de-

velopment extends readily to the multivariate case. The general i

dissects a mutli-sorted container at a hole of sort i , and splits all
the sorts into clown- and joker-variants, doubling the arity of its
parameter. The corresponding $i finds the contexts in which an el-
ement of sort i can stand leftmost in a container. This generalises
Brzozowski’s (1964) notion of the ‘partial derivative’ of a regular
expression, with the set of sorts corresponding to the alphabet.
But if there is a broader message for programmers and program-

ming language designers here, it is this: the miserablist position that
types exist only to police errors is thankfully no longer sustainable,
once we start writing programs like this. By permitting calculations
of types and from types, we discover what programs we can have,
just for the price of structuring our data. What joy!
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Jean-Christophe Filliâtre. Backtracking iterators. Technical Report
1428, CNRS-LRI, January 2006.

Jeremy Gibbons. Datatype-generic programming. In Roland Back-
house, Jeremy Gibbons, Ralf Hinze, and Johan Jeuring, editors,
Spring School on Datatype-Generic Programming, volume 4719
of Lecture Notes in Computer Science. Springer-Verlag, 2007.
To appear.

Thomas Hallgren. Fun with functional dependencies. In Joint
Winter Meeting of the Departments of Science and Computer
Engineering, Chalmers University of Technology and Goteborg
University, Varberg, Sweden., January 2001.

Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data
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