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Introduction

This five lecture topic introduces functional programming, using the Haskell programming
language [Peyton Jones et al., 2003]. For further organisational information and details of
the assignments, consult http://personal.cis.strath.ac.uk/˜conor/FFFP.

0.1 Teaching Materials

These notes, program files, and so on, are subject to revision, and are thus maintained using
the revision control system darcs1. You will need your own local copy of my repository. To
make one, open a terminal window, change directory to somewhere suitable, then issue the
incantation

darcs get http://personal.cis.strath.ac.uk/˜conor/FFFP

That command will download and create your own FFFP directory.
Every so often, I’ll notify you of updates, which you can get hold of by changing directory

to somewhere inside FFFP and issuing the incantation

darcs pull

which will check if I’ve made any changes and ask you if you want to download them. In
response, press y repeatedly to download the changes one at a time, or a to say ‘yes to all’.

0.2 Help

We have an email help service, fp-help@cis.strath.ac.uk, staffed by postgraduate
students, available for sensible questions relating to the touch business of learning func-
tional programming at Strathclyde. You can post to fp-help only from a CIS account. Be-
fore you do so, please read our guide http://local.cis.strath.ac.uk/teaching/
ug/classes/CS.314/fp-help.html. You may also find it useful to read the companion
guide http://local.cis.strath.ac.uk/teaching/ug/classes/CS.314/fp-helpers.
html.

Think twice before you ask for help, because thinking twice often solves the problem
anyway! Email fp-help rather than emailing me alone: I certainly receive fp-help, but so
do other helpful people, so you increase your chances of a sensible outcome. Knocking
on my door is always an option. The worst that can happen is that I ask you to make an
appointment.

1which happens to be implemented in Haskell
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Fit 1

What thing is that?

• understand datatypes as sets of things

• understand functions as machines which are things which map things to things

• understand computation as finding out which thing an expression means

1.1 Expressions and Values

What are functional programs? What data do they manipulate? How do they run? The
answers to these questions are quite different from the corresponding answers for object-
oriented languages like Java. When you’re used to Java, functional programming an seem
rather alien, so expect to take some time to adjust. Some aspects, however, are quite familiar.

What is 2 + 2 ? 4
What is (4 + 2) ∗ (10− 3) ? 6 ∗ (10− 3), which is 6 ∗ 7, which is 42
You’ve been evaluating arithmetic expressions for years. Evaluation works by replacing

some component of an expression by a simpler component of equal value, e.g. replacing
(4 + 2) by 6, keeping the surrounding context the same. You keep going until you reach
a numerical value. The value is the thing the expression means. Evaluation answers the
question ‘what thing is that?’.

Functional programming uses evaluation as its mechanism for computation. In a Java
program, you direct computation by saying what things do: in a Haskell program, you direct
computation by saying what things are.

1.2 Types and Values

You’re used to working with numerical values 2 + 2 = 4. You’re probably fine with Boolean
values 3 ≤ 5 = True. Haskell chops up the world of values into types. Type distinctions are
useful in lots of ways, but crucially, we use them to indicate the ways we expect components
to be compatible. We write

3 :: Int True :: Bool

to say that ‘3 is an integer’ and ‘True’ is a Boolean value. You can read :: as ‘is a’ or ‘has
type’. In Haskell, values and types are separate. Values live to the left of :: and are used in
actual computation; types live to the right of :: and are used by the compiler to check that
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6 FIT 1. WHAT THING IS THAT?

computations make sense, but are thrown away at run time. The two do not mix: apart from
any other distinctions, you can tell them apart by where they are.

Haskell lets us invent our own types — algebraic datatypes. Here’s an example.

data List a -- the type constructor
= Nil -- a value constructor
| Cons a (List a) -- another value constructor

What does this do? It doesn’t do anything. What does this say? The head of the declaration,
between data and = (a place for types) asserts the existence of some types; the ‘body’, after
the =, asserts the existence of some values.

Which types exist? The declaration head means that List a is a type whenever a is a type
— as it happens, the type of lists whose elements have type a . As Int and Bool are types,
we acquire types List Int and List Bool, but then we can build List (List Int), the type of lists
whose elements are themselves lists of integers, List (List Bool), List (List (List Int)), and so
on. Types are plugged together like LEGOTM bricks, and we’ve just invented a new compo-
nent, the type constructor, List, with one parameter. Meanwhile, Bool is a type constructor
with no parameters.

Which values exist in these types? The declaration body tells us the only possible ways
we can use to build values in our new types. We give a bunch of options, separated by the
| symbol. Here, there are two value constructors, Nil and Cons. Each packs up a (possibly
empty) bunch of components to make a value in List a , and the declaration says what types
those components must have. Nil packs up no components, to make a List a , whatever a
might be — Nil represents an empty list. Meanwhile to construct a List a with at least one
element, Cons takes an element of a and another List a — the first element (or ‘head’) and
the list of the rest (or ‘tail’). Meanwhile, True and False are the value constructors for Bool,
and neither packs up any components.

Nil :: List Int
Cons 3 Nil :: List Int -- because 3 :: Int and Nil :: List Int
Cons 2 (Cons 3 Nil) :: List Int -- because 2 :: Int and Cons 3 Nil :: Int
Cons 1 (Cons 2 (Cons 3 Nil)) :: List Int -- because..?

Note that

Cons (Cons 1 Nil) (Cons 2 Nil) 6 :: List Int because Cons 1 Nil 6 :: Int

Names. Type Constructors and Value Constructors have Names beginning with a Capital
Letter, so you know them when you see them.



1.3. FUNCTIONS ARE THINGS, TOO 7

Let’s have some more examples.

Nil :: List Bool -- Nil always makes a List a but it doesn’t determine a
Cons True Nil :: List Bool -- because True :: Bool and Nil :: List Bool
Cons False (Cons True Nil) :: List Bool -- because..?

Nil :: List (List Int)
Cons Nil Nil :: List (List Int) -- because Nil :: List Int and Nil :: List (List Int)
Cons (Cons 1 Nil) (Cons Nil Nil) :: List (List Int)

-- because Cons 1 Nil :: List Int and Cons Nil Nil) :: List (List Int)

The Nil example shows that you should not expect a value to have only one type. Nil :: List a
for any a . Cons Nil Nil :: List (List a) for any a , making use of two different types for Nil.

You should, however, be able to check whether a value has a given type: check that the
value constructor is one of the options allowed for the given type constructor, then check
that you have the right number of components, and that they each have the type demanded
by the data declaration, once you instantiate the parameters properly. Let’s try to check

Cons 1 (Cons True Nil) :: List Int ?

Yes, Cons is allowed by List Int, and with a = Int, we must now check that 1 :: Int (yes!) and
that Cons True Nil :: List Int. Yes, Cons is allowes by List Int, and with a = Int, we must now
check that True :: Int (no!) and that Nil :: List Int (yes!). But it only takes one wrong thing to
spoil it all: that example does not typecheck, and just as well.

1.3 Functions are Things, Too

A function is a mechanism which computes one thing from another, mapping an input thing
(or ‘argument’) to an output thing (or ‘result’). In Haskell, a function is a value1 Haskell has
a special type constructor for functions:

a→ b

is a type if a and b are types — it’s the type of functions mapping values of type a to values
of type b. For example, we might have a function which adds up the integers in a given list.

total :: List Int→ Int

We would expect to apply2 total to some List Int thing, and get an Int back. In Haskell, you
apply a function to its argument by writing the function next to the argument (with some
space in between). That is,

if f :: a→ b and x :: a, then f x :: b.

So
total :: List Int→ Int and Cons 1 (Cons 2 (Cons 3 Nil)) :: List Int,
therefore total (Cons 1 (Cons 2 (Cons 3 Nil))) :: Int.

1Where in Java, an object may have methods but a method is not an object. We say that in Haskell, functions
are ‘first-class citizens’.

2An older name for functional programming is ‘applicative’ programming.
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Names. Note that the names of functions begin with a small letter, so you can easily tell
them apart from Value Constructors.

You can see that total (Cons 1 (Cons 2 (Cons 3 Nil))) is not a value of type Int, because it
isn’t a numeral. Rather, it’s an expression of type Int, involving an application of the function
total which has not yet been computed. We should hope that this expression has a value
6 :: Int. Which reminds me of another important thing:

If an expression has a type, its value has the same type.

How do we define things (including functions)? We declare their type, then we give a
bunch of evaluation rules, like this:

total :: List Int→ Int
total Nil = 0 -- rule 1
total (Cons x xs) = x + total xs -- rule 2

These evaluation rules explain how to compute expressions in which total is applied, saying
what total v must be for each possible input value v . See? We know that a List Int value must
either be Nil or something of the form Cons x xs : those two patterns cover all the possibilities.

total (Cons 1 (Cons 2 (Cons 3 Nil))) -- rule 2
= 1 + total (Cons 2 (Cons 3 Nil)) -- rule 2
= 1 + (2 + total (Cons 3 Nil)) -- rule 2
= 1 + (2 + (3 + total Nil)) -- rule 1
= 1 + (2 + (3 + 0))
= 1 + (2 + 3)
= 1 + 5
= 6

So, we’re not storing a running total in memory, then modifying the total by adding stuff to
it. We’re following the rules to figure out what things are.

Suppose, for example, I want to explain how to concatenate or ‘append’ two lists. Can
I define a function with two inputs? No! I can do something even better! I can define a
function which makes a function!

append :: List a→ (List a→ List a)

Note that append works for any element type, so long as we’re consistent about it. I indicate
this generality by writing a type variable, a , for the element type. Just as with Nil and Cons,
you can use them for any specific instance of a . For example, (with a = Int), we can have

append (Cons 1 (Cons 2 Nil)) :: List Int→ List Int

being the function which appends that particular list of integers onto any other list of inte-
gers, so that

(append (Cons 1 (Cons 2 Nil))) (Cons 3 (Cons 4 Nil)) :: List Int

That is to say, we can express very general operations, then specialise them a little at a time.
We’ll see more of that in a moment.
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Parentheses or not? We arrange the grouping to make functions-which-make-functions
look like functions with multiple inputs. a → b → c means a → (b → c). We may actually
write

append :: List a→ List a→ List a

Correspondingly, f x y means the repeated application (f x ) y . That is, if f :: a→ b→ c and
x :: a and y :: b, then f x y :: c. For example, we may drop the parentheses in the above and
just say

append (Cons 1 (Cons 2 Nil)) (Cons 3 (Cons 4 Nil)) :: List Int

Note that if we want to give a large expression (more than one symbol) as a function’s argu-
ment, we need to put it in parentheses. For example

total (append (Cons 1 (Cons 2 Nil)) (Cons 3 (Cons 4 Nil))) :: Int

should give 10, whereas without the parentheses,

total append (Cons 1 (Cons 2 Nil)) (Cons 3 (Cons 4 Nil)) -- type error

means

(total append) (Cons 1 (Cons 2 Nil)) (Cons 3 (Cons 4 Nil)) -- obvious type error

which is clearly bad, because append is a function, not a list of integers, so (total append)
is nonsense. Note that application groups more tightly than any infix operator, so f x + y
means (f x ) + y .

Meanwhile. Here’s a definition of append.

append :: List a→ List a→ List a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

Let’s evaluate

total (append (Cons 1 (Cons 2 Nil)) (Cons 3 (Cons 4 Nil)))
= total (Cons 1 (append (Cons 2 Nil)) (Cons 3 (Cons 4 Nil)))
= 1 + total (append (Cons 2 Nil)) (Cons 3 (Cons 4 Nil))
= 1 + total (Cons 2 (append Nil (Cons 3 (Cons 4 Nil))))
= 1 + (2 + total (append Nil (Cons 3 (Cons 4 Nil))))
= 1 + (2 + total (Cons 3 (Cons 4 Nil)))
= 1 + (2 + (3 + total (Cons 4 Nil)))
= 1 + (2 + (3 + (4 + total Nil)))
= 1 + (2 + (3 + (4 + 0)))
= 1 + (2 + (3 + 4))
= 1 + (2 + 7)
= 1 + 9
= 10

See what happens at the beginning? We can’t make any progress with the total application
until we’ve done a bit of appending, but we don’t need to compute the append (Cons 1 (Cons 2 Nil)) (Cons 3 (Cons 4 Nil))
all the way to a value. Rather, we can get away with computing it just enough that we can
see which total evaluation rule to use.
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1.4 Lab Exercise

In a terminal window, change to your FFFP directory and issue the command

make ex1

After a certain amount of mechanical jiggery-pokery, you should see a display showing

append (Cons 1 (Cons 2 Nil)) (Cons 3 (Cons 4 Nil))

with the boxed ‘in focus’ expression highlighted by a black background.
Navigation. If the expression in focus is an application, you can zoom in on the function

by pressing ← . Try it now!

append (Cons 1 (Cons 2 Nil)) (Cons 3 (Cons 4 Nil))

If the expression in focus is an application, you can zoom in on the argument by pressing
→ . Try it!

append (Cons 1 (Cons 2 Nil)) (Cons 3 (Cons 4 Nil))

If the focus is inside an application (in either function or argument position), you can
zoom out by pressing ↑ . Try it twice, and you should get back to the start.

append (Cons 1 (Cons 2 Nil)) (Cons 3 (Cons 4 Nil))

Rewriting. Try pressing b . You should see.

Cons 1 (append (Cons 2 Nil) (Cons 3 (Cons 4 Nil)))

Move the focus to

Cons 1 (append (Cons 2 Nil) (Cons 3 (Cons 4 Nil)))

and press b again. What happens?

Cons 1 (Cons 2 (append Nil (Cons 3 (Cons 4 Nil)))

Each time you press b , you rewrite the term in focus by one of the evaluation rules for
append.

In fact, lots of letter-keys apply rewrite rules to the term in focus, provided it matches
the left-hand-side. Here are all the definitions in play. Note that each rule is labelled with
a letter in a comment: Haskell uses -- to signal ‘comment until end of line’. That letter is
the key to press to make the rule fire.

Keep rewriting until you reach a value, then zoom all the way out and press return , to
get the next problem.

At any time, you can quit by pressing escape .
Your mission is to work through all the evaluation problems. You get the 10% for finish-

ing the lot! The method for confirming that you’ve done will be specified in the lab.
By the way, look at insert. You’ll notice that the rule for Node splits into two cases, one

if x ≤ y , the other if not: whenever you see a call to insert which matches that Node-pattern,
you will need to decide which of those two cases applies.

Good luck!
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data List a
= Nil
| Cons a (List a)
deriving Show

data Tree a
= Leaf
| Node (Tree a) a (Tree a)
deriving Show

append :: List a→ List a→ List a
append Nil ys = ys -- [a]
append (Cons x xs) ys = Cons x (append xs ys) -- [b]

insert :: Int→ Tree Int→ Tree Int
insert x Leaf = Node Leaf x Leaf -- [c]
insert x (Node lt y rt) | x ≤ y = Node (insert x lt) y rt -- [d]

| otherwise = Node lt y (insert x rt) -- [e]

foldList :: t → (a→ t → t)→ List a→ t
foldList n c Nil = n -- [f]
foldList n c (Cons x xs) = c x (foldList n c xs) -- [g]

makeTree :: List Int→ Tree Int
makeTree = foldList Leaf insert -- [h]

glueIn :: List a→ a→ List a→ List a
glueIn xs y zs = append xs (Cons y zs) -- [i]

flatten :: Tree a→ List a
flatten Leaf = Nil -- [j]
flatten (Node lt x rt) = glueIn (flatten lt) x (flatten rt) -- [k]

compose :: (b→ c)→ (a→ b)→ a→ c
compose f g a = f (g a) -- [l]

sort :: List Int→ List Int
sort = compose flatten makeTree -- [m]
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Fit 2

Am I seeing things?

2.1 Last time’s one-minute-paper quiz

Which of the following does not have a type?

a b
Cons Nil Nil Cons Nil (Cons Nil Nil)

c d
Cons (Cons 1 Nil) (Cons 1 Nil) Cons (Cons 1 Nil) Nil

Let’s work through it. Firstly, let’s have the types of the pieces. The declaration

data List a
= Nil
| Cons a (List a)

tells us that

Nil :: List a
Cons :: a→ List a→ List a

which is to say that Nil and Cons build lists of type List a for any type a of elements. Each
time we use Nil or Cons, the element type a is up for grabs. It’s like LEGO. We can plug Nil
into any hole whose type matches List a for some a . We can plug Cons (? :: a) (? ::List a) into
any hole whose type matches List a , making two new holes, one of type a , one of type List a .
We match types by choosing values for the type variables. Think: upper case type constructors
rigid, lower case type variables flexible.

We also know1

1 :: Int

We need to check whether each of the above expressions can be given a type. We can work
a little bit at time, going ‘outside in’. Let’s try Cons Nil Nil.

Can we plug Cons Nil Nil into a hole ? :: x? Looking at the type of Cons, yes, taking
x = List y , a = y for some y

Cons (? :: y) (? :: List y) :: List y

1a convenient oversimplification
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provided we can plug Nil into each of a hole of type y and a hole of type List y . Looking at
the type of Nil, the latter is always possible

Cons (? :: y) Nil :: List y

but the former can only happen if we choose y = List z , for some z . We end up with

Cons Nil Nil :: List (List z )

Cons Nil Nil is a list of lists whose single element is the empty list.
Moving on, let’s try to plug Cons Nil (Cons Nil Nil) into ? :: x . The first step is the same.

Cons (? :: y) (? :: List y) :: List y

and plugging Nil into the first hole, we again get that y = List z for some z

Cons Nil (? :: List (List z )) :: List (List z )

and we know we can plug Cons Nil Nil into the remaining hole

Cons Nil (Cons Nil Nil) :: List (List z )

For option (c), let’s try plugging Cons (Cons 1 Nil) (Cons 1 Nil) into ? :: x . As ever,

Cons (? :: y) (? :: List y) :: List y

and we can plug a Cons?? into the first hole, just as before, provided we take y = List z for
some z

Cons (Cons (? :: z ) (? :: List z )) (? :: List (List z )) :: List (List z )

Now we plug 1 in the leftmost hole, and that means z = Int.

Cons (Cons 1 (? :: List Int)) (? :: List (List Int)) :: List (List z )

Nil goes in the next hole, no problem.

Cons (Cons 1 Nil) (? :: List (List Int)) :: List (List z )

But now we have to put Cons 1 Nil into ? :: List (List Int). Start with the Cons??.

Cons (Cons 1 Nil) (Cons (? :: List Int) (? :: List (List Int))) :: List (List z )

and the Nil fits
Cons (Cons 1 Nil) (Cons (? :: List Int) Nil) :: List (List z )

but can we put 1 into ? :: List Int. No.2 This one’s not happening. If you look in the element
positions, the elements which must have the same type are 1 and Cons 1 Nil, so no chance.

Just to finish the job let’s check that Cons 1 (Cons 1 Nil) fits into ? :: x . Start as usual

Cons (? :: y) (? :: List y) :: List y

and now, plugging 1 in the first hole, we see y = Int

Cons 1 (? :: List Int) :: List Int

and yes, Cons 1 Nil fits into ? :: List Int, so

Cons 1 (Cons 1 Nil) :: List Int

2In fact, Haskell overloads numerical constants, and says “You can if List Int is a numeric type.” But it isn’t.
Note to self, next time, set this exercise using True, not 1. Logical constants aren’t overloaded.
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2.2 This Week’s Mission

• Learn to play LEGO with types.

• Learn to split a pattern variable into constructor cases.

• Learn about Boolean guards.

• Learn to use Haskell’s built in list type [x ].

The plan is to write the sorting algorithm from last week’s lab, using pattern matching,
Boolean guards, and Haskell’s built in list type [x ].

2.3 The Magic Word

There’s a magic word which you should shout out when you see somebody implementing
functions for one type with the same shape as constructors for another. For example, if you
see a functions like

emptyBunch :: BunchOf x
putOneMoreIn :: x → BunchOf x → BunchOf x

that’s a bit like Nil and Cons, isn’t it? So shout out the magic word

ALGEBRA
What’s so magic? Well, when you have an ALGEBRA, you can turn one thing into an-

other. For example, if we had the above, we could write a function to make a BunchOf x
from a List x .

listToBunch :: List x → BunchOf x
listToBunch Nil = emptyBunch
listToBunch (Cons x xs) = putOneMoreIn x (listToBunch xs)
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Fit 3

How do I put things together?

• understand how types explain the way expressions together

• figure out how to assign types to missing pieces in top-down construction

Synthesis.
building expressions; figuring out the types of the missing bits; definition and re-use

(some higher-order examples?);
ghci encounters
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Fit 4

Does being a thing actually do
anything?

Strategy Trees.
Boolean strategy trees and their interpretation as functions; spatial and temporal compo-

sition; computing components; CS106 flashbacks;
an introduction to monads which doesn’t mention them at all
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Fit 5

Can I have two things at once?

Multicore Haskell.
embarrassing parallelism; threads and queues; divide and conquer; threadscope;
when do we slow things down? when do we speed things up?

21
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