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ABSTRACT

This thesis is concerned with an investigation into the techniques
of computer aided manipulation of symbols. The overall objective of this
study is to develop a general purpose, on-line symbol manipulation system
incorporating features which enable the user to modify aqd extend the
manioulative capabilities of the basic processor. These requirements can
be met only by the choice of a low-level language (LISP 1.5 was a con-
venient starting choice in this instance), in which the user can apply the
primitive facilities provided to the construction of the particular
canability required.

However, it is felt that the descrintions of many desirable, higher
level capabilities (such as differentiation, integration and simplification),
affcrded oy exlsting symbol manipulation systems, are so complex that the
tasks of modification and extension are made impractical if not impossible,
especially in an on-line environment. Thus, more 'natural' modes of
description are provided by addinc matching processes to the standard LISP
interpreter and by introducing a slightly altered syntax into the LISP 1.5
language.

The extended LISP system is embedded within an interactive environment
to enable the user to guide the manipulative nrocesses being performed.

The fundamental importance of such an interactive capability arises from
the fact that no program can currently match the power of its human user to

recognize 'significant' or 'useful' items of information.



CHAPTER I

Introduction

This thesis is concerned with an investigation into the techniques
of computer aided manipulation of Symbols. One of the results of this

examination was the development of a programming system, whose description

provides much of the content of this report. This chapter introduces the

objectives of the investigation, together with an indication of the methods
adopted in the attempt to achieve these goals in the subsequent programming
system. To provide a basis for the ensuing discussion there follows an out-

line of the general concepts of symbol manipulation.

1.1 §mbol manipulation

The term 'symbol manipulation! is used to mean a variety of things.
Some think of it as a synonym for !'string processing', that is, the manipula-
tion of a sequence of characters, where each character is normally treated
as an individual. Others comnect the term with the phrase 'list processing!,
where this refers to the techniques of processing information stored in a
computer in some non-contiguous manner » with pointers from each piece of data
to the next. !'Non-numerical computations' and ‘any maﬁipulations s other than
arithmetic, performed on a computer! are yet other suggested meanings.

Although there is to be no attempt to define the tem rigorously, this
thesis considers symbol manipulation to be a branch of computing science
concerned with the processing of unpredictably structured data. In most
commercial and scientific computer applications, the data to be prucessed
is of known length and format. In contrast, the size and format of the data

involved in symbol manipulation are not known in advance and often vary




greatly during the running of the program. This point of view in no way
contradicts the other suggested alternatives, for clearly, data which does
not have a pre-determinable format will require dynamically allocatable
storage such as that provided in list or string processing systems. These
systems differ with respect to the generality of the lists upon which they
operate. LISP,[12], SLIP,[2h], TPL,[16], and 16,[10], are list processing
languages which operate on lists in their most general form, while string
processing languages, such as SNOBOL, [6], and COMIT, [26], use single level
1lists only, these single level lists being called strings.

One particular field of application for symbol manipulation systems,
which has aroused great interest in recent years, is that of algebraic
manipulation.t Following Sammett[Zl], algebraic manipulation is considered
as "the computer processing of formal mathematical expressions without any
particular concern for their numeric values ... this term in no way excludes
the use of trigonometric or other types of functions." It must be stressed
that inclusion in this field is based more on intent than on the actual
techniques employed during the processing; for example, the internal opera-
tions performed by most systems designed specifically to manipulate poly-
nomials or rational functions, are more numeric than symbolic, but, because
the motivation is to operate on algebraic expressions, such systems are
considered within the field of algebraic manipulation. However, having stated
these exceptions, in general, algebraic manipulation may be considered as a
particular field of application for symbol manipulation systems where the
internal lists or strings represent formal mathematical expressions.

Although the programming system, to be described later, was not

designed specifically with algebraic manipulation in mind, it does possess 2

tFor a survey of algebraic manipulation see Sammett [20,21].




distinct bias towards this field. Therefore, it is worthwhile to consider
this area of symbol manipulation in greater detail, with particular

reference to the levels of capability to be supplied to a user.

1.2 Levels of capability

In nearly every area of computer processing, and algebraic manipulation
is no exception, two distinct philosophies or attitudes can be identified.
The first, or lower level approach, is based on the concept of minimum
assumption and maximum flexibility, sometimes called the 'primitive tools!
approach. This type of system provides only basic processing functions from
which the user is expected to build up his own desired capabilities. In the
context of algebraic manipulation, list and string processing systems lie in
this category. The alternative attitude is to provide the user with capabi-
lities specific to his requirements. From the point of view of algebraic
manipulation, this higher level aporoach might involve the provision of
commands such as "differentiate", "integrate" or "simplify".

The main failing of higher level languages, such as FORMAC [1] s
MATHLAB, [1,5], REDUCE[9], and Martin's Symbolic Mathematical Laboratory [1L],
is that, while they provide some very useful specific capabilities, they do
not make allowance for either the definition of new capabilities or the
alteration of existing ones in a straightforward fashion. Indeed, a change
which might appear relatively trivial on the surface will often involve a
chain of complex modifications which only someone who is familiar with the
system's design features could hope to perform.

The alternative is to adopt the more flexible, primitive tools approach.
Engeli, [3], expressed his opinion as fbllows:- "Tn spite of the inclusion
of a large number of capabilities, no system will ever satisfy the needs of

all its users unless those users are given the means to expand the system.



Any features added using the definitional capabilities necessarily involve
a high degree of interpretiveness, often down to the level of axioms."

Such flexibility cannot be bought cheaply however, for the user must
pay the price of an increased burden of | awareness'.” Supporters of the
higher level approach argue, undoubtedly with scme justification, that this
burden lowers a user's problem solving potential, for too much of his effort
is spent on the definitions and modifications of his desired capabilities
and not eﬁough on the problem in hand. Iurthermore, they continue, the major-
ity of users are really only interested in solving their own particular
problem, and therefore are vrepared to accept the supplied, specific capabi-
lities and do not want to concern themselves with the creation of new
capabiliyies or the amendment of existing ones.

While these arguments have considerable merit, their counterparts cannot
be ignored. Modularity in a language, as well as in its implementation, 1S
needed, for as new topics, methods and notations are developed, the system
will need to be roadily extendible to deal with them. Also, the solution of
certain problems in algebraic manipulation depend on the context of evaluation
rather than on some set of pre~determinable rules. The most oft quoted
example of this nature is that of algebraic simplification. Who can pre-
determine if a(b + ¢) is simpler than ab + ac? Indeed, in certain contexts,

it could be argued that a + 0 is a simpler form than a, and

1

2
cosec X - cosec x cot x than ——————o—em
1+ cos x

. In the second of these examples,
while cosec x - cosec x cot X may appear more cumbersome than T T oos % ?

the former is immediately integrable, whereas the normal method for the latter

would involve a substitution for tan % "

t1awareness' - term introduced by Weizenbaum to indicate the attention to
detail which must be maintained in any given situation.



1.3 The purpose of this oproject

The most obvious resolution of the conflict, outlined in the
preceding section, is to provide a programming system which has not only a
wide range of specific capabilities but which also allows the creation of new
features and the alteration of existing ones in a straightforward manner.

It would also appear that the main obstacle, preventing the realisation of
such a solution, is the wide gap between the capabilities of currently avail-
able list and string processing languages and most desirable, higher level
capabilities. 1In other words, programs, written in existing symbol manipula-
tion languages to describe such processes as integration, sirplification or
even less difficult problems such as differentiation, are so complex that no
user could be expected to alter or add to them. Clearly, if this solution is
to be pursued any further, this gap must be narrowed, and, as it is not mean-
ingful to change the specifications of the higher level capabilities, the
only possibility left open is to seek for a more natural form of deseription.
Thus, this became the major objective of this project.

Farlier it was suggested that a system which demands a high awareness
will lead tc a reduction in a user's nroblem solving potential, In the con-
text of programming languages, intuition suggests that awareness is the
complement of naturalness, that is, if naturalness of description can be
increased, then awareness must be decreased. Therefore, it would appear that
if a more natural form of description can be achieved then there should be a
resultant increase in a user's problem solving potential.

Two aspects of naturalness are considered, namely, transparency.and
conciseness, and technigues, to advance both facets, are developed with respect
to an existing symbol manipulation language, LISP 1.5,[1é]. This language was
chosen because of its widespread use in many impressive projects, thereby

permitting the possibility of making fairly direct comparisons with existing



programs. further, (and more basibally) a LISP interrreter was available forthe
ICL 1907 at the Queen's University of Belfast, having been implemented by the
author for another project,[ll].

So far, this statement of purpose has been concerned only with the
language component of a programming system. However, all such systems possess
a second component, which will be considered in this thesis as the environ-
ment in which a user's evaluations are to take place. The study of this
component divides into three sections. The first part consists of the defin-
ing and editing facilities required to permit the creation and modification
of the desired capabilities. In the second section comes an examination of
nethods whereby the user can exert more control over the context of evaluation,
thms increasing the practicality or usefulness of the system. Finally,
facilities are investigated which will allow the system and user to interact
in such a way that each can receive guidance from the other. Both components

of the programming system, language and enviroment, are further discussed in

the next section.

1.t The programming system

The programming system is based on a LISP interpreter, which, in turn,
is modelled on the LISP 1.5 interpreter implemented for the IBM 7090 by
McCarthy et al., [12].

1.L.1 Language

The interpreter has been extended primarily by the introduction of
pattern matching facilities. It has become clearly established that pattern-
directed languages are convenient vehicles for the description of many symbol
manipulation algorithms, and, in particular, those relating to algebraic

manipulation. For example, even some highly command orientated languages,




such as FORMAC, include some pattern recognition facilities (e.g. the PART
command). Thus, in the context of the LISP language, it would appear that

5 reasonable first step in the search for increased naturalness would be the
introduction of a predicate function, which could be supplied with two argu-
ments, a pattern and an argumenﬁ expression, and, whose operation would be
to determine, according to some matching algorithm, whether the given
expression matches the given pattern.

A highly sophisticated example of this approach is the function
schatchen, developed by Moses and utilised in his very impressive symbolic
integration system, SIN,[li]. This matching function is programmed with a
wealth of knowledge concerning the behaviour of algebraic operators, .
including such properties as commutativity associated with addition and
multiplication and the special relationships of zero and one with regard to
algebraic operations. At the other end of the matching scale, there is the
gtandard LISP function pair, which, when supplied with two lists as arguments,
creates an association list by pairing the corresponding elements of the two
given lists. The pattern matching facility developed for this programming
system has no in-built knowledge of the special behavioural characteristics
of algebraic operators, in fact, it does not possess 2 knowledge even of the
existence of such operators. However, provision 1s made whereby the existence
and specisl characteristics of any operator may be indicated in a straight-
forward manner. Thus, this system allows a user controlled flexibility
ranging from the basic pair operation to something approaching the sophis-
tication of schatchen.

The introduction of such a pattern matching facility does not, in itself,
change the descriptive formalisms of the LISP language, that is, new functions
must still be created in terms of existing ones through the method of com-

position or by using the standard conditional expression formalism. Such an

introduction merely makes available a new and powerful predicate for use




within the latter method of definition. Thus a second and possibly more
significant step in the search for increased naturalness is suggested.

Instead of implementing the matching facility merely by providing a predicate,
the process is embedded in the interpreter as a new evaluation procedure.

This permits an extension to be made to the syntax of LISP, consisting of the
introduction of a new function type, named RULE, which is based on an extended
conditional expression formalism. Thus, the new matching procedure, named
match, performs an evaluation task for RULE type functions analogous to that
performed by the function evcon for CONDitional expressions. This extension
in semantics and syntax in no way affects the use of standard LISP function
types; standard LISP is a subset of the programming language available to

the user.

1.h.2 Tnviromment of evaluation

Three areas are investigated with regard to this component; firstly,
the definition and amendment of those capabilities desired by a user;
secondly, the enviromment for the actual use of the capabilities once created,
and the user's control over the context of evaluation; and finally, inter-
active facilities which permit a user to exert control over the evaluation
procedures while they are in progress and the improvement of some of the
diagnostic features in a search for a more helpful system.

This last area of investigation assumes that the system should operate
on-line. There are several reasons why symbol manipulation systems, in
common with other programming systems, benefit from an on-line enviromment.
The advantages which are most frequently quoted are rapid turnaround, ease
of debugging and ease of program alteration. Another reasomn, peculiar to
symbol manipulation systems, arises from the necessity that, in certain

instances, a user must be aware of intermediate results before a decision
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can be made about the subsequent procedure. This also leads to the adoption
of a command orientated control structure, that is, read a command, evaluate
the issued command, display the value, and then invite the user to give his
next command and so on.

With regard to the first area of investigation, a comprehensive set of
defining and editing commands are introduced, through which RULE type functions
may be created and amended. Because of the interpretive nature of the evalua-
tion process, definitions are held internally as list structures. Thus the
problem of amendment reduces to the relatively simple tasks of deleting or
inserting a sub-list of a list in some indicated position. With conventional
LISP formalisms, the most difficult part of such operations is finding a
suitable method of indicating the point in the list structure at which the
insertion or deletion is to take place. In this system, this particular
difficulty is substantially overcome by the use of labels in the new RULE
type functions.

The examination of the second area is concerned with two features,
namely, storage management and identification bindings. With regard to the
former, the facilities not only enable the user to exert more control over
the management of his in-core working space, but also give him access to any
number of nrivate disc files on which he may save any information he wishes
to safeguard, and from which, such information may subsequently be unsaved
to create some desired context of evaluation. fthe identification facilities
operate in a2 similar manner to ALGOL or FORTRAN assignment statements, and
when courled with a simpie pre-processor psrmit essy reference te the results
of previous calculations.

The third and final area of investigation considers the introduction of
interactive facilities which are designed to enable the user and system to

cormmunicate us=ful infomation one to the other. In some of the cases where
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a conventional LISP system can only produce an error diagnostic and then
abandon the execution, this system has built-in halts and associated queries,
allowing the user, in many instances, to correct the fault and restart the
evaluation process. Furthermore, the user is provided with the ability to
program a halt or a query to take place during the matching process and thus
can guide the actual evaluation procedures of the system. A variety of
restart facilities are also provided, corresponding to the different ways in

which a user might wish to recommence the execution.

1.5 Layout

A detailed account of the pattern matching facilities introduced, toget-
her with the changes these involve, is given in the next three chapters.
Chapter IT describes the basic matching algorithm and the new RULE function
type, along with the alterations to the interpreter caused by their implemen-
tation. Two well known LISP examples, differentiation and the Wang Algorithm
for the Propositional Calculus, are included as illustrations of the use of
some of the new features. Some of the inadequacies of the basic matching
system, especially with regard to algebraic operators, are discussed in
Chapter IIT and a pissible solution to some of the problems encountered is
described. Chapter IV presents a description of the operation of the pattern-
matching facilities in terms of AND-OR goal trees.

A11 the facets of the evaluation environment, introduced in §1.4.2, are
oresented in more detail in Chapter V.

The construction of a three stage symbolic integration function, as an
illustration of the use of this system, is considered in Chapter VI. The
first stage is based on a very simple table look-up scheme. The second stage
utilises the method of 'derivative-divides!. The third stage is an implemen-
tation of the EDGE (EDucated GuEss) hawistic, which is based on the Liouville

theory of integration, and which was developed by Moses for his SIN program.
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In the seventh and final chapter, the author presents his conclusions
and some suggestions for possible future developments.
Four appendices are also included. Appendix A gives the definitions

and actions of all the functions involved in the creation of the evaluation

environment, while Appendix B performs a similar task for the functions
involved in the pattern-matching processes. An aecount of the overall opera-
tion of the system, together with an M-expression definition ofthe modified

1ISP interpreter, is presented in Appendix C. Finally, the listings of the

actual performances of all examples mentioned in the text can be found in

Appendix D.



CHAPTER IT

Introduction of a Matching Process into LISP

2.1 Introduction

This chapter is concerned with the introduction of a simple matching
process coupled with a new function type into the standard LISP interpreter.
These extensions gain for the user a considerable increase in both trans-
parency and conciseness of description, as can be observed by comparing the
two 1llustrative examples, included at the end of the chapter, with the
corrasnonding programs written in standard LISP. The next section gives
some background material about the existing LISP descriptive formalisms and
suggests a possible extension to the conditional expression form of definition.
This is followed by two sections describing the actual matching algoritlm
adortzd and tuoe format of the new RULE function type. The remaining section
details the alterations to the interoreter and gives definitions of the

functions involved in the newly embedded matchingz process,

2.2 TDescriptive formalisms

There are two methods provided in LISP by which new functions may be

defined in terms of exdsting ones., The first of these methods is called

"composition!.
If all the variables occurring in a form e are among Xy, e.s, X,
then a function h may be defined by writing

h(X) s eeey X)) = e

Then, if fy, fp, ..., f,, are all the functions occurring in e, the

function h is said to be defined by composition from £, ..., £

example Xy = X<y V x=y .,




This formalism permits only the definition of a rather limited class
of functions. A more interesting and useful method of definition is based
on the conditional expression formalism,[iB]. A conditional expression has

the form

(P1 » 515 P2 + 895 «-.3 Py * Sn)s

where each pj 1is an expression whose value may be truth, T, or falsity,
F, and each 8; may be any expression. This form corresponds to the ALGOL 60

reference language expression

if piy then s; else if pp2 then 8 ... else if Pn then sp.

The value of a conditional expression is the value of the s corresponding

to the leftmost py with value T.
example (b <3-+7;2>3+8;2<3>9;h<5+7) = 9,

Examples of the use of this method to define two well kncun funcitions are

x| (x <0~>-x3x>0~>x)

§

n
u

i3 (1=§>13i=3~>0),

It is normal to make use of the truth value T to simplify these conditional

forms where possible, thus the definition for |x| might be rewritten as
x| = (x<0+ x5 T -x),

LISP allows recursive references to the function being defined when using this

second method. Thus the factorial of a non-negative integer would be defined
by
nt = (n=0->1; T *>n. (n-~1)t).

Although these methods give LISP very powerful definitiocnal capabilities,
the resulting function descriptions are not always natural. An inspection of

the design of many symbol manipulation algorithms indicates that the
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construction of the predicates may be divided into two distinct phases:
first, the isclation of snecific structures and second, the application of
constraints to the constituent elements of these structures. With the
methods previously described, these operations must be represented by either
a single complex predicate or =2 chain of simpler predicates. However, a more
natural function description is possible if a suitable pattern matching
system is introduced to isolate structures, leaving the predicates to des-
cribe only the elemental constraints. Such a definition might then take the

form of an extended conditional expression like
(f1, »1 > s13 £2, P2 > 825 «.+5 fn, Pn > Sn)

where each fj is a pattern or durmy form. The value of such an expression
for a particular argument exoression e would be the value of the sy corres-
ponding to the leftmost fi which sucecessfully "matches" e and for which

the associated predicate p; has the value T. An AIGOL-like expression for

this form of definition would be
if fllleA Py then sy else L8 fg‘le b pp then sp ... else if fni‘eA Pp then sp,

where the symbol '||' is to be read as 'matches!.

2.3 A matching algorithm

The matching algorithm introduced, which is similar to one used in the

PAMOUS system of Fenichel, (7], is as follows. If a form f is to match

_8n expression e then,

(a) if £ 4is a number, the name of a defined function or the name of

a constant, then e must be identical to f,

examples T

n
N

matches only e = 2

f = + matches only e

+ (assuming + is a defined function)

f =T matches only e =T .,

il



The last example is one of a constant, that is, an atom with an APVAL
indicator on its property list. Other in-built APVAL!'s of the system are

F, #T% , NIL and OBLIST, and these atoms should be avoided when constructing
forms unless their constant properties are explicitly desired.

(b) any atomic form, apart from those described in (a), matches any
expression,

example f = x matches e = x, y, Xy, elog Z and all others.

(c) if f 1is a quotation of another form g, then the expression e

must be identical to g,

example f = "x matches only e = X.

(d) if f consists of a list of elements £y, fp, «.., £; then
(1) e must consist of a list of elements ey, ep, ..., en, and
(i1) for i=1, 2, ..., n, f5; must match e;, and
(iii) if g 4is an atom which occurs more than once in £, then the

corresponding subexpressions in e must be identical,

example f = (uv w) matches e = (xy z)
but f = (uu) does not match e = (x¥)

however f = (u v w) matches e = (x x X) .

In introducing this particular matching algorithm, the author does not
mean to suggest that it is the only possible (or even the best possible) one.
However, it is suggested that such an introduction is useful and the illus~
trations included in the final section of this chapter will hopefully justify
this opinion.

In general, numbers, defined functions and constants are only expected
to match themselves; this is covered by (a) which is equivalent to the
implicit quotation of these atom types. The "automatic'" matching process,

described in (b), is directly analogous to the pairing operation between the
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TAYPDA variable 1list and the argument 1ist in the evaluation of EXPR's in

standard LISF. Sxplicitly quoted exwressions are catered for by (c).

Section (d) gives the structural matching criterion and also states a unique-

ness condition, designed to avoild ambiguity.

2.1 RUL®!'s e

Tt was suggested earlier (at the end of §2.2) that if a suitable match-
eh, ing process were introduced, such as one based on the algorithm just described,
‘ then more natural function defiqéyions would be possible. This claim is
founded on the hypothesis that, if the predicate elements in a conditional

exoression are divided inbto two distinct parts, a test on the overall structure

of the given argument expression followed by tests on the individual elements

of the structure, then a more transparent and, in meny cases, more concise

function descrintion 1s obtained. The szction that follows introduces such a

new descriptive formelism. : 7
The new function type is characterised by the indicator RULE on the

property list of an atom.

RULT =~ S-expression definins a function whose name is the atomic symbol

on whoss nronerty list the indicator RULE anpears.

The bodr of the definition bears a close resemblance to the form of the

extended conditional exoression, which was discussed previously, that is
(£15 Py > 515 £, P2 > Sp5 +vv5 fns Py > 5p) -
The actual S-expression has the form
(DARG (D1 D2 ... DN)

Al (AS3ERTION 1)

A2 (ASSTRIION 2)

A (ASSERTION 1))
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where the atom DARG serves a similar purpose for RULE'S as LAMBDA does for
TXPR's; (DL ... DN) is a list of dumy arguments and Al, ..., AM are
called assertion labels and are present orimarily to alleviate the problem of
amendment in the on-line enviromment (ef. §5.2). An assertion label may be
any allowable LISP atom.

The format of an individual assertion is

(form f, substitute s, predicate p) ,

that is, a three-element 1list. The predicate has been positioned third in

this 1list, So that a two-eclement list can be taken to denote an implicitly

true predicate.

2.5 Alterations to the interpreter

2.5.1 Changes to apply and eval
P ST e

Having introduced a new function type and a matching algorithm which is
“to form the basis of the evaluation procedure for this new function type,

there remain two aspects of the system as vet undescribed. These are, firstly,
the alterations to the interpreter caused by the embedding of a matching
ﬁncess, and secondly, the definition of the functions actually utilised in

is matching process. Unfortunately, to understand the former, a knowledge

the LIS? functions apply and eval is required. (See pp. 70, 71 of the

2P Programmer's Mannal,[i2].) A complete M-expression definition of the
i!ied interpreter is given in Appendix C of this thesis.

In all, three extensions are needed, two in apply and one in eval.

se of the similarity between RUIE's and £he CONDitional expression type
’R,:it is instructive to present these alterations in conjunction with
:t,sgonding instructions for handling TXPR's.

2pply, after the line

get [fn; ®XPR] -+ avply [expr; args; a] ;
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the new line
get [fn; WIE] -+ aonly [rulet; args; a] ;
is inserted, and after the line
(1) eqear [fn]; La®DA] + sval[caddr([fn]; nconc[pair[cadr [fn]; args]; a]] ;
the new line .

(ii_) eqlear(fn]; Dang] - eval [match [cddr [fn]; args); alist] ;

is added.

In gzél, after the line

get [car [Form); wiPR] - apnly [exor; eviis [car [form]; al; a) ;
the new line

get [car [form]; ”UIE] - anoly [mile'; eviis [cdr [form]; al; a] ;

is inserted.
Perhaps the simplest way to highlight both the similarities and the

differences between the methods used by the interpreter to handle EXPR's and

RUL%'s is to trace the operation of the interpreter for both cases.
Consider a typical "XPR definition body, which has the form
(LABDA (11 ... LN)(COND (py s1)(0p Sp) eee (Py 5y)))e
This is processed first by line (i) of apply, which passes control to eval
with a first argument (or fomrm) of
(COND (py 87) <eo (P Sp))
and a second argument (@ a) which is the result of pairing the clements of

the LABDA list (Il ... LN) with their corresponding elements in the given

THere the apparently undefined variable rule =value of get [ fn; HULE]
= (DARG (DL ... DN) AL(ASSTRTION 17 ... AM(ASSTHTICN 1))




argument expression and then appending the resultant list to the current

association list (a-list). The relevant line in eval is
eq [car [form]; COND] + evcon [cdr [form]; al ;
and through this, control passes to evcon with a first argument

((py s1) «.. (P )

and a second argument which is still the a-list created earlier. Now each
p; will be evaluated in sequence (starting from the leftmost) with resvect
to the a-list until one with value T 1is found, and then the value of the

corresponding s again with resvect to the a-list, is taken as the value

i?

of the COMMitional expressisn. These avaluation procodures may, and often

do, involve recursive re-entry into the interpreter.

A tyvical RULE definition body takes the form
(DARG(DL ... DN) laby(f1 sy p1) lab2(f2 s2 p2) ... labm(fm Sm pm)).

It is first handled by line (ii) of apply, wrich passes control to eval with,

as the first argument, the value of

match [(laby(fy s1 p1) ... laby(fy sm Pn)); args) ,

and as second argument, the value of the special atom ALIST. The value of

this call to match is the 8y corresponding to the first encountered f3, Ps

combination for which the f3 matches the given argument expression, accord-
ing to the algorithm presented in §2,3, and the value of the p; with respect
- to the a-list, created durinz the matching process, is T. This a-list is
transmitted back to apply from match via the special atom ALIST. Thus, the
final value of the RULE is the value of this s; again with respect to the
a-1list created during the matching process. Again, recursive re-entry to the

:interpreter is allowed during any of these evaluation procedures.
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From these operational descriptions, it is apparent that match performs

an evaluation task for RULE's analogous to the combination of pair and evcon

for CONDitional expression type HXPR!'s.

2.5.2 The matching functions

The matching process is invoked from line (ii) of apply whenever the atom
DARG is discovered as the first element of the function list. In reality, two
new functions are involved, match and m2. The latter is a oredicate, which is
a direct implementation of the matching algorithm, described in §2.3, together

- with the code necessary for the task of creating the a-list. The operation of

mateh is to send each form element in turn along with the given argument
expression to m2. If this produces a value T, then the corresponding predicate
element is tested with respect to the created a-list, which is transmitted

through the atom ALIST. If this also yields a T value, then the corresponding

substitute element is returned as the wvalue of match. However, if either of
these evaluations fail to produce T, then the process restarts with the next

assertion. The M-expression definitions of match and m2 are as follows

match [assertions; args] = Eorog [u]
u: = cdr [assertions] ;
Ll: alist: = WIL;
m2 [caar [u]; args] + [nmll [cddar [u]] V eval [caddar [u]; alist]
> return [cadar [u]]];
mull fedr [u]] + L2;
u: = cddr fu] ;
go [L1] ;
L2: print [NO MATCH FOR] ;
print [args] ;

return [MIL]]



m2[f:e] = [
nall (f] »muilfe] ;
atom [f]snumbern [£]V funp[flrea[f5e] ;
null [sassoc [f3alist;NTI]]+proge[ alist:=cons cons[f;e] jalist] ;1] ;
T+equal[cdr[sassoc[f;alist;NIﬂ] u%] s
eq [car [£]; AWOTE]>[equal [cadr [£];e]-m2 [cadr [£];5e] ;
T » NIL] ;
T > m2 [ca.r [f]; car [eﬂ A m2 [cdr £ car [e]]]

The function, funp, used in m2, is a simple predicate, whose value is T
if its atomic argument has any of the indicators APVAL, ¥XPR, SUBR, RULE,
FEXPR or FSUBR on its proverty list, and F otherwise.

One final aspmect of match requires further explanation. If, when eveon
is processing a CONDitional expression, no true proposition can be found, then

the interpreter outputs the error diagnostic A3 and abandons that particular

evaluation. However, if match camnot find a true form-predicate combination,
then the message NO MATCH FOR, followed by the argument expression for which
no pattern is available, is printed out. The value NIL is then substituted
for this expression and the overall evaluation procedure is continued. The
usefulness of this procedure is illustrated in the differentiation example

presented in the next section.

2.6 Uxamples

Two examples, differentiation with allied simplification and the Wang
r'Algorithm for the propositional calculus, are presented for the purposes of
~ 1llustration. These particular problems were selected because of the exis-
~tence of well known LISP and SNOBOL programs for differentiation,[13,2], and
a LISP program for the Wang Algorithm,[13] . This presentation assumes the

existence of defining and editing features which have not yet been described



(see §5.2). PFurthermore a notation, which is not available in practice, has

been adopted to make the exposition clearer, “hat is, instead of writir;g
label(form, substitute, predicate)

a single assertion is written as
label: name [i‘orm] + substitute when predicate

where name is the name of the RULF being defined, and where the form, substi-
tute and vredicate are written in LISP M-expression format. Also , the
commands are presented in a linearised infix notation, which is not available

in practice.

2.6.1 Differentiation with allied simplification

The problem was to construct a function, named d, which would differen-

tiate its first argument with respect to itz sscond, and simulteneously, to

build the necessary algebraic simplification rules. However, the system has éi
no in-built knowledge of the behaviour or existence of the standard overators,
and so the first task was to introduce six new functions +, -, ¥, /,* and =H=,
where the first five had their usual meaning and the sixth, # represented
unary minus. Initially, each of these was defined as a single assertion RULE,

that is, + was defined by

last: + [a5 ®] » List [+; a; b]

and « was similarly defined by

last: - [a; b] » list [-; a; b)

as were #, / and +, while % was defined by
last: 4 [a] > 1ist B a] s
Es{n takes only one argument.

The first attempt to construct d could now begin, and this was
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dl: d[y;x] 0 when n>[y)

d2: dfxsx] » 1

d3: dfmsvlsx] >+ [ahyxds ale;x]]

dhe d b lasv]ix] >+ b fusa brsx ]l brsa yx]]]

a5t o[/ bsvlix] »/ Elelwsaludls #lusalesd]ds +ls2l]

dé: d[+[u;v];x] > -Yr[;’r[v;’f[u;-[v;l:l]]; d[u;x]]z\r_h_q_rl np [v.J

where np is a predicate which yields T if its argument is a number and F
otherwise.

The command
A(#7 %z +3, z)
was given, and the response was

! no mateh for
A7 sz, z)

nil + 0.

This prompted two additions, firstly, an assertion for d to deal with # terms,

thus

a7: df#{y] 5=l > #[aly;=]

- Was apnended to the current assertion list of d, and secondly, an assertion

for +,
al: +[a;0] > a

which was added to +'s list of assertions bhefore its last assertion. iow the

Same command producéd
#(7#L +z %0),

which suggested two new assertions for ¢,

al: #[a;1] 5 a

a2: %[a;0] » 0



1
[AV]
(A

i

which were inserted before #'s last assertion. A furthor repeat of the comiand

yvielded
#7.
The command
d(6xz + 3 +2 sz, z)
was given, and the response was
bieFrz (3 - 1) + 2,
When the assertion
al: - fasb] +difference [ash] when mo[a] A np[b]

was added to -, and

al: [a' # b;c]] > % [times [a;b:];c] when np [a] A np bl

was added to %, where difference énd times are standard LISP functions which

compute the difference and product of their numeric arguments rsspectively,

then the value for this command became
o=z 42 + 2,

Next, the command
a{t/(t - 1), t)

was given, and this produced the resnonse

! no mateh for

a(t = 1, +)

((t = 1) = (£ »nil))/(t - 1) t 2.
This orompted the addition to d of

as8: af- [u;v];x_] + =[afusx]sd[v;x]]

and then the command returned



((t -1) = £)/(t -1) +2.
The assertion
aZ: - E—[a;b};a] + 4 [b]
vas added to -, and the resnonse advanced to
#1/(v - 1) + 2.
The command
d{8ex 42 + 8/x42, x)
was then jssued, and the resnonse received was

6% x + 1+ (0= 16extl)/(x + 2) t 2

wWhen the assertions

als ¥[a;11 + a

a2: +[+[ast] 5¢] » +[a;x[bsc]]

were added to *, and the assertion

a3: -[05b] > #[b]

- was added to -, the command's resnonse became
16w + #(16 % x)/x 1(2x%2).

Then the assertion

ali: #[asb] > times [a;b] when np lal np (6]

Was added to %, and the assertions

/[#also] ~# /25 v]]
a2: /E)i-[a;b];* [b;c]] e /[a; *[bB—[(’Bl]l]

al

an

Were added to /, and a farihar repaat of the command produced

1oux + #16/x + 3.
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Finally, an assertion for +, which stated
az: + [ #b]] » - sb]

advanced the value to
16xx - 16/x + 3.

At this stage two new RULE's were introduced, sin and cos, each of which was

defined by a single assertion,
last: sin [a] -+ list [STN;a]

for sin, and

last: cos [a] + list [COS;a]

for cos. Also, two new assertions were appended to d to cater for sin and cos

terms,
d9:d[sinfv] 5x] » * [dlusx]; cos [u]]
dlo: d[cos[u] [ 5 gl [d[u;x]; # [_sn.n[u]]]
The next command issued was
d(# cos(x) + sin(x), x)
and this yielded
| #(1 % #sin(x)) + 1 # cos(x).
After the assertion
aS: % [13a] > a
d been added to %, and
al: # [#[a]] » a
d been added to #, the response became

sin(x) + cos(x).
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The command

d(sin(h + y), ¥)
produced

i+ cos(l # y).
The command

d(egin(x) * cos(x), x)
gave the response

sin(x)% # sin(x) + cos(x) #* cos(x).

The assertions
ab:  [a; # [b]] > # [* [a;b]]
af: [a;a] + 4 [a;2]
were added to %, and then the command returned a value
# sin(x) * 2 + cos(x) * 2.
Another assertion
a3: + [#falsb] » - [bs4]
was added to +, and then the final response for this command was
cos(x) t 2 - sin(x) * 2.
The last example tried was
d(sin(t)/cos(t),t)
and this command yielded
(cos(t) * 2 - # sin(t) * 2)/cos(t) * 2.
When the assertion

alj: - [a;#[b]] >+ [a;b]



was added to -, and
aliz + [+[cos [a] ;2] ; +[sin [a]; 2]] » 1

was added to +, the response to this command became
1/cos(t) + 2.

The exercise was terminated at this point, not because any great
difficulty was envisaged in further extensions, but rather because of a grow-
ing disquiet about the ad hoc nature of the simplification rules that were
being produced. Also, shortcomings of this matching system were becoming
apparent, especially with regard to such properties as commutation for + and
# and the relationships involving the numbers O and 1. Thus, for example,

not only was the assertion
al: * [a;l] > a
needed by %, but also
aS: s [13a] + a.

These shortcomings are further discussed in the next chapter. Appendix
) contains a listing of the actual performance of this exercise, together with
display of the state of the RULZ's d, +, -, /,* and # at the time of

ation,

+2 The Wang algorithm for the propositional calculus

A description of both the theory and the LISP program for the algoritim »
¢ found in the LISP Programmer's Manual on pp. Ih-55, [12]. Some quota-

from that section follow to explain the algoritim briefly.

"The Wang algorithm is a method of deciding whether or not a formula in
ositional ealewlus is a2 theorem.
€re are eleven rules of derivation. An initial rule states that a

with only atamic formulae (proposition letters) is a theorem if and
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only if a same formula occurs on both sides of the arrow. There are two rules
for each of the five truth functions - one introducing it into the antecedent,
one introducing it into the consequent.

"The rules are so designed that given any sequent, we can f£ind the first
logical connective, and apply the appropriate rule to eliminate it, thereby
resulting in one or two premises which, taken together, are equivalent to the
conclusion. This process can be continued until we reach a finite set of

sequents with atomic formulae only. 3Tach connective-free sequent can then be

,,,,, tested for being a theorem or not, by the initial rule. If all of them are

theorems then the original sequent is a theorem and we obtain a proof; other-

wise we get a counterexample and a disproof. !

In the coding to follow, the initial rule is simulated by a single

assertion, which is labelled true or false, placed at the end of arrow's
assertion list, so that it will only be attempted when all the logical connec-
tives have been removed.

The other ten rules are simulated directly and a:e given the same labels
as tney have in Jang's description, namely, Dogs Ppps se+es Pgg and pgpe The

four arguments of the RULE arrow are

11 - atomic fornmlae on the left side of arrow,
12 -~ other formulae on the left side of arrow,
rl -~ atomic formulae on the right side of arrow,

r2 - other formulae on the right side of arrow,

_and these correspond directly to arguments al, a2, ¢l and ¢2 for the function
_th in the LISP program. The assertions labelled stkrhs and stklhs perform the
'stacking" operations for the right and left sides of the arrow respectively.

The function test, written as an EAPR, merely places the given sequent
to r2, that is, to the right of the arrowy, and  sets 11, 12 and rl to

- nil. The predicate joint, also coded as an EXPR, gives T if its arguments
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intersect and F otherwise., The M-expression definitions of Jjoint and test

are as follows

joint [x3y] = [mll [x] - F ;
member [car [x];¥] + T ;
T > joint [edr [x];¥]]

test [s] = arrow[NIL; NIL; NIL; list [s;NIL]]

The definition of the RULE arrow is given in the notation introduced for the

differentiation example.

arrow [11 312311 ;r2] =

stkrhs: arrow D.1 312311 [x;r2]] -+ arrow [11 s12s5cons [x;r1] ;r2] when atom [x]

SRR

2
i %
0
]
%

.
7
e

stklhs: arrow [11; [x;lZ];ﬂ ;r2] > arrow [cons &;11];12;r1 ;r2]£}g_¢_1‘_1_ atom [x]
p2a: arrow [11312;71; [not [p];72]] + arrow[11;1ist [p;12];r1;r2]

p2b: arrow 115 [not [p];12]5r15r2] » arrow [11;12;r1;1ist [p;r2]]

: arrow [11;12;r1; [and [a;b];r2]] - and [arrow[11;12;21;1ist [a;r2] ];
arrow [11;12;r1;1ist bsr2]]]

: arrow (11; [and [a;b]312]5715r2] + arrvov [11;1ist [a;list b312]];r1;22]

: arrow [11;12;r1; [or [a;b]372]] + arrow [11;12;r1;1ist [a;1ist b;re]]]

: arrow[11; [or [a;0]512];r1;22] + and [arrow [11;1ist [a;12];r1;5r2];

arrow [11;1ist [b;12]5r1;52r2]

: arrow[11;12;r1; [implies [a;b];r2]] » arrow[L1;1ist [a;12] ;11 ;1ist [osr2]]
: arrow[11; [implies [a;b]512]5r135r2] + and[arrow[11;1ist [bs12]5r1;5r2];
arrow [11;12;r1;1ist [a;r2]]]

: arrow 11512571 ; [equiv [a;b];r2]] + and [arrow [11;1ist [2;12]; 215145t [osre]
arrow [11 slist Eo;lZ];ﬂ slist [a;rﬂ]]

: arrow [11; [equiv [a;b];12 521 5r2] »and [arrow [L1;1ist [a;1ist b;12])r1sre] 3
arrow[11;12;r1;1ist [aslist [b;re]]]]
Pue or false: arrow [11312;r1;r2] » joint [L13r1] .
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Now if test is given a logical sequent as its argument, a value T or
? will be returned according to whether the sequent is a theorem or not.

Some minor additions and a slight reorganisation converts this program
into a much more useful one. Not only can the validity of a theorem be checked
but also the steps taken to reach the proof or disproof can be displayed,
accompanied by the label of the Wang rule used for each step.

The definition of joint remains unaltered, but test is redefined as

test[s] = arrow [START; NIL; WIL; NIL; list [s;NIL]]

The RULR arrow now takes five arguments, that is, a new label argument
(set initially to START by test) is added to the front of the original four.
Arrow only performs the stacking operations and gives a print out of each
step; the actual work of the algorithm is performed by a new RULE function,

named arr. The definitions of these two RULT's are as follows.

arrow [label;11;12;71;r2] =

stkrhs: arrow ELabel;11 31231013 [x;rE]] * arrow [,'Label;l1 3123cons [25;1‘1];1‘2] when
atom [x]

stklhs: arrow [label;ll; [x;12];r1;72] + arrow [labeljcons [x311];12;r1;r2] when
atom [x]

printout: arrow [J.abel;l1 312371 ;r2] ~ prog?2 [print [li'st flabel;col 3113sc01;12;

point;r2;scol;ril]; arr[11 ;125 5r2]],
where the M-expression col translates into the S-expression (QUOTE i)
and the M-expression scol translates into the S-expression (QUOTE ;)

and the M-expression point translates into the S-expression (QUOTE ).

arr[11;12;71512] =

- P2a: arr [11;12;r1; [not [pl;02]] » arrow [Pea;11;1ist ;12501 5r2)

p2b: arr 115 ot [p]3512]5r1572] » arrow[P2B;11;12;11; list|psr2| |

Pla: arr [11;12;71; [and [a5b]5r2]] » and [arrow 3413115125015 148t (yr2]];

arrow [PBAZ;]_T 312571 51ist Ea;rZ]]]

R
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p3b: arr[11; [and [2;0]3512]521572] » arrow [P3B;11;1ist [a;1ist [b;12])]5r15202]
pha: arr[11;12;71; [or[a;b] 5v2]] > arrow [Phia;11;12;r1 5118t [a31ist [b;r2]]]
plib: arr[11; [or[a;b]512]5715r2] + and[arrow[PLB1 ;11 sist [a;22]5015702]) 5
| arrow[PLB2;11;1ist [b;12] 521 5r2] ]
p5a: arr(11;12;r1; [implies[asb]5r2]] » arrow[PSA;11;11st [a;12] 51 514t [bsre] ]
pSb: arr[11;[implies[a;b];12] 5r1;r2] » and [arrow[P5B1;11;1ist [b;12] 501 5r2];
arrow[P5B2;11;312;r1 5115t [a5r2]]]
pba: arr[11;12;r1; [equiv[asb] 5r2]] ~and[arrow[P6A1511;1ist[a;12] 501 ;1ist
[b5r2]];
arrow[P6A2;11;1ist[b;12] 5215145t
[a5r2]]]

pbb: arr[11;[equiv[a;b] ;19] sr1;r2] - and[arrow[ P6B1;11 slist[ajlist [b512]]3

L

A SR S R

1 ;r2] s

arrow[ P6B2;11;12;r1;1list[a;list
[bsr2]]1]
true: arr[11;12;r1;r2] + prog? [print [VALID];T] when joint [11;r1]

false: arr[11;12;r1;r2] - orog2 [print [varIn]; F] .
Now, say the command (in S-expression format)
TEST ((IMPLIES P(OR P Q)))
were given, that is, is P D PVQ a vwalid theorem, then the response would be

(START: NIL; NIL - ((IMPLIES P(OR P Q)) NIL); NIL)
(P5A: (P); NIL  ~ ((OR P Q) NIL); NIL)
(Pha: (P); NIL - NIL; (Q P))

VALID

ome further examples and the listings of the definitions are presented in

DPPendix D.



An Extension of the Matching Process

3.1 Introduction

The matching System, described in Chapter II, employs a left-to-right
one-to-one matching process. The provision of this process as an available
LISP evaluation procedure coupled with the introduction of the new RULE
function type, based on the extended conditional expression formalism, pemits
cCescriptions of many symbol manipulation algorithms which are undoubtedly

more natural than those possible using standard LISP. However, in certain

relativelv straiehtforwapd problems tend to become rather cumbersome. Prota-

gonists of higher level manipulation languages (and possibly even some

unbiased observers) would argue that the facilities so far described, do not

i

- allow for significant problems to be attempted, especially in an on-line

environment. The experiments performed by Fenichel using the FAMOUS system, [7]

whose main evaluation procedures are based uoon a matching algorithm which is
very similar to that described in 52.3, would appear to vindicate this point
of view. Although he re-programmed the solutions to some problems previously
written in LISP, including the Wooldridge-Russell Simplify system, [25], and

also simlated the AUTSIM facility of FORMAC, DJ, the descriptions demanded a

considerable attention to detail; much more awareness, in fact, than might be

deemed bearable by a user concerneq Primarily with the solution of his own
particular problem.

As an illustration of some of the difficulties, consider a function
l}gggg [x; e] which is to determine whether or not € 1is linear with respect

to x. (For the purposes of thig illustration, the only operators involved

:

in e are + ang *,) Using the notation, introduced in §2.6; the forms and
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predicates of sueh a PULE could be written as follows

al: linear [x;x]

a2: linear [x;#[a;x]] when free [a;x]
a3: linear [x;%[x;a]] when free [a;x]
ali:  linear [x;+[x;b]] when free [b;x]
a5: linear [x;+[b 3x] ] when free [bjx]

ab: linear [x;+[¢[a;x];b]] when free [ajx] N free bsx)

a7: 1linear [x;+[b;-x—[a;x]u when free [a;x] A free [b;x]

a8: linear [x;+je [x;a];b]] when free [a;x] A free [b;x]

&s  linear [x;+[b;*([x;a]]] when free [asx] A free [bsx]

B

Here, nine assertions are required to describe a function, where a user
might have hoved that one out of the last four would have been sufficient.
However, if such a state is to be made possible, then, cither the evaluation
system must be aware that + and # are comrmutative operators and have in-built
knowledge of the special relationships concerning the numbers 0 and 1; or
else, some mechanism must be available through which such properties may be
indicated to the system. To be consistent with the earlier decision to adopt
a maximua flexibility aporoach, the second of these two possibilities is
investicated.

Thus, means are provided whereby a user may indicate some properties as
commutativity and the equivalence of such S-expressions as A, (+ A 0) and
(*+ A 1). Motice that it is not possible to provide this information in
assertional form associated with the RULE'S + and %*, because such assertions
would only be processed during evaluations concerning + and %. Furthermore,

the inclusion in + of an assertion
+ [asb] > + [bja]

makes the already possible event of infinite recursion extremely likely.

SRR




The next section introduces a new type of entity, called a trans-
formation, through which a user may inform the system of those properties he
wishes to be considered. The following two sections contain descriptions of
the alterations to the format of assertions and the operation of the extended
matching process resvectively. The final section of this chapter presents a
definition of linear, which utilises transformations, and gives a method of

generating those left-to-right assertions equivalent to a single assertion

with associated transformations.

3.2 Transformations

The format of a transformation is the same as that previously described

for an assertion, namely,
label (form, substitute, predicate),

but the evaluation process is somewhat different. The objective of applying
a transformation to an argument expression is to obtain an equivalent recon-
stitution of the expression; thus, after the form-match and the predicate
testing have been verformed as for assertions, the value is given simply by
a direct revlacement of the variables in the substitute by their a-list bind-
ings. Atoms without bindings in the a-list remain unaltered. Thus, a trans-

formation to indicate that + is a commtative operator might be written as
t1: + [a;b] >+ [bja]
and one to show the equivalence of A and (+ A Q) as
t2: a >+ {h;o]
then tl applied to an S-expression (+ x y) would yield the reconstitution
(+ ¥ x) and t2 applied to the same expression would give (+(+ x y)0),
If a transformation is desired, in which part of the substitute needs to

be evaluated, then, this is indicated by using the atom eval. Thus, if one

wishes to reconstitute an expression involving exponentiation to an even




s 37 =

power as the square of its square root, then the desired effect would be

achieved by the transformation
t3: ¢ [a;n] > 4 [* [a;eval [quotient. [_—n;ﬂ]] ;2] when even [n] .

For example, t3 applied to an S-expression (t* x 6) would yield the reconstitu-
tion (t(* x 3)2). (See 86.5(iii) for an example of the use of this particular
transformation.)

A1l transformations in the system are placed on the property list of
the atom TRFS, which is treated as a RULE type function by the defining and

editing facilities. (These facilities are jescribed in §5.2.)

3.3 Alterations to assertions

A fourth element, called a transformation list or t-list, is added to

the assertion body structure, which now becomes
label (form, substitute, predicate, t-list).

It is through the t-list element that the transformations, which are to be
associated with a particular assertion, are indicated. Note that there are

now four possible assertional formats. Firstly, the most general expression

as just described. The second possibility is
label (form, substitute, T, t-list).

Here, although no predicate list is desired, because of the existence of the
t-list element, a T must be present in the third element position. The third
possibility is

label (form, substitute, predicate).

In this case there is no t-list element present and so the process is as
described in Chapter II, that is, a left-to-right matching process followed

by associated predicate testing. The fourth, and final possibility, is
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label (form, substitute).

llo predicate or t-list elements are present and so the system employs the left-
to-right matching process with implicitly true predicates.

In structure a t-list resembles an a-list, that is, it is a 1ist of
dotted pairs. The first element of each pair is a RULE name and the second

element or binding is a list of transformation labels. Thus, a typical t-list
element might be

((R1.(11 L2 L3))(R2.(LL LS 1L6)))

where R1 and R2 are the names of RULE's and L1, ..., L6 are the labels of
transformations which should be present on the property list of TRFS. It is

normal to use LISP's list notation in preference to its dot notation, and so

the above t-list would more usually be written as

((R1 L1 L2 L3)(R2 1L 15 16)).

In the M-expression notation introduced earlier, such a t-list is described by

r1 [11;12;13] A r2 [1h3;15;16) .

3.t Overation of the extended matching process

The general strategy which the matching system employs to utilise trans-
formational information in the processing of an assertion is as followsj As
before, the left-to-right matching process (described in Chapter II) is used!
if the match fails however, an attempt is made to reconstitute the argument
subexpression at the level of failure, by applying, from the t-list of the
assertion under conmderatmn, those transformations whose labels are
reconstitution can be found, the process raturns to the previous higher

structural level and searches for an alternative match using those transforma-

TA RULE with name r is said to "govern" a form f, if £ is a list whose
first element is r.
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tions as yet unattempted at that level} This procedure is continued until
either a successful match for the entire form is obtained or until all
possible combinations of transformations have been attempted and found to
fail. (A more detailed account of the operation of this matching process is
presented in the next chapter, and the definitions and actions of the actual
functions involved are given in Appendix B.)

Tt is important to note that the RULE being defined may be referenced in
the t-lists of its own assertions. In effect, the form of each assertion is
treated as if this top level RULE had been added to the front of it. Thus,

an assertion in + which states
al: + [a;O] > a

may have a t-list + [t1] added to it, where TRFS has a transformation
tl: + Ea;bj >+ {b;a]

and then not only will (+ x 0) be reduced to X, but also (+ 0 x), where
X may be any expression.

¥ith the introduction of transformations, the timing of predicate
evaluation becomes more criticalg For the left-to-right matching system, the
timing is inconsequential (apart from the organisational argument that an
attempted match could be concluded earlier, if a predicate evaluation produced
a false return), because both the matching process and the predicate evaluation
are unique pass or fail tests and, if either fails, the evaluation process
continues with the next assertion. However, for the extended matching system,
the timing is important since the point of failure determines at which sub-
expression level reconstitution attempts are to commence, Thus, before any
binding for a form variable is accepted, the predicate element of the asser-
tion is searched for any predicate expression associated with that variable,
and, if one is found, it must have value T when evaluated with respect to

the proposed binding. To facilitate the searching part of this more dynami.c
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evaluation of predicates, the format of the predicate element is altered to
become a list of dotted pairs (as in an a-list). The first element in each
pair is a form variable and the second is a predicate expression. 5o, a
predicate element demanding that A and B should both be numbers, which

previously would have been written as
(AND(NP 4)(NP B))
is now described by
((A.(NP 4))(B.(NP B)))
or, using list notation, by
({4 ¥p A)(B NP B)). :

Predicate expressions which reference two or more form variables must be bound
to the variable which occurs furthest to the right in the form.

The predicate element will hereafter be referred to as the p-list, and

a complete assertion written as
label: name [form] -+ substitute when p-list with t-list
where name is the name of the RULE being defined, and where the form, sub-

stitute, p-list and t-list will be written in M-expression format.

3.5 The generation of equivalent left-to-right assertions

The motivation behind the introduction of transformations is to gain
conciseness of description. A property, which is indicated by a TRFS trans-
formation, may thereafter be associated with any assertion of any rule.

This capability, when used to describe frequently occurring properties, leads
to a considerable reduction in the actual physical size of function defini-
tions. Taking the function linear as an example, all those cases which

previously required nine assertions, can now be covered by the single

assertion




al: linear [x;+[* [a;xl;b]] > T when free [a;x] A free [b;x]

with +[£1;¢2] A s [tl;45)
where TRFS has among its transformations

t1: +[asb] + +[bsa]
t2: a -+ +[a;0]
ths #[asb] >« [bsa]

t5: a - *[l;a.]

However, one clear disadvantage, incurred by the introduction of trans-
formations, is the resultant reduction in the transparency of function
descriptions. For example, it is not obvious that this single assertion
definition of ligggg, along with its associated transformations, does cater
for all the possible arguments which can be covered by the previously given
nine left-to-right assertions. In other words, whereas the effects of left-
to-right assertions are transparently obvious, the same cannot be claimed
for transformational assertions, indeed, the ability to predict the behaviour
of the latter implies a prior and quite detailed knowledge of the operative
characteristics of the extended matehing process. Clearly, in these circum-
stances, if a method exists whereby those left-to-right assertions, which are
equivalent to a single assertion with associated transformations, could be
generated, then the problem is consiﬁerably reduced, and, fortunately, such
a method does exist and its processes are relatively straightforward.

The left-to-right matching process may be considered as a special case
of the transformational matching process, where each RULE in an assertional
form has the identity transformation, I, associated with it. Further, the
general strategy of the extended matehing process was earlier stated as:-
attempt left~to-right match, and, if failure oceurs, try to reconstitute
the argument expression. Then, remembering that the form of each assertion

is treated as if the RULT being defined were added to the front of it, the
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RULE's involved in the single assertion definition of linear are linear, +
and # and their respective associated transformations are I; I, t1, t2 and
I, th, t5. As each involved RULE appears only once in the form, the number

of possible combinations of transformations is nine. Thus, the table:-

linear + ¢ generated forms implications
(1) I I I linear [x;+ [ [a;x] ;b]] ' -
(2) I T ¢k | linear[x;+[*[x;a];b]] -
(3) I I t5 | linear(x;+[x;b]] a=1
(k) 1 1 I linear [x;+[bs*[a;x]]] -
(5) T 1 th | linear(x;+[b;#[x;a]]] -
(6) I t1 5 | linear[x;+[b;x]] - a=1
(7 I t2 I linear[x;#[a;x]] b =0
(8) I 2 th | linear[x;#[x;a]] | b =0
i (9) 1 t2 t5 | linear[x;x] a=1l,b=0

may be generated. Consider, as an illustration, the generation of the form
on line (5). The original or (I,I,I) form is linear(x;+[*[a;x];b]]. The
form on line (5) comes from applying the transformations I, tl and tl in
the reverse direction (that is, mateh with the sﬁbstitute and replace by the
form) to the subforms governed by 1linear, + and % din the original form.
An I +transformation gives no change. The subform governed by + is
+[#[a3x];b], and applying tl in a reverse direction yields +[bjx fa;x]].
Similarly, the subform governed by # is #[a;x] and a reverse application
of th gives #[x;a]. When these reconstituted forms are combined, the
resulting form is linear[x;+[bj#[x;a]]].

If, while performing a backward transformation, a variable disappears

from the form, then its last binding is said to be an "implication" s for

example, on line (3)
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5 (% [asx]) = x with implication a = 1.

Implications must satisfy all predicate elements associated with the form
variable concerned, otherwise the generated assertion is invalid.

The rationale underlying this generation method is fairly obvious. In
practice, the matching system attempts to match a form f with some trans-
formation of an expression e, say (e). In effect, this is equivalent to
trying to match a form J “L(f) with e, where J7L(£) is the result of
applying the transformation to f in the reverse direction. Thus, when all
possible combinations of transformations are considered in this manner, all
the left-to-right assertions which are equivalent to the original trans-
formational assertion should be generated.

In any assertion, a transformation associated with a particular RULE may
be utilised by the system in its attempt to match any subform governed by
t?at RULE. This fact must be allowed for by the generation method. For

example, consider an assertion in a RULE + which states
als + [« [a;x];* bsx]] » * [+ fa;b];x] when T with * [th;ts:[

where th and t5 are defined as before, then the table generated is:-

+ *(1) *(2) generated forms implications
1) T 1 I + [ % [asx]; #bsx]] -
(2) T 1 £l + [rlasx]; = xsb]] =
(3 11 t5 + [relasx];x] b=1
(L) I th 1 + befxsal; « bsx]] -
(5) I b + Prbials »fgpl] -
(6) I th 5 + [ [x;al;x] b=1
(7) T 5 1 + s bsx]] a=1
(8) I t5 + [xs#[x;b]] a=1
(9) I t5 5 + [x3x] a=1,b=1
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where %(1) represents the first or leftmost occurrence of % in the form
and *(2) the second occurrence of * in the form.

The inter-related concepts of naturalness, awareness, conciseness and
transparency will be further discussed when the author presents his conclusions
in the final chapter. Meanwhile, it is enough to say that the provision of
this extended matching system affords descriptions which are more concise s but
less transparent, than those possible using the simpler left-to-right matching
System. Whether or not these more concise descriptions are also more natural
would appear to depend upon the context of the evaluation and on the user!s
own prejudices.

One feature, which hasboon laft undescribed in this account of the
extended matching process, is the order in which the possible combinations of
transformations are generated. An examination of this order is included in
the next chapter where a more detailed description of the operational

characteristics of the matching processes is presented.
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CHAPTER IV

A Description of the Pattern Matching Processes

using AND-OR Goal Trees

L.l Introduction

The descriptions, presented in the previous two chapters, of the pattern
matching processes utilised by this programming system have demanded a con-
siderable knowledge of the operation of the LISP interpreter on the part of
the reader. In contrast, the account to be given hereafter is detached from
any particular ontology and therefore Serves two useful purposes. Firstly,
the processes may be better understood by readers who do not possess the
necessary LISP background. Secondly, the methods of description employed
yield a clearer insight into the problems of pattern matching in general, and
these processes in particular, allowing for not only a convenient common
ground on which existing pattern matching techniques may be compared, buf also
the highlighting of areas of possible extension for this system's processes.
These latter advantages will be further discussed when the author presents
his conclusions and suggestions for future development in the final chapter.

In most problem solving systems, the initial goal (the solution of a
given problem) generates subgoals, which, in turn, may generate more goals
and a certqin hierarchy is created. Such a hierarchy is readily represented
by a graph or tree growing downwards. The pattern matching processes used in
this symbol manipulation System may be desceribed in terms of goal trees,

where between any goal and its generated subgoals there exists either an AND

or an OR relationship.

AND - an AND relationship between a goal and at least two subgoals
existe when the achieving of all the subgoals causes the achieving of the goal.,

This may be represented diagramatically by




B s e

- h6 -
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where the arc joining the n branches (n > 2) denotes the AND relation-

ship. An alternative representation is
if g g .... Agy, then g
where this statement should be read as

if g1 1is achieved and go is achieved .... and g, is achieved

then g is achieved.

OR - an OR relationship between a goal and its subgoals exists when
the achieving of any one of the subgoals causes the achieving of the goal.

A pictorial representation of this relationship is

gl g2 *Prrr et eseavrreaEseRe e gn

or it may be stated as

-~

_j£ glvgz s 00w .Vgn 'trheh go

k.2 The left-to-right matching process

Consider the matching algoritim employed by the process. (This algorithm
was given earlier in §2.3, and is repeated here merely to ease the problems

of referencing.) If a form £ is to match an expression e then:
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(2) if £ is a number, the name of a defined function or the name of
a constant, then e must be identical to f,

(b) any atomic form, apart from those described in (a), matches any
expression,

(e) if £ is a quotation of another from g, then the expression e
must be identical to. g,

(d) if £ is a 1ist of elements fy, £y, ..., fn, then
(1) e must be a 1ist of elements e, e, ..., ens é.nd

(2) for i=1,2, ..., n, fi must match e;, and

(3) if g is a name which occurs more than once in f, then the
corresponding sﬁb'expressions in e must be identical.
{

From this description of the algorithm, the form f is seen to be either

A AN R A A A5

an atom or a list of elements wﬁjich may themselves be forms. Clearly then,

the structure of a form may be readily represented by a tree. Introducing the

Do
S

el

Symbols O = list or node, and [:[ = atom or terminator, then the form

(A(B.C)) may be represented by .

(A(B_C))

B C

Then, the condition expressed in (d.1) may be restated as:- if £
is to match e, ‘then the tree of e must have branches corresponding to
all the branches of f's tree, and furthermore y any extra branches occurring
in e's tree must stem from nodes corresponding to the terminators of f£.
The latter part of this statement is necessary because under (b), an atom or
terminator in f may match any expression. This statement may be considered

as the condition for 'structuralt matching. To illustrate how this criterion
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operates, consider a form f = (AM(BC)) and an expression

e = ((X Y)(Z(M ¥))). The trees are:-
(X Y)(z01 1))
(A(B ©))
(2(1 N ))
f = (B C) and e =
A
B C

=

and, by inspection, these clearly satisfy the structural condition,
The condition (a.2) expresses an AND relationship between the goal of
achieving a match between r and e, and the subgoals of achieving matches

between f37 and e1, f5 and €25 «e+y fy and e,. This may be written as:-

if f£1 || e1 Afp || € ... A fnl[en then f || e

where the symbol || is to be pead as 'matches!. To illustrate this on a

tree, e's tree is Superimposed on that of f, and an AND-goal tree is

generateds-

This particular AND-goal tree is interpreted as:-

(AB O[] (X ¥)z(m)) = a | (XY)A(BC) || (20 M))

where (B C) || (z2(m w)) B llz A ¢ |lwmn.
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So far, no mention of the ordering of the matehing process has been
needed. A4 truth value T (true) or F (false) might be connected with each
terminator subgoal (that is, one with an atomic form) and the result of the
match follows from the usual AND relationships between T and F. However,
in any practical system, an ordering is necessary, and the one adopted here
is from left to right; that is, if f is a 1ist (f1, £2, «.., fn) and e
is a list (e3, en, ..., en)vthen an attempt is made to match fy against e1s

X
if this proves successful then fo against es 1s tried and so on; however,

if any failure occurs the match is abandoned.

Now, because of (d.3), which essentially demands uniqueness, some record
of the subexpressions of e associated with form terminators must be kept.
These records are stored as an association list (a-list) in a dotted pair
format. Thus, for the example f = (A(BC)) and e = ((x Y)(2(M N))), the
a-list formed would be ((A.(X ¥)) (B. 2) (C.(M N))).? This raises a further
complication, exemmlified by the problem: match f = (A4 A) against

e = (X Y). The goal tree is:-

(4 MY (X Y)

or, in the other notation,

(A8) || (x1) = 4|

xhally.

Because of the ordering of the process, if A Il x is T and yields a bind-
ing (A.X), then the only conclusion open for A || Y is F. However, there
1s no reason to suggest that A || X is anymore true than & || Y. Thus,
1t would aprear that the value of 4 || X is something less definite than

T, and this suggestion of truth, rather than a concrete affirmation will be

A S

et e s GRS

TN.B. This is clearly not the only reason for creating such an a~list, but
even i1f the matching process was considered as an end in itself, the a-list
would still be necessary because of the uniqueness criterion (d.3).
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represented by P (possible). It would further appear that the value P
depends on the bindings set up during the matching brocess, and so, in

general, the value of a match will be represented by P{J}, where J repre-

- sents a list of bindings which are considered as implications of the match.

The AND relationships are extended to include P in the following way:-

T AP = p{J},
P{J} APK} = F  if any binding in J conflicts with any in K ,

P{J + K} otherwise 3

where J + K indicates the union of the two lists .J and K. Notice that

T =P{ }, that is, a match is true if it is possible and there are no

implications tc be satisfied.

Thus, returning to the example of (aa) | (X Y¥), now

[

(a4) [l (x1 allxna |y

P{((A.X)) } A PI((A.Y))}

= F
because of the conflict between the bindings of A, also

(aB) Il (x1) Allxaslly
P{((A.X)) } A P{((B.Y))}

P{((A.X)(B.T))} .

fl

i

A T wvalue can now only arise from matching identical atoms under corn-

dition (a), thus

(*AB) || (+x7) # |lenrallxag ||y

T AP{((A.X))} AP{((B.Y))}
P{(A.X)(B.Y))}.

Condition (¢) of the algorithm - if £ is the quotation of another form

8> then e must be identical to g - is the only section left to be considered.
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-
This is reoresented bz~ .
("g) lle = g=eng||e

where the g ||e is still necessary, for consider f = (A("(A B))) and
e = (X(A B)), then

(A("(A B))) | [(x(4 B)) Allx A (aB) = (aB) » (a8)|l(a B)

P{((A.X))} AT A P{((A.4)(B.B)))
= F

because of the conflicting implications (A.X) and (A.A).

L.3 The transformational matching process

To introduce an extra truth value P may seen unnecessary in the left-
to-righf matching process, because there, if a match exists it must be unique;
but, when transformations are allowed, the value of a match may not be unique,
and, in fact, it devends on the ordering of the search for allowable transfor-
mations. TFor example, consider a form f = (s+ AB) and an expression
e =(%XY) with 2 commutation transformation, tlhs Egb] ‘*%—&;a],
associated with subforms governed by . Then, introducing a new symbol, 6@

to represent a node whose form has associated transformations, the goal tree

of this mateh is:-

where the symbol O noyw represents a node without transformations. Here the

original goal generates two OR subgoals, the left one corresponding to the




s

- 52 .

identity transformation I being applied to (% X ¥), and the right sub-

noal corresponds to tli being applied to (# X Y). For the I node,

(# 2 B)||(* € 1) #[] A Al]X A B|[Y
= P{((a.X)(B.Y))} ,

while for the th node,

(+ AB)| (%Y

B

) = s#||* AAllY A B||X
= P{((A.Y)(B.X))} .

Poth o7 these results are valid and so valueslof matches, involving trans-
formations, are not necessarily unique.

To overcome this tyne of ambipguity, the system imposes 2 definite order
on OR subgoal attempts, and this corresnonds to the left to right order in
which ftransformations are supplied by the user, remembering that the identity
transformation, I, is implicit and is always considered first. Thus, if e

18 to be matched against a form £, which is governied by a rule @ with an

associated transformation list (11, 12, ..., 1n), then the goal tree is:-

Nt

where 1i(e) is the result of applying the transformation whose label is 15

to the expression ej; +this may also be written as:-
f de = fllev £l|19(e) vae v £l]15(e)

where the symbol #? renresents matching at a node with associated transfor-
mations. The OR subgoal matches are attempted in a left to right order until
one which is P is discovered. Thus the returned value for the previous

example of (* A B)||(* X Y) would be P{((4.X)(B.Y))} .

S
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One final difficulty, which may arise from the non-uniqueness of a
transformational matching process s 13 that the first obtained P{J} wvalue
for a node may vrecilude any possibility of a non-conflicting P value for
subsequent nodes. For example, given f = (+(% A X)(* B X)) and

e = (+(* 2 1)(% ¥ Z)) where all subforms governed by # have an associated

transformation list (th, t5), where +h: *[asb] + *[b;a] and,

o a + [1;a], then the goal tree is:-

i
—~~ —_—
_t
r3 *,
= ]
&
) [ ]
( A .
= %
m L]
*® *
o —
[N =
o =
5 N
B *
g —
X = m
—~ =~ .
= ™ m f
& a % * -
[ & e jat] -
1 ~— .
. 3 -
x, = e
= E3 et
o S—
= - ]
o O .
# > *®
o 3 iy
+
@ =
Py \ =
o % T
: 5
~
s A ~
* ‘ ot
g - ™
> < -
¢ v
< P *
% - > ~3
e w2 ~ g
x 3 =
*®

|

A
(* A XSz FAax) ()= Mz



- 5h oo

and the match proceeds as follows: -

(1) (+(= A XN 2 X)) || (5 2 M)+ W 2)) = +||+ A (xAX)8 (+ 2 M)

M BX)® (%1 2z),

(2)  first A subpoal on (L) +ll+ = 7 P

and so current value of match is set to T,

(3)  second A subgoal in (1)
(#2408 (+2M) = e a )|l 21) 7 (5 4 ) H( u x)

VoG A X)) GG 2 1)),

1}

()  first 7 subgoal on (3): (= & ) 1 Ge 2z w)

P{{(a.2)(x.1))) ,

and value of match = T A PI((A.2)(X.M))} = PA(AZ)(X0D))} .

{S)  +third subgoal on (1):

D OEC T 2) =m0 [+ ¥ 2) T (x B (2 w) ‘

V GeB 0!Gl w z))

(6)  first V subgoal on (5): =B X||(xwz) = P{((B.M)(X.2))} ,

Easr

and wyalue of match = P{((A.Z)(¥.1))} A PU((B.N)(X.2))} = F P

because of +he conflicting implications for X.
At this point, the matching process needs some indication as to which

of these © wvalues to reject, The followin: rules of operation are adopted: -

(a) 211 OR subsoals of the current node are considered under the
assumption thah previous bindings are correct; but, if this fails to produce

a satizslactory mateh, then

(b) control returns to the previous node, and if any further OR subgoals
exist, matehing restarts at the next one after the last attempted.
Hote that when there is a back track, as under (b), the implications must be
reset to the state they were in hefore the rrevious node was entered. Thus,

in this particular example, the process continues: -
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7

(7)  second V subgoal on (5): (x B X+ 2 §) = POB.Z)LE)) ) ,

and value of match = PI((A.2)(X.M))} A PI((B.Z)(X.N)))} = F ’ .
.
(8) third V subgoal on (5): f{x B 1) [ (10 ¥ 2)) = PU(B.1)(X. (* 2)))} : wé
.

and value of match = P{((A.Z)(X.11))} A PU{B.L(X.(*NZ))}=7F.

low because no further V subgoals remain for (5), the process is forced to

reconsider the value obtained for (3); two OR subgoals still remain untried

at (3), and so the current value of the overall match is reset to T, and

the process continues:-

(9)  second V subgoal on (3): (x A x) |16+ 11 X) = P{((A.10)(X.2))} ,

and value of match = T A P{((A.M)(X.2))} = P{((A.M)(X.2))} .

Now, the match at (5) can be reconsidered under these new implications,

(10)  first V subgoal on (5): (¢ B x)|l(x 1 2) = P{((B.N)(X.2))} ,
and value of match = P{((A.M)(X.2))} A P{((B.N)(X.2))}

= P{((A.M)(X.2)(B.H))} .

As all three of the A subgoals of the original goal are now satisfied,

this value will be returned as the final result of the match,
.l Comments

The operational characteristics of these matching processes may be

surmarised as:-

(a) they are exhaustive, that is, all possible combinations of trans-

formations will be tried,

(b) the nodes and terminators are generated and examined in a left to

right order, and
(¢) the search for a possible combination of transformations is on a

"breadth firstn basis, that is, a match is assumed valid for as long

as possible, and only when no path remains available, will backtrack-

ing take place and then only to the node where the next path opens up.
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This search characteristic is analogous to a nested loops operation,
where the outermost loop indexes over the associated transformations of the
leftmost subform, with the innermost loop corresponding to the rightmost sub-
form. Thus, in terms of the tables of equivalent left-ro-right assertions

(described in chavter 3) the last example generates.

order L L generated forms implications
1 I 1 1 (+(+ & X)(* B X)) -
B I I b (+(# A X)(x X B)) -
3 I I 5 (+(3 4 X)X) B=1
h I th 1 (+(* X A)(+ B X)) -
5 T oth b | (+(* X A)(% X B)) -
6 I th 5 | (+(¢ X A)X) B=1
7 I %5 1 (+ X(* B X)) A=1
8 I %5 th (+ X(» X B)) A=1
9 I t5 t5 | (+ % %) A=1,B=1

where the order of lines 1 to 9 gives the order in which the combinations
will be examined. From this table, the combination (I, th, I) on line } is
Seen to give the correct equivalent left-to~-right form for the last example.
However, the process does not generate all possible combinations
blindly and then look for a valid one. In certain cases, it discovers that

some of the combinations can be ignored and use is made of this fact. For

example, given f£ = (+(3 A X)(» B X)) and e = (+ Y(% 2 Y)), the match would
be obtained at line 7 of the table, however, only lines 1 and L would previously

have been examined and lines 2, 3, 5 and 6 would all have been ignored by the

process; that is,

(+Ge A X B X)) || (+ Y(% 2 7)) = A AX)HY A (B X)E(x 2 1),
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+| ]+ = T,
GPAX) BY = GraX)||Y V(e a OINIL v (+ A )| (»1 1) s
GeaX) [|Y = P,

and so all combinations with second element I cannot possibly succeed, thus,

lines 1, 2 and 3 can be ignored,
ax)pm = F,

where th{Y} = NIL, and so all combinations with second element th  can also

be ignored, that is, lines i, 5 and 6,
Cea )+ 1Y) = PU(AL)(x.T))) p

therefore, only combinations with second element +5 need be further consid-
ered, that is, only lines 7y, 8 and 9, and in fact, the combination on line 7
of (I, t5, I) is correct for this example.

Actually, even lines 1 and 4 are not fully examined; the process stops
at the first elements of the Second subforms of each of them. Tt should be
noticed that the user exerts considerable control over this searching process,
because his given form is taken first ang then combinations are generated in

an order corresponding to the left to right order in which he supplies the

associated transformations.
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CHAPTER Vv

Inviromment of Bvaluation

5.1 Introduction

A programming system may be considered as possessing two main components,
a programming language and en evaluation enviromment. Chapters IT, IIT and
IV are concerned primarily with the former, that is, the introduction of a
new evaluation procedure based on pattern matching, together with a new func-
tion type, designed to extend the descriptive formalisms of LISP to allow for,
what are hopefully, more natural descriptions of Symbol manipulation algori-
thms, This chapter deals with the second and equally important component,
the enviromment created by the system in which a user's evaluations are to
take vlace, Moo+ “rograrming systems benefit from a feedback of userts
experiences; unfortunately, up to the time of writing this report, the author
has been the sole user of this system and so there has been no opportunity to
assess user reaction. One consequence of this laek of use, however, is that
the ensuing account may be taken as gz reflection of the author's view of what
4 user requires of a DProgramming system designed to manipulate symbols,

Two major design decisions, which were taken at the outset of this pro-
Ject, are responsible, to some extent, for all subsequent investigations ang
system provisions. Firstly, this system was to provide the means whereby
higher level capabilities could be created and amended, and secondly, the
system should operate in an on-line environment. The next section gives
details of the defininz angd editing facilities provided to meet the first
requirement. The ldentification and file storage facilities, described in
Sections 3 and | respectively, were designed to inerease the usefulness or
bPracticality of the System in its on-line environment, although the same
features might also be considered useful in off-line operations. The final

Section presents interactive facilities which are only meaningful in an
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on-line context. These consist of in-built system recovery features and
user programmed halts and queries with av~ronriate restart facilities. An
account of the definitions and overations of 2ll functions, mentioned in this

chepter, can be found in Appendix A.

5.2 Defining and editing

The definitional capability is based on the function defrules, which

takes a single argument, a list of the form
((uy v1)(u2 v2) ... (un w))

where each wuj is an atom, intended to be a rule-name, and each corresponding
Vi is its S-exnression definition, The function's action is to place each
Vi on to the oroperty list of its corresponding uj with indicator RULE.

The value returned will be the list
(ul 'U.2 vtee un)

that is, the list of the names of the newly defined RULEs.

Having created his 2ULE definition, which consists of a list of asser-
tions each with its owm label, the user is provided with three amendment
facilities. The function addrule pernits a new assertion to be added to a
RULY in any vosition within that RULE (including before the first existing
assertion and after the last existine assertion). Notice that the order in
which assertions occur is important. For example, if a RULE / contains an

assertion to search for zero denominators, say
al: /[2;0] ~ print[TIFINITY - DIVIDING BY ZERO]

and the user wishes to include a new assertion to search for zero over gzero

expressions, say,
a2: /[050] + print [TN"EFINED - z3R0 OVER ZERO]

then the new assertion, a2, must be inserted before al, otherwise it will




never be used. One of the disadvantages of Fenichel's FAMOUS,[i], is a

lack o this ability to determine the order of his equivalent to assertions;
he treats them on a last in, first considered basis. The second editing
function is called delrule and this allows for the deletion of any assertion
from any RULE. The third and final amendment facility_is provided through
the function change; this permits the user to alter any of the four elements
of a particular assertion, that is, either its form, substitute, p-list or
t-list. Tt also allows the introduction of a new p-list or t-list element
where one did not previously exist.

Two display features are now presented, for, although not directly
involved in either the definition or amendment of functions, they are often
useful in that context. A user, faced with an amendment problem, will often
be unable to remember the exact details of the definition he wishes to alter,
and so the function display is provided, which, when given a rule-name as its
argument, will print out the assertions of that RULE, starfingAeach assertion
on a new line. A more specific display facility is also available through

the function fetch, which prints out the single assertion indicated by the

given arguments.

5.3 Identification bindings

5.3.1 TLocal identifications

As stated earlier (in §1.3) this System is command orientated. Associa-
- ted with each command there may be a where list, that is, a list of dotted

\ airs, where the Pirst element of each pair is an identifying atom and the
second element or binding is any expression. Then, before control passes to
the main evaluation routine, evalquote, with the issued command, all occurren-
ces of an atom, which has a binding on the where list, are replaced by the
corresponding binding. For example, if one wished to find ‘é% (%E + T)

where f = 1 + x° sin x > ‘then the command
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...... t be uzed, Bindings set u> using the where facility are called "localn
—
identifications because they only remain valid for the command cycle in which

they are defined.

Z.3.2 Global identifications

HMore vermanent bindings say be sot up by using the functions ident and
identq. Tach of these functions takes two arguments, the first being an atom

which is 4o serve as an identifier, and the second being any expression. The

argument under an IDEN indicator. The other function, identq, performs a

similar task after it has evaluated his Second argument. For example, the

effect of the command
IDENT(X (CAR(QUOTE(A B C))))

would be to set the 1list (CAR(QUOTZ(A B C))) on to the property list of X as

an IDEN binding, but, if ?
IDERTO(Z (CAR(QUOTE(A B CH))

were issued, then first (CAR(QUOTZ(A B C))) would be evaluated to yield A4, and

then this value would be set as the IDEN property of X. IDEN bindings are

"global" identifications because once created they remain valid until delibe-

-.rate action is taken to remove or overwrite them.

5.3.3 A pre-processor

To enable not only local but also global bindings to be referenced in a
command through their identifiers, a simple pre-processor was implemented.
This comprises two new functions evaluate and renlace counled with the

introduction of the concept of "marked" functions. A function is marked by

setting a certain flag in its property list header. 411 RULE's are automa-

tically marked during definition by defrules. (7o date, only one other
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function, a SUBR named subs is marked, and, in fact, subs is a marked §_1._f3_§_§,
the standard LISP 1,5 replacement function, that is » Subs and subst are the
same block of code referenced from different property lists - compare with
evlis and list in standard LISP.)

The M-expression definitions of evaluate and replace are as follows:-
evaluate [u;v] =

[ma.rked[u] * evalquote [u;replace[v;wlist]] 3

T = evalquote [u;v]] .

replace [v;a] =

[a.tom[v] > [mﬂ_l [sassoc [v;a;NIL]] ‘*[get [v;IDEN] > car[iden] ;

T > v] ;
T - cdr[sa.ssoc [v;a;NILJJ] 3
eq [car [v]3EVAL] + eval [cadr[v] ;a] ;
eq[car[v] ;0U0TE] > cadr[v] ;

rplaca[v sreplace [car [V] sa] ] 5 ]
T > prog2 { rplacd [vsreplace [cdr [W152]]§ ° 7 ]

The variable WLIST » introduced in evaluate, represents the where list
associated with the command under consideration, If no where clause is present,

then WLIST will have been set to NIL.

An input command is now sent to evaluate and not directly to evalquote
as in standard LISP 1.5 systems. Control is passed on to evalquote after
evaluate has replaced the Second part of the command in those cases where the
~first part is a marked function. At the atomic level, replace searches first
for“Ioc\al and then for global bindings, replacing the relevant section of the
overall expression by the binding of one is found that is, a new list is not
created but the input list is overwritten by the relevant bindings. Notice
that in those instances where a referenced identifier has both a Where binding
and an IDEN property, the former will take precedence because of the search

strategy of replace. At the non-atomic level, all expressions, prefixed by
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the atom eval, will be replaced by their values. Replace also removes the
outermost layer of QUOTE!'S. This feature is included to enable references to
identifiers to be made without these being replaced by the corresponding
identification bindings,

To illustrate the use of this Pre-processor, the function i_d?_m is re~
examined. Although this is not a marked function, it does use. evaluate to

find the value of its second argument. Thus, the combination of commands

IDENT (Y (s(* X 3)(COS X)))
IDENTQ(DYDX (D ¥ X)))

would firstly, bind (>=(* X 3)(cos X)) to Y, and then this binding would
replace the occurrence of ¥ in the second command before the derivative is

taken and subsequently bound to DYDX. Notice that if DYDX was replaced by Y

in the second command to give
IDENTQ(Y (D Y %))

the first occurrence of Y would not be replaced by the binding because identq
is not a marked function. The effect of this last command would be to over-

write the current binding for Y by its derivative with respect to X.

5.3.4 LEE

At the end of every command cycle, the value just obtained is placed on
to the property list of a special atom LEE (an acronym for Last Rvaluated
ﬁ\ip;fgssion) under an IDEN indicator. Thus the value of the Previous command
is alﬁia‘ys\gya}lable ’ throggh LEE, to the current cdmand. For example, if one
wished to find the Second derivative with respect to X of an expression

currently bound to an identifier Y, then the commands

DY X)
D(LEE X)
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would produce the desired result. If one now wished to store this result,

giving it an identifiecr, then the command
IDENTA(N2Y LEE)

could be used. Hotice that the same overall effect could have been achieved

by the commands

D(Y X)

TOENTQ(D2Y (D LEE X)).

5.4 Storage management

lost users of languages such as FORTRAN, ALGOL or assembly codes may find

it difficult to appreciate the concern of list processing language program-

mers over the problems of storage management. For the former type of user,
w.mw«%» e i ST S

1f the prosram with its associated data snaces can be fitted into the avail-

able machine space, then the problem is sclved. However, the problem is only

s s

starting at that stage for list processing systems. A1l too often, situations

arise where more time is being spent on storage reclamations (garbage collec-

tions in LISP) than on performing useful work. Less frequently, but still
bfg?n enough to cause concern, a situation can arise where the available free
spaée is so full of definitions and intermediate results that the system
chokes and grinds to a halt, An attempt has been made to alleviate some of
the problems involved and descrintions of the provided features follow in

the next sub-section.

The remainder of the section is devoted to descriptions of file storage

facilities, designed to enable a user to store function definitions and

identification bindings on a disk file, from which they may subsequently be

restored to core in order that some desired context of evaluation may be

created. All user defined properties of any LISP atom may be saved and un- '

saved by the provided facilities, for example, RULE!s, EXPR's and IDEN's.
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Perhans the easiest way to gauge the importance of these facilities is to
consider operating without them. Then, the user is faced with the daunting
task of defining all the functions and identification bindings, which are
required for that session, before any useful work can be attempted. Another
useful capability, provided by the introduction of these facilities, is that,
definitions, which are not immediately required, can be stored on a disk file,

thus freeing, at least temporarily, in-core storage which can be used as

valuable working space.

5.h.1 In-core storage

In this programming system, as in most LISP gystems, the garbage collec-
tor is invoked if, during a call to cons, the LISP cell construction funection,
it is discovered that the list of free space has been exhausted.) The reclama-
tion takes place in two distinct phases, firstly, the marking of all cells
which are active, and secondly, the collection of all unmarked cells to form
a new list of free snace and the clearing of the marks in the active cells.
This is an automatic reclamation procedure, that is, without any user action,
garbage collection will occur in every command cycle during which the free

space is exhaunsted.

A non-automatic or user initiated reclamation procedure is also provided

\Ehfqggh the function reclaim. This affords two main advantages. Firstly, it

gives the user some control over the timing of the call to the garbage collec-

tor. Secondly, in the marking phase of the reclamation, only those cells

which make up the new property 1lists, which have been defined since the session

AR

started, need be marked. Compare this with the same stage in the automatic

brocedure, where not only must new property list cells be marked but also all
argument list cells, cells of lists emanating from special registers such as
ALIST, WLIST, GOLIST, etc., all lists held on the push-down-stack and in

certain temporary storage locations used by the system, then, it is clear that

o
.
.

EESRRS

.
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the user initiated reclamation will be faster than the autamatic one and
that it will also collect a greater number of cells for the new list of
free space.

While the increased control and efficiency of reclaim are attractive,
in reality, the function is seldom used directly, because the user does not
possess the information about the state of the free svace which would be
necessary to take advantage of these qualities. However, reclaim is often
used in conjunction with another function called setgarb. To understand
fully the advantages of this combination of functions, it is necessary to con-
sider the control structure of the overall system, that is, a loop with three
components, inmut, evaluation and output. The automatic reclamation procedure
will be invoked (if at all) during the evaluation component of this loop, thus
increasing the response timedr (often by a factor of two) experienced by the
user. It would clearly be more convenient if garbage collection were to occur
at the end of the cycle, that is, between the output of the result and the
invitation to input the next command, for two reasons. Firstly, at that point
in the loop only recléim and not the full garbage collection need be invoked.
Secondly, a slightly longer delay between output and input is less likely to

be resented or even noticed by a user when compared to an added delay between

;1nput and output, especially as, in the former case, the user will frequently

need to study the output value before he can decide on his next input command.
Towards these ends, setgarb is introduced. This function expects one argument,
an integer, and its action is to Place this number in a special register,

named CELIMIN. Thereafter, the number of free cells still available is tested
after every output, and, if the number has fallen below CELLMIN, then reclaim

is invoked, atherwise control passes directly to the input phase. Thus, by a

Tresponse time - delay between issui.g a command ancd the result being
displayed.




judicious choice for CELIMIN, a user can replace costly and inconvenient
garbage collections with more efficient and less noticeable reclaims.
Both the automatic reclamation procedure and reclaim display the follow-

ing message during overation
# # GARBAGE COLLECTION =n CELLS

where n is the number of cells collected for the new list of free space.
This print-out may be suppressed by use of the function verbos. A further
call to verbos will restore the print-out.

Two further facilities, which are based on the functions remove are
remprop, are introduced to allow for the removal of unwanted properties from
the proverty lists of atoms. Egggzg takes one argument, which is a list of
atoms, and its action is to overwrite the link from the atom!'s property list
headers to tne main bodies of their respective property lists. Remprop expects
two arguments, which should be an atom and a property indicator, and its action
is to remove the property with the given indicator from the property list of
the given atom. Tt should be noticed that neither of these functioms initiate

garbage collection, they merely make the indicated space available should

reclamation take place.

5.h.2 File storage

The facilities have been designed to permit the use of any mumber of
10K disk files, each divided into 80 buckets of 128 words. The first two
buckets of every file contain a directory of the definitions present and a map
of the storage allocation. %very definition stored on a file has an entry in
the directory, which consists of its name and the address of the bucket on
‘which the start of its definition body is to be found. The buckets, in which
a particular definition is stored, are linked together to form a list which

is simulated in the map. For example, a definition identified by the atom

o
=

1
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FRED and occupying buckets 3, 16 and 27 would have an entry in the directory
of

FRED 3

and in the map, positions 3, 16 and 27 would contain

3 16 ] 16 27

where Ezzj 1s used to indicate the end of a list.

Before a file can be read from or written to, it must be opened, and this
task is performed by the function getfile, which also reads into core the
directory and map from buckets 1 ang 2 of the indicated file. Thé name of the
currently open file is held in a special register, named CURFILE, and the file
name supnlied by all the other functions, to be deseribed hereafter, must be
identical to that held in CURFILE, otherwise an error message will result.

Trom this last Statement, it is implicit that only one file may be open at any
given time. If 2 ugser wishes to operate with a file other than the curréntly

available one, then he must first close the latter by using the function

closefile before the new one can be opened.

-

The main provisions of these file storage facilities are the ability to
save definition§ on disk files and that subsequently, that is, either later

in the same run or in some future session, these same definitions may be

l////“ﬁﬁééﬁed to create some desired context of evaluation. These tasks are per-
formed by the functions store and restore respectively. While in core, the
definitions are held in the form of property lists of atams, however, on disk,
they are stored as character strings. The conversions are performed by the
existing LISP input/output routines. Both EEEEE and restore take two arguments,
& list of atoms and a file name. §32£g saves the property lists of the atoms
in the given list cn the indicated file. Restore resets the definition

bodies, held on the indicated file ang identified by the atoms in the given

list, as property lists of the aforesaid atoms.




Once a definition is stored on a disk file, it cannot be overwritten
without the user first setting the 'open! flag on the relevant entry of the
dirzctory. The function open is provided for this purvose. Tts arguments are
similar to those for store and restore and its action is to set the !open!

flag on all those entries, identified by the atoms in the given list, in the

directory of the indicated file. Thus, before an existing definition can be
overwritten, the user must perform a deliberate action and this safeguards
valuable definitions against the possibility of being accidentally destroyed.

If certain definitions cease to be of value or if priorities demand that
Some space be created for more important definitions, then wipeout may be used.
This function alse exoects two arguments similar 4o those required by store
and restore and its task is to remove, from the directory of the indicated

file, those entries corresnonding to the atoms of the given list, and to add

the space so created to the list of free buckets by updating the map approp-
riately.

It should be observed that the first argument of the four functions store,

restore, open and Wipeout is a list of atoms and not merely a single identifien

The reason is that, in the author's experience, definitions are handled in
o
e

groups or packages and not individually., Furthermore, this experience has
prompted the introduction of a package name facility, which is based on a new
proverty indicator, PACK. Thus, for example, if the list (+ - % / +4) yas

the PACK property of an atonm OPS, then the command
RISTORE(OPS FILEA)
would produce the same effect as the command
RISTORE((+ - = / + #)FILEA).

PACK vproperties are set up by using the standard LISP function deflist.
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The final feature of these file storage facilities is a display function
named dimp. Dimp expects one argument, which should be the name of the curren-
tly available file, and it produces a print-out of the directory and map of

this file, giving the name of each definition together with the addresses of

the buckets which it occupies on the disk.

5.5 Additional interactive facilities

"hile the facilifies for identification bindings and storage management
could conceivably be of use in standard off-line LISP systems, the facilities
to be described in this section, are only meaningful in an on-line context,

because they require user responses 10 queries or to requests for more infor-

mation or missing function definitions.

5.5.1 TIn-buil+ recovery facilities

TheSe/;eatﬁres are provided to enable an execution, which is halted
because of éhe absence of necessary function definitions, to be restarted with-
out the need to restate the original problem. Effectively, the provided
facilities replace the LISP error diagnostics A2 and A9, which are described

in the IISP 1.5 Programmert's Manual,[lZ], as follows.

A2  PFunction object has no definition - apply.

This occurs when an atomic Symbol, given as the first argument of apply,

does not have a definition either on its property list or on the a-list
of apply.
A9  TFunction object has no definition - eval,

Eval expects the first object, on a list to be evaluated, to be .an
atomic symbol with a definition either on its property list or on the

a-1ist of eval.

An occurrence of either of these failure conditions leaves a standard

e
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LISF system with no option other than the abandonment of the command cycle
in which the error is encountered.

In such cases, this*system adopts the following sequence of operations.
Firstly, a message is displayed which requests a definition for the offending
atom. Once this print-out has been given, the system enters what is called a
"recovery" vhase. This involves safeguarding all the information which will
be required by the system if the user decides to restart, Secondly, the

requested definition~is suoplied either by a define or defrules command or

Possibly from a disk file by a restore instruction. Thirdly, the command

The user has thg option of abandoning the cycle at the second stage. To do
this, a clear command must be given, otherwise the system will remain in
recovery ﬁode.

It is important to realise that these features only provide a single
level recovery facility, that is, if an error occurs due to the absence of a
function definition while the system is still in recovery mode, then although
the message signalling the requirement of the definition will be output, the
command cyele will automatically be abandoned., However, the original restart
option still remains available,

The tyve of failure, considered so far, usually arises because either a
tyving error hasbeen made resulting in an atom being mis-spelt, or, perhaps
vhen trying to creates particular context of evaluation, a user may simply for-
get to vrovide a needed definition. It was the all too frequent occurrence
of this latter cause of failupe which led to the list argument and then sub-
Sequently to the package name feature being introduced into the file storage
facilities described in §5.h.é.

With the introduction of the matching procedure, a further consequence
of the absence of function definitions needs to be considered. In the matching

algorithm, given in 2.3, it is stated that atoms which are the names of
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functions may only match themselves whercas atoms which are free of special
properties may match any expression. Thus, the failure to supply a definition
to a function name, which is being used as a form variable in a RULE, will
almost certainly result in an erroneous binding being produced during the
matching process. To cambat this possibility, all a-list bindings for atoms,
which eval expects to be function objects, are tested in an attempt to decide
upon their validitj. If these tests are not conclusive, then the system will
ask the user to verify or deny the validity of a particular binding. Given a
verification, the system will accept the binding and proceed normally, however,
given a denial, the a-list bindings arere-examined and definitions are requested
for all atems which do not alveady possess them and which occur in function
object positions. At this point, the system enters a recovery phase and the

operations continue as from the second stage which was described previously.,

5.5.2 User programmed halts and queries

Leaving aside the thorny problems of round-off errors and tolerance
limits, in general, computations involving numbers bossess a preciseness which
is lacking in manipulations of richer but vaguer symbols. Thus, programming
Systems designed for the field of numerical mathematics can readily determine
whether one given number is equal to, or less than, or greater than another
given number and so on. However, the probleﬁs cohfronting the symbol manipula-
tion system are more troublesome, for example, how can it be determined if the
Symbol A is greater than the symbol B, or if the symbol C ié less than
the list of symbols (+ DE)? Faced with the necessity of obtaining answers
to such questions, the system has little recourse other than to request more

information from the user, This Programming system provides two facilities,
query and external, for this purpose,

S e



external is being used as a predicate, the answer given must be either #T# or
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The first of these, query, may be used as a predicate in any user

defined function - noymally in a XULE or an EXPR. It is coded as an FSUBR,

/

~;

whose arguments are/évaluated by replace, which was described earlier in §5,3.3
Its action is to/ﬁisplay the message QUERY?, followed by the evaluated argu~

ments. The user is then invited to respond by typing either YES or NO. If

the response is Y®S, then the value of the predicate is T (true), if NO then
the value is F (false). Any response other than either YES or NO will be
rejected and the user requested to ANSWER YES OR NO. Replace is used to
evaluate the arguments because, given the current a-list as its second argu-

ment, it will replace those atoms in the arguments of query which have bindings

on this a-list by those bindings and leave unchanged those atoms without
bindings. por example, if the system is evaluating (QUERY IS X > Y ?), with
a current a-list which includes the pairs (X.(% 2 A)) and (¥.B), then the
result would

QUERY ?

IS (32 A)> B 7

where the system is now awaiting the usert's reply.

The second function, external, may also be used as a predicate, but is
more usuvally employed in a substitute element in either a RULE or an EXPR.
In construction and operation, this function is very similar to query; it is
alsq coded an an FSUBR whose arguments are evaluated through replace, and its
action is to display EXTERNAL followed by the evalnated arguments. The user's
response, which may be any LISP S-expression, will be taken as the value of
external. It is important to realise that, unlike query, there is no in-built

check to ensure that the user's reply is a sensible one; therefore, ir

H};. As an illustration of the use of external in its nommal role in a
substitute element, consider the evaluation of (EXTERNAL(+(s A Z)(% B Z)) OR

(+(+ 2 B)Z) ?) with a current a~list of ((A.M)(B.N)(Z.X)), then the result
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would be

EXTERNAL

(+( M X) (s ¥ X)) OR (#(+ M N)X) ?

where the system is now awaiting the userts response.

In Chapter I, an argument is advanced in favour of an on-line context
for algebfaic manipulation systems which Suggests that, in many instances, a
user needs to know the result of his current command before a decision can be
taken as to what the next command should be, A direct extension of this con-
cept is to allow a user to guide the actual evaluation process of the system,
and this facility is now introduced through a function Dause. Again, like
query and external, this funetion is coded as an FSUBR which utilises replace
to evaluate its arguments, and, its action is to display PAUSE, followed by
the evaluated arguments. However, at this Stage the system enters a "pause!
mode, which is similar in many aspects to the recovery mode, described in
§5.5.1. As with the latter, vrocessing may be restarted by issuing a clear
or a restart command. is before, a clear instruction will cause the abandon-
ment of the command crele, and a restart passes control back to the last entry
of evaluate, which normally implies a re-execution of the current command, the
only exception being if an identg is involved (see §5.3.3). In addition, a
resume instruction is introduced, which operates with one or no argument. If
no argument is given, then evaluation resumes at the assertion following the
one containing the Rause. If one argument is given, then this is taken to be
the label of the assertion in the current RULE at which the user wishes to
restart.

During the pause, the user may perform any operation he desires, includ-
ing the deletion of the assertion containing the Pause or the following one.,
Howé%er, if the execution of another Pause is attempted while still in bause
mode, the PAUSE message and the arguments will be displayed, but then PAUSE IN

RECOVERY PHASE will be output and the command cycle abandoned. The original
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pause still remains available.

To sumarise, the functions query, external and pause enable a user to

program halts and queries, which, in turn, permit the user and system to

interact so that necessary information and guidance may be supplied one to
the other,
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CHAPTER VI

An Integration Eaperiment

6.1 Introduction

Perhans the most frequently unfulfilied ambition of algebraic manipula-
tion systems is the acquisition of an ability to perform symbolic integration.
Indeed, to the author's knowledge, there exist only two symbolic integration
programs with any valid eclaim to generality, namely Slagle's SAINT,[22], and
Moses' SIN,[15]. (It is interesting to note that both of these programs are
written in LISP.) Moses suggested a nossibie reason for this state of affairs
when he wrote .., "the ease with which a symbolic integration Program could be
written in a proposed language for algebraic manipulation has become an infor-
mal test of the Dower of that language .t Thus, in response to the challenge
implicit in these remarks, this chapter describes an integration experiment.
However, to avoid any future disapﬁointment, it should be understood from the
outset that the program, to be presented in Some detail hereafter, is not
intended as a ready made integration capability but rather represents an
investigation into the feasibility of writing such a program in the language
developed for this system.

The integration function, called int, expects two arguments, a variable
of integration and an integrand. The program is organised in three sections.
The first part consists of a simple table structure which is driven by pattern- o
matching, that isy if the given integrand is found to match an entry on the
table, then the value can be given directly. It also performs some basic
operations such as treating the elements o6f sums and differences Separately
and then combining the results. This section is extensively used by the other
two parts of the program. The second section utilises the method of

'derivative-divides', and when eoupled to the first section is approximately
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equivalent to what Moses calls his first stage of SIN. The third section is
based on the %7037 heuristic, and involves guessing the form of the integral

and then attempting to obtain values for undetermined coefficients in that

form.

5.2 Transformations
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The transformations, on the property list of TRFS at the time of this

experiment, were as follows:

tl:
t2:
t3:
th:
t5:
£6:
t73
t8:

t9:

t10:

t11:

t12:

In fact, only transformations t1, th, t6, t9 and t1l are actually
utilised by the integration functions. However, the others are included
because of their use in simplification, which, as before in the differentia-
tion example described in 52.6.1, is performed by defining the RULE's +; =
#, /, t and # appropriately. Transformations t1 and tl express the property
of commutativity for the operators + and % respectively. Transformations t6

and t9 give, as possible equivalents for any expression, the given expression

#[250] > +[bse]
a  + +[a;0]
a . +[O;a]
«[asb] > #[b;a]
a > x[1;a]
a -+ #[az1]
a > -[a;0]
a =+ /[as1]
a > +[a31]
a >4 B[a]]

t[asn] > +[+[a;eval [quotient [n;2]]]; 2] >

when even [n}

% [a;i(- bsc]] » % [az% [e;b]]

2




the square of theip Square roots, for example, in §6.5(iii), it is used to

give (x°)? a5 M equivalent expression for xlt,

6.3 Table method

i int[xse] > #[e;x] when free [e;x]
12:  inb[x34 [x;n]] » /[t [x;+[n;1]];+[n;1}]
when free[n;x] A neg [n;-1] with +[t9]
13: int[x;lo0g[x]] » # [x5=[1og [x]51]]
i int frssi[x]] » # [oos x]]
15:  int [x;cos [x]] + sin[x)
16:  int [x;tan [x]] > # [Log [cos [x]]]

i7: int [x;exp[x_]] - exp[x] .

Notice that io caters for f X dx by treating it as s Special case-of
JX* dx, that is s through transformation t9, the integrand x ig reconstituted
as xl, and hence matches the form of 12 Successfully; the value is then

glven by the value of the substitute 3 %2

The second group of assertions, in this first section of int, are

DPresent experiment, only four Such assertions ape considered,

O it s WLMHM««;.IM;»;MW

i
.
e

.
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18:  int[x;+[a;p]] - +[int[x;a];int[x;b]}
19:  dnt[x;-[a;b]] » -[int[x;a];int[x;b}]
110:  int[x;4[a]] >4 [int[x;a]]

i11: int[x;%[a;b]] > %[a;int[x;b]]

when free[a;xJ with *[fhl .

Examples using this section are

5/
fx3/2 dx = %?

[(eX + sin X)dx = eX _ gog x

limited class of integration problems, However, its main purpose is to '

brovide a basis for the other two sections of int, that is, both of these

attempt -o reduce the given integrang by some means, to a form which can be
s (<) 3 y

handled by this tdble method,

T

6.1 Derivative-divides method

- This section Searches for integrals which are of the form

:
L
g
Ee

e op(£(x)) £1(x) ax

where ¢ is g constant, f(x) is ap elementary expression in X, £'(x) is

its derivative and op is an elementany operator. For this experiment, op

must be one of the Operators allowed for in the table section, that is, one

of log, sin, Coss tan or exp; clearly, however, this set of operators coulq

be easily extended, In addition, three more possibilities for 0P, involving

the exponentiation operator, are catered for, namely, f(x)‘l, £(x)9 yith

d# -1, and df(X), where d is a constant.

Onee it hasbeen established that the integration problem is of the form

above, then the solution is obtained by evaluating
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and substituting f(x) for Y 1in the result. Four sssertions are required.

i12; intfx,-»x—fopfa];b]] - *[di‘act,-subst[a;x;int[x;op[x”]]
ihen opo[on] A mdry[x;a;0] with s [th;t6]
1130 int[x;/[vsa]] » —:e[dfact;log[a]] when mdrv[x;a;b]
Hb:dng x5 [t [a;n] ;0] - *f/[dfact;+[n;lJJ;f[a;’r[n;l”]
when free [n;x] A neqfn;-l] A mdrv[x;a;b] with *[th] A +[t9]
int ;% [+ [esa] ;0] » *[/[dfact;log[c]];*[c;al]

\ when free[c;x] mdrv [x;a;b] with #[th] .

ils

s

The predicate function OPB, used in ii2, determines if its single argu-

ment is one of the allowable set of Oberators. The M-expression definition

of the other neyw bredicate function, mdrv, is as follows.
mdry [x;a;b] = [prog [v]

v = /[b;drvfa;x” 3

ree [v;x} > go [Ll] H

R ——

' return [F] |
3 4 +a I eyl
wei o Csetqdfactsv]

return [T]] .

The purpose of mdrv is to determine if b  and g‘ are equivalent except

for a constant factor; if this is found to be the case, then the factor is

pPlaced on the Proverty list of the atom DFACT as an APVAL and the value T is

returned, otherwise the value is w

Le

With the inclusion of thig method, int can now inte

the following: -

fcos(2x * dx = L sin(2x + 3) ,

op=cos,f(x)=2X+3,f’(x)=2,c=

LT
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The identity oparator is handled as a Special case of r£(:)d with 4 = 1,

thus

fsin cCesxdx = 3 sin? X

op = f(x)d | g =1 s T(x)

i =sin x , £'(x) = cos x s
Jx X2 dx = £ X2 5
0p=emp,f(x)=x2,f'(x)=2x,c=%—.

\
\ A+ %2 ax = H1 + x2)3/2 s
oo = f£(x)9 s d =3, f(x) =1 + 2 s £(x) = 2% s C =%,
eX _ ’
T % dx = log(l + eX) s

op = f(x)ul s P(x) =1 % o% , Fix) = o% s, =1,

Jx cos x2 ¢sin x2 dx = % esin x? s

!
‘
[

om = exr , £(x) = gin x2 , £U(%) = 2x cos %, ¢ =2

6.5 The

A

G% heuristic

This heuristie is introduced in Moses! doctoral thesis, Symbolic

Integration, [15]. The method 1s based on the Liouville theory of integration,

i
:

which shows thot if » function is integrable in closed form, then the form of
the integral can be deduceqd uo to certain coefficients. Io discussion of thig
theory is o be oresented in this thesis, but detailed accounts are given by
Ritt, [19], and Risch, [18].

Given an integrand in the form of 3 product, it is often possible to
choose one factor which is outstanding in the sense that it is not contained
in the other factors or their derivatives, nor can it be derived from the other

factors or their derivatives through rational operations. For example, in

1
X eX, the factor eo* 15 outstanding, while in x(1 + x°)3, the outstanding

; L o . ; "
factor is (1 + x2)3, However, it is not obvious which, if any, of the fac-

tors in eX sin x is outstanding, since both are not derivable from one

another. 1In this varticular examole, the method will lead to a solution




‘
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irrespective of which factor is chosen as outstanding, but only after a
transnosition (se; later), Supvose that it is possible to decide on an oute
standing factor, and that the integral can be solved in finite terms, then
frequently, it is possiﬁle to make an educated muess as +o the form the
integral will take,

As an illustration, a function, called edge, was constructed, which will
try guessing orocedures ir it finds any of the five forms, eg(x), log(g(x)),
EIE%TEY » sin(g(x)) and cos(g(x)), to be an outstanding factor. Before giving
the definition of edge and its linkege t0 the rest of int, it is instructive
to consider the brocedures adopted for outstanding factors of the forms above,
along with some simple exanples., (Most of what follows can be found, together

With a more detailed discussion of the merits and demerits or the method, in

HMoses!? thesis,[iS].)

(i) h(x) eg(x) dx

|
"4 good guess for integrals of this form is

,fh(x) eg(x) dx = a(x) eg(x) + b(x)

where a(x) ang b(x) are the undetermined coefficients which are to be
found, and where a(x) will not involve e&(x), Differentiate throughout ang

the equation becomes

hx) oE = ) grlm) B 4 Ly 80 b'(x)

The value of a(x) is found by equating the first coefficient of eg(x) on
the right hang side with the coefficient of eg(x) on the left hand side.

Thus

a(x) = E.S.Z{._,
g

> &
(x)

The value of b(x) is then obtained from

,,4x
S
]

R
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b(x} = - f a'(x) eg(X> dx

which, hopefully, will be a Simpler problem than the original one.

example f x e~ dx
[xe® ax = a(x) X + b(x)
X eX = a(x) eX + o"(x) X + b'(x)
a(zx) = x
a'(x) = 1
b(x) = - [eX gx

The integral for b(x) is certainly simpler than the original problem;
its value may be found by reveating the above guessing procedure, or it will

be given by the first Section of int. Thus; by either method
b(x) = . JeXdx = - eX ,
and so

[ x ¥ ax x X - X

(x - 1) ex ,

(i1) [ h(x) log(g(x))dx

A good guess for the value of this integral is
[ h(x) Tog(a(x)) ax = o Log?(g(x)) + a(x) Llog(g(x)) + b(x)

where ¢ is a constant ang a(x) does not involve log(g(x)). The log2
term is necessary (e.g. ,f% log x dx) but its coefficient need only be g
constant, otherwise the derivative of the guessed form would contain a 1og2

term for which there is N0 corresponding term in the integrand. Differen-

tiation leads to

h(x) 1og(8(x)) = 20 £ 108(a(x)) + a(x) i‘% + a'(x) Tog(g(x)) + b'(x)

0q




or, collecting terms in log(g(x)) on the right hand side

B(x) log(z(xi) = log(p(x)) [2c g—’*((;f—; + a' (x) ] + a(x) %% + b (x) .

Dropping tre functional characterization of a(x), b(x) etc., and equating

coefficients of log(g(x)), the following equation for a(x) 1is obtained

at = h—2c§'
g
a = f h dx - 2¢ log ¢ .

Now the fact that a(x) is indevendent of log(g(x)) is used to fing the
value of ¢, +that is, if [ h(x) dx has a term involving log(g(x)) then

¢ 1s chosSen 5o as to Cancel this tern, otherwise ¢ = 0. The value of b(x)
is then found from the relationship

example [ (x %) log x ax

2
[ (x + %) log x dx = ¢ loe“ x + 2 log x +b

]

2
(x +2) log x (i; +a") log x + % +t'

Bl »
a= [(x+ %) dx - 2¢ log x

R log x « 2¢ log x
5 2
1 X
2 =1, ¢ = T s a= 5 .
b = E:_E
B R 2
b o X
I

and so

2

1y .. e 1.2 X x
f(X * X) log x dx = 5 log“ x + 5 log x - T

h{x)

(iii) fm dx

If complex constants are ignored, then the T~:~é§(;7 factor can only

originate from two possible sources, log(l + g2(x)) and arctan(g(x)). 1In
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aither case the coefficients must be Constants, otherwise the derivatives
Would contain terms which are more camnlex than thoss found in the integrand.

Thus, a 200! guess for this form of integral is

/ Imjéé§%£7 dx = ¢ log(l + g2(x)) + 4 arctan(g(x)).

Differentiation yields

h . 2cg'g , _dg'
1+ g2 L+g2 1+g2

h

g, = Z2cg + d

where ¢ and ¢ are constants.

example f = o

xamp 1 + %I
A — 2 1
L€ %X, 8 =x¢and g' = 2%

Q.
it
Lo

and so

w

For this form, Eé&ﬁ guesses
/n(x) sin(g(x)) ax = a(x) cos(g(x)) + b(x) .
Differentiation yields
hising = - ag' sing + &' cos g + b' ,

Tquating coefficients of sin g and the value for a is given by




!
0
@)
§

1

b = - [a' cos g dx

which, hoaefully, will be a simpler problen than the original one.

(v) _[h(x) cos(e(x)) ax

The procedure is very similar to that for sin(g(x)) factors.

In(x) cos(g(x)) dx = a(x) sin(g(x)) + b(x).

Differentiation yields

i hecosg = ag'cos g+a'sing +p'
i
5..1 h
g a = < .
et
and b = _ f a'"sin g dx .
: 2 g
example ﬁx Sin x dx
ﬁxQ §in x dx = 2 cos X +b
%2 sin X = -asinx+ s cos x + [l
a = . x? s &' = .oy
b = 2 f’x Cos x dx .
[ x cos x dx = a3 sin x + by
. v
X cos x = 8] ceos x + al' Sin x + by
a = x,a" = 3
by = . fsin X dx
= cos x .
and so
[x° sin x dx = . X2 COS X + 2% sin x + 2 cos x

{2 = x2) Cos X + 2x sin x .




The [l-exmression definition of the function edge, created to handle

the forms discusseg above, is ag follows,
edge[x;i:f =
el: edge[x;% [nexp[5]]] - orog [ [a] ;

a: = /[hydrv[z;x]];

return [- [“r [a;exo [g]] sint [x; # [drv [a;x];exp [g]]]]]]

when T with # [th]

o2: edge [x;% [h;1og []1] prog [[a;b;c];

[

c:

int [x;h];

8: = sim;_} [subst [ slog [gJ;C]J;
c: = /[/]- [c;a];log\[‘;ﬂ;ﬂs
b= int [x;/ [+ [a;dry [3x]]5217;

return [+ [t [e; 4 log [ 52115+ i [a; 10g E110111]

when T with [th]

e3:  edge [y fuy/ s+ [y 3211111 > «[ract;1ist arcran;g ]

when mdrv fx;g;h] with +[tl] A s [l ] A*[tllJ

=

eh:  edge[x;# [hysin[g]]] * prog [[a;p];
a: =#=[/[h;drV[g;x]]];
b: = int [x;#[* [drv[a;xJ;cos [g]]]],
return [+ [ [a;008 £ ]1;0]]]

when T with Eth]

5+ edge fus [hscos [e]]] + prog [[a;n];

/ hsary [25%]];

int G5B [drv(asx]5sing] 117,
return [+ [#[a;sin (1150111

o When T with » [th] .

aq

b:

i
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The linkage between the rest of int and edge is managed by adding another

assertion to int which states
116:  int[x;i] - edge [x;i] when query [THY EDGE(x;i) 7] .

Thus edge can only be entered from int if both methods embodied in the first
two sections fail and if the user gives the answer YES to the query TRY
S06E(x51) ?, where x and i will be replaced by the actual arguments.
Hotice that edge re-enters int and does not call itself directly from any of

its own assertions. Tf one final, default assertion is added to int, stating
last: dint [x;i] - list [NT;x;51]

then, the examwle [ e sin x dx which was disoussed earlier, can be recom.
sldered. The methods of the first two sections cannot handle this form and
so the uzer ill be asked if he wishes edge vo be tried with ,fex sin x dx.
If he answers YES, then one of the subproblems generated will be

[e* cos x dx, and again the first two sections of int cannot cope, and so
the user will again be queried as to whether he wishes edge to be tried. If
once more he answers Y43, then one of the subvroblemns generated this time
will be fex sin X dx and for the third time the user will be asked to
decide whether or not edge should be used. However, this time he should ans-

wer MO, realising that the method has generated the original problem and so

-
e =

the final value will be given as
Je¥ sin x dx = eX(sin x - cos x) - [e% sin x dx
and the answer may then be obtained by transposition,

[ eX sin x dx = % eX(sin x - cos x).

Avmendix D conbains listings of the function definitions and examples

given in this text.
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CHAPTZR VII

Coneclusions and Possible Developments

7.1 Conclusions
S e Lons

At the outset of this report, it was stated that this thesis is con-
cerned with an investigation into the techniques of computer aided
manivulation of symbols. The overal]l objective of this study is to develop

& general purpose, on-line symbol manioulation system incorporating features

?
7
£

which enable the user to modify and extend the manipulative capabilities of

the basic Drocessor. These requirements can be met only by the choice of a

low level language (TISP 1.5 was a convenient starting choice in this instance),
in vhich the user can aonly the primitive facilities provided, to the con-
struction of the particular canability required.

However, it was felt that the descriptions of many desirable, higher ////

\

level carcabilities (such as differentiation, integration and simplificationj;
afforded hy existing symbol manipulation Systems, were so complex that the
tasks of nodification ang extension were made impractical if not impossible,
esvecially in an interactive environment, Thus, a search for a more natural
mode of description was undertaken along with an examination of the environ-
ment of evaluation, with the aim of developing a pProgramming system which

would be modular, bractical, interactive ang helpful.

7.1.1 Lan age

The conditional eXuression forms the basis of LISP's descriptive power,

the function bedng cefined, the resulting definitional capability is both
elegant ang powerful., The quest for increased naturalness involved extensions
to both the Semantics and syntax of standard LISP, The former was effected by

the embedding of g pattern matching process ag a basic evaluation brocedure of
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the LISP interpreter. The alteration to Syntax is founded on an extended
conditional eXrression formalism and involved the creation of a new type of
function, calleq a RULE,

In Chapter IT, a simple matching process was introduced and its use-
fulness illustrated by two sample programs, the Wang Algorithm for the
Pronositional calculus and differentiation with allied simplification. Both
eXamnles exhibit g considerable gain in both transparency and conciseness over
the corresvonding programs written in IIsp 1.5. It is particularly instruc-
tive to compare Ylang's formilation of his algorithm with the 11Sp 1.5 coding
bresented in the Programmerts Hanual,[l?], and the program given in §2.6.2.
While the transparency of Wang!s deseription is lost in the complexity of the
LISP 1,5 code, the transeription into the new RULR type functions is straight-
forward, each Wang elimination rule being described directly by a single
assertion. Likewise, the descriptions of the differentiation and simplifica-
tion RULE's of §2.6.1 bear a striking resemblance to normal mathematical
notation (leaving aside the Polish prefix notation),

However, the construction of the Simpli¥fication RULE's brought to light
certain inadequacies of the left-to-right natching process, esSpecially with
regard to the handling of algebraic operators. For examvle, in 52.6.1, to
define that the product of any expression and unity is equal to the expression
itself, two assertions were required, namely

al: %é[a;l] * a

and
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commnicated to the system. To avoid constraining assumptions, the latter
course was adopted. New entities, called transformations, were introduced
to allow for the expression of these nroperties, which could then be
communicated to the systenm by associating the appropriate transformations
with a particular assertion. These innovations achieve a further gain in
conciseness, which is exemplified by a comparison of the two definitions of
linear, presented in Chanter III, and by the simplification RULE!'s developed
for the integration exveriment and given in Appendix D with the corresponding
RULE's constructed in §2.6.1.

Throughout this project, the concept of minimum assumption and maximum
flexibility has been consistently adhered to. Thus, the matching processes
developed bprovide a user controlled flexibility, ranging from the basic pair
operation to the more sovhisticated transformational procedure. For example,

the pairing operation performed during the evaluation of any EXPR

V[l aees xlse] L

is similated by match, when the above definition is transcribed into the

single assertion RULE
label: [xl; - xn] > e

where e is the definition body, which may take the form of either a composi-~
tion or a conditional expression. A comparison, on the grounds of naturalness,
of the resnective merits of the left-to-right and transformational matching
processes vresents some difficulties. While the latter clearly demands a
greater awareness of the operational characteristics of the matching process,
and so, in that sense, must be considered less natural than the former, it
also presents, in many Cases, a more convenient and less demanding vehicle

for the description of desired capabilities.
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7.1.2 Tnvironment

The investigations of this camponent were directed towards the develop-
ment of a programming.system possessing the characteristics of modularity
and extendability, practicality in an on-line environment, and interactivity
and helpfulness.

Modularity and extendability were achieved by the provision of a
relatively simple set of defining and editing functions. The problem of amend-
ment is eased by the association of a label with each assertion and by the
extra transparency afforded by the introduction of the new RULE type function.
The experiment, reported in §2.6.1, where RULE's to perform differentiation
and simplification were systematically built up, illustrates the usefulness
of these facilities. Clearly, the functions int and edge created for the
integration experiment in Chanter VI, could also be readily extended by the
use of these facilities. #

The vracticality of a programming system is closely related to the useris
ability to create and control the context of evaluation. In this area, an
effective referencing capability was developed consisting of local and global
identification binding facilities together with a simple pre-processor. No
attempt was made to create a nested referencing capability, since it is the
author's opinion that such a capability is incongruous in a command orien-
tated, on-line environment. The most important single feature, which enhances
the usefulness of this System in its on-line ehvironment, is the provision of
file storage facilities whereby the user may save and recreate any particular
context of evaluation. In addition, the handling of in-core storage was
examined and facilities which allow for a more efficient management of working
Space were developed.

The final area of investigation led to the development of features which

make use of the possibility for interaction provided by the system's on-line
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enviromment. To this end, certain standard LISP diagnostics were replaced
by mors meaningful messages, and recovery facilities were introduced which
allow this system to be reinstated in circumstances where a standard LISP
internreter abandons the execution. Furthermore, the introduction of
brogrammed halts and queries permits genuine two-way interaction between the
user and the machine, enabling both guidance and information to be trans-
mitted one to the other.

The overall objectives of the developments arising from these inves-
tigations were influenced by the opinion, expressed by Weilzenbaum, @5], as
follows:~ "It apnears that the best way to use a truly interactive man-
machineg facility is not as a daviee for rapidly debugging a code representing
a fully thought solution to a problem, but rather as an aid for the explora-
tion of oroblem solving techniques.” ﬁThe combination of the interactive
features with the defining and editing facilities provided by this system go

some way towards the fulfilment of these objectives.

7.1.3 FEfficiency

The optimisation of efficiency, in any problem solving situation, is
concerned with the most economical utilisation of the abilities of man and
the available machine. Some authors have suggested that this task of
optimisation involves a conflict of interest between the man and the machine,
that is, between ease of axicmization and efficiency of operation.

The primary concern, with respect to man, is the availability of a
natural language in which to generate programs -~ this aspect has formed the
major part of this investigation., With regard to the machine, efficiency
involves the twin aspects of space and time. Because RULE type definitions
are more concise than the corresponding LISP 1.5 definitions, the definitional

space required is considerably reduced; however, during the matching




FProCes5525, the production and rejection of many trial a-lists uses up the
working smace at a more rapid rate. Because the on-line, operational
environment, orovided by the Mueents University of Belfast Computing
Laboratory;%restricts overall program size to around 15K, which, in effect,
limits the combined definitional and working space for this system to 3,000,
2-word cells, the former advantage by far outweighs the latter disadvantage,
For example, the integration experiment, reported in Chapter VI and Appendix
Dy required a definitional space of less than 2,000 cells, whereas, the
author believes that the corresvonding conventional I,ISP definitions would
need a soace of at least 15,000 cells. It is much more difficult to came to
any definite conclusions With vegard to time efficiency because of the lack
of information on which to malke ¢omparisons., In fact, the only programs,
which are avajlable to allow such an assessment (and which fit into the
restricted space of the system) are the LISP 1.5 and RULE type definitions
of the Wang Algorithm, Despite more frequent invocations of the garbage
collector, the evaluation of the latter is slightly faster than the former;
if time svent in storage reclamations were disregarded, a considerable gain

in speed would result.

The basic objective of this project - the develomment of a modular and "

tion. However, despite this emphasis, a significant gain in machine

efficiency can also be claimed.

7.2 Possible developments

This section contains a discussion, of a rather speculative nature, of

possible developments of this system,

tThe on-line operational enviromment is provided by the Multi-plexed
Console System developed at 7.U.B, by J. arne and J. Hall - no
publications,
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7.2.1 Lanmuage

With regard to languaze, two possible areas of development are con-
sidered: the first is concerned with the assignment of types to form
variables in RULR definitions, and the second with search strategies in the
matching process.

At present, each constraint on a form variable in an assertion must be
expressed in the predicate element associated with that varticular assertion.
This leads to the repeated use of simple constraints such as gg[n], g&gg[zﬂ

and fixplil. Such repetition could be eliminated by the introduction of a

-
v

declaration mechanism for assigning types to variables (analogous to that
adcoted in CONVTRT,[S}). For example, a declaration list of the form
(e y) , ATOUX Y) , FIZP(T JK))

oL s 5 N
Mignt D2 associated -rith

4]

RULZ, and thereafter each occurrence of the vari-
ables m or n, x or ¥s and i, j or k, in the form of any assertion of that

RULE, will have associated with it an implicit constraint np, atom and fixp

respectively. Notice that, since any predicate (including user defined ones)
may be used to indicate a type, the allowable set of types would be unlimited.
The matching Drocesses, described in this thesis, provide convenient
tools for the analysis of tree structures. In Chapter IV, a suitable nota-
tion for the description of this analysis, is introduced. Other systems,
vwhich emoloy similar techniques and where this notation might be useful, are
SAINT, [22], SIN,[15], and the Logic Theory Machine,[17]. In SAINT, the
attempted integration procedure is also described in terms of AND-OR goal
trees. Here, however, by using a heuristic decision procedure to consider
all OR subgoals of the Current goal, together with all previously generated
and as yet unattemoted OR subgoals, an effort is made to determine the most
probable vath to success. In SIN, the last generated node is selected as the

one to be examined next; this strategzy is referred to as depth first. "
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The ff ct is to force the examination of 1 single path until either a solu-
tion or an impmasse is reached. The Logic iheory Machine emnloys a "breadth
first" strategy, similar to that used in this project.

One vossible area of investigation, which might prove profitable, would
be an examination of the use of heuristies (in a similar fashion to that
emplored by Slagle in SATHT) to increase the efficiency of the matching
processes. Because the application of each assertion‘can be regarded as an
OR subgoal of the total goal of applying a RULE to a given set of arguments,
it seems that a logical extension of this investigation would be to consider
the use of similar techniques to order the apolication of assertions accord-
ing to their probability of success, that is, the one deemed most Drobable
being tried first, the least nrobable being attempted last. Such developments

would involve a considerable reorganisation within the existing system.

g tnotnnr wortiwhile objective would be the develorment of g method,

o
E

i;ﬁhereby the number of aSSertlons which need to be considered in any RULE

S —

; evaluation, might be reduced, Currently, the 1ist of assertions of a given

LT is searched Serially; this procedure becomes increasingly prohibitive
as the number of assertions grows lareer, This situation would be alleviated
if the assertions could be grouped, according to certain properties, and a
method found whereby the group (or groups) which are relevant to a
narticular argument expression ﬁay be derived. A possible starting point

for such an inquiry might be the hash coding scheme, develovned by Hartin,

plq, for the examination of thé equivalence of algebraic expressions.

7+2.2 Tnviromment

This section discusses two possible developments with regard to the

enviromment of evaluation; +the first is concerned with extending the exist-

ing identification ang referencing facilities, and the second with improving

the user interface,

e

7
7
5
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The vpresent identification facilities allow a user to assign an atomic
t
identifier to any expression, while the facilities afforded by the pre-
processor, permit such an expression to be referenced by means of its iden-

tifier. Two extensions are suggested. Firstly, a "functional" identifiecation

facility could be introduced whereby a user would be sble to issue commands

such as
i 2 where g(x,y) = xy sin(xy) and f(u) =1 - u cos u .
(2% s ’

Secondly, a facility allowing for the communication of external constraints

could be provided; this would permit the evaluation of commands such as

f dr
] where h >0,
r {2hrl - a°

As with the existing referencing facilities, these new features would be best
implemenved by extending the current pre-processor rather than by altering
the standard IISP interpreter.

A major drawback of the vresent user interface is the use of polish
prefix notation in LISP S-exvressions. Clearly, the system would benefit
from a more suitable input/output language. To be consistent with the
approach so far adopted in this project, a facility should be provided whereby
the user can define a notation which is particularly appropriate to the range
of problems on which he is engaged. Preliminary investigations with a pre-
determined language indicate that the basis for such a facility could be

provided by a relatively simple top-down recognizer.

7.3 TEpilogue )

ilhile the author recosnizes the subjective qualities of naturalness
and awareness, he believes that the programming system, developed for this

project, vrovides a convenient vehicle for the creation, amendment and




ntilisation of many desirable, higher-level capabilities. The inclusion of
a wide range of specific, higher-level capabilities within the present
system, would lead to a programming system, which would go some way towards

the resolution of the conflict between the lower and higher-level approaches,

discussed in the introductory chapter.

s

N

H
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APPTNDIYL A

functions of the “valuation Enviromment

Ael  Defining and editing functions

defrules [x] SUBR  pseudo-function

The arguments of defrules, x, is a list of pairs

((ug vy ) (up vg) eoe (un wvy))

where each u is a name and each v is an S-expression definition for a
RULE. For each pair, defrules puts a RULE indicator on the property list
of u pointing to v, The new property is added to the front of the exist-

ing oproperty list. The value returned is the list of uls,

1.b, defrules [x] = deflist [x;Rurz] .
addrule [ﬁame; label; newassert] : SUBR  pseudo-function

The three arguments of addrule are the name of a RULE, a label within
that RULE (or WIL), and a new assertion which is to added to the RULE. The
action of the function is to insert the new assertion into the named RULE
immediately in front of the assertion with the indicated label. If the
label argument is NIL, then the new assertion is added after the last exist-

ing assertion. No value is returned.

delrule &ame; 1abe1} : SUBR  pseudo-function

This pseudo-function deletes the assertion, whose label is given as the

Second argument, from the RULE whose name is the first argument. Again no

value is returned,

change [ﬁame; label; tyve; newelement} - SUBR  pseudo-function.

This routine changes the type element of the labelled assertion of the




named IUL" to be the new element. The altered assertion is displayed as

the velue, Change is perhaps a risnomer, as in some circumstances this
function will insert a new element where one did not Previously exist. The
type, given by the third argument, rust be one of four possible atoms (other-

wise an error message will be outout):-

(i) roma - change the form of an assertion
(ii) sUBS - change the substitute of an assertion
(iii) PRED - either change an existing p-list or insert a new one
(iv) T7FS - either change an existing t-list or insert a new one or
if neither a p-list or a t-list is currently in existence,

then insert a T predicate prior to the insertion of the

new t-list,

fetch [name; label] : SUBR

The definition of the RULE, named by the first argument, is searched
for an assertion whose label is the second argument. If such a label is
found, the value of fetch is the assertion definition (i.e. (form, subs,

p-list, t-list)), otherwise the value returned is NIL.

display [name] : SUBR pseudo-function

The execution of display causes the assertions of the RULE, named by

the argument, to be printed out with each assertion starting on a new line.

A.2 Identification functions

ident [b; val | : SUBR pseudo-function

This function is used to create an IDEN binding on the Property list
of an atomic symbol. The first argument, ob, should be an atomic symbol;

the second argument, val, which is returned as the value, is the indicated

IDEN property.
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identq [ob; vall F3UBR  poeudo-function

s

The action of identg is similar to that of ident except that the

Second arpument is evaluated before the IDNW vroperty is set up.
identq [ob; val] =
latom [val] » [eet [vai;IDEN] + ident [objcar [iden]];
T » ident [objeval [val;NIL]]];

T > ident [objevaluate [car vall; car [va1]]]].

where [x] : SUBR  pseudo~function

The argument of where, x, is a list of dotted pairs

where each u is an atomic identifier and each v 1is any S-expression. TIts
action Iz %o vlace +he address of this list into a reserved location called

HLIST. (For details of the use of this function, see Appendix c.)

A.3 Storase management functions

A.3.1 TIn-core
e L

reclaim []

e

SUBR  pseudo-function

The execution of this function causes garbage collection to occur, No

value is returned, but a essaze giving the number of cells collected for

the new list of free Space is output,

setgarb [n] : SUBR  pseudo-function

This function expects its argument, n, to be an integer. Tts action
is to store this number in a reserved location, called CELIMIN, and to set

a system flag, called GARBIND., (For details of the use of this function,

see Appendix C,)
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en

verbos [ ]

SUBR  vseudo-function

i,

Ihe action of this funétion is +o suppress the garbage collection
print-out. A further call to verbos will reinstate the print-out. No value

is returned.

e

remove [x] SUBR  pseudo-function

The argument, x, should be a list of atomic symbols. The execution of
remove causes all the properties of all the atomic symbols in x to be

removed, with the exception of their print-names. Value is Ko

-

rempron [x; ind | : SUBR  pseudo~function

This pseudo-function searches the property list of x (which should
be an atomic symbol), looking for all occurrences of the indicator ind.
When such zn indicator is found, its name and the Succeeding property are
removed from the list, The two "ends" of the list are rejoined as shown below.

No value is returned.

L

=== PRUPYRTY

A.3.2 Disk files
bt 00 ]

getfile [name ]

e

SUBR  pseudo-function

gebfile expects its argument to be the name of a disk file. Its action
is to nlace this name in a reserved location called CUSFILE, and then to open

the indicated file and read in the directory and map held on buckets 1 and 2.

n.b. The file-name supplied to all the Succeeding functions, described in

this section, must be identical to that held in CURFILE, otherwise an error

message will result,
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clossfile [name] : 5SUBR  pseudo-function

This function closes the indicated file,

store [x; name ] :  SUBR pseudo-function

The argument, x, should be a list of atomic symbols., This function
causes the property list of each of these atomic symbols to be written on to
the indicated file. However, if it is found that any of these symbols is
already vresent in the directory, then the existing definition cannot be
overwritten unless the ‘open! flag is set. In the case of a conflict with
the open flag not set, the user is informed, by a suitable mesSsage, that his
definition has not been Stored. New entries on the directory and map are
created for nreviously unencountered symbols, The conversion from the inter-
nal list structures of the property lists to the character strings held on

the file is performed by the standard 1ISp output routines.

oven [x; name] : SUBR  pseudo-function

The argument, x, should be a list of atomic symbols. The action of

this function is to set the oven flag on all those entries in the directory

P
B

corresponding to the atomic symbols given in x, o

restore &3 name} H SUBR  nseudo-function

Again, x should be a list of atomic symbols. The definitions
associated with these atomic Symbols are read in from the named file and

set up as property lists of the aforesaid atomic symbols. The conversion

from character string to list structure is performed by the existing LISP

input routines.

wipeout [x; name] $ SUBR pseudo-function
Once more, x should be a list of atomic symbols. The effect of this

function is to remove from the directory of the named file, those entries
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relating to thess atomic svmbols. The space on the file, which is thus

reed, is added to the list of available buckets by undating the map

aporonriately,

n.b. Tt should be observed that the funetions store, open, restore ang

wipeout exmect as a first argument a 1ist of atomic symbols. An alternative
is that this argument mav be g single atomic symbol, providing this symbol
Possesses a PACK proverty. In this case, the value indicated by the PACK
replaces the Surplied first argument and the processes then proceed as

deseribad breviously.

dimo  [name] 2 SUBR  pseudo-function

.

This function causes a vrint-out of the directory and map of the named
file, giving the names of the definitions bresent and the buckets which sach

occunies on the disk file.

4. Tnteractive functions

e

The functions, to he described in this section, are all FSUBR's which

utilise renlace (see inpendix C) for the evaluation of their arguments,

query [é] ¢ F3UBR  predicate

The action of this function is to disvlay QUERY?, followed by the
value of the argument s, The user is then invited to respond. If he
replies by typing VIS, then query returns the wvalue #T%;  if the reply is NO,
the value returned is NIL. any response other than YES or 1o will cause

ARSWER 73S OR 10 to be displayed, followeg by a further invitation to

resvond.,

external [s] :  FSUBR

The action of this function is to disolay EXTFRNAL, followed by the value

of the argument s, The user is then invited to reply, and his response will

be taken as the value of external.
aovsled
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] : FSUBR  pseudo-function

0]
oy
@

nans

|

The action of this function is to display PAUSE, followed by the value
of the arpument s, The System then enters a "pause" mode, which can only be

terminated by the execution of one of the functions restart, clear or resune

(to be described in the next section). During the pause, the user may
perform any operation he desires, including the creation of new definitions
and the amendment of existing ones, even to the extent of deleting the
assertion in which the pause occurred. However, if the execution of another
bause is attempted whils s+ill in pause mode, the display of PAUSE and the
evaluated argument will be glven as before, but then a message PAUSE IN
RECOVERY PHAST will be output and this second pause mode antomatically

terminated. The original pause is still valid,

4.5 2scovert “uctions

restart [ ]

ve

SUBR  pseudo-function

This funetion resets the System to the state that it was in before the
recovery node was entered, and then recommences the execution from that
point. Recovery mode is entered either through pause or because an error
condition has bzen encountered which has an associated in-built system halt

and query (see §5.5.,1).

clear [ ] :  SUBR pseudo-function

The action of this function is merely to terminate the current

recovery mode.

resume [ ] or resume @abel] ¢ SUBR pseudo-function

This function may only be used when the system 1s in pause mode. If

no argument is supplied, then execution recormences at the assertion




- 106 -

e

followins the one +hick i F i i
ich contained the vause. If an argument isg Supplizd,

+' 2 14 o ‘?’Q . .
then this is taien to be the label of the assertion within the RULE, which

CO o o+ i ] 0 - .
ntained the pause, at which execution 1s to be resumed,

|
;
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APPTNDIX B

Functions of the Matching Processes

In this apvendix, the functions of the transformational matching

brocesses are described in a mixture of l-expressions and Fnglish. (Remember
that the left-to-right natching process, which is fully described in

Chanter TI, is a special case of the general transformational processes where
cach governing atomic symbol has only the identity transformation, I,
assoclated with it.) The M-expression definitions should nof be taken too
litedlly., The functions involved have been coded in the ICL assembly
language, PraAN s and in many cases where a recursion is suggested by the

definitions, the actual program is a store and transfer. The functions to

be Aescribed are match, ml, m2, m3 and trans.

match [asslistjargs] = [prog [v]
v: = cdr[asslist]; ‘
args: = cons Ecurrule;args:[;

LO: alist: = NIL;
plist: = NIL;

tlist:

i

NIL;
mull [eddar [r]] + go fL2];
eq[caddar [v];T] + go(11] H
vlist: = caddar [v];
Il:  mull[edddar [v]] > go [L2];
tlist: = cadddar [v];
L2:  ml [cons [currule;caar fr]l;args ] + return [cadar [r]];
mllledr [v]] » go[13];

v: = cddr[v];

o]

-
o[L0];
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L3: rnrint (18 aTce 7R];

nrint [args] 3

return [}IILH "

The Pirst argument of match, asslist, should be a list of assertions of

the form

(1abell(f1: S1s P1s 1) ... labeln(fn, sn, Pns tn))

and the second argument, args, should be the argument expression to which
these assertions are to be applied. In addition, match utilises four reserved
locations CURRULS, ALIST » PLIST and TLIST. The last two are employed for the
commnication of the v-1ist and telist of a particular assertion between the
matching functions thenselves and are not meaningful to any other part of the
systen. CU.RULT holds the name of the current RULE under consideration and

is set up ‘n M or ﬂﬁl_ whenever a LULE is encountered. The other register,
ALIST, is used not only for communication between the matching functions,

but also to transmit the created a-list back to 2pply in the event of a
Successful match being found. (See Apvendix ¢ for further details about

CURRULT and ALIST.)

ml [fie] =
atom :f] > m2 [f;ej;
atom [car [f]] A sassoc [ca.r [f] ;tlist;NIL]

+m3[fse; assoc [ear [f]st1ist]];

T —+ m2 [f;e]].

nl  is merely a switching function, which is used to decide whether the
mateh should continue through r_n_2_ or f_'xj If the form f has s a5 1ts governing
car, an atomic symbol with an associated transformation 1list in the TLIST

element, then the match proceeds through m3, otherwise it continues through

me .



i

n2 [£56] = [
mull(f] > nullfe]:
aton(£] ~ [nor] v funp[r] > oq[f;e];
null[sassoc[f;alist;NIr]]
> [nu11 [sassoc [£5p1ist sNTL] ]
V eval [assoc [f;nlist] ;cons [cons [f; e] ;alist]]
* prog? [alist:=cons[cons [r5e] salist];1];
T > NIL];
T + equal [cdr [assoc [£3a1154] ] sells
ec [ear [£] ;ov0m7] » [equal [cadr[£]5e] + mo [cadr[£];e];
T + NIL];

T > il foar 2] 0ar [o]] & m2 [oar [£]sedr[e]]].

This function is a direct implementation of the matching algorithm,
described in §2 -3, with two additions. These involve, firstly, the creation
of a~list bindings, and Secondly, the search for and subsequent testing of
any predicate expressions in the PLIST element which are associated with the

form variable being matched.

n3 [fiestres] = [orog [v]
v: = ey
tris: = cdr[trfs];
L1m2 [£5v] > return[7];
L2:mull [trfs] + return[F];

v: = trans[e;car [trfs]];

trfs: = cdr[trfs];

mll[v] + go fLE];

g0 [Ll] .
The third argument of m3, trfs, should be a list of the form

(name 11 12 ... 1n)
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that is, the first element is the atomic symbol which governs the form
and the other elements L1, ..., Ln are the labels of the transformations
which may be utilised in the attempt to find a suitable match. This func-
tion uses m2 to verform the matching trials, and trans to reconstitute the
argument expression according to the supplied transformation list.

trans [e;lsbel] = [prog[v]

v: = fetch [THFS;label];

alist: = NIL;
plist: = VIL;
tlist: = NIL;

mll [eddr [v]] - go L2 7];
eq[eaddr [v];T] » go[L1];
plist: = caddr[v];

Ll: mll[cdddr[v]] + go[12];
tlist: = cadddr [v];

L2: m2 [car Ev];e-_[ + return [replace [cop‘y [cadr [v]];alist]];

return [NIL]].

The arguments of trans are an expression, e, and a label of a transfor-
mation (which should exist on the property list of the special atom TRFS).
The function tries to reconstitute the expression e according to the
indicated transformation. The function 111_2_ is used in an attempt to match
the form of the transformation with e, and replace is used to evaluate the

substitute element in the event of a successful match.
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The Modified LISF Interpreter

.

This appendix describes the operational characteristics of the
programming system and presents the definitions of those functions which

are involved in the modified LISP interoreter.

C.l System's control structure

This section describes the overall flow of control during operation
in terms of a flow-chart. In essence, a loop with three components is
invelved, that is, vead a ¢ormand, execute the issued command, display the
value and then back to read the next command and so on. This loop may be
terminated by issuing a FIN command, which causes a branch out of the loop
and the system to come to a halt,

/A comand must take one of three formats -~ either a single S-expression
or 2 doublet (i.,e. a pair of S-expressions) or a pair of doublets. In the
third instance, the first S-expression of the second doublet must be the atom
"HERT, otherrisa an error message will be output and control »nassed back to
the start of the loop. If JFERE is encountered, then the fourth S-expression
is set into the srecial register WLIST. WLIST is set to NIL for single S-
exoression or doublet commands. The symbol ‘'$' is used as a terminator

for each command.

The special registers ARGL, ARG2, ... are used for transmitting argu-

ments to functions.

The register CELTMIN holds an integer number (set to zero during initidl-
isation, with subsequent resettings through the function setgarb). At the
end of every loop, if the number of cells still awailable in the working space
is discovered to be less than the number held in CELLMIN, then garbage
collection is invoked throusgh reclaim before control passes to the next input

phase, otherwise control nasses directly tc the next read.
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0.2 TFunchtions of the interoreter

%

Tn this section, the functions evaluate, evalquote, apoly, eval, evcon

and replace are defined in a language that follows the lM-expression notation
as closely as possible and contains some insertions in FEnglish. The purpose
is to describe as accurately as possible the actual working of the modified

interpreter.

evaluate [fn;argS] = [
marked [fn] » evalquote [fn; replace [args; WLIST]];

T -+ evalauote [fnjargs]].

T the first argmment of evaluste is a '"marked" function, then the
second argument is replaced before control passes to evalguote , otherwise

evalquote is entered with the original arguments.

evalquote [fn;args] = [
get [fn; FTKPR] V get [fn; FSUBR] ~ eval [cons [fnjargs]; NIL];

-
T » avply |fnjargs; NIL}]e

This exhibite no change from the standard version of evalquote,

described in the LISP 1.5 Programmer's Manual, [12].

aonly [i’n;args;al = [

null [fn] - NIL;

aton [fn] » [get [fn;"XPR] > apoly [exprl;args;al;

3

get [fn;IULE] ->{

CURRULE: = fn; }

apply [rulel;args;a];

spread [args] §

fa

get [fn;SUBR] -+ { ALIST: = a; ;

obey (subrl);

1. The value of get is set aside., This is the meaning of the apparent
free or undefined wvariable.
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mill [sassoc [fnja;NIL]] - pause [[I0 DEFINITION YOR fn];
T > apoly [cdr [assoc” [fn;a]);args;all;

eq [car [fn];LABEL] ~ apply [caddr [fn];args;cons [cons [cadr [fn];caddr [fn]];a]];
eq [car [fn];TUNARG] ~ aoply [cadr [fn];args;caddr fn]l; |

eqcar [fn];14m0A] > eval [caddr [fn];nconc [pair lcadr [fn];args];2]];

eq car [fn];DARG] + eval [nateh [cddr [fn];args];ATIST];

T - apply [eval Efn;a];args;aﬂ.

In this description of apply (and in that of eval which is to follow),
Spread can be regarded as a pseudo-function of one argument, which should be

a 1list. spread outs the individual elements of this list into ARGL, ARG2,

ARG3, ... the standard registers for transmitting arguments to functions.

eval [form;a:l = [

- P e - -
mii. (Lo >

L =y —edidig

numbern [form] > form;
atom [form] +  [zet [forn;APVAL] ~+ car [apvall];
T - cdr [sassoc [form;a;error [A8]1]];
eq [car- [form] ;CODID] + avcon [cdr [form] ;a] 3
atom [car [form]] » [get [car [form];7%PR] + apnly [expr! ;eviis [edr [form];a];al;

. CURRULZ: = car [form];
get, [car [form|;RULE] + { .
lsalsal;

apply [r'ule1 sevlis [cdr [i‘orm

spread [evlis [edr [form];a]];

get [car [form];SUBR] » < ALIST: = a;

obey(subr!);
get [car [fom] ;E’E‘,XPR] > apply Q’_fexpr1 ;1ist [cdr [form]; a] ;a];

ARG

cdr [form];

get [car [form] ;FSUBR] + ¢ ARG2: = ATIST: = aj p iR

obey( fsubr!) H

1. The value of get is set aside. This ic the meaning of the apoarent

free or wndefined variable,



null [sassoc [car (Form] ;2311117 ]
V eq[ear [form] ;assoc [car [form];a]]
> vavse [HO DTETNTTION ToR eval [car [forn]]];
auery [I5 eval [assoc [ear [forn];a]] & varIo BINDING 7]
> eval [cons [cd:c [assoc [ca.r [fom] ,'a]] sedr [fom]];a:]
T > vause 13D DUPINITIONS FoR eval [assoc [car [Forn] 52]117;

T+ apoly [car [form] seviis [cdr [Form] salza]].

eveon [eja] = [
nullje] + error [437;
eval [caar [c];a] + eval [cadar [a];a];

T + eveon [car [c];aj].

renlace [e;a] = [

6]
(S|

l;j‘(
=
[
/
[
o
M

: : Sso¢ Ce;a;I‘IILH “* Ec,et [e;IDTE‘N] *> car [iden1];
T > e];
T » cdar [assoc [e;au];
eq [car [e];*ﬂ/'.fm] > aval [cadr [e};a};
eq [car [e];00021] + cade le];
rplaca [esreplace [cap [e];a]];} J ]
;e

T » prog 2
rolacd [e;renlace [car [e];aHS

The basic differences between this interpreter and the standard LISP 1.5
interoreter arise from the embedding of matching processes and the introduc.

tion of System pauses ang queries,

1. The value of get is set aside., This is the meaning of the apparent free
or undefined variable,
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APPTHDIY D~

Listings of xamples

This arvendix contains listines of a1 the examples mentioned in the
text. Sone extra exanples are included in §D.3 to illustrate more fully
the use of the provided identification and editing facilities.

The on-line Operating systemj'which acts as host for this bPrograming
svstem, uses a colon Symbol to invite user input, and the user's program

name (GAIS in this case) followed by a colon to indicate output.,

D1 Differentiation with allied simplification

R b T S A
T et s

¢ (+(DARG(A B)

P LAST ( (4 =) (LIST("+) 1 B) ) )

t (=(7ARo(a B)

¢ LAST  ( (A B) (TIST(n.) 3 B) ) ))
¢ (#(DARG(4 B)

¢ LAST ( (4 B) (LIST(ms) a B) ) )
s (/(ana(a B)
: LAST ( (A B) (rI87("/) 2 B) ) )

¢ (+(naRg(a B)

: LAST ( (4 B) (IIST("4) 4 B) ) )
@ (Dara(n)
2 TAST ( (a) (LIST("#) 4) ) ) ) %

CAIS: (+ =t / 4 4§

se

e

Trhe on-line operational environment is provided by the Multifpleged Console
Syrstem develored at N.U.B. by J. Jarne and J. Hall - no miblications.
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e I
2 (P(Daza(7 %)

¢ D

-

(@ o py))
:D2((I{X}1) -

: D3 ( (+ U 7K (+(DU X)(D v ) )

: D ( (U V)X)  (+(x U(D 7 X))(» V(DU X))) )
:w<<vuvm)<A4*W9Umx*mnvmnuv2n)
: D

O

( (U mx) (e VEU(- v 1)XD U 1) (NP V) )
)) N 8

C&18: (n)

2 DO(+(#(+ 7 2))3)7) 8
CAMS: 1t 1O MATCH FOR
CuiS: (DE(: 7 2))2)

Cas: (+ WIL 0)
: ADDRULE(D WIL (
PO C((#0)K) @Dvx)) )y
ADTRULE(+ TAST (

T AL ((A0) 4))) &

2 D((+@#(¢ 7 2))3)7) 8
CAMS: (#(+(x 7 1)(x 2 0)))

¢ ADDRULR(:+ LAST (

AL ( (A1) a))) 3

ADDRUL%(% LAST (

A2 ((40) 0))) &

©((+@(CE 7 2))3)7) 8
Cais: (#7)




§ 0500 2 3300 2 7)) 7) 4
i

i CAS: (+( 8(% 3(4 2(- 3 1)))) 2)
.

ADTRUT.A(~ 1487 (

e S

: AL ( (A R) (DIFPaRwieR Ao B) (4d(ue .4) (e R)) ) )N s

‘ #ADDWIR( TAST (
= A3 ( (A(% B 0)) (+(Tms 4 m)Q) (AMD(IP A) (NP ) ) )) 8

R st

*D0(+( 601 7 3)) (¢ 2 2)) z) $
CUIS: (+(x 18(4 7 2)) 2)

:D((/ T(- 7 1)) 1)

R=od

CH8: 11 w0 waTeH pop

CUB: (- 7 1) )

CATB: (/(~(- 7 1)(:-%’133@)(¢(- T 1) 2))

WDIET (Y I ¢

: DB ( ((-v v)x) (-(d U X)(D v 1)) ) )) 8
0/ T(- 1 1)) 1) g

CLEB: (/((=T 1) T){+(= 7 1) 2))
: ADDRUTS( - 1437 (
2 A2 ( ((~am)a) (#3) ) ) 3
PO/ T(- T 1)) 7y g

CAMS: (/(#1)( 4t 7 1) 2))

:UM%%MfXEDQ/&+X2D)X)$
CAMS: (+( 16(+ X 1)) (/(- 00+ 16(+ x 1)))(+(+ x 2) 2)))
: ADDRUL=(+ LasT (

PAL((n1) a) ) ¢

P OADDRUTA(- LAST (
FA30(0B) (#8)) ) s
: ADDRUIE(+ LasT (

: A2 (¢

—~~

tABIG) (4 a(x B Q) ) )) %




D0+ B(F X 2)3(/ 8(4 X 2)))1) 8

Q
s
o
)

2 (0 16 (/s 16 LiY(t (% 2 21 ))

¢ ADDRUTT(s LAST (

S sy

Yo (4B) (TTms A R)  (anp(we OGP BY) ) )8

ADDRUTS(/ 1AST (

FAL C((#)B) 6/ LR) ) ) 8

* ADDRUL®(/ TAST (

P A2 ((G+ A m)+ BC)) (/ A(r B(=C1)))))) s
2 D((+(x 80+ X 2))(/ 8(+ L 2)Nx) ¢
CAMS: (+(% 16 X)@(/ 16(+ ¥ 3)0)
: ADDRUT®(+ TAST (
P A2 ( (A(#3)) (-aB)))) s
2 D((+( 8(+ X 2))(/ 8(4 x 2)))x) 8
CAMS: (-(% 16 X)(/ 16(+ x 3)))

: DRFRYLEI((

2 (STI(MAna(4)

P OTAST ((A)  (LIST (M SIN) A) ) )

: (COS(nARn(4)

PLAST ((4) (LIST (" cos) 4) ) ) )) 8
CAMS: (SIN Cos)

+ ADDRULE(D wIT. (

"
3

( (81w w)x) ((D U x)(Ccos u)) ) )) 4
: ADDRULT(D NIL (

: DLO ( ((cos u)x) (+(D U X)(#(STH u) )y ) s

: D((+@(Cos X)) (sTN X))X) ¢

CAMS: (@ (¢ L@ (SIN X))))(+ 1(cos %))
¢ ADTRULT(: LAST (
2 A5 ( (L A) A))) s




¢ AT (3% TAST (

®
H

CANMS:

U (#A) ) )) 8

%

P(+(#(cos 1)) (st x))x) 3

(+(31¥ %)(cos 1

: DO(ST(=e ), ¥))Y) 4

CAMS .

MAT
\JJ'SQ‘:\‘.\': <

CAMS:

CAMS:

CAMS :

(¢ h(cos(= | Y)))

D=3 X)(cos 0)x) ¢

(+(=(310 )@ (s™ ¥))) ((Ccos X)(c05 1))

¢ ADDRUL(% LAST (
FAS((A(#7)) (#(s 0 B)) ) ))o¢4
: ADDRUL=(% LAST (

AL ( (A a) (44 2) ) ) 4

2 DO(+(ST %)(cos XNx) 3

(+@#(HaTH )2)) (4 cos X)2)) $

DT A(+ TAST (

A3 ((#2)m) (-3 AV) ) s

D3I T2 (o 1))7) 8

(-(+(cos X)2)( #(s51M X)2))

: DO(/(317 T)(cos TT) $

(/(~(+({Cos T)2) (#(+ (3TN T)2)))(+(cos T)2))

¢ ADDRULE(- IAST (

P A (A(#B)) (+ 4 B) ) )) ¢

WDDRULE(+ 1.AST (

Al ((*(cos A)2)(+(sT a)2)) 1 ) )) %
2 DO(/(sTv TY(gng THT) &

(/ 1(+(cos T)2))
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2 TITSPLAY(N) ¢ ‘
CAMS: ##% 1STTmyTops
Cas: m ¢ (v ) o (NP 7))
CAMB: D2 ( (y 1)
CAMS: D3 ( ((+ y VX) (+(v vy IND VX))
CAMS: Db ( ((x vy X)) (+(+un v X v(nvy 0)))
CAHS: D5 ( ((/y VX)) (/(~(x V(DU X))+ u(p v )+ v 2))
CAMS: D6 ( ((4 ¢ V) (e V(+ U(~ v XD U x)) (P v) )
CWMS: D7 ( ((4 X)) (#(n v X3) )
CAMS: D8 ( ((.y I (~(ny (v x)))
CAIS: D9 ( ((51 U (e(ny X)(cos u)) )
CaS: Dio ( ((co3 m)x) (#+(n U ) (#(STH Uy
NITELIY 4y g
CAMS:  ## 1357R1ToNS
CAIMS: 11 ( (4 0) &)
CAMS: a2 ( (1{#3)) (., 1)
CAMS: A3 ( ((4 L)) (- B g) )
CAIS: Al ( ((4(cos 8)2)(+(sTH 4)2)) 1)
CAS: LAST ( (4 3)  (TIST(~gmm +) 13))
¢ TISPLAY(.) ¢
CAMS: %4 155757 Tong
CAMS: M1 ( (2 B) (DIFrmRmNCE A B) (awp(wp A)(WP B)) )
CUSs A2 ( ((. B4} (#B))
CAMS: 43 ( (0 B) (#3B) )
CAMS: Al ( (A(#£8)) (4 4 B) )
CaMs: 1,487 ¢ (1 3) (LIST(nuop™ -) AR))

5 %ﬁ%ﬂw«ywmémmmw»mnww~ww

)
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2 OCISPLAY (%) 4
CATS: ## 139mm77 005
CAIS: A1 ( (4 1) 4 )
CAIS: A2 ( (4 o) o)
CAMS: 43 ¢ (A(¢ B c)) (+(7Titmg B) C) (ann(wp A)(P m)) )
CAMS: Al ( (4 B) (TTrms 2 3)  (ArD(np 2) (P B)) )
CATS: A5 ( (7 A) 4)
CAMS: 46 ( (A(#3B)) @#(x 2 B)) )
CUS: 47 ( (4 A) (t g 2) )

PAIS: LAST ( (4 ) (LIST(qu0rs +) 4 B) )

: UISPLAY(/) $
CAI3: ## 15SmRrTONS
CRT o ( (e 1)8) @/« B)) )
A2 ((» 1 B)(* B ¢)) (/ a(+ B(- ¢ 1))) )

CAMS. LAST( (4 B) (LIST(quora /) 4 B) )

£3
=
|92}
.

DISPLAY(4) $
CAMS: a ASSTTTOoNS

AL ( (a1 A)

Q
£
s
[¥5]
s

- CAlS: AP C((+ 4 B) C) (+ A(s B ¢)) )

CAMS: LAST( (4 B) (LIST(QUOTE t) 4 B) )

* DISPLAY (%) ¢
CAMS: o4 agg ERI'TONS
CAMS: a7 ( ((#A)) 4 )

CAMS: 1,487 ( (4) (LF’ST(QUOTE #) 1) )

/
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The “ans . $ He “rotosd s .
Lre Yang a.lqg_r_ljj‘lgz Tor the 2ronositions calculys

«1  ithout print out or stens
20T out e BLEDS

DETINT((

(JCIHT(L&?B?A(X )

(GO (T, nr)
(CImBan(ons YT)
(r(Jornr(one DY)

(v“sT(;&HBﬂ@(:)(A?QOT MIL NI T (1137 5 NIL)) )) ) %

s e TH
(A?ROT(WARG(LI L2 Rl Rr2)

e -

vl LI (x R2))  (ARo0v L1 L2(cons g R1) R2) (ATaM ¥) )

* STKLES ( (11 (X 12) m R2) (ARROW(CONS X I1)L2 r1 R2) (aTor X))

J
no

S
—
B
i
i
no

AL T2 RIC (o P)R2))  (anng LI(ZLIST P 12)m1 R2) )

PR (LI (noT P)L2)r1 22)  (ARROY 13 L2 R1 (LI8T P R2)) )

P34 ( (11 10 RA((AM B)R2)) (A Anners L1 12 m(r1s7 A R2))

(ARRCY 17 1o RI(1LIST B R2))) )

: P3n C (12((am 4 Bu2im R2)  (amng: L1(TI37 4(1137 BL2))m R2) )

: Pl (¢ (11 L2 mi((om 1 B)r2)) (47R07 17 L2 Ri(1r1sT A(1LIST B R2))) )

o
JE‘:,‘
—~

(L1((oRr B)L2)m R2) (M\IU(ARR@'J L1(LIST 4 L2)R1L R2)

(ARROWT LI(LIST B L2)R1 R2)) )

PSA ( (11 1,2 RI((TPrIms a B)R2)) (Amnoy LI(1IST A L2)RL(LIST B R2)) )

P5B ( (L1((mPrrmg o B)L2)R1 n2) (AMD( ABROY 13 (LIST B 12) m R2)
(ARROY 11 1,9 R(LIST 4 R2))) )

POA ( (1.1 12 RL((=wry 4 BIR2))  (aun(armoy LI(LIST & L2)RL(LIST B R2))

(ARROYT I1(LIST B L2)R1(LIST A R2))) )
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PES ( (11((wuy BIL2)R1 R2) (o Ay LI(LT&™ A(LIST B L2J)R1 R2)
(A2R07. L1 L2 R1(1I37 A(LIST B 22)))
¢ TRUTORTALSE ( (1112 ¢, R2) (JoInT 11 m1) ) ) )) s

CAMS: (ARROY)

# TST((TPLINS P (0R p 2))) $
CAMS: P

¢ TEST((D'PLIRS (wor(ou o 7)) (nor ))) 4
CAMS: »Tit

¢ TST((TPLIns p (417 P 2))) ¢

2 TS (TLPIIRS (aun(HoT P)(Nor 7)) (zourv » 2))) 4

D.1.2.2 -7ith print out of stens

N (

(TESW(LiHBﬁA<S)(AQROW(“ START )NIL NI NIZ(LIST S §IL)) )) )) 8

o2
=
=
U

(T757)

t DIFRITES( (

: (ARRGV(D%RG(LAB LL 1.2 Rl Rr2)

PSS ( (LAB 11 12 RI(X R2)) (ana07 13 17 L2(CONs X R1)R2) (aTay %)
* STKLHS ( (1LaB 11(x L2)RL R2) (ARRGy LAB(CONS X L1)12 m1 R2) (4aTwi x) )
2 0UT ((TAB 11 12 Ry R2) (Prog2
: (PRINT(1IS7 LﬂB(”:)Ll(”;)LQ(”=>>RZ(”5)R1))
(ARR(L1 12 m1 R2)) ) )
(AR2(DARG(L.Y 1.0 R1 Rr2)
* P2A ( (11 12 R1( (¥oT P)R2)) (ARRow("PeA)Ll(LIST P L2)R1 R2) )

* P2B ( (11((vor P)L2)R1 Rn2) (Ananv(ﬂpeB)Ll L2 R1(1187T P R2)) )

i S



PP (11w, ((AHn 3, B)R2))
(4ND(ARROJ(”P3A1)L1 L2 RI(1rIs7 4 R2))
(ARROV(”P3A2)11 L2 RI(LIST B R2))) )
*P3B ( (11 ((arm B)L2)R1 R2)
(ARROV(”PBB)LI(LIST A(LIST B L2))R1 R2) )
* PLA ( (11 10 RL((0R 4 B)R2))
: (ARRON(”PAA)Ll L2 RI(LIST A(LisT B R2))) )
: PUB ( (13 ((OR a B)L2)m1 R2)
(AND(ARRGJ(”PhBl)Ll(LIST A L2)R1 Ro)
(ARROH("PMB?)LI(LIST 8 I2)R R2)) )
*PSA ( (13, 2 R ((DIPrT=s 4 B)R2))
. (ARROW( P54 )11 (1,757 A L2)R1(118T B R2)) )
2 P5BR ( (13 ((m1PLIRS 2 B)12) R1 R2)

: (AND(ARROW("PSBI)LI(LIST B L2)R1 mo)

: (ARR@J("PSBe)Ll L2 RI(1LIST 4 R2))) )
PP (112 ((2UTV 4 B)R2))
(AND(ARROU(“PéAl)Ll(LIST A L2)RI(LIST R R2))

(ARROW(”P6A2)L1(LIST 8 L2)R1(1IST 4 R2))) )
: POB ( (171 ((mw1v 2 B)L2)Rr1 R2)

(AND{ARROW(”PéBl)Ll(LIST A(LIST B 12))m R2)

(ARROW(”PéBQ)Ll L2 RI(LIST A(1187 3 R2)))) )
FTRUE ( (11 12 gy R2) (PROG2(PRINT(”VALID))T) (JOINT 11 Ry) )
FRALSE ( (1112 g R2) (PROG2(PRINT(”INVALID))F) ) )) ) s
CAMS: (4ARRoy ARR)

CAMS: (STa77. NTL; NTL=>((mpr 155 (or 1)) WIL);NTL)
CAMS: (ps5y. (P); NIL=>((on » ?) NIL); NTL)

CAMS: (plL4. (P); NIT=» NIL; (5 p))

CAMS: varTp

CAIS: sepae




SIETRPLIZS (roT (7 p DG 2))) 4
CAIZ: (graop, SILs HTL=>((TiprIss EOP(0R P )i (tior P)IUIL); NIL)
CAIS: (p5a. HILy((xot(on 3))NIT) => LT o) TL); NII)
ST (Pan: (2), (Giror(c p V)INIL) =»> NIy NIL)

CAM3:; (P2m: (P); EIL=>((0y p ) L) 1)

WTH{TPIIN: (A2 P 2))) $
CAITS

1 (STARD: 71, HIL=s( (TP TS (am p EJ)NIL); NTL)

CA3: PSa. /wn T el N
vdAlS: (P4, Vs FlL=s((vm o '“\,i‘\JIL); 1T}

[
e
Y

AliS: (P341. (P13 nig=> IL; (p))

bJ
7
-
i
1

CAMS: (P342. (P); NIL=> ITL; (9))
CAS: TyvarTy

CAMS: 17,

T“?T({?Tﬁfi“ffiﬁD(HOT PRIOT 9))(wrv 21)) %

Q
A
ot
Lans. ™
Nid
-3
e
L)
i
s
=

NTLs NIL=>((ITPLTTS(ANW(NOT P)(Hor ) EwTY P 1) JWIL; NIL)
CAMS: (P33, NILs ((Awn(ior Pi(NoT “))UIL)=>{(7TUIV P OJNIL); HIL)

SWS: (P33. FILsCQH0T Y (om W)"IL))=>((qu1v P 9NIL); L)

CAMS: (pom. HIL; ((nor Q)HIL)=>((?7UIV PMVIL); (P))

CAMS: (P2B. HIL; MIL=>((=wrTy p VHIL); (7 P))
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D.2 Tzamnles from Chapter 11T

D.2.1  linear using left-to-right match

: VITRULAES((

: (LIUwAR(nARG(X %)

11 ( (X xX) () )

L2 ( (X(+ 4 %) ("L2) (Fr7m X))
L3 ( (i(+ x a)) ("03)  (FuEm A %))

fLh ( ((+ 7 B)) ("LL)  (¥rm3 B %) )

e

L5 ( (X(+ B X)) (n5) (FRE= B X) )
2 L6 ( ((+(x A XB)) ("16) (AUD(FREE 4 X)(FRER B X)) )
2 L7 (Z(+(+ X a)R)) ("L7)  (aun(Fams A X)(FREE B X)) )
L8 ( (%(+ B(x 4 )Y (m8) (AM(F28 4 ¥) (s B ) )
2 L9 ((X(+ B(x X 4))) ("L9)  (AND(FRZE A X)(Frin B X))
2)) ) s

CAMS: (LTMmAR)

In the event of 2 successful matech being obtained, the value returned

by this definition of linear is the label of the Successful assertion.

¢ LINSAR(Z 7) 3

GAMS: 1],

¢ LINBAR(Z (% 6 7)) $

[@)N

CAfS: 1.2

: LINBAR(X (% X 3)) 4
CAlS: 1.3

: LINTAR(Y (+

w

zZ)) %

CAMS: 1)
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PLIERAY (+ L)) 8

C43: 1.5

POLIWBAR(K (#( 3 X) (% 2 7)) 3

CAMS: 1.6

¢LINTA(Y (+(% Y(e 3 ANCRAE:

CAMS: 1.7

#LINEAR(K (+(x 3 2)(s » X))) s

CAMS: 1.8

POLINRAR(Y (4 (e T+ v 2)))) %
CAMS: 19

D:2:2 linear using “papgs ional mat
Jr-eZ  ilinear using cansiormational match

¢ DIFATES(

(TINT%R(TARG{X E)

L1 (O (X(+(s 4 YIR)) (LIST ("A=) A (";x=) x (";B=) B)

((& F287 4 0)(B Famr 3 X)) ((+ TL 72) (% Tl T5)) ) )

(TRF3(DARG NI,
T (+4B) (+3 A) )
2 T2 (A (+40))
PTL( (% AB) (¢ 3 4) )
¢ T5 (4 (%1 a) ) ) )N
CAMS: (LIITAR TRES)

This definition of linear uses ax + b as the standard linear form in

Xs; and if a successful match is found, then the value returned is a list like

(4

]
)
;\,’J

i
™
¥
td

= ).

S s



m
The examnles verformed in 50,77 i
S JYetel USING the leitweto-richt version of 1j
aht ver of linear
fpmtieel

are now rancated,

s LTTAR(7 (s
LOWAR(Z (s 6 2)) 4

Ca
tl>-
10!
-
=
i
o
~
]
P
v
tuv)
it
<

CAIS: (A =1; ¥ = Y; B =z)

p TTVmw o Lowhhy g

i

CAYS: (A =1; X = Y; B =1

FIN™AR(E (+( 3 M 2 Z))) s

CAoB: (A =3y x = ¢ B=(+272)
FITINAY (5 X053 2))0x 4 2))) 8

CUS: (A = (+37); ¥ = Y5 B = (%L 2))

P LTAR(K (+(x 3 7)(x% 2 00

<

CAIIS: (A =2; X =1y, p = (+ 3 2))

2 LINGAR(X (+ (= X+ 1 2))))

<

CAMS: (A= (+7 2); X =Y 8 = It)




0.3 “zamnlag from Chanter v

—

Do3.1 "7efining! editinr; and display facilitiesg

DEFRUT, RS ((
:(NiHT(DAEG(Dl Devaa)
¢ L1 (F1 51 p1 T1)
: L2 (F2 g2 po T2)
P13 (F383pP3713))) ) $
CAMS: (waqw)

ADDRULE(AT 1,3 (L2A (724 s24 P2A T24))) %
¢ ADDRUT.E(NAMT (Ll (7, sl p), Thi)) 4
mqnmmxumsz1)$
POTTCHEOINm 1,3) 4

CAMS: (r3 33 P3 T3)

2 CTANGE (1 g L3 momy F3B) &

@
£
%

S: 13 (r3p 53 P3 T13)

NISPLAY(Namm) &
CAMS: % ASE‘»*SRTIOI\IS
CANS: 12 (2 g2 po T2)
CAS: Loa (m2y 524 P24 p2y)
CAM3: L3 (¢3R 53 P3 T3)

CAMS: Ty (p) Sl Pl 1)

* DELRUL % Nazm L3) ¢

¢ OPLEUTE(NAIM 124) 4

*ADPRULE(NAE 1) (g (FURY Sumr))) 4
P CHANGS(NAT w97 paps THW) $

CuS: pwr GﬁTTISNWJTFTHWN)
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Av s
CAx :

L

se

CAS .

B e
W A5 PERTIGNS

: L2 (72 30 po T2)

Identify cation facilities

LDEOP(Y (s (4 ¢ 3)(cos 1)) 3
IDTTD(wry (7 v X)) ¢
.- LAY *
(=(+(Cos x)(x X
(G0 X)( 3¢+ ¢ 2) N+ ¥ 3(sT 1) ))
I (Y (p v 1)) 4

(=(+(305 1)(«
VAWl (s 3(r )} (e b ¢
2))/(,. (+ ¥ 3) (31w 00

CENT(Y (+(G % 2)(s5IH X))) #
W

N
(YY) ¢

Ineaea(n
LUEEPDRY (porom 1)) 4

R

T
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TR (s 30 g 20000200 % 3))) 4

DRIS: (#(+( 6 X)(cos (s 3(+ x 2) M0 3+ 1 2))(7xp(+ ¥ 3)7))

1
~~
—

gt 2
P
w
=~
=4
—
N
s
-
= |
9w ]
~
g
oS
S
S

Cmm:(+@eaom¢eezﬁn(%%2 m(m@ugzen))

Dot TWxomnlos from Chapter vT
~e—— 200 bhanter VI

This saction contains the listings of two separate mns.  During the
first, the RUL®Ys int ang edge were Created and subsequently stored on a

private disk file, Also, certain PACK properties were created ang Stored.

Frf

or the second Session, all needed definitions vere restored froin the disk

i

1le, and the examples given in Chapter VI were performed., Following these

examnles, the transformations and Simplification functions were displayed.

ST e g
P el s Lk

(INT(DARG(K

3
S

PIL (X W) (em L) (% wamg = X)) )

212 0 (X(+ x ) (/(+ X(+n 1))(+w 1))

: (7 an(Frg i O N 21))) ((+ 79)) )
230 (Yrom 1)) (+ X(~(1.00 1))

2 IL { ((gTH ) #(cos X)) )

: I5 ( (1(cos X)) (e x) )

2 I6 ( (X(rani 7)) G#(LOG(COS D))

AT O (T 1)) (e X))

2 I8 ( (X(+ 4 B)Y) (+(mur ¢ A)(TnT x B)) )

2 I9 ( (- a BY) (~(mmr ¥ AY(INT ¥ B)) )

#I10 ( ((# a)) &umw{M))

P I11 0 ( (x(w 4 B)) (% A(TNT ¥ B))

: ((4 mrEg 4 ¥)) (CGeTh)) )

112 (0 (d(=(op A)R)) (» IFACT(SURST 4 X(INT %(op X))

. ((0P 0P® OP)(B 1gy SAUB)) (G th 7)) )
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FIL OO/ 2 8)) (s wace(ron 1) ((v v a3y
2 I (o0 A )Ry Co(/ MRACT(+ v 1)) (4 A(+ ¥ 1)))
. ((F (7327 3 X)) 0 -1))(8 wmmy x 4 1))

(= ™) (+ 19)) )
P I15 ( (E(#(+ © 4)3)) (#(/ nRACT(LoG ¢))(+ ¢ 4j)

(€ #9™ ¢ QMUY % 4 8))  ((+ 7)) )

IO (r7) (Emm i) ((1 WERY TRY SDGR(X I) 2)) )
P LAST ( (XTI} (nIsT(rmT) x 1) ) )

2 (UDGT(MARG(Y T)

: BL ( (X(s+ 7(7xp G))) (PROG(A)
(3717 A(/ =(DRy 1))
(ROTURN( = (3¢ A(myD G))(INT %(«(DRV 1 (=P 5))))))
TGy )
2 R2 (0 (L0 (Lon 1)) (PROG(A B C)
(SBTY o(TT ¥ M)
(871 A(ST'R(SUBST o (10G ) G)))
(SEPY C(/(/(~ 5 &) (Lo §))2))
(ST BT %( /(= WDRY 5 7))a)))
(R2TURN(+ (¢ C(+ (Log 3)2) )(+(* A(LOG G))B))))

T ((+Th)) )

@ B30 (X ¥/ 1+ 10+ o 2))0)) (- TPACT(LIST( " wiCTAN)G))
((Gmrv X B a)) ((+ T1) (% Th)(+ 712)) )
¢ BL((x(x u(sIN 6))) (PROG(A B)
(ST AME(/ n(DRY o 0N)
(ST B(THT X(H#(#(DrV & X)(Cos @)))))
(RRTURN(+(» A(COS G))B)))
TOo((eTh)) )
£ 5 ( (X0 B(Cos @) (PROG(A B)




- 135 .

: (3212 A(/ (mmy g )
: (8727 ROINT K@l Ry 2 (S 6)))))
: (R‘BWJ’?I’J(*(* A(STIN G)In)))

2 TGy ) )y )y s

pe \
CAMS: (Ivm gw)
£ETTRIL(LOR) &

tSTORI((IHT mham)nor) 4

: DFLIST((

~
|
i
w5l
J
&
o
I
—~
=
i
~=

LNT B7G7 DRy DRV OPP + . = VAR Y

'

FGF LOG 31 COS =2 pan TRFS STifP))

(@PTYATOR“(+ ~ %/t & HCT))

e = R

Wow L Y Ly E Y TA_(’A;C:{ “T?; .._X Ohb)

2 BTOTR(( I g Aoy CPYPATORS)ILDR) 4

This completed the first pun, Hotice that the 1ist of all those
functions which nay be needed durine an integration ig now stored as g

PACK Proverty of the atomic symbol INT=SGRATON,

2 STEILB(LOR) §

: RTSTORT(TN“’G?@TOR T.NF)

: INT(X(+ x(/ 3 2))) 4
CuIS: (/( 2(+ x(/ & 2)))5)

5w

T (X(+(STN O (Exe X)) s

CAMS: (-(7XP ¥)(g0s 7))
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(07, 5%P)

: YES ¢

CAVMS .

<2
'.'>-
Doy
b

o

(3

Ge(/ 1 2)(mrp(s 1 2)))

T X (+ 100 1 23)(/ 1 2)))) 8

(/1 3)Y (+ 14 ¥ 2))(/ 3 2)))

2D/ O+ 1 )8

cyr

1651

CAMS .

CAMS:

1y 3
DAMS .

CAMS

%

CAMS ;

CAl{S:

Tl X(008(+ 1 2300 (TP(SIH(+ g 2))))) %

#¥# I35 i B OLT.ING 4 VALID BINDING 9

I (e 2lmer 1)) 4

Hd Ty

(TRY "mom(u(« x(myo 0)) 2 )
yus o8

Ge(= X 1) (wxp X))

THT(X(+(+ 2(/ 1 ) (LoG X)) $$
## JNIIRY 2
(TEY THGE(X((+ (/1 %) X)) 2)

¥as %

(+C+(/ 1 2)(+(100 X)2)) (e(+(ro UL 2))(/(+ £ 2)2)))

Wr((/ %+ 1+ x L) &

## OUIRY 2

CAHS: (TRY "ngwm(x(s L/ 1+ 1(+ y b))y =)
¢ ¥ES 3

CAMS .

Ge(/ 3 2)(ameranes ¢ 2)))



l TN (4 X 2)(sT ) 8

| SUT: ¥ Iy o

1

1

\ CRED (TRY Soom(x(s (+ X 2)(5T £))7)

: YRS 4
CAMS: 44 UnRY %
CaMS: (TRY =nem(x(s X(Ces x))) 2 )

snLal
¥ Yus d'.)

CAMS: (-(+(: 2 %)(sTN )0G(=(+ % 2)2)(C0s 1))

H
-
o
=
¢
N
“
N
]
r
e
~
~

ST X)) ¢

CAMS:« bt NUTRY 92
CAMS: (TRY Z0GW(7(x(EXP X)(STH X))) ?)

CAZ: g~ o

CAMS: (TRY wnam(X(«(TXP ¥)(aos X)) 2 )

: Y8 8

CAVIS:  # ~rony 2
CA™3e (Tmy IDGTX (T ¥) (51N X)) 2 )

: 0 8

5

Dk, anf s Yo s
SIS (~(e(3TT XV (7 O1(+((CoS %) (7 X))

CAFBS: (INT X({=(wge s
: DISPLAY(TRFS) ¢

CAMS: % TRANSFORATTONS

CAS: TL ( (+ 4B) (+1 1))

CAMS: T2 (4 (+ A 0) )

CAS: T3 (4 (+ 0 4) )

CAMS: Th ( (% 4 B) (++ B A} )
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CAE: T (0 (4 4 1))

CAT: TIC (4 @@ 4)) )

CAS: T11 ( (4 4 w) (+(+ ACAL(WorT T N 2))i2)
CATS: ((77 amD(NE W)( TTROP(REMATINDER N 2)))) )

CAMS: T12 ( (s« A (B C)) (¢ 4 (= ¢ 3)) )

: DT

€5}

PLAY(+) $

CAZ:  #¥ ASSTRrTANS

CAMS: A1 ( (A 0) a = ((+ 1)) )

CAT: 22 ((((/ ami(/ ¢ ) (/(PLus(rmizs 4 n)(rmres y ¢

CXD: (TZ5S B ) ((a wp A)(B NP B)(C NP C)(D np D) A1) )
CAS: A3 ( ((+ % B)(+ ¢ B)) R+ 008 T ((+ 10 15)) /

CAB: Al ( (g AV (=3B A) 7 ((+11)) )

-

CAS: LAST ( (4 B (LIsT(au0m> +) & B) )

2 DISPTAY(-) $
CAI5:  #4# ASSIRYTONS
S: AL ( (a0) 14 )
CAME: A2 ( (0 A) (#4) )
CATS: A3 ( ((+ A B)(+ & C)) (-mc) 7 ((+ 71 12)) )
CAtS: Ah ( ((/ & m)(/ ¢ n)) (/(DIFemnmICR( 7Tms 4 D)
CAM3: (TT173s m CH(TTMms B D)) ((4 wp A)(B WP B)(C wp G)
CAMS: (D wp n)) ((/ T8)) )
CAITS: A5 ( ((= 4 B)(x ¢ BY) ((= 1 g)B) 7 (GeTh 75)) )
CANS: 16 ¢ (R(# 1)) (+34))

Cams: A7 ( ((#A4)B) @(+ 4 B)) )

CAMSs LAST ( (& B) (LIST(AuoT~ =) Am) )
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: MISPTAY(/) 8
CAMS:  ## 45 mrTons

CAS

e

Al

o~

(& 0) (rIsT(wors UNDEFINTD) 4 (auore /G)) )
CAMS: 42 ( (4 7) » )

CAMS: A3 ( (1 B (queTTont 1 B) ((&1wp AJ(B (e B
CAMS . (Z7ROP(R7MATH®R 4 BY))) )

CAMS: 4l ( (& B) (TIST(wory /Y (WorTryT A(HCF 4 B))

CAMS

£y

(AUoTT=HNT 7 FCFACT))  ((4 TIXP &)(R pree B)) )
CAMS: A5 ( ((/ 4 3)(/ ¢ M) (/= 2 n)(x B c))

CAMS: ((C 1 ¢ 1)(p CR(MEN B 1) (w0 p 1)) ((/ 18)) )
CHB: A ((1(#3)) (m(/ 1m)) )

CAMS: A7 ( ((# a)3) #*(/ 13)) )

CAFS: A8 (1 (( At A BY)( (A cg))) ((/ p =)

J)) T ((+ Tl 75 T12)(* 19)) )

CAIS: 1asT ( (4 B)

CAIS: (+ 4(- 3 ¢

~

(LIS ("WorR /) AB))

CAMS: ## ASSTRTTONS
CAMS: A1 ( (A Q) ¢ T ((+1h) )

CAMS: 42 ( (4 1) LT (1)) )

CAMS: 43 ( (4 =1) (#4) 7 ((+ 7)) )

SRS Al ( ((/ a B)(/ € D)) /(rrims A C)(TTMES B D))
CAS: ((4 A)(B 1> B}(c P C){nup p)) ((/ 18)) )
CUIS: 45 ( ((+ 4By 4 C)) (* a(+3p C)) 1 ((¢ 19)) )
CAIS: A6 ( (a(x n C))(=(1Tims 4 B)C) ((a A)(B NP B))
SLS: ((+ 1)) )

CUS: A7 { (a(+ 3 C)) (& n(x C)) ((Brp 3)) (Ge 1h)) )
C&ﬁ:ﬂi(CM#B)) @ (x4 3)) 7 (Ce Th)) )

CAMS: 49 ( (4 B) (LIST(Wor: %) B A) ((Bwp ) )

CA8: Lgam ( (v CI?%?MEZ*)AIU )

Sttt



CANS :

- 1L0 -

A0 (iB) (mpr oA B) (A WP A)(m e B)) )

42 ( (0 o) (’)UOTE(UNDEFIPT?D 0+ 0)))

NISPLAY (#) 4
#4 ASSRT TS

AT ( (4) (myus Vo ((:wp A)) )

o
N

ey
C#A Ay

BO-34)) (-2 B) )

: LAST O (&) (1157(~1oyme
b | _Ju.L(—.uJTJ#) i) )
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