
void readFile() {
FILE *b;
char c;

b = fopen("Yorick", "r");
c = fgetc(b);
while (!feof(b)) { putchar(c); c = fgetc(b); }
fclose(b); }













programming to an interface

data State = Open | Closed

fopen :: FilePath → State
fgetc :: () → Maybe Char
fclose :: () → ()

I’ve hidden the FILE* variable naming the resource, and given a
command-response interface.



a program is a strategy tree

nodes are commands
edges cover responses
values delivered at leaves



Strategy trees as data

data Strategy x
= Return x -- value returned at leaf
| FOpen FilePath (State → Strategy x)
| FGetC () (Maybe Char → Strategy x)
| FClose () (() → Strategy x)

One constructor per command, carrying arguments and a callback.



A Kleisli Category

Return :: x → Strategy x

(>>>) :: (x → Strategy y) → (y → Strategy z) →
(x → Strategy {-grafting... -} z)

Composition grafts the second strategy to the leaves of the first.
The interface determines the strategy type, which has the
structure of a monad.



commands as monadic operations

fopen :: FilePath → Strategy State
fopen f = FOpen f Return

fgetc :: () → Strategy (Maybe Char)
fgetc v = FGetC v Return

fclose :: () → Strategy ()
fclose v = FClose v Return

We can implement a monad homomorphism or device driver

runStrategy :: Strategy x → IO x

which actually talks to the world.



the general picture (Plotkin-Power)

data (:>>:) c r x = c :& (r → x)
-- how to make an x by command-response

data (:+:) f g x = L (f x)
| R (g x)

-- offer a choice of commands

data f :∗ x = Return x
| Do (f (f :∗ x))

-- build f -noded trees

Our example becomes

type Interface = ((FilePath :>>: State) :+:
(() :>>: Maybe Char) :+:
(() :>>: ())

)

and Strategy x = Interface :∗ x



what’s missing?

No model of reality.
No checking that action makes sense with respect to state.



what’s missing?
No model of reality.
No checking that action makes sense with respect to state.



spot the problem



less diabolical



Atkey’s ‘parametrized’ monads
Idea: index by initial and final final states of type i , modelling the
world. Equip a type

M :: { i } → { i } → ∗ → ∗

with

return :: x → M { i } { i } x
(>>>) :: (x → M { i } { j } y) → (y → M { j } {k } z) →

(x → M { i } {k } z)

Grafting with dominoes!

We might have

malloc :: () → M {n} {Suc n} ()
free :: () → M {Suc n} {n} ()
get :: Var {n} → M {n} {n} Val
set :: (Var {n},Val) → M {n} {n} ()



Atkey’s ‘parametrized’ monads
Idea: index by initial and final final states of type i , modelling the
world. Equip a type

M :: { i } → { i } → ∗ → ∗

with

return :: x → M { i } { i } x
(>>>) :: (x → M { i } { j } y) → (y → M { j } {k } z) →

(x → M { i } {k } z)

Grafting with dominoes!
We might have

malloc :: () → M {n} {Suc n} ()
free :: () → M {Suc n} {n} ()
get :: Var {n} → M {n} {n} Val
set :: (Var {n},Val) → M {n} {n} ()







what if space doesn’t go on forever?

How can we model a malloc which might fail?
We can’t predict the outcome state.
Best available bet, a control operator:

ifmalloc :: M {Suc i } { j } x {-plan for success -} →
M { i } { j } x {-backup plan -} →
M { i } { j } x

We’ve stepped outside the generic command-response setup.



what’s missing?

The Devil



what’s missing?

The Devil



consider indexed sets

p :: { i } → ∗

where the index type i represents the state of the world
(heap size, Open or Closed, etc)

p is like a predicate, but...
...some value

v :: p { i }

represents concrete evidence that p holds for i .

By inspecting v at run-time, we might get the goods on i .





Two useful kinds of evidence (1)

data (:=) :: ∗ → { i } → { i } → ∗ where
V :: a → (a := {k }) {k }

(a := {k }) is pronounced ”a at key k”

It means “I have an a and the state is k.”.
If you have some v :: (a := {k }) { i }, then you know i is k.



Two useful kinds of evidence (1)

data (:=) :: ∗ → { i } → { i } → ∗ where
V :: a → (a := {k }) {k }

(a := {k }) is pronounced ”a at key k”

It means “I have an a and the state is k.”.
If you have some v :: (a := {k }) { i }, then you know i is k.



Two useful kinds of evidence (2)

Singletons reify the typing judgment, and act as a run-time witness
of the state.

(::State) :: {State} → ∗

{Open} :: (::State) {Open}
{Closed} :: (::State) {Closed}

If you have some v :: (::State) { i }, then case analysis on v will tell
you whether i is Open or Closed.



Two useful kinds of evidence (2)

Singletons reify the typing judgment, and act as a run-time witness
of the state.

(::State) :: {State} → ∗

{Open} :: (::State) {Open}
{Closed} :: (::State) {Closed}

If you have some v :: (::State) { i }, then case analysis on v will tell
you whether i is Open or Closed.



what are the morphisms?

type p :→ q = ∀ i · p { i } → q { i }

Index-respecting functions!

Predicate implication!

The usual polymorphic identity and composition are the identity
and composition. We have a category of i-indexed Haskell types.



what are the morphisms?

type p :→ q = ∀ i · p { i } → q { i }

Index-respecting functions! Predicate implication!

The usual polymorphic identity and composition are the identity
and composition. We have a category of i-indexed Haskell types.



what are the morphisms?

type p :→ q = ∀ i · p { i } → q { i }

Index-respecting functions! Predicate implication!

The usual polymorphic identity and composition are the identity
and composition. We have a category of i-indexed Haskell types.



what are the monads?

Consider

M :: ({ i } → ∗) → ({ i } → ∗)

A ‘predicate transformer’.
M p { i } is a strategy for reaching some state satisfying p, starting
in state i .

A Kleisli arrow
f :: p :→ M q

is a Hoare triple!



what are the monads?

Consider

M :: ({ i } → ∗) → ({ i } → ∗)

A ‘predicate transformer’.

M p { i } is a strategy for reaching some state satisfying p, starting
in state i .

A Kleisli arrow
f :: p :→ M q

is a Hoare triple!



what are the monads?

Consider

M :: ({ i } → ∗) → ({ i } → ∗)

A ‘predicate transformer’.
M p { i } is a strategy for reaching some state satisfying p, starting
in state i .

A Kleisli arrow
f :: p :→ M q

is a Hoare triple!



what are the monads?

Consider

M :: ({ i } → ∗) → ({ i } → ∗)

A ‘predicate transformer’.
M p { i } is a strategy for reaching some state satisfying p, starting
in state i .

return :: p :→ M p
(>>>) :: (p :→ M q) → (q :→ M r) →

(p :→ M {-grafting -} r)

A Kleisli arrow
f :: p :→ M q

is a Hoare triple!



what are the monads?

Consider

M :: ({ i } → ∗) → ({ i } → ∗)

A ‘predicate transformer’.
M p { i } is a strategy for reaching some state satisfying p, starting
in state i .

skip :: p :→ M p
; :: (p :→ M q) → (q :→ M r) →

(p :→ M {-grafting -} r)

A Kleisli arrow
f :: p :→ M q

is a Hoare triple!



Variations on the theme of ‘bind’ (a.k.a. ‘let’)

Demonic bind

(?>=) :: M p { i } → (p :→ M q) → M q { i }
p ?>= f = (id >>> f ) p

You choose i , but the devil chooses j .

(=>=) :: M (a := { j }) { i } → (a → M q { j }) → M q { i }

If p is some a := { j }, we don’t need to quantify over an unknown
state.
If all predicates are (:=), we get the behaviour of Atkey’s
parametrized monads.



Variations on the theme of ‘bind’ (a.k.a. ‘let’)

Demonic bind

(?>=) :: ∀ i · M p { i } → (∀ j · p { j } → M q { j }) → M q { i }
p ?>= f = (id >>> f ) p

You choose i , but the devil chooses j .

(=>=) :: M (a := { j }) { i } → (a → M q { j }) → M q { i }

If p is some a := { j }, we don’t need to quantify over an unknown
state.
If all predicates are (:=), we get the behaviour of Atkey’s
parametrized monads.



Variations on the theme of ‘bind’ (a.k.a. ‘let’)

Demonic bind

(?>=) :: ∀ i · M p { i } → (∀ j · p { j } → M q { j }) → M q { i }
p ?>= f = (id >>> f ) p

You choose i , but the devil chooses j .

(=>=) :: M (a := { j }) { i } → (a → M q { j }) → M q { i }

If p is some a := { j }, we don’t need to quantify over an unknown
state.
If all predicates are (:=), we get the behaviour of Atkey’s
parametrized monads.



Variations on the theme of ‘bind’ (a.k.a. ‘let’)

Demonic bind

(?>=) :: ∀ i · M p { i } → (∀ j · p { j } → M q { j }) → M q { i }
p ?>= f = (id >>> f ) p

You choose i , but the devil chooses j .

(=>=) :: M (a := { j }) { i } → (a → M q { j }) → M q { i }

If p is some a := { j }, we don’t need to quantify over an unknown
state.

If all predicates are (:=), we get the behaviour of Atkey’s
parametrized monads.



Variations on the theme of ‘bind’ (a.k.a. ‘let’)

Demonic bind

(?>=) :: ∀ i · M p { i } → (∀ j · p { j } → M q { j }) → M q { i }
p ?>= f = (id >>> f ) p

You choose i , but the devil chooses j .

(=>=) :: M (a := { j }) { i } → (a → M q { j }) → M q { i }

If p is some a := { j }, we don’t need to quantify over an unknown
state.
If all predicates are (:=), we get the behaviour of Atkey’s
parametrized monads.



Demonstration.



conclusions

Monads on indexed sets allow us to model outrageous fortune.

Instead of using Hoare Logic as ‘logical superstructure’ for
reasoning, yank it across the Curry-Howard correspondence and
use it as ‘logical infrastructure’ for programming.


