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Abstract. Work to date on combining linear types and dependent types
has deliberately and successfully avoided doing so. Entirely fit for their
own purposes, such systems wisely insist that types depend only on the
replicable sublanguage, thus sidestepping the issue of counting uses of
limited-use data either within types or in ways which are only really
needed to shut the typechecker up. As a result, the linear implication
(‘lollipop’) stubbornly remains a non-dependent S ( T . This paper de-
fines and establishes the basic metatheory of a type theory supporting a
‘dependent lollipop’ (x :S) ( T [x], where what the input used to be is
in some way commemorated by the type of the output. For example, we
might convert list to length-indexed vectors in place by a function with
type (l : List X) ( Vector X (length l). Usage is tracked with resource
annotations belonging to an arbitrary rig, or ‘riNg without Negation’.
The key insight is to use the rig’s zero to mark information in contexts
which is present for purposes of contemplation rather than consumption,
like a meal we remember fondly but cannot eat twice. We need no run-
time copies of l to form the above vector type. We can have plenty of
nothing with no additional runtime resource, and nothing is plenty for
the construction of dependent types.

1 Introduction

Girard’s linear logic [15] gives a discipline for parsimonious control of resources,
and Martin-Löf’s type theory [18] gives a discipline for precise specification of
programs, but the two have not always seen eye-to-eye.

Recent times have seen attempts to change that. Pfenning blazed the trail in
2002, working with Cervesato on the linear logical framework [8], returning to the
theme in 2011 to bring dependency on values to session types in joint work with
Toninho and Caires [27]. Shi and Xi have linear typing in ATS [24]. Swamy and
colleagues have linear typing in F ? [25]. Brady’s Idris [6] has uniqueness typing,
after the fashion of Clean [9]. Vákár has given a categorical semantics [28] where
dependency is permitted on the cartesian sublanguage. Gaboardi and colleagues
use linear types to study differential privacy [12]. Krishnaswami, Pradic and
Benton [16] give a beautiful calculus based on a monoidal adjunction which
relates a monoidal closed category of linear types to a cartesian closed category
of intuitionistic dependent types.



Linear dependent types are a hot topic, but for all concerned bar me, linearity
stops when dependency starts. The application rules (for twain they are, and
never shall they meet) from Krishnaswami and coauthors illustrate the puzzle.

Γ ;∆ ` e : A( B Γ ;∆′ ` e′ : A
Γ ;∆,∆′ ` e e′ : B

Γ ;∆ ` e : Πx :X.A Γ ` e′ : X
Γ ;∆ ` e e′ : A[e′/x]

Judgments have an intuitionistic context, Γ , shared in each premise, and a linear
context ∆, carved up between the premises. Later types in Γ may depend on
earlier variables, so Γ cannot be freely permuted, but in order to distribute
resources in the linear application, the linear context must admit permutation.
Accordingly, types in ∆ can depend on variables from Γ , but not on linear
variables. How could they? When the linear context is chopped in two, some
of the linear variables disappear! Accordingly, the argument in the dependent
application is a purely intutionistic term, depending only on shared information,
and the result type is thus well formed.

In this paper, I resolve the dilemma, with one idea: nothing. Contexts account
for how many of each variable we have, and when we carve them up, we retain
all the variables in each part but we split their quantities, so that we know
of which we have none. That is, contexts with typed variables in common are
modules, in the algebraic sense, with pointwise addition of resources drawn from
some rig (‘riNg without Negation’). Judgments account for how many of the
given term are to be constructed from the resources in the context, and when
we are constructing types, that quantity will be zero, distinguishing dynamic
consumption from static contemplation. Correspondingly, we retain the ability
to contemplate variables which stand for things unavailable for computation. My
application rule (for there is but one) illustrates the point.

∆0 ` ρ f ∈ (π x :S)→ T ∆1 ` ρπ S 3 s
∆0 +∆1 ` ρ f s ∈ T [s :S/x]

The function type is decorated with the ‘unit price’ π to be paid in copies of the
input for each output required, so to make ρ outputs, our resource must be split
between ρ functions and ρπ arguments. The two contexts ∆0 and ∆1 have the
same variables, even if some of them have zero resource, so the resulting type
makes sense. If the ring has a 1, we may write (1x :S)→ T as (x :S)( T .

In summary, this paper contributes the definition of a type theory with uni-
form treatment of unit-priced dependent function spaces which is even
unto its syntax bidirectional, in the sense of Pierce and Turner [22], resulting
in a metatheoretic treatment of novel simplicity, including type preservation
and a proof that erasure of all zero-resourced components retains type safety.

2 A Rig of Resources

Let us model resources with a rig, rather as Petricek, Orchard and Mycroft do,
in their presentation of coeffects. [21].



Definition 1 (rig) Let R be a set (whose elements are typically called ρ, π, φ),
equipped with a value 0, an addition ρ+ π, and a ‘multiplication’, φρ, such that

0 + ρ = ρ ρ+ (π + φ) = (ρ+ π) + φ ρ+ π = π + ρ
φ(ρπ) = (φρ)π 0ρ = 0 = ρ0 φ(ρ+ π) = φρ+ φπ (ρ+ π)φ = ρφ+ πφ

I was brought up not to presume that a rig has a 1. Indeed, the trivial rig {0} will
give us the purely intuitionistic type theory we know and love. Moreover, every
rig has the trivial sub-rig, a copy of intuitionistic type theory, in which we shall
be able to construct objects (types, especially) whose runtime resource footprint
is nothing but whose contemplative role allows more precise typechecking. The
{0, 1} rig gives a purely linear system, but the key example is ‘none-one-tons’.

Definition 2 (none-one-tons) ρ+π 0 1 ω
0 0 1 ω
1 1 ω ω
ω ω ω ω

ρπ 0 1 ω
0 0 0 0
1 0 1 ω
ω 0 ω ω

The 0 value represents the resource required for usage only in types; 1 resources
linear runtime usage; ω indicates relevant usage with no upper limit, or with
weakening for ω (as treated in section 12), arbitrary usage. With the latter in
place, we get three recognizable quantifiers,

informally ∀x :S. T (x :S)( T Πx :S. T
formally (0x :S)→ T (1x :S)→ T (ωx :S)→ T

where ∀ is parametric, effectively an intersection rather than a product, with
abstractions and applications erasable at runtime, but Π is ad hoc and thus
runtime persistent. In making that valuable distinction, I learn from Miquel’s
Implicit Calculus of Constructions [20]: a dependent intersection collects only
the functions which work uniformly for all inputs; a dependent product allows
distinct outputs for distinguishable inputs.

Unlike Miquel, I shall remain explicit in the business of typechecking, but
once a non-zero term has been checked, we can erase its zero-resourced substruc-
tures to obtain an untyped (for types are zero-resourced) λ-term which is the
runtime version of it and computes in simulation with the unerased original, as
we shall see in section 11. Note that erasure relies on the absence of negation:
zero-resourcing should not be an accident of ‘cancellation’.

Although I give only the bare functional essentials, one can readily imagine
an extension with datatypes and records, where the type of an in place sorting
algorithm might be (1 xs :List Int)→ {1 ys :OrderedList Int; 0 p :ys ∼ xs}.

We can, of course, contemplate many other variations, whether for usage anal-
ysis in the style of Wadler [30], or for modelling partial knowledge as Gaboardi
and coauthors have done [12].

3 Syntax and Computation

The type theory I present is parametrised by its system of sorts (or ‘universes’). I
keep it predicative: each sort is closed under quantification, but quantifying over



‘higher’ sorts is forbidden. My aim (for further work) is to support a straight-
forward normalization proof in the style championed by Abel [2]. Indeed, the
resource annotations play no role in normalization, so erasing them and embed-
ding this system into the predicative type theory in Abel’s habilitationsschrift [1]
may well deliver the result, but a direct proof would be preferable.

Definition 3 (sort ordering) Let S be a set of sorts (i,j,k) with a wellfounded

ordering j � i: k � j j � i
k � i

∀j. (∀i. j � i→ P [i])→ P [j]
∀k. P [k]

.

Asperti and the Matita team give a bidirectional ‘external syntax’ for the
Calculus of Constructions [4], exploiting the opportunities it offers to omit type
annotations. I have been working informally with bidirectional kernel type theo-
ries for about ten years, so a precise treatment is overdue. Here, the very syntax
of the theory is defined by mutual induction between terms, with types specified
in advance, and eliminations with types synthesized. Types are terms, of course.

Definition 4 (term, elimination)

R,S, T, s, t ::= ∗i sort i
| (π x :S)→ T function type
| λx. t abstraction
| e elimination

e, f ::= x variable
| f s application
| s :S annotation

Sorts are explicit, and the function type is annotated with a ‘price’ π ∈ R:
the number of copies of the input required to compute each copy of the output.
This bidirectional design ensures that λ need not have a domain annotation—
that information always comes from the prior type. An elimination becomes a
term without annotation: indeed, we shall have two candidates for its type.

In the other direction, a term can be used as an elimination only if we give
a type at which to check it. Excluding type annotations from the syntax would
force terms into β-normal form. Effectively, type annotations mark places where
computation is unfinished—the ‘cuts’, in the language of logical calculi: we see
the types of the ‘active’ terms. I plan neither to write nor to read mid-term type
annotations, but rather to work with β-normal forms and typed definitions.

Syntactically, terms do not fit where variables go: we must either compute the
β-redexes after substitution, as in the hereditary method introduced by Watkins
and coauthors [32] and deployed to great effect by Adams [3], or we must find
some other way to suspend computation in a valid form. By adding cuts to the
syntax of eliminations, I admit a small-step characterization of reduction which
allows us to approach the question of type preservation without first establishing
β-normalization, which is exactly cut elimination in the sense of Gentzen [14].

The syntax is set up so that a redex pushes a cut towards its elimination.
The β-rule replaces a redex elimination at a function type by redexes at the
domain and range. The υ-rule strips the annotation from a fully computed term.



Definition 5 (contraction, reduction, computation) Contraction schemes
are as follows:

(λx. t : (π x :S)→ T ) s β (t :T )[s :S/x] t : T  υ t

Closing  β and  υ under all one-hole contexts yields reduction, s  t. The
reflexive-transitive closure of reduction is computation: →→= ∗.

Let us defer the metatheory of computation and build more of the type theory.

4 Typing Rules

What we might be used to calling a context is here a precontext, Γ .

Definition 6 (precontext, context) Γ ::= · | Γ, x :S
A Γ -context is a marking-up of Γ with a rig element for each variable.

· is a Cx(·)
∆ is a Cx(Γ )

∆, ρx :S is a Cx(Γ, x :S)

If ∆ is a Γ -context, we may take b∆c = Γ

It is my tidy habit to talk of “Γ -contexts”, rather than slicing “contexts” by
b−c, after the fact: Γ -contexts form an R-module: addition ∆+∆′ is pointwise,
and multiplication φ∆ premultiplies all the rig-annotations on variables in ∆ by
φ, keeping types the same. It is another (similar) habit to suppress the conditions
required for wellformedness of expressions like ∆ + ∆′: that is how I am telling
you that ∆ and ∆′ are both Γ -contexts for some Γ .

Definition 7 (prejudgment) The prejudgment forms, P, are as follows.

type checking Γ ` T 3 t
type synthesis Γ ` e ∈ S

As with contexts, judgments decorate prejudgments with resources from R.
We may define a forgetful map b−c from judgments to prejudgments.

Definition 8 (judgment) The judgment forms, J , and b−c : J → P are
given as follows.

type checking b∆ ` ρ T 3 tc = b∆c ` T 3 t
type synthesis b∆ ` ρ e ∈ Sc = b∆c ` e ∈ S

Let us say that t and e are, respectively, the subjects of these judgments. Let
us further designate ∆ and T inputs and S an output. My plan is to arrange
the rules so that, presupposing input to a judgment makes sense, the subjects
are validated and sensible output (if any) is synthesized. My policy is “garbage
in; garbage out” and its benefit is that information flows as typing unfolds from
subjects (once checked) to inputs and outputs, but never from inputs back to



subjects. By restricting the interaction between the parts of the judgments in
this way, I arrange a straightforward inductive proof of type preservation.

Readers familiar with traditional presentations may be surprised by the lack
of a context validity judgment: I was surprised, too. Rather, we must now main-
tain the invariant that if a derivable judgment has valid input, every judgment
in its derivation has valid input and output, and its own output is valid.

Any assignment of resources to a valid precontext Γ gives a context ∆. The
typing judgments indicate that the resources in ∆ are precisely enough to con-
struct the given t or e with multiplicity ρ: it may help to think of ρ as ‘how many
runtime copies’. The types S and T consume no resources. We may use the de-
rived judgment form Γ `0 T 3 t to abbreviate the all-resources-zero judgment
0Γ ` 0 T 3 t which is common when checking that types are well formed.

Definition 9 (type checking and synthesis) Type checking and synthesis are
given by the following mutually inductive definition.

pre
∆ ` ρ R 3 t
∆ ` ρ T 3 t T  R

sort
Γ `0 ∗j 3 ∗i

j � i

fun

Γ `0 ∗i 3 S
Γ, x :S `0 ∗i 3 T

Γ `0 ∗i 3 (π x :S)→ T

lam
∆, ρπ x :S ` ρ T 3 t

∆ ` ρ (π x :S)→ T 3 λx. t

elim
∆ ` ρ e ∈ S
∆ ` ρ T 3 e S � T

post
∆ ` ρ e ∈ S
∆ ` ρ e ∈ R S  R

var
0Γ, ρ x :S, 0Γ ′ ` ρ x ∈ S

app

∆0 ` ρ f ∈ (π x :S)→ T
∆1 ` ρπ S 3 s

∆0 +∆1 ` ρ f s ∈ T [s :S/x]

cut
b∆c `0 ∗i 3 S ∆ ` ρ S 3 s

∆ ` ρ s :S ∈ S

Introduction forms require a type proposed in advance. It may be necessary
to pre-compute that type, e.g., to see it as a function type when checking a
lambda. The sort rule is an axiom, reflecting the presupposition that the context
is valid already. Wherever the context is extended, the rules guarantee that the
new variable has a valid type: in fun, it comes from the subject and is checked;
in lam, it is extracted from an input. The fun rule pushes sort demands inward
rather than taking the max of inferred sorts, so it is critical that elim allows
cumulative inclusion of sorts as we switch from construction to usage.

The var or cut at the heart of an elimination drives the synthesis of its type,
which we may need to post-compute if it is to conform to its use. E.g., to use
app, we must first compute the type of the function to a function type, exposing
its domain (to check the argument) and range (whence we get the output type).
Presuming context validity, var is an axiom enforcing the resource policy. Note
how app splits our resources between function and argument, but with the same
precontext for both. The usual ‘conversion rule’ is replaced by elim sandwiched
between posts and pres computing two types to compatible forms.

Valid typing derivations form R-modules. Whatever you make some of with
some things, you can make none of with nothing—plenty for making types.



5 Dependent Iterative Demolition of Lists

Thus far, I have presented a bare theory of functions. Informally, let us imag-
ine some data by working in a context. Underlines e help readability only of
metatheory: I omit them, and sorts to boot. I telescope some function types for
brevity. Let us have zero type constructors and plenty of value constructors.

0 List : (0X :∗)→ ∗, ω nil : (0X :∗)→ ListX,
ω cons : (0X :∗, 1 x :X, 1 xs :ListX)→ ListX

Let us add a traditional dependent eliminator, resourced for iterative demolition.

ω lit : (0X :∗, 0 P : (0 x :ListX)→ ∗)→
(1 n :P (nilX))→
(ω c : (1 x :X, 0 xs :ListX, 1 p :P xs)→ P (consX x xs))→
(1 xs : ListX)→ P xs

The nil case is used once. In the cons case the tail xs has been reconsituted as p
but remains contemplated in types. The intended computation rules conform.

litX P n c (nilX) n litX P n c (consX x xs) c x xs (litX P n c xs)

Typechecking both sides of each rule, we see that n occurs once on both sides
of each, but that c is dropped in one rule and duplicated in the other—some
weakening is needed. Meanwhile, for cons, the tail xs has its one use in the
recursive call but can still be given as the zero-resourced tail argument of c.

Some familiar list operations can be seen as simple demolitions:

ω append : (0X :∗, 1 xs :ListX, 1 ys :ListX)→ ListX
append = λX. λxs. λys. litX (λ . ListX) ys (λx. λ . λxs ′. consX x xs ′) xs

ω reverse : (0X :∗, 1 xs :ListX)→ ListX
reverse = λX. λxs. litX (λ . (1 ys :ListX)→ ListX)

(λys. ys) (λx. λ . λf. λys. f (consX x ys)) xs (nilX)

Now let us have unary numbers for contemplation only, e.g. of vector length.

0 Nat : ∗, 0 zero : Nat, 0 suc : (0 n :Nat)→ Nat
0 Vector : (0X :∗, 0 n :Nat)→ ∗, ω vnil : (0X :∗)→ VectorX zero,

ω vcons : (0X :∗, 0 n :Nat, 1 x :X, 1 xs :VectorX n)→ VectorX (suc n)

We can measure length statically, so it does not matter that we drop heads.
Then, assuming length computes as above, let us turn lists to vectors.

0 length : (0X :∗, 0 xs :ListX)→ Nat
length = λX. litX (λ .Nat) zero (λx. λ . suc)

ω vector : (0X :∗, 1 xs :ListX)→ VectorX (length xs)
vector = λX. litX (λxs.VectorX (length xs))

(vnilX) (λx. λxs. λxs ′. vconsX (length xs) x xs ′)

In the step case, the zero-resourced list tail, xs, is used only to compute a zero-
resourced length: the actual runtime tail is recycled as the vector xs ′. The impact
is to demolish a list whilst constructing a vector whose length depends on what
the list used to be: that is the dependent lollipop in action.



6 Confluence of Computation

We shall need to establish the diamond property for computation.

Definition 10 (diamond property) A binary relation R has the diamond
property if ∀s, p, q. sRp ∧ sRq ⇒ ∃r. pRr ∧ qRr.

Appealing to visual intuition, I will typically depict such propositions,
s R p
R ∃ R
q R r

where the existential quantifier governs points and proofs below and right of it.
The Tait–Martin-Löf–Takahashi method [26] is adequate to the task. We

introduce a ‘parallel reduction’, ., which amounts to performing none, any or
all of the available contractions in a term, but no further redexes thus arising.
Proving the diamond property for . will establish it for →→. Here is how.

Lemma 11 (parallelogram) Let R,P be binary relations with R ⊆ P ⊂ R∗.
If P has the diamond property, then so has R∗.

Proof. If sR∗p then for some m, sRmp, hence also sPmp. Similarly, for some n,
sPnq. We may now define a ‘parallelogram’ tij for 0 ≤ i ≤ m, 0 ≤ j ≤ n, first
taking two sides to be the P -sequences we have, s = t00Pt10P . . . P tm0 = p and
s = t00Pt01P . . . P t0n = q, then applying the diamond property

for 0 ≤ i < m, 0 ≤ j < n
tij P t(i+1)j

P ∃ P
ti(j+1) P t(i+1)(j+1)

Let r = tmn. The lower two sides give pPnr and qPmr, so pR∗r and qR∗r. ut
By design, parallel reduction fits Lemma 11. We have structural rules for

each construct, together with υ and β rules.

Definition 12 (parallel reduction) Let parallel reduction, ., be defined by
mutual induction for terms and eliminations, as follows.

∗i . ∗i
S . S′ T . T ′

(π x :S)→ T . (π x :S′)→ T ′
t . t′

λx. t . λx. t′
e . e′

e . e′
t . t′ T . T ′

t :T . t′

x . x
f . f ′ s . s′

f s . f ′ s′
t . t′ T . T ′

t :T . t′ :T ′
t . t′ S . S′ T . T ′ s . s′

(λx. t : (π x :S)→ T ) s . (t′ :T ′)[s′ :S′/x]

Lemma 13 (parallel reduction computes)  ⊆ . ⊆ →→.

Proof. Both inclusions are easy inductions on derivations. ut
Crucially, parallel reduction commutes with substitution, because the latter

duplicates or drops redexes, but never subdivides them.

Lemma 14 (vectorized substitution) Admissibly, t . t′ e . e′

t[e/y] . t′[e′/y]
.



Proof. Proceed by structural induction on the derivation of t . t′. Effectively
we are lifting a substitution on terms to a substitution on parallel reduction
derivations. The only interesting cases are for variables and β-contraction.

For yi . yi where ei/yi and e′i/yi are in the substitutions ‘before’ and ‘after’:
here, we substitute the given derivation of ei . e

′
i.

For (λx. t : (π x :S)→ T )s . (t′ :T ′)[s′ :S′/x], where our ‘argument’ inductive
hypotheses yield (s :S)[e/y] . (s′ :S′)[e′/y], we may extend the term and deriva-
tion substitutions, then use ‘body’ hypotheses to deduce t[(s :S)[e/y]/x, e/y] .
t′[(s′ :S′)[e′/y]/x, e′/y] and similarly for T ; the usual composition laws allow us
to substitute in phases −[(s :S)[e/y]/x, e/y] = −[s′ :S′/x][e/y] and the β rule
then yields ((λx. t : (π x :S)→ T ) s)[e/y] . (t′ : T ′)[s′ :S′/x][e/y]. ut

Iterating Lemma 14, we get that if e→→ e′ and t→→ t′, then t[e/x]→→ t′[e′/x].

Lemma 15 (parallel reduction diamond) s . p
O ∃O
q . r

Proof. We use induction on the derivation of s . p, then case analysis on the
derivation of s . q. Where both use the same rule, the inductive hypotheses yield
common parallel reducts. The only interesting cases are where computation is
possible but one side declines the opportunity.

For υ, we have
s . p S . P
s :S . p

s . q S . Q
s :S . q :Q

s :S . q :Q
.

Inductively, we obtain
s . p
O ∃O
q . r

and
S . P
O ∃ O
Q . R

, then also
q . r Q . R
q :Q . r

.

For β, we have
s′ . p′ S . P S′ . P ′ s . p

(λx. s′ : (π x :S)→ S′) s . (p′ :P ′)[p :P/x]

s′ . q′ S . Q S′ . Q′

...
...

... s . q
(λx. s′ : (π x :S)→ S′) s . (λx. q′ : (π x :Q)→ Q′) q

Induction yields common reducts r′, R,R′, r, so (p′ :P ′)[p :P/x] . (r′ :R′)[r :R/x]
by Lemma 14, then the β rule gives us the required

q′ . r′ Q . R Q′ . R′ q . r
(λx. q′ : (π x :Q)→ Q′) q . (r′ :R′)[r :R/x]

ut

Corollary 16 (confluence) s→→ p
↓↓ ∃ ↓↓
q →→ r

Proof. Apply Lemma 11 with Lemma 13 and Lemma 15. ut



7 Subtyping and its Metatheory

Subtyping is the co- and contravariant lifting of the universe ordering through
the function type, where Luo’s Extended Calculus of Constructions is covariant
in the codomain and equivariant in the domain [17]. It is not merely convenient,
but crucial in forming polymorphic types like ∗1 3 (0X :∗0)→ (1x :X)→ X, as
the fun rule demands X : ∗1. To establish that cut elimination preserves typing,
we must justify the subtyping in the elim rule with a proof of subsumption, i.e.,
that term can be lifted from sub- to supertype. While developing its proof, below,
I had to adjust the definition to allow a little wiggle room where the application
rule performs substitution: type annotations obstruct the proof. Rather than
demanding cut elimination to get rid of them, I deploy wilful ignorance.

Definition 17 (subtyping) Let ∼ (‘similarity’) identify terms and elimina-
tions structurally up to s :S ∼ s :S′. Define subtyping inductively thus.

S ∼ T
S � T

j � i
∗i � ∗j

S′ � S T � T ′
(π x :S)→ T � (π x :S′)→ T ′

In particular, subtyping is reflexive, so a term e is accepted if its synthesized
type S and its checked type T have a common reduct.

Note that computation plays no role in subtyping: given that it is deployed at
the ‘change of direction’, we can always use post and pre to compute as much
as is needed to make this rather rigid syntactic definition apply. The rigidity then
makes it easier to establish the crucial metatheoretic properties of subtyping.

Lemma 18 (subtyping transitivity) Admissibly, R � S S � T
R � T .

Proof. Contravariance in the rule for function types obliges us to proceed by
induction on the maximum of the heights of the derivations (or, in effect, the
‘size change’ principle, for which subtyping is a paradigmatic example). If both
derivations are by similarity, the result is by similarity. Otherwise, we have either
sorts, in which case the transitivity of � suffices, or function types, in which case
the result follows from the inductive hypotheses. ut

We need two results about the interaction between subtyping and compu-
tation. If we compute one side, we can compute the other side to match, and
if we compute both sides independently, we can compute further to reestablish
subtyping. Both will depend on the corresponding fact about similarity.

Lemma 19 (similarity preservation) Again, with ∃ applying below and right,

S ∼ T
O ∃ O
S′ ∼ T ′

S ∼ T
O O
S′ T ′

∃ O O
S′′ ∼ T ′′

S ∼ T
↓↓ ∃ ↓↓
S′ ∼ T ′

S ∼ T
↓↓ ↓↓
S′ T ′

∃ ↓↓ ↓↓
S′′ ∼ T ′′



Proof. For ., use copycat induction on derivations. If just one side computes, we
need only compute the other. When both compute apart, we need to compute
both back together, hence the far left ∃. For →→, we iterate the results for .. ut

Lemma 20 (subtyping preservation)

S � T
↓↓ ∃ ↓↓
S′ � T ′

S � T →→ T ′

∃ ↓↓ ‖
S′ � T ′

S � T
↓↓ ↓↓
S′ T ′

∃ ↓↓ ↓↓
S′′ � T ′′

Proof. Induction on the derivation of S � T . Lemma 19 covers similarity. For
sorts, there is no way to compute. For function types, computation occurs only
within sources and targets, so the inductive hypotheses deliver the result. ut

Lemma 21 (subtyping stability) S � T ⇒ S[r :R/x] � T [r :R′/x]

Proof. Induction on derivations. Wherever R and R′ occur distinctly, ∼ ignores.
ut

The key result about subtyping is that it is justified by the admissibility of
subsumption, pushing terms up the ordering. We may extend subtyping point-
wise to contexts and establish the following rule, contravariant in contexts.

Theorem 22 (subsumption) If ∆′ � ∆, then admissibly,

∆ ` ρ S 3 s
∆′ ` ρ T 3 s S � T

∆ ` ρ e ∈ S
∃S′.S′ � S ∧∆′ ` ρ e ∈ S′

Proof. We proceed by induction on typing derivations. For pre, we make use of
Lemma 20. We may clearly allow iterated pre to advance types by →→, not just
 . I write ∴ to mark an appeal to the inductive hypothesis.

∆ ` ρ R 3 t
∆ ` ρ S 3 t S  R

S � T
↓↓ ∃ ↓↓
R � R′

∴ ∆′ ` ρ R′ 3 t
∆′ ` ρ T 3 t

For sort, transitivity of � suffices. For fun, we may pass the inflation of the
desired sort through to the premises and appeal to induction.

For lam, we have S′ � S T � T ′
(π x :S)→ T � (π x :S′)→ T ′

∆, ρπ x :S ` ρ T 3 t
∆ ` ρ (π x :S)→ T 3 λx. t

The contravariance of function subtyping allows us to extend the context with

the source subtype and check the target supertype,
∴ ∆′, ρπ x :S′ ` ρ T ′ 3 t

∆′ ` ρ (π x :S′)→ T ′ 3 λx. t .

For elim, we have
∆ ` ρ e ∈ R
∆ ` ρ S 3 e R � S S � T . Inductively, for some R′ � R

we have ∆′ ` ρ e ∈ R′ and by Lemma 18, we get R′ � T and apply elim.
For post, we may again appeal to Lemma 20. For var, we look up the subtype
given by the contextual subtyping.



For app, we have
∆0 ` ρ f ∈ (π x :S)→ T ∆1 ` ρπ S 3 s

∆0 +∆1 ` ρ f s ∈ T [s :S/x]
. Given that ∆0 and

∆1 share a precontext, we have ∆′0 � ∆0 and ∆′1 � ∆1. Inductively, we may
deduce in succession, ∴ ∃S′, T ′. S � S′ ∧ T ′ � T ∧ ∆′0 ` ρ f ∈ (π x :S′)→ T ′

∴ ∆′1 ` ρπ S′ 3 s
from which we obtain ∆′0 + ∆′1 ` ρ f s ∈ T ′[s :S′/x] where Lemma 21 gives, as
required, T ′[s :S′/x] � T [s :S/x]. ut

8 Not That Kind of Module System

Above, I claimed that Γ -contexts and typing deriviations yield R-modules. Let
us make that formal. Firstly, what is an R-module?

Definition 23 (R-module) An R-module is a set M with

zero 0 : M
addition −+− : M ×M →M

scalar multiplication −− : R×M →M

which make (M, 0,+) a commutative monoid and are compatible R in that, for
all m ∈M 0m = m (ρ+ π)m = ρm+ πm (ρπ)m = ρ(πm).

The obvious (and, for us, adequate) way to form R-modules is pointwise.

Lemma 24 (pointwise R-modules) X → R is an R-module with

0x = 0 (f + g) x = f x+ g x (ρf) x = ρ(f x)

Proof Calculation with rig laws for R. �
By taking X = 0 and, we get that 0 → R ∼= 1 is an R-module. By taking

X = 1, we get that 1→ R ∼= R itself is an R-module.

Lemma 25 (contexts R-modules) Γ -contexts form an R-module.

Proof The Γ -contexts, ∆ are given by functions ∆|− : dom(Γ ) → R, where
(∆, ρx :S,∆′)|x = ρ. Lemma 24 applies. �

Where the ‘coeffects’ treatment of resources from Petricek and coauthors [21]
retains the non-dependent mode of splitting the context—some variables into
one premise, the rest in the other—the potential for type dependency forces
more rigidity upon us. The module structure of Γ -contexts lets us send Γ to all
premises, splitting up the resources the context gives each of Γ ’s variables.

What about typing derivations? We can play the same game. Let T (X) be
the set of finitely branching trees whose nodes are labelled with elements of X.
The typing rules tell us which elements D, of T (J ) constitute valid deductions
of the judgment at the root. We can separate such a tree into a shape and a
set of positions. The elements of T (J ) with a given shape form a module by
lifting R pointwise over positions. That is but a dull fact about syntax, but
more interesting is that the module can then be restricted to valid derivations.



Definition 26 (shape and positions) Shapes, d, of derivations inhabit trees
T (P) of prejudgments. The shape of a given derivation is given by taking b−c :
T (J ) → T (P) to be the functorial action T (b−c) which replaces each judg-
ment with its corresponding prejudgment. Position sets, Pos : T (P) → Set and
prejudgment positions Pos′ : P → Set are given structurally:

Pos

(
d1...dn
P

)
= Pos′(P ) +

∑
i

Pos(di) Pos′(Γ `) = 0
Pos′(Γ ` T 3 t) = dom(Γ ) + 1
Pos′(Γ ` e ∈ S) = dom(Γ ) + 1

where 1 is the unit type with element ?.

That is, each typing prejudgment has a resource position for each quantity in
its context and for the number of things to be constructed. A straightforward
recursive labelling strategy then yields the following.

Lemma 27 (representing derivations) ∀d ∈ T (P).
{D : T (J ) | bDc = d} ∼= Pos(d)→ R

Proof Structural induction. At each node, {J : J | bJc = P} ∼= Pos′(P )→ R.

P J Pos′(P )→ R
Γ ` Γ `
Γ ` T 3 t ∆ ` ρ T 3 t x 7→ ∆|x ; ? 7→ ρ
Γ ` e ∈ S ∆ ` ρ e ∈ S x 7→ ∆|x ; ? 7→ ρ �

The derivation trees of shape d thus form an unremarkable R-module. Let us
establish something a touch more remarkable. In fact it is obvious, because when
designing the system, I took care to ensure that any nonzero resource demand
in the conclusion of each rule is linearly a factor of the demands in the premises.

Theorem 28 (valid derivation modules) For any valid derivation tree D
of shape d, the R-module on {D′ : T (J ) | bD′c = d} refines to an R-module on
{D′ : T (J ) | bD′c = d,D′ valid}.
Proof It is necessary and sufficient to check closure under addition and scalar
multiplication as the latter gives us that 0D is a valid zero. The proof is a
straightforward induction on d, then inversion of the rules yielding the conclu-
sion. For scalar multiplication, I give the cases for var, app and cut, as they
give the pattern for the rest, showing local module calculuations by writing true
equations in places where one side is given and the other is needed.

φ

(
Γ, x :S, Γ ′ `

0Γ, ρ x :S, 0Γ ′ ` ρ x ∈ S

)
=

Γ, x :S, Γ ′ `
0Γ, φρ x :S, 0Γ ′ ` φρ x ∈ S

φ


∆ ` ρ f ∈ (π x :S)→ T
∆′ ` ρπ S 3 s
∆+∆′ ` ρ f s ∈ T [s :S/x]

 =

φ∆ ` φρ f ∈ (π x :S)→ T
φ∆′ ` (φρ)π S 3 s

φ∆+ φ∆′ ` φρ f s ∈ T [s :S/x]

φ

(
b∆c `0 ∗i 3 S ∆ ` ρ S 3 s

∆ ` ρ s :S ∈ S

)
=
bφ∆c `0 ∗i 3 S φ∆ ` φρ S 3 s

φ∆ ` φρ s :S ∈ S



For addition, I give just the app case, which makes essential use of commutativity
of the rig’s addition and distributivity of multplication over addition.

∆0 ` ρ0 f ∈ (π x :S)→ T
∆0
′ ` ρ0π S 3 s

∆0 +∆0
′ ` ρ0 f s ∈ T [s :S/x]

+

∆1 ` ρ1 f ∈ (π x :S)→ T
∆1
′ ` ρ1π S 3 s

∆1 +∆1
′ ` ρ1 f s ∈ T [s :S/x]

=

∆0 +∆1 ` (ρ0 + ρ1) f ∈ (π x :S)→ T
∆0
′ +∆1

′ ` (ρ0 + ρ1)π S 3 s
(∆0 +∆1) + (∆0

′ +∆1
′) ` (ρ0 + ρ1) f s ∈ T [s :S/x]

Hence, valid derivations form an R-module. �
Not only can we multiply by scalars and add. We can also pull out common

factors and split up our resources wherever they make multiples and sums.

Lemma 29 (factorization) If ∆ ` φρ T 3 t then for some context named
∆/φ, ∆ = φ(∆/φ) and ∆/φ ` ρ T 3 t. Similarly, if ∆ ` φρ e ∈ S then for some
∆/φ, ∆ = φ(∆/φ) and ∆/φ ` ρ e ∈ S.

Proof. Induction on derivations. The only interesting case is app.

∆0 ` φρ f ∈ (π x :S)→ T ∆1 ` (φρ)π S 3 s
∆0 +∆1 ` φρ f s ∈ T [s :S/x]

Inductively, ∆0/φ ` ρ f ∈ (π x :S)→ T , and reassociating, ∆1/φ ` ρπ S 3 s, so
distribution gives us φ(∆0/φ+∆1/φ) ` φρ f s ∈ T [s :S/x]. ut

This result does not mean R has multiplicative inverses, just that to make φ
things at once, our supplies must come in multiples of φ, especially when φ = 0.

Corollary 30 (nothing from nothing) If ∆ ` 0 T 3 t then ∆ = 0b∆c.

Proof. Lemma 29 with φ = ρ = 0. ut

Lemma 31 (splitting) If ∆ ` (φ + ρ) T 3 t then for some ∆ = ∆′ + ∆′′,
∆′ ` φ T 3 t and ∆′ ` ρ T 3 t. Similarly, if ∆ ` (φ + ρ) e ∈ S then for some
∆ = ∆′ +∆′′, ∆′ ` φ e ∈ S and ∆′′ ` ρ e ∈ S.

Proof. Induction on derivations. The only interesting case is app.

∆0 ` (φ+ ρ) f ∈ (π x :S)→ T ∆1 ` (φ+ ρ)π S 3 s
∆0 +∆1 ` (φ+ ρ) f s ∈ T [s :S/x]

Inductively, ∆′0 ` φ f ∈ (π x : S) → T and ∆′′0 ` ρ f ∈ (π x : S) → T , and
distributing, ∆′1 ` φπ S 3 s and ∆′′1 ` ρπ S 3 s, so ∆′0 +∆′1 ` φπ f s ∈ T [s :S/x]
and ∆′′0 +∆′′1 ` ρπ f s ∈ T [s :S/x]. ut



9 Resourced Stability Under Substitution

Let us establish that basic thinning and substitution operations lift from syntax
(terms and eliminations) to judgments (checking and synthesis). It may seem
peculiar to talk of thinning in a precisely resourced setting, but as the precontext
grows, the context will show that we have zero of the extra things.

Notationally, it helps to define localization of judgments to contexts, in that
it allows us to state properties of derivations more succinctly.

Definition 32 (localization) Define − ` − : Cx(Γ )× J → J
∆ ` ∆′ ` ρ T 3 t = ∆,∆′ ` ρ T 3 t
∆ ` ∆′ ` ρ e ∈ S = ∆,∆′ ` ρ e ∈ S

Strictly speaking, I should take care when localizing ∆ ` J to freshen the
names in J ’s local context relative to ∆. For the sake of readability, I shall pre-
sume that accidental capture does not happen, rather than freshening explicitly.

Lemma 33 (thinning) Admissibly, ∆ ` J
∆, 0Γ ` J

Proof. Induction on derivations, with J absorbing local extensions to the con-
text, so the inductive hypothesis applies under binders. We can thus replay the
input derivation with 0Γ inserted. In the app case, we need that 0Γ + 0Γ = 0Γ .
In the var case, inserting 0Γ preserves the applicability of the rule. ut

Lemma 34 (substitution stability) Admissibly,
∆,φx :S ` J ∆′ ` φ e ∈ S

∆+∆′ ` J [e/x]

Proof. Induction on derivations, effectively substituting a suitable ∆′, 0Γ ` φ e ∈
S for every usage of the var rule at some b∆c, φ x :S, 0Γ ` φ x ∈ S. Most cases
are purely structural, but the devil is in the detail of the resourcing, so let us take
account. For pre, lam, elim and post, the resources in ∆ are undisturbed and
the induction goes through directly. For sort and fun, ∆ = 0Γ , and Corollary
30 tells us that φ = 0 and hence ∆′ = 0Γ , pushing the induction through. For
var with variables other than x, again, φ = 0 and the induction goes through.
For var at x itself, Lemma 33 delivers the correct resource on the nose. For cut,
we may give all of the es to the term and (multiplying by 0, thanks to Theorem
28) exactly none of them to its type. In the app case, Lemma 31 allows us to
share out our es in exactly the quantities demanded in the premises. ut

10 Computation Preserves Typing

The design of the system allows us to prove that computation in all parts of
a judgment preserves typing: inputs never become subjects at any point in the
derivation. While following the broad strategy of ‘subject reduction’ proofs, ex-
emplified by McKinna and Pollack [19], the result comes out in one delightfully
unsubtle dollop exactly because information flows uniformly through the rules.



We can lift →→ to contexts, simply by permitting computation in types, and
we can show that any amount of computation in judgment inputs, and a parallel
reduction in the subject, preserves the derivability of judgments upto computa-
tion in outputs. We should not expect computation to preserve the types we can
synthesize: if you reduce a variable’s type in the context, you should not expect
to synthesize the unreduced type, but you can, of course, still check it.

Theorem 35 (parallel preservation)

∆ T t
↓↓ ↓↓ O
∆′ T ′ t′

⇒ ∆ ` ρ T 3 t
∆′ ` ρ T ′ 3 t′

∆ e
↓↓ O
∆′ e′

⇒
S

∃↓↓
S′
∧ ∆ ` ρ e ∈ S
∆′ ` ρ e′ ∈ S′

Proof We proceed by induction on derivations and inversion of .. Let us work
through the rules in turn.

Type Checking For pre, we have

∆ ` ρ R 3 t
∆ ` ρ T 3 t

∆ t T  R
↓↓ O ↓↓ ∃ ↓↓
∆′ t′ T ′ →→ R′

∴ ∆′ ` ρ R′ 3 t′
∆′ ` ρ T ′ 3 t′

with the confluence of computation telling me how much computation to do to
R if I want T ′ to check t′. For sort, subject and checked type do not reduce,
but one axiom serves as well as another.

given Γ `0 ∗j 3 ∗i j � i Γ →→ Γ ′ deduce Γ ′ `0 ∗j 3 ∗i

For fun and lam, respectively, we must have had

Γ `0 ∗i 3 S
Γ, x :S `0 ∗i 3 T

Γ `0 ∗i 3 (π x :S)→ T

Γ S T
↓↓ O O
Γ ′ S′ T ′

∴ Γ ′ `0 ∗i 3 S′
∴ Γ ′, x :S′ `0 ∗i 3 T ′

Γ ′ `0 ∗i 3 (π x :S′)→ T ′

∆, ρπ x :S ` ρ T 3 t
∆ ` ρ (π x :S)→ T 3 λx. t

Γ S T t
↓↓ ↓↓ ↓↓ O
Γ ′ S′ T ′ t′

∴ ∆′, ρπ x :S′ ` ρ T ′ 3 t′
∆′ ` ρ (π x :S′)→ T ′ 3 λx. t′

For elim, we have two cases. For the structural case, we must compute.

∆ ` ρ e ∈ S
∆ ` ρ T 3 e S � T

∆ T e
↓↓ ↓↓ O
∆′ T ′ e′

∴

S

∃↓↓
S′
∧ ∆′ ` ρ e′ ∈ S′

S � T
↓↓ ↓↓
S′ T ′

∃ ↓↓ ↓↓
S′′ � T ′′

∆′ ` ρ e′ ∈ S′
∆′ ` ρ e′ ∈ S′′ S

′ →→ S′′

∆′ ` ρ T ′′ 3 e′ S′′ � T ′′

∆′ ` ρ T ′ 3 e′ T ′ →→ T ′′



Lemma 20 reestablishes subtyping after computation.
For υ-contraction, we have a little more entertainment. We start with

∆ ` ρ S 3 s
· · ·

∆ ` ρ s :S ∈ S′
∆ ` ρ T 3 s :S

∆ s S � T
↓↓ O ↓↓ ↓↓
∆′ s′ S′ T ′

∃ ↓↓ ↓↓
S′′ � T ′′

∴ ∆′ ` ρ S′′ 3 s′

Then by Theorem 22 (subsumption), we obtain

∆′ ` ρ S′′ 3 s′
∆′ ` ρ T ′′ 3 s′ S

′′ � T ′′

∆′ ` ρ T ′ 3 s′ T ′ →→ T ′′

Type Synthesis For post, we have

∆ ` ρ e ∈ S
∆ ` ρ e ∈ R

∆ e S  R
↓↓ O ∃ ↓↓ ∃ ↓↓
∆′ e′ S′ →→ R′

∴ ∆′ ` ρ e′ ∈ S′
∆′ ` ρ e′ ∈ R′

For var, again, one axiom is as good as another

0Γ0, ρ x :S, 0Γ1 ` ρ x ∈ S

Γ0 S Γ1

↓↓ ↓↓ ↓↓
Γ ′0 S

′ Γ ′1
0Γ ′0, ρ x :S′, 0Γ ′1 ` ρ x ∈ S′

The case of cut is just structural.

b∆c `0 ∗i 3 S ∆ ` ρ S 3 s
∆ ` ρ s :S ∈ S

∆ S s
↓↓ O O
∆′ S′ s′

∴ b∆′c `0 ∗i 3 S′ ∴ ∆′ ` ρ S′ 3 s′
∆′ ` ρ s′ :S′ ∈ S′

For app, we have two cases. In the structural case, we begin with

∆0 ` ρ f ∈ (π x :S)→ T ∆1 ` ρπ S 3 s
∆0 +∆1 ` ρ f s ∈ T [s :S/x]

∆0 +∆1 f s
↓↓ ↓↓ O O
∆′0 +∆′1 f

′ s′

and we should note that the computed context ∆′0 + ∆′1 continue to share a
common (but more computed) precontext. The inductive hypothesis for the
function tells us the type at which to apply the inductive hypothesis for the

argument. We obtain

S T

∃ ↓↓ ∃ ↓↓
S′ T ′

∴ ∆′0 ` ρ f ∈ (π x :S′)→ T ′ ∴ ∆′1 ` ρπ S′ 3 s
∆′0 +∆′1 ` ρ f ′ s′ ∈ T ′[s′ :S′/x]

where Lemma 14 tells us that T [s : S/x] →→ T ′[s′ : S′/x]. This leaves only the
case where application performs β-reduction, the villain of the piece. We have

∆0 ` ρ (λx. t : (π x :S0)→ T0) ∈ (π x :S1)→ T1
∆1 ` ρπ S1 3 s

∆0 +∆1 ` ρ (λx. t : (π x :S0)→ T0) s ∈ T1[s :S1/x]

∆0 +∆1 t S0 T0 s S0 T0
↓↓ ↓↓ O O O O ↓↓ ↓↓
∆′0 +∆′1 t

′ S′0 T
′
0 s
′ S1 T1



noting that post might mean we apply at a function type computed from that
given. Let us first interrogate the type checking of the function. There will have
been some fun, and after pre computing S0 →→ S2 and T0 →→ T2, some lam:

b∆0c `0 ∗i 3 S0 b∆0c, x :S0 `0 ∗i 3 T0
b∆0c `0 ∗i 3 (π x :S0)→ T0

∆0, ρπ x :S2 ` ρ T2 3 t
∆0 ` ρ (π x :S2)→ T2 3 λx. t

We compute a common reduct S0 →→ {S′0, S1, S2} →→ S′1, and deduce inductively

∴ b∆′0c, x :S′1 `0 ∗i 3 T ′0 ∴ b∆′1c `0 ∗i 3 S′0
∴ ∆′0, ρπ x :S′1 ` ρ T ′0 3 t′ ∴ ∆′1 ` ρπ S′0 3 s′

so that cut and post give us ∆′1 ` ρπ s′ : S′0 ∈ S′1. Now, Lemma 34 (stability
under substitution) and cut give us

b∆′0 +∆′1c `0 ∗i 3 T ′0[s′ :S′0/x] ∆′0 +∆′1 ` ρ T ′0[s′ :S′0/x] 3 t′[s′ :S′0/x]
∆′0 +∆′1 ` ρ (t′ :T ′0)[s′ :S′0/x] ∈ T ′0[s′ :S′0/x]

so post can compute our target type to a common reduct T0 →→ {T ′0, T1, T2} →→
T ′1, and deliver ∆′0 +∆′1 ` ρ (t′ :T ′0)[s′ :S′0/x] ∈ T ′1[s′ :S′1/x]. �

Corollary 36 (preservation)

∆ T t
↓↓ ↓↓ ↓↓
∆′ T ′ t′

⇒ ∆ ` ρ T 3 t
∆′ ` ρ T ′ 3 t′

∆ e
↓↓ ↓↓
∆′ e′

⇒
S

∃↓↓
S′
∧ ∆ ` ρ e ∈ S
∆′ ` ρ e′ ∈ S′

Proof. Iteration of Theorem 35. ut

11 Erasure to an Implicit Calculus

Runtime programs live in good old lambda calculus and teletype font, to boot.

Definition 37 (programs) p ::= x | \x -> p | p p

I introduce two new judgment forms for programs, which arise as the erasure
of our existing fully explicit terms.

Definition 38 (erasure judgments) When ρ 6= 0, we may form judgments
as follows: ∆ ` ρ T 3 t I p ∆ ` ρ e ∈ S I p.

That is, programs are nonzero-resourced. Such judgments are derived by an
elaborated version of the existing rules which add programs as outputs. For
checking, we must omit the type formation rules, but we obtain implicit and
explicit forms of abstraction. For synthesis, we obtain implicit and explicit forms
of application. In order to ensure that contemplation never involves consumption,
we must impose a condition on the rigR that not only is the presence of negation

unnecessary, but also its absence is vital:
ρ+ π = 0
ρ = π = 0

.



Definition 39 (checking and synthesis with erasure)

pre+
∆ ` ρ R 3 t I p
∆ ` ρ T 3 t I p

T  R

lam0
∆, 0x :S ` ρ T 3 t I p

∆ ` ρ (φx :S)→ T 3 λx. t I p
ρφ = 0

lam+
∆, ρπ x :S ` ρ T 3 t I p

∆ ` ρ (π x :S)→ T 3 λx. t I \x -> p
ρπ 6= 0

elim+
∆ ` ρ e ∈ S I p
∆ ` ρ T 3 e I p

S � T

post+
∆ ` ρ e ∈ S I p
∆ ` ρ e ∈ R I p

S  R

var+
0Γ, ρ x :S, 0Γ ′ ` ρ x ∈ S I x

app0
∆ ` ρ f ∈ (φx :S)→ T I p b∆c `0 S 3 s

∆ ` ρ f s ∈ T [s :S/x] I p
ρφ = 0

app+
∆ ` ρ f ∈ (π x :S)→ T I p ∆′ ` ρπ S 3 s I p′

∆+∆′ ` ρ f s ∈ T [s :S/x] I p p′
ρπ 6= 0

cut+
b∆c `0 ∗i 3 S ∆ ` ρ S 3 s I p

∆ ` ρ s :S ∈ S I p

We can be sure that in the lam0 rule, the variable x bound in t occurs
nowhere in the corresponding p, because it is bound with resource 0, and it
will remain with resource 0 however the context splits, so the rule var+ cannot
consume it, even though var can still contemplate it . Accordingly, no variable
escapes its scope. We obtain without difficulty that erasure can be performed.

Lemma 40 (erasures exist uniquely and elaborate) If ρ 6= 0, then

∆ ` ρ T 3 t
∃!p. ∆ ` ρ T 3 t I p

∆ ` ρ T 3 t I p
∆ ` ρ T 3 t

∆ ` ρ e ∈ S
∃!p. ∆ ` ρ e ∈ S I p

∆ ` ρ e ∈ S I p
∆ ` ρ e ∈ S

Proof. Induction on derivations. ut
The unerased forms may thus be used to form types, as Theorem 28 then

gives us that
∆ ` ρ T 3 t I p
b∆c `0 T 3 t

∆ ` ρ e ∈ S I p
b∆c `0 e ∈ S

.

How do programs behave? They may compute by β reduction, liberally.

Definition 41 (program computation)

(\x -> p) p′  p[p′/x]
p  p′

\x -> p  \x -> p′
p  p′

p pa  p′ pa

p  p′

pf p  pf p
′



The key to understanding the good behaviour of computation is to observe
that any term which erases to some \x -> p must contain a subterm on its left
spine typed with the lam+ rule. On the way to that subterm, appeals to app0
will be bracketed by appeals to lam0, ensuring that we can dig out the non-zero
λ by computation. Let us now show that we can find the lam+.

Definition 42 (n-to-ρ-function type) Inductively, (πx :S) → T is a 0-to-ρ-
function type if ρπ 6= 0; (φx : S) → T is an n + 1-to-ρ-function type if ρφ = 0
and T is an n-to-ρ-function type.

Note that n-to-ρ-function types are stable under substitution and subtyping. Let
λn denote λ-abstraction iterated n times.

Lemma 43 (applicability) If ∆ ` ρ T 3 t I \x -> p, then T →→ some n-to-ρ-
function type T ′ and t→→ some λny. λx. t′ such that

∆ ` ρ T ′ 3 λny. λx. t′ I \x -> p

If ∆ ` ρ e ∈ S I \x -> p, then S →→ some n-to-ρ-function type S′ and e →→
some λny. λx. t′ : S′ such that

∆ ` ρ λny. λx. t′ : S′ ∈ S′ I \x -> p

Proof. Proceed by induction on derivations. Rules var+ and app+ are excluded
by the requirement to erase to \x->p. For pre+, the inductive hypothesis applies
and suffices. For lam0, the inductive hypothesis tells us how to compute t and
T to an abstraction in an n-to-ρ-function type, and we glue on one more λy.−
and one more (φ y : S) → −, respectively. At lam+, we can stop. For post+,
the inductive hypothesis gives us a cut at type S′, where S →→ S′, so we can take
the common reduct S →→ {S′, R} →→ R′ and deliver the same cut at type R′. For
cut+, we again proceed structurally. This leaves only the entertainment.

For elim+, we had e ∈ S with S � T . Inductively, e →→ λy. λx. t′ : S′

with S →→ S′, some n-to-ρ-function type. Lemma 20 gives us that T →→ T ′

with S′ � T ′, also an n-to-ρ-function type. Hence T ′ 3 λy. λx. t′ : S′ and then
Theorem 35 (preservation) allows the υ-reduction to T ′ 3 λy. λx. t′.

For app0, the inductive hypothesis gives us f →→ λy. λny. λx. t′ : (φx :S′)→
T ′ with S →→ S′ and T →→ T ′, and T ′ an n-to-ρ-function type. Hence f s →→
(λny. λx. t′ : T ′)[s :S′/x]. Preservation tells us the reduct is well typed at some
other reduct of T [s :S/x], but the common reduct is the type we need. ut

Theorem 44 (step simulation) The following implications hold.

∆ ` ρ T 3 t I p
∃t′. t→→ t′ ∧ ∆ ` ρ T 3 t′ I p′

p  p′

∆ ` ρ e ∈ S I p
∃e′, S′. e→→ e′ ∧ S →→ S′ ∧ ∆ ` ρ e′ ∈ S′ I p′

p  p′



Proof. Induction on derivations and inversion of program computation. The only
interesting case is the app+ case when the computation takes a β-step.

∆ ` ρ f ∈ (π x :S)→ T I \x -> p ∆′ ` ρπ S 3 s I p′

∆+∆′ ` ρ f s ∈ T [s :S/x] I (\x -> p) p′  p[p′/x]
ρπ 6= 0

We have some f whose type is a 0-to-ρ function type and which erases to some
\x -> p, so we may invoke Lemma 43 to get that f →→ λx. t at some reduced
function type, (π x :S′) → T ′, where S′ still accepts the argument s, by preser-
vation, erasing to p′. Accordingly, f s→→ (t :T ′)[s :S′/x], where the latter is still
typed at a reduct of T [s :S/x] and erases to p[p′/x]. ut

Accordingly, once we know terms are well typed, contemplation has done its
job and we may erase to virtuous and thrifty 0-free programs.

12 Take It Or Leave It

Let us consider liberalising our rig-based resource managemen. At present, the
{0, 1,ω} rig imposes a kind of relevance, but not traditional relevance, in that
it takes at least two uses at multiplicity 1 or one at ω to discharge our spending
needs: what if we want traditional relevance, or even the traditional intuitionistic
behaviour? Similarly, we might sometimes want to weaken the linear discipline
to affine typing, where data can be dropped but not duplicated.

One option is to impose an ‘order’, ≤ on the rig. We can extend it pointwise
to Γ -contexts, so ∆ ≤ ∆′ if ∆′ has at least as many of each variable in Γ as ∆.

The ≤ relation should be reflexive and transitive, and at any rate we shall
need at least that the order respects the rig operations

ρ ≤ ρ
ρ ≤ π π ≤ φ

ρ ≤ φ
π ≤ φ

ρ+ π ≤ ρ+ φ
π ≤ φ
ρπ ≤ ρφ

π ≤ φ
πρ ≤ φρ

to ensure that valid judgments remain an R-module when we add weakening:

weak
∆ ` ρ T 3 t
∆′ ` ρ T 3 t ∆ ≤ ∆

′

To retain Lemmas 29 and 31 (factorization and splitting), we must also be able
to factorize and split the ordering, so two more conditions on ≤ emerge: factor-
ization and additive splitting.

ρπ ≤ ρφ
π ≤ φ

φ+ ρ ≤ π
∃φ′, ρ′. φ ≤ φ′ ∧ ρ ≤ ρ′ ∧ π = φ′ + ρ′

Stability under substitution requires no more conditions but a little more work.
The following lemma is required to deliver the new case for weak.

Lemma 45 (weakening) If ρ ≤ ρ′ then

∆′ ` ρ′π T 3 t
∃∆. ∆ ≤ ∆′ ∧ ∆ ` ρπ T 3 t

∆′ ` ρ′π e ∈ S
∃∆. ∆ ≤ ∆′ ∧ ∆ ` ρπ e ∈ S



Proof. Induction on derivations, with the interesting cases being var, weak and
app: the rest go through directly by inductive hypothesis and replay of the rule.
For var, form ∆ by replacing the ρ′π in ∆′ by ρπ, which is smaller.

For weak, we must have delivered ∆′′ ` ρ′πT 3 t from some ∆′ with ∆′ ≤ ∆′′
and ∆′ ` ρ′π T 3 t. By the inductive hypothesis, there is some ∆ ≤ ∆′ with
∆ ` ρπ T 3 t and transitivity gives us ∆ ≤ ∆′′.

For app, the fact that ≤ respects multiplication allows us to invoke the
inductive hypothesis for the argument, and then we combine the smaller contexts
delivered by the inductive hypotheses to get a smaller sum. ut

As a consequence, we retain stability of typing under substitution and thence
type preservation. To retain safe erasure, we must prevent weak from bringing

a contemplated variable back into a usable position by demanding
ρ ≤ 0
ρ = 0

.

If we keep ≤ discrete, nobody will notice the difference with the rigid system.
However, we may now add, for example, 1 ≤ ω to make ω capture run-time
relevance, or 0 ≤ 1 ≤ ω for affine typing, or 0, 1 ≤ ω (but not 0 ≤ 1) to make
(ωx :S)→ T behave like an ordinary intuitionistic function type whilst keeping
(1x :S)→ T linear: you can throw only plenty away.

13 Contemplation

Our colleagues who have insisted that dependent types should depend only on
replicable things have been right all along. The R-module structure of deriva-
tions ensures that every construction fit for consumption has an intuitionistic
counterpart fit for contemplation, replicable because it is made from nothing.

In a dependent type theory, the variables in types stand for things: which
things? It is not always obvious, because types may be used to classify more
than one kind of thing. The things that variables in types stand for are special:
when substituted for variables, they appear in types and are thus contemplated.
A fully dependent type theory demands that everything classified by type has a
contemplatable image, not that everything is contemplatable.

Here, we use the same types to classify terms and eliminations in what-
ever quantity, and also to classify untyped programs after erasure, but it is the
eliminations of quantity zero which get contemplated when the application rule
substitutes them for a variable, and everything classified by a type in one way
or another corresponds to just such a thing.

Such considerations should warn us to be wary of jumping to conclusions,
however enthusiastic we may feel. We learned from Kohei Honda that session
types are linear types, in a way which has been made precise intuitionistically
by Caires and Pfenning [7], and classically by Wadler [31], but we should not
expect a linear dependent type theory, to be a theory of dependent session types
per se. The linear dependent type theory in this paper is not a theory of session
types because contemplated terms give too much information: they represent
the participants which input and output values according to the linear types.



Dependency in protocol types should concern only the signals exchanged
by the participants, not the participants’ private strategies for generating those
signals. In fact, the signal traffic, the participants and the channels are all sorts
of things classified by session types, but it is only the signal traffic which must
inform dependency. That is another story, and I will tell it another time, but
it is based on the same analysis of how dependent type theories work. It seems
realistic to pursue programming in the style of Gay and Vasconcelos [13] with
dependent session types and linearly managed channels.

What we do have is a basis for a propositions-as-types account of certifying
linearly typed programs, where the idealised behaviour of the program can be
contemplated in propositions. When proving theorems about functions with unit-
priced types, we know to expect uniformity properties when the price is zero:
from parametricity, we obtain ‘theorems for free’ [23, 29]. What might we learn
when the price is small but not zero? Can we learn that a function from lists to
lists which is parametric in the element type and linear in its input necessarily
delivers a permutation? If so, the mission to internalise such results in type
theory, championed by Bernardy, Jansson and Paterson [5] is still more crucial.

Looking nearer, I have mentioned the desirability of a normalization proof,
and its orthogonality to resourcing. We must also look beyond ( and give
dependent accounts of other linear connectives: dependent ⊗ clearly makes sense
with a pattern matching eliminator; dependent (x :S)&T [x] offers the intriguing
choice to select an S or a T [x] whose type mentions what the S used to be, like
money or goods to the value of the money. But what are the duals?

It would be good to study datatypes supporting mutation. We have the
intriguing prospect of linear induction principles like

∀X :∗. ∀P :ListX → ∗.
(n :P [])( (c : (x :X)( (xsp : (xs :ListX)&P xs)( P (x :: fst xsp))→
(xs :ListX)( P xs

which allow us at each step in the list either to retain the tail or to construct a P
from it, but not both. Many common programs exhibit this behaviour (insertion
sort springs to mind) and they seem to fit the heuristic identified by Domı́nguez
and Pardo for when the fusion of paramorphisms an optimisation [11].

What we can now bring to all these possibilities is the separation of con-
templation from consumption, ensuring that contemplation requires no resource
and can correspondingly be erased. More valuable, perhaps, than this particular
technical answer to the challenge of fully integrating linear and dependent types
is the learning of the question ‘What are the contemplated images?’.
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for Martin-Löf Type Theory with Typed Equality Judgements. In 22nd IEEE
Symposium on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw,
Poland, Proceedings, pages 3–12. IEEE Computer Society, 2007.

3. Robin Adams. Pure type systems with judgemental equality. J. Funct. Program.,
16(2):219–246, 2006.

4. Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. A Bi-
Directional Refinement Algorithm for the Calculus of (Co)Inductive Constructions.
Logical Methods in Computer Science, 8(1), 2012.

5. Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Proofs for free -
parametricity for dependent types. J. Funct. Program., 22(2):107–152, 2012.

6. Edwin Brady. Idris, a general-purpose dependently typed programming language:
Design and implementation. J. Funct. Program., 23(5):552–593, 2013.
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