
In a world

Conor McBride

December 31, 2014

Abstract

In a world where modelling information flow (to allow or prevent it) is becoming increas-
ingly critical, type systems which account only for what stuff consists of, not where it is,
who knows it, when it is available, or other such considerations of time and space, are sadly
separated from key concerns. Dependent type systems generally require a Kripke semantics
to account for their contextualisation, so it might as well be an interesting Kripke semantics.
There should probably be a sentence between the first two sentences and this sentence should
probably not exist. There should probably be a sentence after this sentence but it does not
exist yet.

1 Introduction

I’ll write this when I know what I’m talking about.

2 Worlds and Quantifiers

Different things exist in different worlds. Your computer has different data from my computer.
The data available to the typechecker of my program are different from the data available to my
program at runtime. Because I am a dependently typed programmer, abstract approximants to
all runtime data are available to the typechecker, but I might like to ensure that information
flow from typechecker to runtime is restricted, in order to obtain healthy erasure properties and
acknowledge the fact that quantities which exist only to sustain specifications need not occupy
memory once the hard work starts.

Accordingly, let W be a preorder of ‘worlds’ u, v,w with arrows _. (Of course, W is thus a
category, and I shall prefer to use categorical terminology.) These worlds represent different
places where data can exist and computation can happen. For example1, W = {●,∗} with ● _ ∗

is the simplest nontrivial such system, modelling has runtime data on ‘earth’, ●, and typechecking
in ‘heaven’, ∗, with information flowing only upwards.

The preorder structure tells us between which worlds information can flow without explicit com-
munication: that is, which worlds are in scope for which other worlds. Worlds will show up in
judgments: everything we construct will be constructed in a particular world. Worlds will show up
in contexts: every variable we assume must be somewhere, as well as some kind of thing. Context
entries look like ux ∶S, where u is the world x comes from and S is its type. The key rule is this:

Γ, ux ∶S,∆ ⊢ valid u _ w
Γ, ux ∶S,∆ ⊢ wx ∈ S

1I use the word ‘example’, despite my preference for categorical terminology.

1



That is, x can be used for constructions in any world w to which x may travel from its ‘home’
world u.

Many type systems have some implicit separation of worlds baked into them, and it is very often
the case that the worlds something may inhabit are closely related with the type of thing it is. It
is liberating to discard this correlation and treat what and where as separable concerns.

An upset of W is a subset U ⊆W such that whenever u ∈ U and u _ w, w ∈ U . Let � be an upset
of W , namely the subset of worlds in which the construction of types is permitted. If we want
to construct types at all, we should probably ensure that � is nonempty. The extent to which a
system is ‘dependently typed’ is in some way characterized by the information flow to worlds in
�. In our example system, take � = {∗} ⊆ {●,∗} = W . This system has ‘full dependent types’,
because all things are in scope for typechecking, but supports erasure in that information which
exists only for typechecking purposes cannot flow to runtime.

We shall need a monotone operator �⋅ ∶W → � which maps each world w to the world in which
the types of w-constructions are constructed.

Let us consider functions and their types. There is a set Q of quantifiers, characterising the
varieties of functional abstraction which are possible. Each quantifiers acts as an endofunctor on
worlds, qw: If u _ w, then qu _ qw. This action explains how functions change their usage
as they move between worlds. We should expect that addition at runtime demands two runtime
numbers, but we should be sorely disappointed if the addition function, promoted to the type level,
could not also be used for numbers existing only at the type level. The key rules are, roughly
speaking:

Γ, qw x ∶S ⊢ w t ∶ T
Γ ⊢ wλx↦ t ∶ (q x ∶S)→ T

Γ ⊢ wf ∶ (q x ∶S)→ T Γ ⊢ qw s ∶ S
Γ ⊢ wf s ∶ T [s ∶S/x]

In our example system, let us take

Q = {∩,Π} qw ● ∗

Π ● ∗

∩ ∗ ∗

and thus deliver that all functions used in types take type-level values.

Now, in the course of checking an argument which itself is an application, the action of quantifiers
on worlds is iterated. Accordingly, the worlds we can reach from a given w by iterated quantification
or type formation form a subcategory Qw of W , ‘worlds local to w’, whose objects are given by
words in q ∈ (Q ∪ {�})∗, and whose arrows Qw(q, q′) are exactly the arrows qw _ q′w.

The key additional requirement which makes typing survive transmission between worlds is that Q
is itself a functor from W to preorders. Whenever v _ w, we need to map Qv(q, q′) to Qw(q, q′),
so qv _ q′v implies qw _ q′w. That is, embedding between worlds preserves their local preorder
structure.

3 Syntax and Computation

Let us develop a more formal account of the situation. I propose to adopt a bidirectional approach,
explicitly separating those syntactic forms from which types are synthesized and those for which

2



types proposed in advance are checked.

s, t,R,S, T,U ∶∶= e
∣ Type
∣ (q x ∶S)→ T
∣ λx↦ t

e, f,E,F ∶∶= (s ∶S)
∣ x
∣ f s

Observe that worlds in W occur nowhere in the syntax of terms. Quantifiers from Q, interpreted
differently in different worlds, are the things we see.

Substitution is defined as usual, but note that it makes sense only to substitute [e/x], not [s/x].
Moreover, λ is unencumbered by type annotation, but that any β-redex necessarily requires a type
annotation. Reduction is based on these two rules:

(λx↦ t ∶ (q x ∶S)→ T ) s↝ t[(s ∶S)/x] (s ∶S)↝ s

Ultimately, we can eliminate type annotation from the system and insist on computation in larger
steps, by hereditary substitution. However, for now, let us work with a small-step system, in
order to develop the rest of the metatheoretical apparatus without requiring the machinery of
normalization. Indeed, to put my money where my mouth is and also to reduce digression on the
topic of cumulative hierarchies (about which I have too much to say to say it here), I shall work
in the pleasingly näıve world of Type-in-Type.

Computation, t ↠ t′, is the reflexive-transitive contextual closure of ↝. It is straightforward to
show that↠ is stable under substitution. Moreover, as the contraction schemes contain no critical
pairs, a Takahashi-style ‘parallel reduction’ argument shows that ↠ has the ‘diamond property’:
if R↠ S and R↠ T , then for some R′, S ↠ R′ and T ↠ R′.

4 Typing Rules

Typing contexts look like this
Γ,∆ ∶∶= ⋅ ∣ Γ,w x ∶S

Let us have judgment forms

Γ ⊢ Γ ⊢ w T ∋ t Γ ⊢ w e ∈ S

Context validity is as follows.

⋅ ⊢

Γ ⊢ w Type ∋ S w ∈�

Γ,w x ∶S ⊢

I write S ≤ T for the relation ‘an S can be used wherever a T is needed’. Locally, I define this
by the rather symmetrical property of computational joinability, ∃U.S ↠ U ∧ T ↠ U , but we can
imagine deploying standard methods to add η-rules. In a cumulative setting, symmetry would
evaporate, but a directed inclusion is enough.

Type checking works like this:

(typ) w ∈� Γ ⊢
Γ ⊢ w Type ∋ Type

(fun)
w ∈� Γ, qw x ∶S ⊢ w Type ∋ T

Γ ⊢ w Type ∋ (q x ∶S)→ T

(syn) Γ ⊢ w e ∈ S S ≤ T
Γ ⊢ w T ∋ e

(abs)
Γ, qw x ∶S ⊢ w T ∋ t

Γ ⊢ w (q x ∶S)→ T ∋ λx↦ t

3



Type synthesis works like this:

(chk)
Γ ⊢�w Type ∋ S S ↠ T Γ ⊢ w T ∋ s

Γ ⊢ w (s ∶S) ∈ S
(var)

Γ, ux ∶S,∆ ⊢ u _ w
Γ, ux ∶S,∆ ⊢ w x ∈ S

(app)
Γ ⊢ w f ∈ R R↠ (q x ∶S)→ T Γ ⊢ qw S ∋ s

Γ ⊢ w f s ∈ T [(s ∶S)/x]

Context validity amounts to this:

(emp)
⊢

(ext)
Γ ⊢�u Type ∋ S

Γ, ux ∶S ⊢

It is my habit to let the metavariable J range over anything which may extend a context to a
judgment and to write Γ ⊢ J for that judgment. E.g., if J = ∆ ⊢, Γ ⊢ J is the judgment Γ,∆ ⊢.

The following sanity property is admissible, by straightforward induction on derivations.

Γ ⊢ J
Γ ⊢

With the usual remarks about variable freshness, we also have thinning admissible,

Γ ⊢ w Type ∋ S w ∈� Γ ⊢ J
Γ, ux ∶S ⊢ J

and thence a chance to establish stability under substitution by the usual method of glorified
substitution

Γ, ux ∶S ⊢ J S ↠ T Γ ⊢ u T ∋ s
Γ ⊢ J[(s ∶S)/x]

simply because wherever in a derivation the variable rule is used, we shall be able to replace it
by a suitably thinned synthesis for (s ∶ S) ∈ S. The catch, however, is that the variable can be
transported up the world preorder. We must show that its replacement can be correspondingly
transported.

It might be nice to show the following admissible (and indeed they are)

Γ ⊢ v T ∋ t v _ w
Γ ⊢ w T ∋ t

Γ ⊢ v e ∈ S v _ w
Γ ⊢ w e ∈ S

but the obvious strategy of induction on derivations will fail as soon as we try to go under a binder,
putting vs and ws into the context.

We need a suitable generalization to make the induction go through. The key is to consider
judgments-with-world-holes, J(⋅) where some quantifier-word-applied q⋅ can stand as a world: in
particular, let us insist that the target world of a typing judgment is of that form. We can form
a proper judgment J(w) by substituting w for the ⋅ and computing the iterated quantifier action.

Lemma (world subsumption). The following is admissible.

Γ ⊢ J(v) v _ w
Γ ⊢ J(w)

Proof. Induction on derivations. Let us proceed rule by rule.

emp J(⋅) is ⊢, so the assumption and conclusion coincide

4



ext there is nothing to prove unless J(⋅) = ∆(⋅), q ⋅ x ∶S ⊢; if so, we must have had the premise
Γ,∆(v) ⊢ �qv Type ∋ S, so the inductive hypothesis tells us that Γ,∆(w) ⊢ �qw Type ∋ S,
and we may deduce that Γ,∆(w) ⊢�qw Type ∋ S

typ we have Γ,∆(v) ⊢ qv Type ∋ Type, so we must have had qv ∈� and Γ,∆(v) ⊢; q⋅ is monotonic
and � is an upset, so qw ∈�; by inductive hypothesis, Γ,∆(w) ⊢; we thus deduce Γ,∆(w) ⊢

qw Type ∋ Type

fun we have Γ,∆(v) ⊢ qv Type ∋ (q x ∶S) → T , so we must have had Γ,∆(v), qqv x ∶S ⊢ Type ∋ T ,
with qv ∈ �; as before, qw ∈ � and by induction Γ,∆(w), qqw x ∶ S ⊢ Type ∋ T ; hence
Γ,∆(w) ⊢ qw Type ∋ (q x ∶S)→ T

syn induction

abs induction—as with fun, generalizing to J(⋅) lets us bind a variable in world qq⋅

chk induction

var there are two cases

1. ux ∶S in Γ,∆(⋅) with no ⋅ in u; Γ,∆(v) ⊢ qv x ∈ S
we must have Γ,∆(v) ⊢ and u _ qv; by induction, Γ,∆(w) ⊢; monotonicity tells us
that qv _ qw, so by transitivity, u _ qw; we may conclude Γ,∆(w) ⊢ qw x ∈ S

2. q′ ⋅ x ∶S in Γ,∆(⋅); Γ,∆(v) ⊢ qv x ∈ S
we must have Γ,∆(v) ⊢ and q′v _ qv; by induction, Γ,∆(w) ⊢; functoriality of Q tells
us that q′w _ qw; we may conclude Γ,∆(w) ⊢ qw x ∈ S

app induction ◻

We now obtain stability under substitution, as stated above, by a straightforward induction on
derivations. The crux comes when we are given Γ, ux ∶ S,∆ ⊢ w x ∈ S with u _ v, S ↠ T and
Γ ⊢ u T ∋ s and asked to deduce Γ,∆[s ∶ S/x] ⊢ w s ∶ S ∈ S. We have just what we need to
establish Γ ⊢ u s ∶ S ∈ S, then world subsumption and thinning finish the job.

5


