
LET’S SEE HOW THINGS UNFOLD:

STRONGLY FINAL COALGEBRAS IN DEPENDENT TYPE THEORY

CONOR MCBRIDE

Department of Computer and Information Sciences,University of Strathclyde
e-mail address: conor@cis.strath.ac.uk

Abstract. Coq and Agda, amongst the current crop of proof assistants based on Martin-
Löf’s intensional type theory, offer some support for coinductive definitions. Neither,
however, gives a satisfactory account of reasoning about such definitions. Agda does not
permit dependent case analysis of coinductive data; Coq does, at the drastic cost of losing
subject reduction. At the heart of the problem is equality: in this paper, I show that
dependent case analysis for coinductive data is incompatible with the inductively defined
equality traditionally supported by intensional type theories, and I offer an alternative,
based on the observational equality of Altenkirch et al., presented by means of a universe
construction in Agda.

1. Introduction

Coinductive types model infinite structures unfolded on demand, like evasive politicians:
they may never convince, but they always give an answer. Representing such evolving pro-
cesses or ‘survival strategies’ coinductively is often more attractive than representing them
as functions from a set of permitted observations, such as projections or finite approximants,
as it can be tricky to ensure that observations are meaningful and consistent. As program-
mers and reasoners, we need coinductive types and coprograms in our toolbox, equipped
with appropriate computational and logical machinery. As mathematicians, we may char-
acterize coinductive types as final coalgebras and coprograms as generated by the unique
map from any particular coalgebra (a strategy for handling one demand), but mechanizing
our blackboard methods brings a troubled negotiation with the bounded possibilities of
computation. This paper analyses and advances the art of the possible.

Lazy functional languages like Haskell [Pey03] exploit call-by-need computation to
over-approximate the programming toolkit for coinductive data: in a sense, all data is
coinductive and delivered on demand, or not at all if the programmer has failed to ensure
the productivity of a program.

Tatsuya Hagino pioneered a more precise approach, separating initial data from final
codata [Hag87]. The corresponding discipline of ‘coprogramming’ is given expression in

1998 ACM Subject Classification: MANDATORY list of acm classifications.
Key words and phrases: MANDATORY list of keywords.
An extended abstract of this article was published in the proceedings of CALCO 2009.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© Conor McBride
Creative Commons

1

2 CONOR MCBRIDE

Cockett’s work on Charity [CF92, CS92] and in the work of Turner and Telford on ‘Ele-
mentary Strong Functional Programming’ [Tur95, TT97, Tur04]. Crucially, all distinguish
recursion (structurally decreasing on input) from corecursion (structurally increasing in out-
put). As a total programmer, I am often asked ‘how do I implement a server as a program
in your terminating language?’, and I reply that one should not: a server is a coprogram in
a language guaranteeing liveness, a strategy for surviving the caprice of clients.

To combine programming and reasoning, or just to program with greater precision,
we might look to the proof assistants and functional languages based on intensional type
theories, which are now the workhorses of formalized mathematics and metatheory, and
the mainspring of innovation in typed programming [Nor07, BC04, MM04]. But we are in
for a nasty shock if we do. Coinduction in Coq is broken: computation does not preserve
type. Coinduction in Agda is weak : dependent observations are disallowed, so whilst we
can unfold a process, we cannot see that it yields its unfolding.

At the heart of the problem is equality. Intensional type theories distinguish two notions
of equality: the typing rules identify types and values according to an equality judgment,
decided mechanically during typechecking; meanwhile, we can express equational proposi-
tions as types whose inhabitants (if we can find them) justify the substitution of like for
like. It is a standard but troublesome practice to ensure that these notions coincide for
closed terms, comparing the construction even of infinitary objects, where substitutability
is more a question of observation.

In neither Coq nor Agda is a coprogram judgmentally equal to its unfolding, hence
the failure in the former. That is not just bad luck: in this presentation, I check that it is
impossible for any judgmental equality to admit unfolding and remain decidable.

Moreover, neither system admits a substitutive propositional equality which identifies
bisimilar processes, without losing the basic computational necessity that closed expressions
compute to canonical values of the same type [Hof95]. That is just bad luck: in this paper, I
define a small dependent type theory (sufficient for exploratory purposes) and equip it with
just such a notion of equality, following earlier joint work with Altenkirch and Swierstra on
observational equality for functions [AMS07]. In this setting, I prove that each coprogram
is equal to its unfolding.

The key technical ingredient is the notion of ‘interaction structure’ due to Hancock and
Setzer [HS00] — a generic treatment of indexed coinductive datatypes, which I show here to
be closed under its own notion of bisimulation. A similar treatment has been implemented
in the new version of the Epigram system.

Equipped with a substitutive propositional equality that includes bisimulation, we can
rederive Coq’s dependent observation for codata from Agda’s simpler coalgebraic presen-
tation, whilst ensuring that what types we have, we hold. Let’s see how things unfold.

2. A small dependent type theory: TT

If our problem is to equip dependent type theory with a workable notion of coinductive
type, let us fix a type theory with which to work. We shall need dependent functions in Π-
types, (x :S)→ T , and dependent tuples in Σ-types, (x :S)×T ; we shall need the empty (0)
and unit (1) types, modelling absence and presence, and the Boolean type (2) to represent
distinctions. I present this type theory as a system of mutually inductive judgments.

LET’S SEE HOW THINGS UNFOLD 3

Definition 2.1 (TT Judgments). Judgments in TT take the form Γ ` J , where Γ is a
context assigning types to variables and J may take one of five forms, as shown below.

Γ ` valid Γ is a valid context, giving types to variables
Γ ` T type T is a type in context Γ
Γ ` S ≡ T type S and T are equal types in context Γ
Γ ` t : T term t has type T in context Γ
Γ ` s ≡ t : T s and t are equal at type T in context Γ

The system of inference rules will be formulated to ensure that the following well-
formedness conditions always hold by induction on derivations.

Definition 2.2 (Well-formed judgments).

` valid is well-formed
Γ;x :S ` valid is well-formed if x 6∈ Γ
Γ ` T type is well-formed if Γ ` valid
Γ ` S ≡ T type is well-formed if Γ ` S type ∧ Γ ` T type
Γ ` t : T is well-formed if Γ ` T type
Γ ` s ≡ t : T is well-formed if Γ ` s : T ∧ Γ ` t : T
Γ;x :S; ∆ ` J is well-formed if Γ ` s : S ⇒ Γ; ∆[s/x] ` J [s/x]

For the sake of readability, I shall suppress premises whose only purpose is to ensure
these well-formedness conditions. I presume that α-conversion happens silently, ensuring
that the side-condition on freshness of variable names is always satisfied.

Context validity is entirely standard: the empty context may be extended with type
assignments.

Definition 2.3 (Γ ` valid).

` valid
Γ ` S type

Γ;x :S ` valid

TT has a fixed repertoire of types: I write judgments with multiple subjects to abbre-
viate multiple rules with identical premises.

Definition 2.4 (Γ ` T type).

Γ ` 0, 1, 2 type
Γ, x :S ` T type

Γ ` (x :S)→ T, (x :S)× T type
Γ ` b : 2 Γ ` T, F type
Γ ` Cond(b, T, F) type

We have canonical types as follows: finite types, 0, 1, 2, Π-types (x :S)→ T generalising
products to dependent function types, and Σ-types (x : S) × T generalising coproducts to
dependent record types. It is common practice to extend this apparatus to a hierarchy
of universes, each contained by and embedded in the next, but I have carefully cut off
the bottom layer, in order to construct a model of it. Let us, however, support large
elimination: Cond(b, T, F) computes a type T or F depending on whether Boolean value b
is tt or ff, respectively. Seen through the “propositions-as-types” lens, this admits predicates
distinguishing tt from ff, for example

Tt(b) := Cond(b, 1, 0)

inhabited only when b is tt. To achieve this, we need a computational notion of type equality.

4 CONOR MCBRIDE

Definition 2.5 (Γ ` S ≡ T type).

Γ ` Cond(tt, T, F) ≡ T type Γ ` Cond(ff, T, F) ≡ F type

The remaining type equality rules express structural and equivalence closure.

The following relations capture similarities and difference between canonical types.

Definition 2.6 (S ‖ T, S ⊥ T). S ‖ T whenever S and T are canonical types formed by
the same rule. S ⊥ T whenever S and T are canonical types formed by distinct rules.

For example,

0 ‖ 0 0 ⊥ 1 (0→ 1) ‖ (1→ 0) (0→ 1) ⊥ (1× 0)

Clearly, if S and T are canonical, then either S ‖ T or S ⊥ T , but not both. Whenever
S ⊥ T , Γ 6` S ≡ T type, irrespective of any wicked lies hypothesized in Γ. Judgmental
type equality is intensional, identifying types only as far as computation permits, and no
computation can ever identify canonical constructs. This restriction reflects the idea that
type checking is a job for a computer; finding type inhabitants is human work. We provide
the terms whose types are assigned as follows.

Definition 2.7 (Γ ` t : T).

Γ;x :S; ∆ ` valid
Γ;x :S; ∆ ` x : S

Γ ` s : S Γ ` S ≡ T type
Γ ` s : T

Γ ` z : 0
Γ ` zΨS : S Γ ` 〈〉 : 1

Γ ` tt, ff : 2
Γ ` b : 2 Γ;x :2 ` P type Γ ` t : P [tt] Γ ` f : P [ff]

Γ ` cond(b, x. P, t, f) : P [b]

Γ;x :S ` t : T
Γ ` λSx. t : (x :S)→ T

Γ ` f : (x :S)→ T Γ ` s : S
Γ ` f s ` T [s]

Γ ` s : S Γ;x :S ` T type Γ ` t : T [s]
Γ ` 〈s, t〉x.T : (x :S)× T

Γ ` p : (x :S)× T
Γ ` π0p : S

Γ ` p : (x :S)× T
Γ ` π1p : T [π0p]

Let us consider these terms carefully. Firstly, we have variables, typed as indicated
by the context, and we have that type inhabitation is silently invariant with respect to
judgmental type equality. No signal that the type changes its syntactic form is needed, as
long as judgmental equality is decidable. The more powerful the judgmental equality, the
fewer trivial isomorphisms we need witness.

There is no canonical way to make an element of 0, but if you have one (hypothetically),
you can make anything! The element of 1 is easy to find, but useless to possess.

There are two Boolean values, tt and ff, which may be distinguished computationally by
a dependent case analysis principle. We may certainly use this to define simple conditional
functions

not := λb. cond(b, . 2, ff, tt) : 2→ 2

but reassuringly, unlike the conventional ‘if. . . then. . . else. . . ’ construct, the two branches
are not necessarily interchangeable. The return type of cond is specified with respect to a
bound variable (not by a function, as this would require large function spaces), differently

LET’S SEE HOW THINGS UNFOLD 5

instantiated in each branch, reflecting what has been learned by testing b. For example, we
may confirm that a true value cannot have a true negation.

notTrueAndFalse := λb. cond(b, b.Tt(b)→ Tt(not b)→ 0, λ . λz. z, λz. λ . z)
: (b :2)→ Tt(b)→ Tt(not b)→ 0

Once again, the typing of the above relies on equality rules, expressing conditional compi-
lation. These follow shortly.

Functions are constructed by abstraction and eliminated by application. I write the
domain annotation as a subscript λS to indicate that it is necessary for type synthesis but
not for type checking, and I shall omit it informally wherever types are known. We do not
have dependent elimination, so we may not observe the construction of a function, only its
uses. Morally, at least, functions are to be understood extensionally. In a similar way, we
may not observe the construction of a pair, only its projections.

Definition 2.8 (Γ ` s ≡ t : T). The computation rules for TT terms are as follows:

Γ ` cond(tt, x. P, t, f) ≡ t : P [tt] Γ ` cond(ff, x. P, t, f) ≡ f : P [ff]

Γ ` (λSx. t) s ≡ t[s] ` T [s]

Γ ` π0 〈s, t〉x.T ≡ s : S Γ ` π1 〈s, t〉x.T ≡ t : T [s]

The judgmental equality for this type theory closes the computation rules under equivalence
and structural congruence.

We are free to consider extending the equational theory of terms still further, adding
η-laws to identify f with λx.f x, for example. To do so is a convenience, rather than a
necessity. For the moment, let us abstain from such considerations, but at least grant
ourselves the notational convenience of writing ‘pair patterns’ in binding positions, with
〈x, y〉 .t meaning z.t[π0z/x, π1z/x].

2.1. Shallow embeddings and deeper encodings into larger type theories. TT
is in no way peculiar, except that (for exploratory purposes) it is far weaker than the
type theories typically studied in the literature or implemented in proof assistants and
dependently typed programming languages. We may readily construct its canonical types
in Coq or Agda. Here are the Agda versions.

data Zero : Set where − no constructors!
record One : Set where − no fields!
data Two : Set where tt ff : Two

Π : (S : Set)→ (S → Set)→ Set − reuse Agda’s function space!
ΠS T = (x :S)→ T x

record Σ (S :Set)(T :S → Set) : Set where π0 : S; π1 : T π0

The Coq versions are similar. We may then implement our signature of type- and term-
level operations, satisfying the computation rules above in the judgmental equality of the
metalanguage—the machine is perfectly capable of deciding the equational theory those
rules induce. Our type theory thus has easy shallow embeddings into, and serves as a
convenient microcosm of, type theories as they are typically constituted today.

6 CONOR MCBRIDE

Moreover, we can give an inductive characterization of the sets in this type theory. This
is most readily done by induction-recursion [DS99] in Agda, defining a syntax U for sets
simultaneously with its decoding J K to Agda sets, effectively constructing a least fixpoint
in ΣX:SetX → Set. Note that Agda uses the syntax λs→ t for abstractions.

mutual
data U : Set where
′0 ′1 ′2 : U
′Π ′Σ : (S :U)→ (JSK→ U)→ U

J K : U→ Set
J′0K = Zero
J′1K = One
J′2K = Two
J′Π S T K = Π JSK (λs→ JT sK)
J′Σ S T K = Σ JSK (λs→ JT sK)

Coq does not support induction-recursion, but we may deploy the ugly alternative of
defining the large inductive ‘predicate’ in Set → Type bearing evidence that a given Coq
set is representable in our theory.

Note that our little universe of types does not encode a type of types. Inductive-
recursive presentations of universe hierarchies have been presented in the literature: they
introduce problems which are interesting, but not relevant to our struggle with codata. The
problems with codata will manifest themselves quite satisfactorily in our cut-down system.
The solution I propose does not depend critically on working in the small.

2.2. Adding Inductive Families—µTT. Before we venture in seach of coinduction, let
us first consider inductive data. I propose also to add a single but rather generic notion
of indexed inductive datatype—the Petersson-Synek trees [PS89]—representing terms in
a multi-sorted free algebra. Morally, these are the least fixpoints of strictly positive (or
‘generalized polynomial’) endofunctors of slice categories, type/S. However, intensional
type theory responds unpleasantly to moralisation, so we shall need to pay some attention
to the details.

To tease out the structure from the bureaucracy, it will help to consider the S-indexed
type families as (α-equivalence classes of) types binding a variable of type S, validated by
an auxiliary judgment form, as follows.

Definition 2.9 (Judgment Γ ` A type[S], category type[S]).

Γ;x :S ` T type
Γ ` x.T type[S]

We may instantiate any such family A type[S] to some A[s] type if s : S. In any context,
the category type[S] has objects A such that A type[S] and morphisms f : A→· B where

A→· B := (s :S)→ A[s]→ B[s]

with identity and composition defined pointwise.

Again, we should not think of these indexed families as functions: TT does not have
a type of types. Where the objects of slice categories are underlying objects with indexing
morphisms, these families come ready-sliced. The requirement that morphisms respect
indexing is intrinsic, checked up to the judgmental equality of TT.

Note that, with awareness of families, we can tidy the presentation of dependendent
function and record types, writing ΣS T for (x : S) × T [x] and ΠS T for (x : S) → T [x],
whenever it is convenient to do so.

LET’S SEE HOW THINGS UNFOLD 7

We may present inductive datatypes as fixpoints of indexed containers or generalized
polynomial functors on type[S]. Let us pack up the pieces in an auxiliary judgment form
Γ ` F cont[S] where

Γ; s :S; c :C; r :R ` n : S
Γ ` s.(c :C / r :R.n) cont[S]

and interpret such F s as sum-of-products functors on S-indexed types as follows (writing †

for the action on objects and ‡ for the action on morphisms, as the usual silent overloading
is not easy to mechanize)

s.(c :C / r :R.n)†s.X = s.(c :C)× (r :R)→ X[n]
s.(c :C / r :R.n)‡g = λs. λ 〈c, f〉 . 〈c, λr. g n (f r)〉

The idea is that S is the type of sorts in a given multi-sorted algebra. C is the type of
constructors for sort s, R the type of recursive positions within terms formed at sort s by
constructor c, and n the ‘next’ sort, accepted at position r within such a term. A node
is thus specified by a pair 〈c, f〉, being a choice of constructor c and a function f from
recursive positions to substructures. To reduce clutter, whenever schematic variables like
S,C,R, n scope over free variables like s, c, r, I am careful either to instantiate or to capture
the latter, for example writing C rather than C[s] when C effectively abstracts s already.

Let us now add the inductive types µSF s to our type theory. The family s.µSF s,
abbreviated µSF or even µF when the index set is unambiguous, is the least fixpoint of F .

Definition 2.10 (µTT). The theory µTT extends TT with new canonical types µSF s,
governed by the following formation, introduction, elimination, and computation rules.

Γ ` F cont[S] s : S
Γ ` µSF s type

Γ ` cf : (F †µSF)[s]
Γ ` inµs:S,F cf : µSF s

given F = s.(c :C / r :R.n)
Γ ` P type[ΣS (µSF)]
Γ ` p : (s :S)→ (〈c, f〉 : (F †µSF)[s])→ ((r :R)→ P [〈n, f r〉])→ P [〈s, inµ 〈c, f〉〉]

Γ ` indS,F (P, p) : (sx :ΣS (µSF))→ P [sx]

Γ ` indS,F (P, p) 〈s, inµ cf〉 ≡ p s cf (λr. indS,F (P, p) 〈n[s, π0cf , r], π1cf r〉) : P [〈s, inµ cf〉]

These inductive types are just the general tree types of Petersson and Synek [PS89],
a sort of indexed refinement of Martin-Löf’s W-types [ML84]. Hyland and Gambino have
shown how to construct them from unindexed W-types in a suitably extensional setting [GH03].

Before we analyse these rules any further, let us have some examples of these types.

Example 2.11 (Nat—the natural numbers). The natural numbers have one sort with two
constructors, the first with one recursive position, the second with none.

Nat := µ1 .(c :2 / r :Tt(c). 〈〉) 〈〉 zero := inµ 〈ff, λr. rΨNat〉 suc := λn. inµ 〈tt, λr. n〉
Example 2.12 (ParityList—lists of even or odd length). The set of even-length lists of
Xs can be given by indexing with parity.

ParityList(X, p) := µ2(p.(〈c, 〉 : (c :2)× Cond(c,X,Tt(p)) / r :Tt(c).not p)) p

The constructor takes a choice of tt for ‘cons’ (in which case an element of X is also
required), or ff for ‘nil’ (in which case the parity is checked to be even); recursive positions
always demand the opposite parity.

8 CONOR MCBRIDE

Readers familiar with the literature of dependently typed programming may be a little
surprised not to find the vectors—lists of known length—as an example here. Vectors
are a paradigmatic example of inductive families with constrained constructors: the ‘nil’
delivers only length zero, the ‘cons’ only some sucn. In general, it takes some notion of
propositional equality to capture such constraints, so vectors, as traditionally formulated,
must wait. Alternatively, we may exploit the induction principle for (the encoding of) Nat
to analyse the length and offer the appropriate structure.

The above induction principle follows the standard pattern for inductive datatypes
in Martin-Löf Type Theory: we can use it to implement the projections, and so on. It
computes by pattern matching and recursion. The idea, as ever, is that any P indexed by
sorts and terms which is preserved by the construction of nodes must hold for all trees of
every sort.

Following Jacobs and Hermida [HJ98], we may note that the function p is effectively an

algebra, not for F but for F̂ where F̂ †P stores witnesses to predicates in the same places
F †µF keeps subobjects.

F̂ = 〈s, inµ 〈c, f〉〉 .(:1 / r :R. 〈n, f r〉) cont[ΣS (µSF)]

However, it is a struggle to define the formal induction machinery in that form, as hinted
at by the projection implicit in my binding of inµ 〈c, f〉 in the above proto-definition of F̂ .
It is straightforward to do the construction in the other direction. We may define both the
projection and the ordinary iterator in terms of induction.

outµF : µF →· F †µF
outµF := λs x. ind−,F (〈s, 〉 .µF s, λs cf . cf) 〈s, x〉
foldF (T, g : F †T →· T) : µF →· T
foldF (T, g) := λs x. ind−,F (〈s, 〉 .T [s], λs 〈c, 〉 h. g s 〈c, h〉) 〈s, x〉

The computation rule then establishes that

outµF s (inµ cf) ≡ cf foldF (T, g) s (inµ cf) ≡ F ‡(foldF (T, g)) s cf

3. Coinductive data in intensional type theory

Having established our basic type theory, let us now consider how we might equip it
with coinductive types for. At the very least, we should express the notion that strictly
positive endofunctors on type[S] have final coalgebras. Let us add the coinductive types:

Γ ` F cont[S] Γ ` s : S
Γ ` νSF s type

and equip them with a coiterator, taking any F †-coalgebra to the final one.

Γ ` X type[S] Γ ` m : X →· F †X
Γ ` unfoldS,F (X,m) : X →· νSF

We shall also need some sort of elimination operator, allowing us to observe initial
segments of codata. Crucially, also, we must explain how the judgmental equality treats
codata. Here we are sure to face some sort of intensional compromise, for codata are

LET’S SEE HOW THINGS UNFOLD 9

potentially infinite. We should certainly expect to be able to implement the final coalgebra
as a sort-indexed family of functions.

outS,F : νF →· F †(νF)

Moreover, we should expect that outS,F provokes a step of unfolding:

outS,F s (unfold(X,m) s x) ≡ F ‡(unfold(X,m)) (msx)

One might hope that out would have an inverse—a ‘coconstructor’—and we might try
to define one by coiteration:

inνF : F †νF →· νF
inνF := unfold(F †νF , F ‡out)

However, when we compute, we find (for F := s.(c :C / r :R.n)) that

out s (inν s 〈c, f〉) ≡ 〈c, λr. inν n (outn (f r))〉 6≡ 〈c, f〉
This bad news should not especially surprise: when we implement the coconstructor by coit-
eration, we are really implementing an indirect corecursive version of the identity function—
there is no reason why the latter should be recognized as the identity function, given only
the equational theory for out.

Both Agda and Coq adopt a ‘brute force’ workaround, adding a distinct introduction
form

inνs:S,F : F †(νSF)[s]→ νSF s

which the implementation can distinguish from the coiterator, ensuring that

out s (inν 〈c, f〉) ≡ 〈c, f〉
holds judgmentally. The coconstructor effectively presents codata which are partially un-
folded already. Let us also adopt this convenience.

We have explored how we might construct and dismantle codata in type theory, but we
should also hope to reason about the processes we may thus manipulate. Here Agda and
Coq adopt distinct approaches, neither especially satisfying.

3.1. Codata in Coq. Eduardo Giménez pioneered Coq’s treatment of coinduction [Gim94].
It was a great step forward in its time, giving Coq access to many new application domains.
However, the Coq presentation is bedevilled with the problem that computation on codata
does not preserve type. Giménez was aware of this difficulty, giving a counterexample in
his doctoral thesis [Gim96]. The problem did not become particularly widely known until
recently, when Nicolas Oury broke an overenthusiastic early version of coinduction in Agda,
then backported his toxic program to Coq, resulting in a flurry of activity on mailing lists
which has not yet entirely subsided.

I shall illustrate the issue by showing what goes wrong if we attempt to equip our type
theory with the Coq presentation. The key advantage of, but also the problem with the Coq
treatment is that codata have dependent case analysis. Every element x of a coinductive
type behaves (up to observation) just like a partially unfolded element, and Coq expresses

10 CONOR MCBRIDE

this as a reasoning principle—like the induction principle for inductive data, but with no
inductive hypotheses.

Γ ` P type[(s :S)× νF s]
Γ ` p : (s :S)→ (c :C[s])→ (f : (r :R[s, c])→ νF n)→

P [〈s, inν 〈c, f〉〉]
Γ ` caseS,F (P, p) : (sx : (s :S)× νSF s)→ P [sx]

F = s.(c :C / r :R.n)

Given such a thing, one may deliver the final coalgebra by choosing P appropriately.

outS,F := caseS,F (〈s, x〉 . F †(νF)[s], λs. λc. λf. 〈c, f〉)
How does case compute? Coq supplies the following:

caseS,F (P, p) 〈s, inν 〈c, f〉〉 ≡ p s c f : P [〈s, inν 〈c, f〉〉]
caseS,F (P, p) 〈s, unfoldS,F (X,m) s x〉 ≡ p s c f : P [〈s, unfoldS,F (X,m) s x〉] (?)

where 〈c, f〉 := F ‡(unfoldS,F (X,m)) (msx)

and the latter does indeed validate the computation principle we require of out. There is,
however, a problem with the law marked (?): the right-hand side of the equation does not
typecheck—its type is

P [
〈
s, inν(F ‡(unfoldS,F (X,m)) (msx))

〉
]

The case analysis principle unfolds coiteration at the value level, and this unfolding is
reflected at the type level also. However, the judgmental equality may not identify these
types. There is no trouble for non-dependent P , but in general,

unfoldS,F (X,m) s x 6≡ inν(F ‡(unfoldS,F (X,m)) (msx))

which is to say that the judgmental equality does not include ‘spontaneous’ unfolding in
any context—only unfolding in the context of case.

4. Judgmental equality versus reduction

5. Weakly final coalgebras

6. Propositional equality and bisimulation?

7. Introducing observational equality

Γ ` S, T type
Γ ` S ↔ T type

Γ ` s : S Γ ` t : T
Γ ` (s :S)=(t :T) type

Equality of indexed families, with the same index set or not, may readily be expressed
by requiring coincidence given equal indices. I abbreviate

(s :S ‖ t :T)→ U := (s :S)→ (t :T)→ (s :S)=(t :T)→ U

LET’S SEE HOW THINGS UNFOLD 11

T0↔T1 ≡ 0 if T0, T1 canonical types of distinct formation rule
0↔ 0 ≡ 1
1↔ 1 ≡ 1
2↔ 2 ≡ 1

((s0 :S0)→ T0)↔ ((s1 :S1)→ T1) ≡ S1 ↔ S0 × (s1 :S1 ‖ s0 :S0)→ T0 ↔ T1
((s0 :S0)× T0)↔ ((s1 :S1)× T1) ≡ S0 ↔ S1 × (s0 :S0 ‖ s1 :S1)→ T0 ↔ T1

µS0F0 s0↔µS1F1 s1 ≡ (S0 ↔ S1 × F0
 F1) × (s0 :S0)=(s1 :S1) where
s0.(c0 :C0 / r0 :R0. n0)
 s1.(c1 :C1 / r1 :R1. n1) :=
(s0 :S0 ‖ s1 :S1)→ C0 ↔ C1×
(c0 :C0 ‖ c1 :C1)→ R1 ↔ R0×
(r1 :R1 ‖ r0 :R0)→ (n0 :S0)=(n1 :S1)

(:T0)=(:T1) ≡ 1 if T0, T1 canonical types of distinct formation rule
(:0)=(:0) ≡ 1
(:1)=(:1) ≡ 1
(tt :2)=(tt :2) ≡ 1
(tt :2)=(ff :2) ≡ 0
(ff :2)=(tt :2) ≡ 0
(ff :2)=(ff :2) ≡ 1

(f0 : (s0 :S0)→ T0)=(f1 : (s1 :S1)→ T1) ≡ (s0 :S0 ‖ s1 :S1)→ (f0 s0 :T0)=(f1 s1 :T1)
(〈s0, t0〉 : (s0 :S0)× T0)=(〈s1, t1〉 : (s1 :S1)× T1) ≡ (s0 :S0)=(s1 :S1) × (t0 :T0)=(t1 :T1)

(inµ d0 :µF0 s0)=(inµ d1 :µF1 s1) ≡ (d0 : (F0
†µF0)[s0])=(d1 : (F1

†µF1)[s1])

Heterogeneous value equality, gives us two constructions to change the index set of a
family in essentially administrative (and, intensionally speaking, administratively essential)
ways. To understand what is going on, extensionally speaking, ignore these operations!

A type[T]
©S,T→A type[S]

©S,T→t.U := s.(t :T)→ (s :S)=(t :T)→ U

t : T q : (s :S)=(t :T)
�(t, q) : (©S,T→A)[s]→ A[t]

�(t, q) := λf. f t q

A type[S]
©S,T×A type[T]

©S,T×s.U := t.(s :S)× (s :S)=(t :T)× U

s : S q : (s :S)=(t :T)
�(s, q) : A[s]→ (©S,T×A)[t]

�(s, q) := λx. 〈s, 〈q, x〉〉

The former may be equipped with an unpacking operation, the latter a packer, as shown.
We shall use these in the construction of algebras and coalegbras which shift data between
indexed families of types.

12 CONOR MCBRIDE

Γ ` S, T type Γ ` Q : S ↔ T Γ ` s : S
Γ ` coe(S, T,Q) : S → T Γ ` coh(S, T,Q) : (s :S)→ (s :S)=(coe(S, T,Q, s) :T)

coe(T0, T1, Q) ≡λ .QΨT1 if T0, T1 canonical types of distinct formation rule
coe(0, 0, Q) ≡ id0

coe(1, 1, Q) ≡ id1

coe(2, 2, Q) ≡ id2

coe((s0 :S0)→ T0, (s1 :S1)→ T1, 〈Sq, Tq〉)≡λf0 s1. coe(T0, T1, Tq s1 s0 sq, f0 s0) where
〈s0, Sq〉 := coeh(S1, S0, Sq, s1)

coe((s0 :S0)× T0, (s1 :S1)× T1, 〈Sq, Tq〉) ≡λ 〈s0, t0〉 . 〈s1, coe(T0, T1, Tq s0 s1 sq, t0)〉 where
〈s1, sq〉 := coeh(S0, S1, Sq, s0)

coe(µF0 s0,µF1 s1, 〈〈Sq, Fq〉, sq〉) ≡ �(s1, sq) · foldF0(©→µF1 , g) s0 where
s0.(c0 :C0 / r0 :R0. n0) := F0; s1.(c1 :C1 / r1 :R1. n1) := F1

g := λs0 〈c0, f ′〉 s1 sq. inµ 〈c1, f1〉 where
f ′ : (r0 :R0)→ (©→µF1)[n0]
〈Cq, Gq〉 := Fq s0 s1 sq; 〈c1, cq〉 := coeh(C0, C1, Cq, c0)
〈Rq, hq〉 := Gq c0 c1 cq
f1 := λr1. �(n1, hq r1 r0 rq) (f ′ r0) where 〈r0, rq〉 := coeh(R1, R0, Rq, r1)

8. Interaction structures, closed under bisimulation

νS0F0 s0 ↔ νS1F1 s1 ≡ (S0 ↔ S1 × F0
 F1) × (s0 :S0)=(s1 :S1)

(x0 :νS0F0 s0)=(x1 :νS1F1 s1) ≡
ν((s0:S0)×νS0

F0 s0)×((s1:S1)×νS1
F1 s1)

〈〈s0, x0〉, 〈s1, x1〉〉 .(: (c0 :C0)=(c1 :C1) /
〈r0, 〈r1, 〉〉 : (r0 :R0)× (r1 :R1)× (r0 :R0)=(r1 :R1).
〈〈n0, f0 r0〉, 〈n1, f1 r1〉〉)

where 〈c0, f0〉 := outx0; 〈c1, f1〉 := outx1;
〈〈s0, x0〉, 〈s1, x1〉〉

where s0.(c0 :C0 / r0 :R0. n0) := F0; s1.(c1 :C1 / r1 :R1. n1) := F1

coe(νF0 s0,νF1 s1, 〈〈Sq, Fq〉, sq〉) ≡ unfold−,F1(©×νF0 , g) s1· �(s0, sq) where
s0.(c0 :C0 / r0 :R0. n0) := F0; s1.(c1 :C1 / r1 :R1. n1) := F1

g := λs1 〈s0, 〈sq, x0〉〉 . 〈c1, f ′〉 where
〈c0, f0〉 := outx0
〈Cq, Gq〉 := Fq s0 s1 sq; 〈c1, cq〉 := coeh(C0, C1, Cq, c0)
〈Rq, hq〉 := Gq c0 c1 cq
f ′ : (r1 :R1)→ (©×νF1)[n1]
f ′ := λr1. �(n0, hq r1 r0 rq) (f0 r0) where 〈r0, rq〉 := coeh(R1, R0, Rq, r1)

LET’S SEE HOW THINGS UNFOLD 13

9. Conclusion and further work

Acknowledgement

The authors wish to acknowledge fruitful discussions with A and B.

References

[AMS07] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational equality, now! In
Aaron Stump and Hongwei Xi, editors, PLPV, pages 57–68. ACM, 2007.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving And Program Development: Coq’Art:
the Calculus of Inductive Constructions. Springer, 2004.

[CF92] Robin Cockett and Tom Fukushima. About Charity. Yellow Series Report No. 92/480/18, Depart-
ment of Computer Science, The University of Calgary, June 1992.

[CS92] Robin Cockett and Dwight Spencer. Strong categorical datatypes I. In R. A. G. Seely, editor,
International Meeting on Category Theory 1991, Canadian Mathematical Society Proceedings. AMS,
1992.

[DS99] Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive definitions. In Jean-
Yves Girard, editor, TLCA, volume 1581 of Lecture Notes in Computer Science, pages 129–146.
Springer, 1999.

[GH03] Nicola Gambino and Martin Hyland. Wellfounded trees and dependent polynomial functors. In
Stefano Berardi, Mario Coppo, and Ferruccio Damiani, editors, TYPES, volume 3085 of Lecture
Notes in Computer Science, pages 210–225. Springer, 2003.

[Gim94] Eduardo Giménez. Codifying guarded definitions with recursive schemes. In Peter Dybjer, Bengt
Nordström, and Jan M. Smith, editors, TYPES, volume 996 of Lecture Notes in Computer Science,
pages 39–59. Springer, 1994.

[Gim96] Eduardo Giménez. Un Calcul de Constructions Infinies et son application à la vérification de
systèmes communicants. PhD thesis, Ecole Normale Supérieure de Lyon, 1996.

[Hag87] Tatsuya Hagino. A Categorical Programming Language. PhD thesis, Laboratory for Foundations of
Computer Science, University of Edinburgh, 1987.

[HJ98] Claudio Hermida and Bart Jacobs. Structural induction and coinduction in a fibrational setting.
Inf. Comput., 145(2):107–152, 1998.

[Hof95] Martin Hofmann. Extensional concepts in intensional type theory. PhD thesis, Laboratory for Foun-
dations of Computer Science, University of Edinburgh, 1995. Available from http://www.lfcs.

informatics.ed.ac.uk/reports/95/ECS-LFCS-95-327/.
[HS00] Peter Hancock and Anton Setzer. Interactive programs in dependent type theory. In Peter Clote and

Helmut Schwichtenberg, editors, CSL, volume 1862 of Lecture Notes in Computer Science, pages
317–331. Springer, 2000.

[ML84] Per Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.
[MM04] Conor McBride and James McKinna. The view from the left. Journal of Functional Programming,

14(1):69–111, 2004.
[Nor07] Ulf Norell. Towards a Practical Programming Language based on Dependent Type Theory. PhD

thesis, Chalmers University of Technology, 2007.
[Pey03] Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report. Cambridge

University Press, 2003.
[PS89] Kent Petersson and Dan Synek. A set constructor for inductive sets in martin-löf’s type theory.

In David H. Pitt, David E. Rydeheard, Peter Dybjer, Andrew M. Pitts, and Axel Poigné, editors,
Category Theory and Computer Science, volume 389 of Lecture Notes in Computer Science, pages
128–140. Springer, 1989.

[TT97] Alastair Telford and David Turner. Ensuring streams flow. In Michael Johnson, editor, AMAST,
volume 1349 of Lecture Notes in Computer Science, pages 509–523. Springer, 1997.

[Tur95] D. A. Turner. Elementary strong functional programming. In Pieter H. Hartel and Marinus J.
Plasmeijer, editors, FPLE, volume 1022 of Lecture Notes in Computer Science, pages 1–13. Springer,
1995.

[Tur04] D. A. Turner. Total functional programming. J. UCS, 10(7):751–768, 2004.

http://www.lfcs.informatics.ed.ac.uk/reports/95/ECS-LFCS-95-327/
http://www.lfcs.informatics.ed.ac.uk/reports/95/ECS-LFCS-95-327/

	1. Introduction
	2. A small dependent type theory: TT
	2.1. Shallow embeddings and deeper encodings into larger type theories
	2.2. Adding Inductive Families—TT

	3. Coinductive data in intensional type theory
	3.1. Codata in Coq

	4. Judgmental equality versus reduction
	5. Weakly final coalgebras
	6. Propositional equality and bisimulation?
	7. Introducing observational equality
	8. Interaction structures, closed under bisimulation
	9. Conclusion and further work
	Acknowledgement
	References

