How to Keep Your Neighbours in Order

Conor McBride

University of Strathclyde
Conor.McBride@strath.ac.uk

Abstract
1. Introduction

It has taken years to see what was under my nose. I have been
experimenting with ordered container structures for a long time
[McBride(2000)]: how to keep lists ordered, how to keep binary
search trees ordered, how to flatten the latter to the former. Re-
cently, the pattern common to the structures and methods I had of-
ten found effective became clear to me. Let me tell you about it.
Patterns are, of course, underarticulated abstractions. Correspond-
ingly, let us construct a universe of container-like datatypes ensur-
ing that elements are in increasing order, good for intervals, ordered
lists, binary search trees, and more besides.

2. Preliminaries

data 0 : Set where
record 1 : Set where constructor ()

data 2 : Set where tt ff : 2

2

I~

-
-
-

s =

it
ff =

ifthenelse_ : {X : Set} -2 - X - X —» X
if tt then telse f = t

if ff then telse f = f

infix 1 if_then_else_

So : 2 — Set
Sott =1
Soff =0

data + (S
a: S =
> T —

infixr 4 +

T : Set) : Set where
S+ T
S+ T

data Maybe (X : Set) : Set where
yes : X — Maybe X
no : Maybe X

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © ACM [to be supplied]. .. $5.00

so : V{X} — 2 — Maybe X — Maybe X
sott mr = mx
soff _ = no

record (S : Set) (T : S — Set) : Set where
constructor

field
VAN S
m o T'm
open L
infixr 5 _

X_ : Set — Set — Set

SXT =LXL5SA_—> T

infixr 5 >

o {A:Set}{B: A — Set} {C : (a:
(f:{a:A} b :Ba) - Cabd)(g:
(a:A) - Cal(ga)

(fog)z = [f(g9z)

infixr 3 o

id: {A:Set} - A — A

ida = a

= {[l :Set} - (I — Set) - (I — Set) — I — Set

(F5G)i=Fi— Gi
infixr 2 5.

[-] : {I : Set} — (I — Set) — Set
[F] = Y{i} = Fi

3. Searching for Search Trees (and Barking up
the Wrong One)

David Turner [Turner(1987)] notes that whilst quicksort is often
cited as a program which defies structural recursion, it performs the
same sorting algorithm (although not with the same memory usage
pattern) as building a binary search tree and then flattening it. The
irony is completed by noting that the latter sorting algorithm is the
archetype of structural recursion in Rod Burstall’s development of
the concept [Burstall(1969)]. Binary search trees have empty leaves
and nodes labelled with elements which act like pivots in quicksort:
the left subtree stores elements which precede the pivot in the order,
the right subtree elements which follow it. Surely this invariant is
crying out to be captured in a dependent type! Let us search for a
type for search trees.

We could, of course, choose to define binary search trees as
ordinary node-labelled trees with parameter P giving the type of
pivots:

data Tree : Set where
leaf : Tree
node : Tree -+ P — Tree — Tree

A) — Ba — Set}
(a : A) - Ba) —

We might then introduce the invariant as a predicate IsBST
Tree — Set. We could then implement insertion in our usual
way, and then prove separately that our program maintains the
invariant. However, the joy of dependently typed programming is
that working with refined types for the data themselves can often
alleviate and sometimes obviate the burden of proof. Let us try to
bake the invariant in.

What should the type of a subtree tell us? If we want to check
the invariant at a given node, we shall need some information about
the subtrees which we might expect comes from their type. We
require that the elements left of the pivot precede it, so we could
require the whole set of those elements represented somehow, but
of course, for any order worthy of the name, it suffices to check only
the largest. Similarly, we shall need to know the smallest element
of the right subtree. It would seem that we need the type of a search
tree to tell us its extreme elements (or that it is empty).

data STRange : Set where

¢ : STRange

— : P — P — STRange
infix 9 —

From checking the invariant to enforcing it. Assuming we can
test the order on P with some le : P — P — 2, we could
write a recursive function to check whether a Tree is a valid search
tree and compute its range:

valid : Tree — Maybe STRange
valid leaf = yes ()
valid (node [p r) with valid [| valid r

v | yes® | yes(= yes (p—p)
.| yes® | yes (c—d) = so (le p ¢) (yes (p—d))
I yes(a—b) | yes® = so(ie b p) (ves (a—p)

.| yes(a—b) | yes (¢—d)
T so (le b p) |(so (le p ¢) (yes (a—d)))
U _ = no

As valid is a fold over the structure of Tree, we can follow my
colleagues Bob Atkey, Neil Ghani and Patricia Johann in comput-

ing the partial refinement [Atkey et al.(2012)Atkey, Johann, and Ghani]

of Tree which valid induces. We seek a type BST : STRange —
Set such that BST r 2 {¢ : Tree | valid ¢ = yes r} and we find
it by refining the type of each constructor of Tree with the check
performed by the corresponding case of valid, assuming that the
subtrees yielded valid ranges. We can calculate the conditions to
check and the means to compute the output range if successful.

IOK : STRange — P — 2

IOK 0 p =t

IOK (—u)p = leup

rOK : P — STRange — 2

rOK p 0 =t

rOKp (I—-) =lepl

rOut : STRange — P — STRange — STRange

rOut () p0 =p—p
rOut 0 p(——u) = p—u
rOut (I—_) p 0 =l-p

rOut (I—-) _(-—u) = l—u
We thus obtain the following refinement from Tree to BST:

data BST : STRange — Set where
leaf : BST ()
node : ¥Y{lr} - BST! — (p: P) - BSTr —
{-:S0(IOKIp)} = {-:So(rOKp)} —
BST (rOut I p r)

The So function maps tt to 1 and ff to 0, requiring that the tests
on left and right ranges succeed. When a test passes, Agda can infer
the value (), hence we may safely leave this evidence implicit. If a
test fails, Agda will complain that it cannot synthesize the implicit
argument, for a very good reason!

Attempting to implement insertion. Now that each binary search
tree tells us its type, can we implement insertion? Rod Burstall’s
implementation is as follows

insert : P — Tree — Tree
insert y leaf = node leaf y leaf
insert y (node It p 1) =
if le y p then node (insert y It) p rt
else node It p (insert y rt)

but we shall have to try a little harder to give a type to insert, as
we must somehow negotiate the ranges. If we are inserting a new
extremum, then the output range will be wider than the input range.

oRange : STRange — P — STRange
oRange Yy = y—y
oRange (I—u)y =
if le yltheny—uelseif le uythenl—yelsel—u

So, we have the right type for our data and for our program.
Surely the implementation will go like clockwork!

insert : V{r}y — BST r — BST (oRange r y)
insert y leaf = node leaf y leaf
insert y (node It p 1) =

if le y p then (node (insert y lt) p rt)
else (node It p (insert y 1t))

The leaf case checks easily, but alas for node! We have [t
BST [and rt BST r for some ranges [and 7. The then
branch delivers a BST (rOut (oRange [y) p r), but the
type required is BST (oRange (rOut [p r) y), so we need
some theorem-proving to fix the types, let alone to discharge the
obligation So (IOK (oRange [y) p). Of course, we could plough
on, despite the slough of proof, and force this definition through,
but I have had enough and so have you!

We have written a datatype definition which is logically correct
but which is pragmatically disastrous. Is it thus inevitable that all
datatype definitions which enforce the ordering invariant will be
pragmatically disastrous? Or are there lessons we can learn about
dependently typed programming that will help us to do better?

4. Why Measure When You Can Require?

In the previous section, we got the wrong answer because we
asked the wrong question: “What should the type of a subtree
tell us?” somewhat presupposes that information bubbles outward
from subtrees to the nodes which contain them. As functional
programmers in Milner’s tradition, we are used to synthesizing
the type of a thing. Moreover, the very syntax we use for data
declarations treats the index delivered from each constructor as
some sort of output. It seems natural to take datatype indices as
some sort of measure of the data, which is all very well for the
length of a vector, but when the measurement is computationally
intricate, as in the case of computing a search tree’s extrema,
programming becomes vexed by the need to prove theorems about
the measuring functions. The presence of ‘green slime’—defined
functions in the return types of constructors—is a danger sign in
type design.

We can, however, take an alternative view of types, not as syn-
thesized measurements of data, bubbled outward, but as checked
requirements of data, pushed inward. To enforce the invariant, let

us rather ask the question “What should we tell the type of a sub-
tree?”.

The elements of the left subtree must precede the pivot in the
order; those of the right must follow it. Correspondingly, our re-
quirements on a subtree amount to an interval in which its elements
must fall. As any element can find a place somewhere in a search
tree, we shall need to consider unbounded intervals also. We can
extend any type with top and bottom elements as follows.

data | (P : Set) : Set where

T: Pl
P = P
1 Pl

Correspondingly, we can extend the order, putting T at the top
and L at the bottom.

1Py (P =P =2 =P = P =2
le] - T =t

le] (#2) (#y) = lexy

le] L _ =t

le] - _ =f

We can now index search trees by a pair of loose bounds, not
measuring the range of the contents exactly, but constraining it
sufficiently. At each node, we can require that the pivot falls in the
interval, then use the pivot to bound the subtrees.

data BST (I u : P]) : Set where

leaf : BST !l uw
node : (p :
BST I (#p) — BST (#p) u — BSTlu

In doing so, we eliminate all the ‘green slime’ from the indices of
the type. The leaf constructor now has many types, indicating all
its elements satisfy any requirements. We also gain BST L T as
the general type of binary search trees for P.

Can we implement insert for this definition? We can certainly
give it a rather cleaner type. When we insert a new element into the
left subtree of a node, we must ensure that it precedes the pivot: that
is, we expect insertion to preserve the bounds of the subtree, and
we should already know that the new element falls within them.

insert : Y{lu}y — So(le] I (»y)) — So(le] (»y) u) —

BSTlu — BSTlu
insert y ly yu leaf = node y ly yu leaf leaf
insert y ly yu (node p Ip pu lt rt) =
if le y p then node p Ip pu (insert y ly 79 It) 1t
else node p Ip pu lt (insert y 77 yu rt)

We have no need to repair type errors by theorem proving, and
most of our proof obligations follow directly from our assumptions.
Working interactively, we can use Agda’s proof search helper,
Agsy, to fill them in for us. Our only outstanding goals are

7?9 : So (le y p) --inthe then branch

?; :So(lepy) --inthe elsebranch

The first of these is the very thing our conditional expression has
found to be true! We could choose to work with an evidence-
producing version of if.

if then_else_ : V{X : Set} b —
(Sob = X) = (So(=b) = X) = X

if &t then telse f = ¢ ()

if ff then telse f = f ()

P) — So(le] I (#p)) — So(le | (#p)u) —

We can now learn by testing: the then branch has a type which is
reassuringly distinct from that of the else branch, and both are more
informative than the target type, X. We have made a little progress:

insert y ly yu (node p lp pult rt) = ifleyp
then (A yp — node p Ip pu (insert y ly yp It) rt)
else (A py — node p Ip pu lt (insert y [py yu 1))

However, we are now defeated by the fact that py : So (= (le y p)),
which is not the evidence we need for ?; . For any given total or-
dering, we should be able to fix this up by proving a theorem, but
this is still more work that I enjoy. The trouble is that we couched
our definition in terms of the truth of bits computed in a particu-
lar way, rather than the ordering relation. Let us now tidy up this
detail.

5. One Way Or The Other

‘We can recast our definition in terms of relations—families of sets
Rel P

Rel : Set — Set;
Rel P = P x P — Set

giving us types which directly make statements about elements of
P, rather than about bits. Let us suppose we have some ‘less or
equal’ ordering relation L : Rel P. For natural numbers, we can
define

suc xr
suc r

Y 1
0 =0
sucy = x

The information we shall need just corresponds to the totality of
L: for any given z and y, L must hold one way or the other. For N,
we may define

owoto : Vz y — Ln (2,9) + L (y,2)

owoto 0 0 = <)
owoto 0 (sucy) = <)
owoto (suc z) 0 =)
owoto (suc z) (suc y) = owoto z y

using only mechanical case-splitting and proof search.
Any such ordering relation on elements lifts readily to bounds.

L :V¥ P} — Rel P = Rel P|

L(C,T) =1
LI (#$7#y) =L (x,y)
L(L,) =1
LI (* 7*) =0

Moreover, we obtain a notion of interval—a set of elements within
given bounds.

°:V{P} - Rel P — Rel P|
L (Lu) = Z_Xp — L (L#p) x L] (#p,u)
Let us then parametrize over some
owoto : Vxy — Lzxy+ Lyzx
and reorganise our development.

data BST (lu : P] x P]) : Set where
leaf : BST lu
node : (p : P) — Ll (m lu,#p) — L] (#p,m lu) —
BST (71 lu,#p) — BST (#p,m lu) — BST lu

insert : [I = BST = BST]

insert (y, ly, yu) leaf = node y ly yu leaf leaf

insert (y, ly, yu) (node p Ip pu It rt) with owoto y p
.. | < yp = node p Ip pu (insert (y,ly,yp) It) rt
.. | > py = node p lp pu lt (insert (y, py,yu) rt)

The evidence generated by testing owoto y p is just what
is needed to enable insertion in the appropriate subtree. We have
found a method which seems to work! However, 1 fear we should
not get too excited.

6. The Importance of Local Knowledge

Our current representation of an ordered tree with n elements
contains 2n pieces of ordering evidence, which is n — 1 too many.
We should need only n + 1 proofs, relating the lower bound to
the least element, then comparing neighbours all the way along to
the greatest element (one per element, so far) which must then fall
below the upper bound (so, one more). As things stand, the pivot
at the root is known to be greater than every element in the right
spine of its left subtree and less than every element in the left spine
of its right subtree. If the tree was built by iterated insertion, these
comparisons will surely have happened, but that does not mean we
should retain the information.

Suppose, for example, that we want to rotate a tree, perhaps to
keep it balanced, then we have a little problem:

rotater : [BST = BST]
rotater (node p Ip pu (node m Im mp It mt) rt)

= node m Im 72 It (node p mp pu mt rt)
rotatert = ¢

‘We have discarded the non-local ordering evidence Ip : Il (#p),
but now we need the non-local ?, L] (#m) wand we do
not have it. Of course, we can prove this goal from mp and pu if
we know that L is transitive, but if we want to make less work
for ourselves, we should rather not demand non-local ordering
evidence in the first place.

Looking back at the type of node, note that the indices at which
we demand ordering are the same as the indices at which we
demand subtrees. If we strengthen the invariant on trees to ensure
that there is a sequence of ordering steps from the lower to the upper
bound, we could dispense with the sometimes non-local evidence
stored in nodes, at the cost of a new constraint for leaf.

data BST (lu : P] x P]) : Set where
leaf : L] lu — BST lu
node : (p : P) —
BST (71 lu,#p) — BST (#p,7m lu) — BST lu

Indeed, a binary tree with n nodes will have n+-1 leaves. An in-
order traversal of a binary tree is a strict alternation, leaf-node-leaf-
...-node-leaf, making a leaf the ideal place to keep the evidence
that neighbouring nodes are in order! Insertion remains easy.

insert : [= BST — BST]
insert (y, ly,yu) (leaf _) = node y (leaf ly) (leaf yu)
insert (y, ly, yu) (node p It rt) with owoto y p
.. | < yp = node p (insert (y,ly,yp) It) rt

.| > py = node p It (insert (y, py, yu) rt)
Rotation becomes very easy, with not a proof in sight!
rotater : [BST = BST]
rotater (node p (node m It mt) rt) =

node m It (node p mt rt)
rotater t = ¢

We have arrived at a neat way to keep a search tree in order,
storing pivot elements at nodes and ordering evidence in leaves.
Phew!

But it is only the end of the beginning. To complete our sorting
algorithm, we need to flatten binary search trees to ordered lists.
Are we due another long story about the discovery of a good
definition of the latter? Fortunately not! The key idea is that an
ordered list is just a particularly badly balanced binary search
tree, where every left subtree is a leaf. We can nail that down in
short order, just by inlining leaf’s data in the left subtree of node,
yielding a sensible cons.

data OList (lu : P] x P]) : Set where
nil : L] lu — OList lu
cons : (p : P) —
L] (71 lu,#p) — OList (#p,m lu) — OList lu

By figuring out how to build ordered binary search trees, we
have actually discovered how to build all sorts of in-order data
structures. We simply need to show how the data are build from
particular patterns of BST components. So, rather than flattening
binary search trees, let us pursue a generic account of in-order
datatypes, then flatten them all.

7. Jansson and Jeuring’s PolyP Universe

data JJ : Set where
‘RP‘1: JJ

Hixe s J) =) = U]
infixr / 4+
infixr 5 ‘x_

[]ss = JJ — Set — Set — Set
[R RP =R

[P RP =P

[17]w R P 1
[[S‘+THJJRP= HSHJJRPJrHT]]JJRP
[[S‘X THJJRP = HSHJJRPX[[T]]JJRP
data pyy (F : JJ) (P : Set) : Set where

<_> : [[F]]JJ(HJJFP)P — },LJJFP

The ‘R stands for ‘recursive substructure’ and the ‘P stands for
‘parameter’—the type of elements stored in the container. When
we ‘tie the knot” in w; F' P, we replace interpret F’s ‘Ps by some
actual P and its ‘Rs by pyy /' P.

Being finitary and first-order, all of the containers in the JJ
universe are traversable in the sense defined by Ross Paterson and
myself [McBride and Paterson(2008)].

record Applicative (H : Set — Set) : Set; where
field
pure : WX} - X - HX
ap ST} —>HS - T)—- HS > HT
open Applicative

traverse : V{H F' A B} — Applicatve H - (A — H B) —

A — H (uy F B)
traverse {H} {F} {A} {B} AH h t = go ‘R ¢t where
pu = pure AH; ® = ap AH

go/: VG — IIG]]JJ(HJ_JFA)A — H([[GHJJ(HJJFB)B)

go ‘R (t) =pu()®goFt

go ‘P a = ha

gl) =pul

go(S‘+T)(as) = pud®goS s
go(S‘+T)(>t) = pup@go Tt

go (S ‘x T)(s,t) = (pu-®goSs)dgo Tt

We can specialise traverse to standard functorial map.

idApp : Applicative (A X — X)

idApp = record {pure = id;ap = id}

map : {F AB} - (A - B) > upyFA - uyFB
map = traverse idApp

We can equally well specialise traverse to a monoidal crush

record Monoid (X : Set) : Set where

into a tree, preserving the substructure relationship. The method'
is to introduce a helper function, go, whose type separates G,
the structure of the top node, from F' the structure of recursive
subnodes, allowing us to take the top node apart: we kick off with
G = F.

tree : V{P F'} — pso F' P — pso ‘Tree P
tree {P} {F} (f) = go F [where
go : VG — [[GJso Ju (uso F P) P — pso ‘Tree P

field go ‘R f = tree f
neutral : X go‘l 0 = (<())
combine : X = X — X go (S + T)(as) = gols
open Monoid go (S i‘*‘ TY(bt) =goTt
monApp : ¥{X} — Monoid X — Applicative (A - — X) go (A T) (s:pt) = (> (go S s,p,80 T'1))
monApp m = record {pure = X _ — neutral m;ap = combine All}tree does is strip out the <s and >s corresponding to the

crush : V{P X F} — Monoid X — (P — X) — py F P struc ral choices offered by the input type and instead label the

crush m = traverse {B = 0} (monApp m)

Endofunctions on a given set form a monoid with respect to
composition, which allows us a generic foldr-style operation.

compMon : V{X} — Monoid (X — X)
compMon = record {neutral = id; combine =

void leaves < and the pivoted nodes . Note well that a singleton
tree has void leaves as its left and right substructures, and hence
that the inorder traversal is a strict alternation of leaves and pivots,
beginning with the leaf at the end of the left spine and ending with
the leaf at the end of the right spine. As our tree function preserves
the leaf/pivot structure of its input, we learn that every datatype we

AL9 = [° %in define in SO stores such an alternation of leaves and pivots.

foldr : WFAB} - (A > B - B) - B - uyFA—> B

foldr f bt = crush compMon f t b

We can use foldr to build up Bs from any structure containing As,
given a way to ‘insert’ an A into a B, and an ‘empty’ B to start
with.

8. The Simple Orderable Universe

The quicksort algorithm divides a sorting problem in two by par-
titioning about a selected pivot element the remaining data. Ren-
dered as the process of building then flattening a binary search tree
[Burstall(1969)], the pivot element clearly marks the upper bound
of the lower subtree and the lower bound of the upper subtree, giv-
ing exactly the information required to guide insertion.

We can require the presence of pivots between substructures by
combining the parameter ‘P and pairing ‘ x constructs of the PolyP
universe into a single pivoting construct, ‘A, with two substructures
and a pivot in between. We thus acquire the simple orderable
universe, SO, a subset of JJ picked out as the image of a function,
[-Iso. Now, P stands also for pivot!

data SO : Set where

‘R‘1 : SO

A SO - SO — SO
infixr 5 ‘A
[H]so : SO — JJ
[‘RIso =R
[1]so =1
[S+TJso = [S]so‘+[TIso
[[S‘/\ T]]so = HSHSQ‘X ‘P‘X[[Tﬂso
uso : SO — Set — Set
Hso F' P = wyy [Flso P

Let us give SO codes for structures we often order and bound:

‘List ‘Tree ‘Interval : SO

‘List = ‘14 (‘1‘A‘R)
‘Tree = ‘14 (‘R‘A‘R)
‘Interval = ‘1 ‘A ‘1

Every data structure described by SO is a regulated variety of
node-labelled binary trees. Let us check that we can turn anything

L0202020.0L0 020202

We are now in a position to roll out the “loose bounds” method
to the whole of the SO universe. We need to ensure that each pivot
is in order with its neighbours and with the outer bounds, and the
alternating leaf/pivot structure gives us just what we need: let us
store the ordering evidence at the leaves!

[Jso : SO — ¥{P} — Rel Pl — Rel P — Rel P|

[‘Rl RLlu = Rlu
[1]5% RLlu =1 lu
[S4+ Tl RLIu =[Sl RLIu+[T]s RL I

[SAT]5o RL(Lu) = Z_Xp —
[S150 R L(L#p) x [Tl R L (#p,u)
data j15, (F : SO) {P : Set} (L : Rel P)
(lu : PL x P]) : Set where
O :[Fléoso FLYLlu — us F Llu

We have shifted from sets to relations, in that our types are indexed
by lower and upper bounds. The leaves demand evidence that the
bounds are in order, whilst the nodes require the pivot first, then use
it to bound the substructures appropriately. I promise that I shall
never name the evidence: I shall always match it with the _ pattern
and construct it by means of the following device, making use of
instance arguments:

VIf you try constructing the division operator as a primitive recursive func-
tion, this method will teach itself to you.

v V{X ¢ Set} {{z :
HX T {{z}) = 2

When we use ! at type X, Agda treats the x as an implicit
argument, but rather than solving for z by unification, Agda seeks
an assumption of type X in the context, succeeding if there is
exactly one.

Meanwhile, the need in nodes to bound the left substructure’s
type with the pivot value disrupts the left-to-right spatial ordering
of the data, but we can apply a little cosmetic treatment, thanks to
the availability of pattern synonyms [Aitken and Reppy(1992)].

X} = X

pattern
infixr 5

«Spl = ps,t

With these two devices available, let us check that we can still
turn any ordered data into an ordered tree, writing L” [u for
usgo ‘Tree L | u, and redefining intervals accordingly.

4¢ . V{P} — Rel P — Rel P|
B = usgo ‘Tree L
r = uséo‘lntervalL
tree : V{P F}{L : Rel P} — [uio F L= I?]
tree {P} {F}{L} (f) = go F f where
0: VG = [[Gls (hso F L) L= I8

go ‘R f = tree f
go ‘1 _ = (a1)

go(S‘+T)(xs) =goSs
go(S‘+T)(pt) =goTt

go (S'AT) (scp.t) = (> (go S scp.go T 1))

We have acquired a collection of orderable datatypes which
all amount to specific patterns of node-labelled binary trees: an
interval is a singleton node; a list is a right spine. All share the
treelike structure which ensures that pivots alternate with leaves
bearing the evidence the pivots are correctly placed with respect to
their immediate neighbours.

Let us check that we are where we were, so to speak. Hence we
can rebuild our binary search tree insertion for an element in the
corresponding interval:

insert : [0 5 I = ')

insert (_.y.—) (<) = (>((9).y.(21)))

insert (_.y.—) (> (it.p.7t)) with owoto y p

| <9 = (> (insert (1, y.) lt.p.rt))

> = (> (lt.p.insert (1 y.1) rt))
The constraints on the inserted element are readily expressed via
our ‘Interval type, but at no point need we ever name the ordering
evidence involved. The owoto test brings just enough new evidence
into scope that all proof obligations on the right-hand side can be

discharged by search of assumptions. We can now make a search
tree from any input container.

makeTree : V{F} — uy F P — & (L,T)
makeTree = foldr (A p — insert (1. p.1)) (<)

9. Digression: Merging Monoidally
Let us name our family of ordered lists L*, as the leaves form a
nonempty chain of L ordering evidence.

*: VPl = Rel P - Rel P]

L' = psgo ‘List L

The next section addresses the issue of how to flatten ordered
structures to ordered lists, but let us first consider how to merge

them. Merging sorts differ from flattening sorts in that order is
introduced when ‘conquering’ rather than ‘dividing’.

We can be sure that whenever two ordered lists share lower
and upper bounds, they can be merged within the same bounds.
Again, let us assume a type P of pivots, with owoto witnessing the
totality of order L. The familiar definition of merge typechecks but
falls just outside the class of lexicographic recursions accepted by
Agda’s termination checker.

merge : [LT = LF = 7]

merge (< _) ys = ys

merge zs (< _) = xs

merge (> (j=.z.zs)) _.y.ys)) with owoto z y
e = (> (L mergem((ty.ys))))

o= = (> (.y.merge (> (W.z.25)) ys))
In one step case, the first list gets smaller, but in the other, where
we decrease the second list, the first does not remain the same: it
contains fresh evidence that z is above the tighter lower bound, y.
Separating the recursion on the second list is sufficient to show that
both recursions are structural.
merge : [L" = L7 = [7]
merge (< 2) = id
merge {l,u} (> (—.z.zs)) = go where
o s V{I} {{-: Ll (Lsa)}} —
L (Lu) — L (L)
go (<) = (> (uz.as))
go (> (—.y.ys)) with owoto = y
ez (> (r,z.merge zs (> (1.y.ys))))
~le— = (>(.y.g0ys))
The helper function, go inserts z at its rightful place in the second
list, then resumes merging with xs.
Merging equips ordered lists with monoidal structure.

olMon : Y{lu} {{_ : Ll lu}} — Monoid (L~ lu)
olMon = record {neutral = (<1);combine = merge}

An immediate consequence is that we gain a family of sorting
algorithms which amount to depth-first merging of a given interme-
diate data structure, making a singleton from each pivot.

mergeyy : V{F} — py F P — LW (L,T)
mergey; = crusholMon Ap — (> (—.p.(<_)))

The instance of merge,; for lists is exactly insertion sort: at each
cons, the singleton list of the head is merged with the sorted tail. To
obtain an efficient mergeSort, we should arrange the inputs as a
leaf-labelled binary tree.

‘qLTree : JJ

‘qLTree = (‘14 ‘P) ‘4 ‘R‘x ‘R

We can add each successive elements to the tree with a twisting
insertion, placing the new element at the bottom of the left spine,

but swapping the subtrees at each layer along the way to ensure fair
distribution.

twistln : P — uyy ‘gLTree P — wyy ‘qLTree P
twistln p (4 (< ())) = (1 (>p))

twistln p (< (> ¢)) = (> (< (>p)),(<(>q))))
twistln p (> (I,7)) = (> (twistln p r,1))

If we notice that twistln maps elements to endofunctions on
trees, we can build up trees by a monoidal crush, obtaining an
efficient generic sort for any container in the JJ universe.

mergeSort : V{F} — wy FP — L' (L,7T)
mergeSort = mergeyy o foldr twistln (< (< ()))

10. Flattening With Concatenation

Several sorting algorithms amount to building an ordered interme-
diate structure, then flattening it to an ordered list. As all of our
orderable structures amount to trees, it suffices to flatten trees to
lists. Let us take the usual naive approach as our starting point. In
Haskell, we might write

flatten Leaf =0

flatten (Node 1 p r) = flatten 1 ++ p : flatten r

so let us try to do the same in Agda with ordered lists. We shall
need concatenation, so let us try to join lists with a shared bound p
in the middle.

infixr 8 ++
A= V{P}{L:RelP}{lpu} —
L' (l,p) — L' (p,u) — L' (l,u)
(<) Hys = ys
(> (ozoxs)) +Hys = (> (Lz.ms H ys))

The ‘cons’ case goes without a hitch, but there is trouble at ‘nil’.

We have ys : usgo ‘List L p u and we know L] [p, but we need
< s
to return a pgy ‘List L [u.
draw a diagram showing the — —o—o— situation

“The trouble is easy to fix,” one might confidently assert, whilst
secretly thinking, “What a nuisance!”. We can readily write a helper
function which unpacks ys, and whether it is nil or cons, extends its
leftmost order evidence by transitivity. And this really is a nuisance,
because, thus far, we have not required transitivity to keep our
code well typed: all order evidence has stood between neighbouring
elements. Here, we have two pieces of ordering evidence which we
must join, because we have nothing to put in between them. Then,
the penny drops. Looking back at the code for flatten, observe that
p is the pivot and the whole plan is to put it between the lists. You
can’t always get what you want, but you can get what you need.

sandwich : V{P} {L : Rel P} {lu}p —

I (L#p) = I (spyu) = L (lu)
sandwich p (< _) ys = (> (Lp.ys))
sandwich p (> (_.z.zs)) ys = (> (l.z.sandwich p zs ys))
We are now ready to flatten trees, thence any ordered structure:
flatten : V{P} {L : Rel P} — [} = []
flatten (< _) (a1)
flatten (> (I.p.7)) = sandwich p (flatten [) (flatten)
flattenSy : V{P} {L : Rel P} {F} — [us, F L5 LF]
ﬂattensgo = flatten o tree

For a little extra speed we might fuse that composition, but
it seems frivolous to do so as then benefit is outweighed by the
quadratic penalty of left-nested concatenation. The standard rem-
edy applies: we can introduce an accumulator [Wadler(1987)], but
our experience with 4++ should alert us to the possibility that it may
require some thought.

11. Faster Flattening, Generically

We may define flatten generically, and introduce an accumulator
yielding a combined flatten-and-append which works right-to-left,
growing the result with successive conses. But what should be the
bounds of the accumulator? If we have not learned our lesson, we
might be tempted by

flapp : V{P}{L : Rel P} {F}{lpu} —
Mo F L (Lp) = L' (pu) = I (I,u)

but again we face the question of what to do when we reach a
leaf. We should not need transitivity to rearrange a tree of ordered

neighbours into a sequence. We can adopt the previous remedy
of inserting the element p in the middle, but we shall then need
to think about where p will come from in the first instance, for
example when flattening an empty structure.

flapp : Y{P}{L : RelP} {F}{lu} Gp —

[G Hsgo (“sgo F L) L(lL#p) —
LY (¢p,u) — LT (1,u)

flapp {FF = F} ‘Rp (t) ys = flapp F p t ys

flapp ‘1 p- ys = (> (.p.ys))

flapp (S ‘+ T) p(as) ys = flapp S psys

flapp (S ‘+ T) p(>t) ys = flapp T'ptys

flapp (S ‘A T) p (s.p'.t)ys = flapp S p’ s (flapp T p t ys)

To finish the job, we need to work our way down the right spine of
the input in search of its rightmost element, which initialises p.

flatten : V{P} {L : Rel P} {F} — [us, F L ')
flatten {P} {L} {F} {lL,u} (t) = go F ¢ where
go: {1} G = [Gl% (o F L) L(Lu) — I (lu)

go ‘R t = flatten ¢

go‘l - = (q1)

go (S 4+ T)(a«s) = goSs
go(S4+T)(pt) =goTt

go (S‘AT) (s.p.t) = flapp S ps(go T t)

This is effective, but it is more complicated than I should like.
It is basically the same function twice, in two different modes, de-
pending on what is to be affixed after the rightmost order evidence
in the structure being flattened: either a pivot-and-tail in the case
of flapp, or nothing in the case of flatten. The problem is one of
parity: the thing we must affix to one odd-length leaf-node-leaf
alternation to get another is an even-length node-leaf alternation.
Correspondingly, it is hard to express the type of the accumulator
cleanly. Once again, I begin to suspect that this is a difficult thing
to do because it is the wrong thing to do. How can we reframe the
problem, so that we work only with odd-length leaf-delimited data?

12. A Replacement for Concatenation

My mathematical mentor, Tom Korner, is fond of remarking “A
mathematician is someone who knows that 0 is 0 4 0”. It is often
difficult to recognize the structure you need when the problem in
front of you is a degenerate case of it. If we think again about
concatenation, we might realise that it does not amount to affixing
one list to another, but rather replacing the ‘nil’ of the first list with
the whole of the second. We might then notice that the monoidal
structure of lists is in fact degenerate monadic structure.

Any syntax has a monadic structure, where ‘return’ embeds
variables as terms and ‘bind’ is substitution. Quite apart from their
‘prioritised choice’ monadic structure, lists are the terms of a de-
generate syntax with one variable (called ‘nil’) and only unary op-
erators (‘cons’ with a choice of element). Correspondingly, they
have this substitution structure: substituting nil gives concatena-
tion, and the monad laws are the monoid laws.

Given this clue, let us consider concatenation and flattening in
terms of replacing the rightmost leaf by a list, rather than affixing
more data to it. We replace the list to append with a function which
maps the contents of the rightmost leaf—some order evidence—
to its replacement. The type looks more like that of ‘bind’ than
‘append’, because in some sense it is!

infixr § -+

RepL : V{P} — Rel P — Rel P|

RepL L (n,u) = Y{m} {{_ : Ll (myn)}} = L' (m,u)
e W{PH{L : RelP}{lnu} —

Lt (I,n) — RepL L (n,u) — L (l,u)
(a-) +ys = ys
(> (cozows)) H ys = (> (Lz.zs + ys))

Careful use of instance arguments leaves all the manipulation of
evidence to the machine. In the ‘nil’ case, ys is silently instantiated
with exactly the evidence exposed in the ‘nil’ pattern on the left.

Let us now deploy the same technique for flatten.

flapp : V{P}{L : Rel P} {F}{lnu} —
wso F L(I,n) — RepL L (n,u) — L (l,u)
flapp {P} {L}{F}{u = u} tys = go ‘Rt ys where
go: W{in} G = [G5 (w5 F L) L(Ln) -
RepL L (n,u) — L (I,u)
go ‘R (t) ys = go F' tys
go ‘1 - ys = ys
go(S‘+T)(xas) ys = gosSsys
go (S 4+ T)>t) ys =goTtuys
go (S‘AT) (s.p.t)ys = go S s (> (.p.goTtys))

flatten : VY{P} {L : Rel P} {F} — [uio F L= L")
flatten t = flapp ¢ («1)

13. An Indexed Universe of Orderable Data

Ordering is not the only invariant we might want to enforce on or-
derable data structures. We might have other properties in mind,
such as size, or balancing invariants. It is straightforward to extend
our simple universe to allow general indexing as well as orderabil-
ity. We can extend our simple orderable universe SO to an indexed
orderable universe 10, just by marking each recursive position with
an index, then computing the code for each node as a function of
its index. We may add a ‘0 code to rule out some cases as illegal.

data IO (I : Set) : Set where
‘R 1 =101
01 10T
SN 10T - 101 = 101
[g: WIPY =101 —
(I = RelP]) — Rel P — Rel P|

[Rilg RLlu = Rilu

003 RLlu =0

103 RLlw =L lu

[S4+TlgRLlu = [S]gRLIu+[T]gRLI
[SAT]gRL(Lu) =X _Ap —

[S]io B L(L#p) x [T R L (+p,u)
data g {1 P : Set} (F : I — 101) (L : Rel P)
(i : I)(lu : P_ x P]) : Set where
O:[FilgmgFL Liu — wg FLilu
We recover all our existing data structures by trivial indexing.

‘List ‘Tree ‘Interval : 1 — 101

‘List _ = ‘14 (‘1‘ARY))
“Tree _ = ‘14 (‘R{) ‘A‘RY))
‘Interval _ = ‘1 ‘A ‘1

We also lift our existing type-forming abbreviations:

t2¢ . v{P} — Rel P — Rel P|
IF = ug‘List L)
I = ug Tree L)
r = pl% ‘Interval L ()

However, we may also make profitable use of indexing: here are
ordered vectors.

‘Vec : N — ION
‘Vec 0 = ‘1
‘Vec (sucn) = ‘L‘A‘Rn

Note that we need no choice of constructor or storage of length
information: the index determines the shape. If we want, say, even-
length tuples, we can use ‘0 to rule out the odd cases.

‘Even : N — ION

‘Even 0 =1

‘Even (suc 0) =0

‘Even (suc (sucn)) = ‘1‘A‘1‘A‘Rn

We could achieve a still more flexible notion of data structure
by allowing a general Z-type rather than our binary ‘+, but we
have what we need for finitary data structures with computable
conditions on indices.

The tree operation carries over unproblematically, with more
indexed input but plain output.

tree : V{I PF}{L : Rel P} {i :
Similarly, flatten works (efficiently) just as before.
flatten : V{I P F} {L : Rel P} {3 :

We now have a universe of indexed orderable data structures
with efficient flattening. Let us put it to work.

14. Balanced 2-3 Trees

To ensure a logarithmic access time for search trees, we can keep
them balanced. Maintaining balance as close to perfect as possible
is rather fiddly, but we can gain enough balance by allowing a little
redundancy. A standard way to achieve this is to insist on uniform
height, but allow internal nodes to have either one pivot and two
subtrees, or two pivots and three subtrees. We may readily encode
these 2-3 trees.

‘Tree23 : N — ION
‘Tree23 0 = ‘1
‘Tree23 (sucn) = ‘Rn ‘A (‘Rn‘4+ (‘Rn ‘A ‘Rn))

B .Y P} :RelP) - N — Rel P|
B = ul% ‘Tree23 L

When we map a 2-3 tree of height n back to binary trees, we get
a tree whose left spine has length n and whose right spine has a
length between n and 2n.

Insertion is quite similar to binary search tree insertion, except
that it can have the impact of increasing height. The worst that can
happen is that the resulting tree is too tall but has just one pivot at
the root. Indeed, we need this extra wiggle room immediately for
the base case!

ins23 : Vn {lu} = Dl — Bnlu —
B onlu+
IPXp — B*n(m lu+p) x P n (4#p,m lu)
0230 () () = > () (1)
In the step case, we must find our way to the appropriate subtree by
suitable use of comparison.

ins23 (suc n) (—.y.—) (Ilt.p.rest) with owoto y p

ins23 (suc n) (_.y.—) (Ilt.p.rest)
| 4 = ?0

ins23 (suc n) (_.y.—) (lt.p.<art)
| >r = ?1

I} = [ug FLis 18]

IV = [us FLi— I

ins23 (suc n) (_.y.—) (lt.p.> (mt, q.rt))
| >z with owoto y ¢
ins23 (suc n) {—.y.—) {lt.p.> (mt. q.1t))

| >z | <=7
ins23 (suc n) {_.y.—) (lt.p.> (mt.q.1t))
bz | p_= 7

Our 7, covers the case where the new element belongs in the left
subtree of either a 2- or 3-node; 7; handles the right subtree of a

2-node; 72 and 7?3 handle middle and right subtrees of a 3-node
after a further comparison. Note that we inspect rest only after we
have checked the result of the first comparison, making real use of
the way the with construct brings more data to the case analysis but
keeps the existing patterns open to further refinement, a need fore-
seen by the construct’s designers [McBride and McKinna(2004)].

Once we have identified the appropriate subtree, we can make
the recursive call. If we are lucky, the result will plug straight back
into the same hole. Here is the case for the left subtree.

ins23 (suc n) (_.y.—) (lt.p.rest)
| <_withins23 n (1 y.1) It

ins23 (suc n) (_.y.—) (lt.p.rest)
| < | <t/ = <{lt' . p.rest)

However, if we are unlucky, the result of the recursive call is too
big. If the top node was a 2-node, we can accommodate the extra
data by returning a 3-node. Otherwise, we must rebalance and pass
the ‘too big’ problem upward. Again, we gain from delaying the
inspection of rest until we are sure reconfiguration will be needed.

ins23 (suc n) (—.y.—) (lt.p.<art)
| <— | > (lt.r.lrt)
= < (lt.r.> (Irt.p.rt))
ins23 (suc n) {_.y.—) (lt.p.> (mt.q.rt))
| <a_ | >t rirt)
= > ((lt.r.alrt).p.(mt.qg.<art))

For the 7; problems, the top 2-node can always accept the result
of the recursive call somehow, and the choice offered by the return
type conveniently matches the node-arity choice, right of the pivot.
For completeness, I give the middle (72) and right (73) cases
for 3-nodes, but it works just as on the left.

ins23 (suc n) (—.y.—) (lt.p.> (mt. q.rt))

| >z | <_withins23 n (1, y.!) mt
ins23 (suc n) {_.y.—) (lt.p.> (mt.q.rt))

| >z | <_ | amt’ = < (it.p.>(mt'.q.rt))
ins23 (suc n) (—.y.—) (lt.p.> (mt. q.rt))

| >z | <— | > (mit.r.mrt)

= > ((lt.p.<mlt) r.{(mrt.q.<1t))
ins23 (suc n) {_.y.—) (lt.p.> (mt.q.1t))

| >z | >_withins23 n (1 y.1) 1t
ins23 (suc n) {_.y.—) {lt.p.> (mt. q.1t))

| >z | > | art’ = < (lt.p.>(mt.q.rt'))
ins23 (suc n) {—.y.—) (lt.p.> (mt.q.rt))

| pax | >_ | > (rlt.r.rrt)

= > ((lt.p.<amt). q. (rlit.r.arrt))

To complete the efficient sorting algorithm based on 2-3 trees,
we can use a X-type to hide the height data, giving us a type which
admits iterative construction.

Tree23 = INAn — P n(L,T)

insert : P — Tree23 — Tree23
insert p (n,t) with ins23 n (_.p._) t

| <t/ =n .t

| > (lt.r.rt) = sucn,(lt,r.<art)
sort : V{F} — wy FP — LF(LT)
sort = flatten o 71, o foldr insert (0,(_))

15. Discussion

References

[Aitken and Reppy(1992)] William Aitken and John Reppy. Abstract value
constructors. Technical Report TR 92-1290, Cornell University, 1992.

[Atkey et al.(2012)Atkey, Johann, and Ghani] Robert Atkey, Patricia
Johann, and Neil Ghani. Refining inductive types. Logical Methods in
Computer Science, 8(2), 2012.

[Burstall(1969)] Rod Burstall. Proving properties of programs by structural
induction. Computer Journal, 12(1):41-48, 1969.

[McBride(2000)] Conor McBride. A Case For Dependent Fami-
lies. LFCS Theory Seminar, Edinburgh, 2000. URL http:
//strictlypositive.org/a-case/.

[McBride and McKinna(2004)] Conor McBride and James McKinna. The
view from the left. J. Funct. Program., 14(1):69-111, 2004.

[McBride and Paterson(2008)] Conor McBride and Ross Paterson. Ap-
plicative programming with effects. JFP, 2008.

[Turner(1987)] David Turner. Elementary strong functional programming.
1987. URL http://sblp2004.ic.uff.br/papers/turner.pdf.

[Wadler(1987)] Philip Wadler. The concatenate vanishes. Technical report,
1987.

http://strictlypositive.org/a-case/
http://strictlypositive.org/a-case/
http://sblp2004.ic.uff.br/papers/turner.pdf

	Introduction
	Preliminaries
	Searching for Search Trees (and Barking up the Wrong One)
	Why Measure When You Can Require?
	One Way Or The Other
	The Importance of Local Knowledge
	Jansson and Jeuring's PolyP Universe
	The Simple Orderable Universe
	Digression: Merging Monoidally
	Flattening With Concatenation
	Faster Flattening, Generically
	A Replacement for Concatenation
	An Indexed Universe of Orderable Data
	Balanced 2-3 Trees
	Discussion

