
Small Induction Recursion, Indexed Containers
and Dependent Polynomials are equivalent∗

Lorenzo Malatesta*, Thorsten Altenkirch**, Neil Ghani*, Peter
Hancock*, and Conor McBride*

* University of Strathclyde, Dept. of Computer and Information Science
Livingstone Tower, G1 1XH Glasgow, United Kingdom
lorenzo.malatesta@strath.ac.uk hancock@spamcop.net
{neil.ghani, Conor.McBride}@cis.strath.ac.uk

** University of Nottingham, School of Computer Science,
Jubilee Campus NG8 1BB Nottingham, United Kingdom
txa@cs.nott.ac.uk

Abstract
There are several different approaches to the theory of data types. At the simplest level, poly-
nomials and containers give a theory of data types as free standing entities. At a second level
of complexity, dependent polynomials and indexed containers handle more sophisticated data
types in which the data have an associated indices which can be used to store important com-
putational information. The crucial and salient feature of dependent polynomials and indexed
containers is that the index types are defined in advance of the data. At the most sophisticated
level, induction-recursion allows us to define the data and the indices simultaneously.

The aim of this work is to investigate the relationship between the theory of small inductive
recursive definitions and the theory of dependent polynomials and indexed containers. Our
central result is that the expressiveness of small inductive recursive definitions is exactly the
same as that of dependent polynomials and indexed containers. Formally, this result applies not
just to the data types definable in these theories, but also to the morphisms between such data
types. Indeed, we introduce the category of small inductive-recursive definitions and prove the
equivalence of this category with the category of dependent polynomials/indexed containers.

1998 ACM Subject Classification F.3.3 Studies of Program Constructs

Keywords and phrases Induction-recursion, polynomial functor, indexed container, type theory,
category theory.

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

One of the most important concepts in computer science is the notion of an inductive
definition. It is difficult to trace back its origin since this concept permeates the history of
proof theory and a large part of theoretical computer science1. In recent years, the desire
to explore, understand, and extend the concept of an inductive definition has led different
researchers to different but (extensionally) equivalent notions. The theory of containers [1],
and polynomial functors [20, 14] are some of the outcomes of this research2. These theories

∗ EPSRC project EP/G033056/1 Theory and Applications of Induction Recursion supports this work.
1 A gentle introductory survey of the history of this concept is given by Coquand and Dybjer in [7].
2 The interested reader can consult the section on related works in [15] for further pointers to the literature.

© Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock and Conor McBride;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Small IR, Poly and IC are equivalent

give a comprehensive account of those data types such as Nat (the natural numbers), List a
(lists containing data of a given type a), and Tree a (trees containing, once more, data of a
given type a) which are free-standing in that their definition does not require the definition
of other inter-related data types.

These theories are too simple to capture more sophisticated data types possessing features
such as: (i) variable binding as in the untyped and typed lambda calculus; (ii) constraints
as in red black trees; and (iii) extra information about data having such types - the classic
example of this are vectors which are lists indexed by their lengths. For this reason containers
and polynomials have been generalised to indexed containers [2, 3] and dependent polynomials
[14, 15] so as to capture not only free standing data types such as those mentioned above,
but also data types where the data are indexed by computationally relevant information.
Containers and (non-dependent) polynomials arise as specific instances of these generalised
notions where the type of indices is chosen to be a singleton type.

However, even dependent polynomials and indexed containers fail to cover all the data
types that we need to compute with because they require the indices to be defined before the
data. The theory of induction-recursion (IR), developed in the seminal works of Peter Dybjer
and Anton Setzer [11, 12, 13], remedies this deficiency. The key feature of an inductive-
recursive definition is the simultaneous inductive definition of a type X of indices together
with the recursive definition of a function T : X → D from X into a type D which assigns to
every index the type of data with that index. Since X and T can be defined at the same
time, the indices need not be defined in advance of the data. As we shall see later, universes
(introduced by Martin-Löf in the early 70’s [19]) are paradigm examples of inductive recursive
definitions.

It is natural to ask what is the relationship between dependent polynomials and induction
recursion. Can we characterise those inductive-recursive definitions which correspond to
dependent polynomials? The aim of this paper is to address precisely this question. As
we will show dependent polynomials and indexed containers correspond exactly to small
inductive-recursive definitions, where the “smallness” refers to the size of the target-type D
of the recursively defined function T : X → D. More precisely, we will prove an equivalence
between the category of dependent polynomials and the category of small inductive-recursive
definitions. This result is not merely of theoretical importance - it also opens the way to
programmers to convert definitions between the two forms, according to which works better
for their own applications. To achieve this, as well as to make the paper more accessible,
and to type check our translations, we have implemented our translations in Agda.

The paper is organised as follows: in Section 2 we set our notation, while Section 3
recalls indexed containers, dependent polynomials and induction recursion. In Section 4,
we show an equivalence between data types definable by small IR and those data types
definable using dependent polynomials and/or indexed containers. In Section 5 we introduce
the category of small inductive-recursive definitions and show it equivalent to the category
of dependent polynomials/indexed containers. In Section 6 we briefly recall the theory of
indexed inductive-recursive definitions, and extend the previous equivalence to the case of
indexed small induction recursion. We conclude in Section 7 with thoughts for future work.

The sources and additional materials for this paper are available from http://personal.
cis.strath.ac.uk/~conor/pub/SmallIR.

http://personal.cis.strath.ac.uk/~conor/pub/SmallIR
http://personal.cis.strath.ac.uk/~conor/pub/SmallIR

Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock and Conor McBride 3

2 Preliminaries and internal languages

We follow the standard approach of using extensional Martin-Löf type theory as the internal
language to formalise reasoning with the locally cartesian closed structure of the category of
sets — see [21, 16] for details 3. Our notation follows Agda — indeed, this paper is a literate
Agda development. We write identity types as x ≡ y and assume uniqueness of identity
proofs. We write ΣT or (s :S)× T s and ΠT or (s :S)→ T s for the dependent sum and
dependent product in Martin-Löf type theory of T : S → Set. The elements of (s :S)×T s
are pairs (s, t) where s : S and t : T s may be projected by π0 and π1. The elements of
(s :S)→ T s are functions λ x → t x mapping each element s : S to an element t s of T s.

Categorically, we think of an I -indexed type as a morphism f : X → I with codomain I .
These are objects of the slice category Set/I . Morphisms in Set/I from object f : X → I
to object f ′ : X ′ → I are given by functions h : X → X ′ such that f = f ′ ◦ h. Type
theoretically, we can represent matters in more or less the same way – that is, an object in a
slice Set/I is a pair (X , f) of a set X (the domain), and a function f : X → I . However,
another possibility is to model an I -indexed type by a function F : I → Set where F i
represents the fibre of f above i, i.e. as (X , f)−1 i, defined as follows.

·−1 : Set/I → (I → Set)
(X , f)−1 i = (x :X)× f x ≡ i

∃. : (I → Set) → Set/I
∃.F = (ΣF , π0)

We write ∃.F for the inverse of this operator: that these are inverse (given uniqueness of
identity proofs) is at the heart of the well known equivalence between the categories Set/I
and I → Set which, in a sense, underlies the equivalences we describe in this paper.

Given a function k : I → J , we can form three very important functors. The pullback
along k of an object f : X → J of Set/J defines a reindexing functor ∆k : Set/J → Set/I .
∆k has both a left adjoint and a right adjoint, respectively Σk,Πk : Set/I → Set/J . In the
internal language, we define these for ·→ Set, as follows:

∆k : (J → Set) → (I → Set)
∆k F i = F (k i)

Σk : (I → Set) → (J → Set)
Σk F j = (i :I)× k i ≡ j × F i
Πk : (I → Set) → (J → Set)
Πk F j = (i :I)→ k i ≡ j → F i

3 Three theories of data types

The foundation of our understanding of data types is initial algebra semantics. Thus, formally
our theories of data types are in fact theories of functors which have initial algebras. In this
section we recall the notions of dependent polynomials, indexed containers and induction
recursion, each of which define certain classes of functors and hence data types.

I Definition 1. The collection of dependent polynomials with input indices I and output
indices O is written Poly I O and consists of triples of morphisms (r, t, q) where

I P S O .
r t q

3 The correspondence between lcccs and Martin Löf type theories is affected by coherence problems
related to the interpretation of substitution. We refer to [8], [16] and more recently [6] for different
solutions to these problems.

4 Small IR, Poly and IC are equivalent

A dependent polynomial functor is any functor isomorphic to some J(r , t, q)KPoly = Σq◦Πt◦∆r :
Set/I → Set/O, illustrated as follows:

Set/I Set/P Set/S Set/O .
∆r Πt Σq

While the definition above is concise, some readers may prefer a more concrete presentation.
So we turn to the representation of dependent polynomials in the internal language. This
leads us to the notion of an indexed container.

I Definition 2. The collection of indexed containers with input indices I and output indices O
is written ICIO and consists of triples (S, P, n) where S : O → Set, P : (o :O)→ S o → Set
and n : (o :O)→ (s :S o)→ P o s → I . Its extension is the functor

J·KIC : IC I O → (I → Set) → (O → Set)
J(S ,P,n)KIC X o = (s :S o)× (p :P o s)→ X (n o s p)

Every dependent polynomial functor (r , t, q) gives rise to an indexed container (Ŝ, P̂ , n).

Ŝ o = (S , q)−1 o
P̂ o (s,) = (P, t)−1 s
n o (s,) (p,) = r p

We may readily check that

J(Ŝ, P̂ ,n)KIC F o = (sq : ((S , q)−1 o))× (pq : ((P, t)−1 (π0 sq)))→ F (r (π0 pq))
∼= (s :S)× (q s ≡ o) × (p :P)→ (t s ≡ p) → F (r p)
= (Σq ◦ Πt ◦ ∆r) F o

confirming the equivalence between indexed containers and dependent polynomials.
Polynomials (resp. containers) arise as a special case of dependent polynomials (indexed

containers) by choosing I = O = 1. Notice the salient feature of both dependent polynomials
and indexed containers — that the input and output indices I and O are fixed and must be
defined in advance. This restriction means that neither dependent polynomials nor indexed
containers suffice to define all the data types in which we are interested. Paradigmatic
undefinable data types are universes of types. These are pairs (U, T) consisting of a set U ,
thought as a set of names or codes, and of a function T : U → Set, thought as a “decoding
function” which assigns a set T u to every element u of U . For example, consider a universe
containing the type of natural numbers N and closed under Σ-types. Such a universe will be
the least solution of the

U = 1 + (u :U)× T u → U
T (inl ?) = N
T (inr (u, f)) = (x :T u)× T (f x)

Note how, in this example, the set of codes U must be defined simultaneously with the
decoding function T - something not possible with dependent polynomials or indexed
containers which require that U be defined before T . Dybjer and Setzer developed the theory
of induction recursion to cover exactly such inductive definitions where the indices and the
data must be defined simultaneously. The first presentation of induction-recursion [10] was

Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock and Conor McBride 5

as an external schema. In later presentations, the concept of an inductive recursive definition
is internalised using of a special type of codes IR I O. 4

I Definition 3. Let I,O be types. The type of IR I O-codes has the following constructors

data IR (I O : Set) : Set1 where

ι : (o : O) → IR I O
σ : (S : Set) (K : S → IR I O) → IR I O
δ : (P : Set) (K : (P → I) → IR I O) → IR I O

In general I and O may be large types such as Set or Set → Set etc. Above, we encode
small induction recursion (small IR) we mean the cases where I and O are sets.

Dybjer and Setzer prove that every IR code defines a functor. In the case of small IR, this
functorial semantics can be given in terms of slice categories. Before giving this semantics,
we note that slice categories have set indexed coproducts. That is, given a set A, and an
A-indexed collection of objects fa : Xa → I of Set/I , the cotuple [fa]a:A :

∐
a:AXa → I is

the coproduct of the objects fa in Set/I . We use ina : Xa →
∐
a:AXa for the a-th injection.

In the internal language, the coproduct of an A-indexed family Xa : I → Set is the function
mapping i to (a : A) × Xa i. We use these coproducts to give a definition of the functor
denoted by an IR code more compact than - but of course equivalent to - that originally
provided by Dybjer and Setzer.

I Definition 4. Let I,O be sets, γ : IR I O. The action of the functor JγK : Set/I → Set/O
on an object f : X → I of Set/I is defined by recursion on γ as follows

if γ = ι o for some o : O

Jι oK (f : X → I) = (λ_.o) : 1→ O

if γ = σ S K for some S : Set, K : S → IR I O

Jσ S KK (f : X → I) =
∐
s:S JK sK f

if γ = δ P K for some P : Set, K : (P → I) → IR I O

Jδ P KK (f : X → I) =
∐
x:A→X JK(f ◦ x)K f

An IR functor is any functor isomorphic to one of the form JγK for some γ : IR I O.

We can give the above construction in type theory, using the direct translation of slices,
closed under dependent sum, yielding an interpretation in the style of Dybjer and Setzer:

J·KDS : IR I O → Set/I → Set/O
Jι oKDS (X , f) = (1, λ → o)
Jσ S KKDS (X , f) = (s :S)× JK sKDS (X , f)
Jδ P KKDS (X , f) = (x :P → X)× JK (f ◦ x)KDS (X , f)

For any γ : IR I I , we can then follow their construction of an inductive datatype
simultaneously with its recursive decoder as the initial algebra, ((µ γ, decode γ), in), of JγKDS.

data µ (γ : IR I I) : Set where
in : dom (JγKDS (µ γ, decode γ)) → µ γ

decode : (γ : IR I I) → µ γ → I
decode γ (in t) = fun (JγKDS (µ γ, decode γ)) t

As an example, we show that all containers can be defined by induction recursion:

4 Dybjer and Setzer treated only the case where I and O are the same. Our mild generalization allows
the construction of partial fixed points.

6 Small IR, Poly and IC are equivalent

I Example 5 (containers and W-types). Given a simple container (S, P), where S : Set and
P : S → Set, we can represent it by an IR 1 1 code as follows:

cont : (S : Set) → (P : S → Set) → IR 1 1
cont S P = (σ S λ s → δ (P s) λ p → ι ?)

We note that dom Jcont S PKDS (X ,) = (s :S)× (P s → X) × 1 and that µ (cont S P)
thus amounts to Martin-Löf’s well-ordering type W S P. As a corollary of our main result we
shall see that IR 1 1 codes describe exactly the category of containers and their morphisms.

I Example 6 (A Language of Sums and Products). If Fin : N → Set maps n to a set with n
elements, we can implement finitary summation and product with the following types:

sum prod : (n :N)→ (Fin n → N) → N

Having done so, we may now encode a datatype of numerical expressions closed under
constants, sums and products, where each expression decodes to its numerical value — we
need to know these values to compute the correct domains for the sums and the products.

data Tag : Set where fin′ sum′ prod′ : Tag

lang : IR N N
lang = σ Tag λ {fin′ → σ N λ n → ι n

; sum′ → δ 1 λ n → δ (Fin (n ?)) λ f → ι (sum (n ?) f)
; prod′ → δ 1 λ n → δ (Fin (n ?)) λ f → ι (prod (n ?) f)}

example : µ lang
example = in (sum′, (λ → in (fin′, 5 , ?)), (λ n → in (fin′,n, ?)), ?)

The example expression denotes
∑
n<5 n, and indeed, decode lang example = 10 .

Having introduced dependent polynomials, indexed containers and small induction re-
cursion, we can now turn to the main focus of the paper, namely showing that they define
the same class of functors and hence define the same class of data types. The key to the
construction is observing that we may just as well interpret IR I O with our I → Set
presentation of slices.

J·KIR : IR I O → (I → Set) → (O → Set)
Jι o′KIR F o = o′ ≡ o
Jσ S KKIR F o = (s :S)× (JK sKIR F o)
Jδ P KKIR F o = (if :P → ΣF)× (JK (π0 ◦ if)KIR F o)

The correspondence up to trivial isomorphism between J·KIR and J·KDS is readily observed by
considering F here to be an arbitrary (X , f)−1.

4 From Poly to small IR and back

We divide this section into two: (i) we first show how to translate dependent polynomials,
and hence indexed containers, into IR codes; and (ii) we then show how every small IR code
can be translated into a dependent polynomial. Crucially, we show that these translations
preserve the functorial semantics of dependent polynomials and IR codes.

Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock and Conor McBride 7

4.1 From Poly to small IR
We have already seen (example 5) that the extension of a container is an IR functor. We now
extend this result to indexed containers and dependent polynomials.

I Lemma 7. Every dependent polynomial functor is an IR functor.

It is enough to show that, for every dependent polynomial (r, t, q) : Poly I O, there is
an IR I O-code, whose interpretation is isomorphic to the dependent polynomial functor
J(r, t, q)KPoly. Our candidate for this IR-code is given and interpreted as follows

Jσ S λ s → δ ((P, t)−1 s) λ i → σ (i ≡ r ◦ π0) λ → ι (q s)KIR F o =
(s :S)× (if : ((P, t)−1 s → ΣF))× (π0 ◦ if ≡ r ◦ π0) × (q s ≡ o)

which is readily seen to be isomorphic to Σq Πt ∆r F o

(s :S)× (q s ≡ o) × (p :P)→ (t p ≡ s) → F (r p)

as the former effectively constrains the function if to choose r p as the index of its F , for
each position (p,) : (P, t)−1 s.

4.2 From small IR to Poly
The essence of our embedding of IR I O into Poly I O consists of showing how three
constructors for IR I O-codes can be interpreted in Poly I O.

I Definition 8. To each code γ : IR I O we associate a dependent polynomial

I P γ S γ O
r γt γ q γ

by structural recursion on γ.
if γ is ι o, then we define S γ = 1, P γ = 0, r γ =!I , t γ =!1, and q γ ? = o. As a diagram,
this is as follows.

I 0 1 O
!1!I o

if γ is σ S K then the diagram is as follows.

I
∐
s:S P (K s)

∐
s:S S (K s) O

∐
s:S

t (K s)[r (K s)]s:S [q (K s)]s:S

Here (and in the next clause) we use
∐
s:S m s to abbreviate the cotuple [ins ◦m s]s:S .

if γ is δ P K , the diagram is as follows.∐
i:P→I (P × S (K i)) + P (K i)

∐
i:P→I S (K i)

I O

∐
i:P →I

[π0, t (K i)]

[[i ◦ π0, r (K i)]]i:P →I [q (K i)]i:P →I

Note that in the last clause, it is crucial that we are dealing with small IR so that I is a
set, hence P → I is a set and hence the coproducts used are also small.

We can now state the result concerning the second half of our isomorphism.

I Lemma 9. Every small IR functor is a dependent polynomial functor.

To prove the lemma we define a function φ : IR I O → Poly I O by recursion on
the structure of IR codes and then we prove by induction that the functorial semantics is
preserved. Details of the proof can be found in the online Appendix.

8 Small IR, Poly and IC are equivalent

5 Equivalence between small IR and Poly

In the previous section we saw that every small IR functor gives rise to an isomorphic
dependent polynomial functor and vice versa. What can we say about natural transformations
between these functors? Before trying to answer this question we need to turn Poly I O
and IR I O into categories. This section is therefore organised as follows: (i) we first recall
the notion of morphism between dependent polynomials/indexed containers; (ii) then we
introduce morphisms of IR codes, showing that the interpretation function, J_KIR : IR I O →
[Set/I ,Set/O] can be extended to a functor which is full and faithful; and (iii) finally we
prove the equivalence between the two categories IR I O and Poly I O.

5.1 The categories Poly I O and IC I O
Dependent polynomials/indexed containers with fixed input and output index sets, I and O,
form a category. In this section we recall the definition of the morphisms between dependent
polynomials and their interpretation as natural transformations. We conclude by stating
some properties of the categories of dependent polynomials/indexed containers which allows
us to recast in elementary terms the dependent polynomials introduced in definition 8.

I Definition 10. A morphism between dependent polynomials (r, t, q) and (r′, t′, q′) is given
by a diagram of the form

P S

I P ′ ×S′ S S O

P ′ S′

t

r q

t′

r′ q′

w

v

idS

u

h

where the bottom square is a pullback of u and t′.

From now on, Poly I O will indicate the category of dependent polynomials with fixed input
and output index sets I , O and their morphisms. In a similar manner we can define morphism
between indexed containers.

I Definition 11. A morphism between (S ,P,n) and (S ′,P ′,n′) consists of
a function u : (o : O) → S o → S ′ o;
a function f : (o : O) → S o → P ′ o (u o s) → P o s;

such that for every o : O, s : S o and p′ : P o (u o s) we have n o s (f o s p′) =
n′ o (u o s) p′.

We will indicate with IC I O the category of indexed containers and their morphisms. The
main result concerning these morphisms is the following (Theorem 2.12 in [15]). We state
the result for dependent polynomials but clearly an analogue result holds also for indexed
containers.

I Theorem 12 ([15] Theorem 2.12). Given dependent polynomials (r, t, q) and (r′, t′, q′),
every natural transformation J(r, t, q)K→ J(r′, t′, q′)K is represented in an essentially unique
way by a commuting diagram as in definition 10.

Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock and Conor McBride 9

This theorem ensures that the assignment to each dependent polynomial of its extension is
a functor, and moreover this functor is full and faithful. In the following we indicate with
PolyFun I O the full subcategory of [Set/I ,Set/O] whose objects are dependent polynomial
functors and whose morphisms are natural transformation between them5.

I Corollary 13 (Representation). For any pair of sets I,O the functor

J K : Poly I O → PolyFun(I ,O)

is an equivalence of categories.

Dependent polynomials and indexed containers have several interesting closure properties.
Here we only need closure under set-indexed coproducts and binary product. Note that we
had to define morphisms before introducing these closure properties to ensure that they have
the required categorical universal properties. The sum of a K-indexed family of dependent
polynomials {Qk = (rk, tk, qk) | k : K}, for an arbitrary set K, is the dependent polynomial∐
k:K Qk given by the following diagram

I
∐
k:K Pk

∐
k:K Sk O

[rk]k:K

∐
k:K

tk [qk]k:K

where
∐
k:K tk = [ink◦tk]k:K . Note that the dependent polynomial associated to σ S K : IR I O

is of exactly this form. The product of two dependent polynomial (r, t, q) and (r′, t′, q′) is
the evident dependent polynomial

I (P ′ ×O S) + (P ×O S′) S ×O S′ O.

We can now describe the dependent polynomial associated to a code δ P K : IR I O as the
sum of products of a family of dependent polynomials. We start with a family of dependent
polynomials {(r (K i), t (K i), q (K i) | i : P → I}. For each element of this family we take
the product of it with the dependent polynomial

I P ×O O O
i ◦ π0 π1 idO

and then we take the sum of these products over the set P → I .

5.2 The category of small IR codes
We know how to define small IR codes and interpret them as functors between slices of Set. In
this section we introduce morphisms between small IR I O-codes. Our definition will ensure
that every such morphism gives rise to a natural transformation between the corresponding
IR functors – and vice versa. We start this section developing the appropriate categorical
description of the semantics of IR constructors. The constructor ι simply represents constant
functors while the constructor σ takes coproducts of functors. The following lemma tells us
more about the semantics of δ.

5 The original result for polynomial functors (Theorem 2.12 in [15]) is stated in terms of strong natural
transformations. We can avoid mention of strength since natural transformations between functors on
slices of Set are automatically strong.

10 Small IR, Poly and IC are equivalent

I Lemma 14. Given an object k : X → I , there is a natural isomorphism

Jδ P KK k ∼=
∐
i:P→I HomSet/I (i, k)⊗ JK iKIR k

Here ⊗ indicates the tensor product. Given a set X and an object i : Y → I of Set/I the
object X ⊗ i is nothing but the copower

∐
x:X i, i.e the X-fold coproduct of the object i.

Proof. We have a natural isomorphism

Jδ P KK k =
∐
x:P→XJK(k ◦ x)KIR k

∼=
∐
i:P→I

∐
x:P→X(i ≡ k ◦ x)⊗ JK iKIR k.

Then observe that
∐
x:P→X(i ≡ k ◦ x) ∼= HomSet/I (i, k).

J

Thanks to this lemma, we are able to characterise the semantics of δ-codes through a
well-known universal construction in category theory: the left Kan extension.

If i : X → I is an object in Set/I we use (+ i), in the following lemma, to indicate the
functor

(+i) : Set/I −→ Set/I
k 7−→ [i, k].

I Theorem 15. There is a natural isomorphism

Jδ P F K ∼=
∐
i:P→I Lan(+i)JF iK

Our definition of IR I O-morphisms is based on this isomorphism. First, we recall
the universal property characterising the left Kan extension LanGF : B → C of a functor
F : A→ C along G : A→ B; for every functor H : B→ C there is a bijection

Nat(LanGF,H) ∼= Nat(F,H ◦G)

natural in H. We also need to check that IR I O-functors are closed by precomposition with
functors of the form (+i). Fortunately, this can be easily checked by structural induction on
codes. We just state the result.

I Lemma 16. Given γ : IR I O, and a function i : P → I there exists γi : IR I O-code such
that

JγKIR ◦ (+i) = JγiKIR

We can now define IR morphisms by structural induction on codes as follows.

I Definition 17. Let γ, γ′ : IR I O we define the homset IR(γ, γ′) as follows.
Morphisms from ι-codes:

1A. IR(ι o, ι o′) = o ≡ o′
1B. IR(ι o,σ S K) =

∐
s:S IR(ι o,K s)

1C. IR(ι o, δ P K) =
∐
e:P→∅ IR(ι o,K (! ◦ g))

Morphisms from σ-codes:
2. IR(σ S K , γ) =

∏
s:S IR(K s, γ)

Morphisms from δ-codes:
3. IR(δ P K , γ) =

∏
i:P→I IR(K i, γi)

The following theorem shows we have the right notion of morphism for IR codes.

Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock and Conor McBride 11

I Theorem 18. The interpretation J_KIR of IR I O-codes can be extended to morphisms: we
can associate to each IR I O-morphism f : γ → γ′ a natural transformation JfKIR : JγKIR →
Jγ′KIR. Moreover The assignment

J_KIR : IR I O → [Set/I ,Set/O]

is full and faithful.

The theorem is proved by induction on the structure of IR morphisms. As corollary we have
the following important result.

I Corollary 19. IR I O-codes and their morphisms define a category. The interpretation

J_KIR : IR I O → [Set/I ,Set/O]

is full and faithful.

5.3 An equivalence
In the previous sections we have seen how to represent IR I O-codes as dependent polynomials
in Poly I O and vice versa. To sum up:

In subsection 4.1, we saw how to translate a dependent polynomial (r, t, q) into an
IR I O-code, γ(r,t,q). Therefore we can define a function

ψ : Poly I O → IR I O

(r, t, q) 7→ (γ(r,t,q))

such that J_KIC ∼= J_KIR ◦ ψ
in subsection 4.2 we showed how to define a function,

φ : IR I O → Poly I O
γ 7→ (r γ, t γ, q γ)

such that J_KIR ∼= J_KIC ◦ φ.
We sum up these results in the following corollary.

I Corollary 20. For every γ : IR I O and, for every (r, t, q) : Poly I O
1) Jψ ◦ φ (γ)KIR ∼= JγKIR,

2) Jφ ◦ ψ (r, t, q)KPoly ∼= J(r, t, q)KPoly

These isomorphisms deal just with objects of the two categories IR I O and Poly I O. But
what can we say about morphisms? As we show in the next theorem the equivalence of these
two categories, is an immediate consequence of the previous results combined with full and
faithfulness of the respective interpretation functions:

I Theorem 21. The two categories IR I O and Poly I O are equivalent.

It is immediate to show full and faithfulness of φ (or, equivalently of ψ):

IR I O(γ, γ′) ∼= Nat(JγKIR, Jγ′KIR) (corollary 19)
∼= Nat(Jφ(γ)KPoly, Jφ(γ′)KPoly) (lemma 9)
∼= Poly I O(φ(γ), φ(γ′)) (corollary 13)

12 Small IR, Poly and IC are equivalent

Now, since we have already showed that each dependent polynomial, (r, t, q) is isomorphic
to φ(γ) for some γ : IR I O (namely γ = ψ(r, t, q)), this is enough to conclude the stated
equivalence (see theorem 1, par. 4, ch. IV in [18]). Here is a commutative diagram which
represents the statement of theorem 21:

IR I O Poly I O

[Set/I ,Set/O]

φ

ψ
J_KIR J_KPoly

6 Small indexed Induction Recursion

The theory of induction recursion has been extended by Dybjer and Setzer in [13] in order
to capture more sophisticated inductive-recursive definitions. As indexed container and
dependent polynomials generalise polynomials and containers respectively, the theory of
indexed induction-recursion (IIR) generalises the theory inductive-recursive definitions in order
to capture, not only ordinary inductive-recursive definition, but also families of inductive-
recursive definitions which admit extra indexing. IR then appears as the fragment of IIR
given by those definitions indexed over a singleton.

We will briefly recall the axiomatic presentation of IIR which closely follows that of IR.
We then show how the theory of small indexed inductive-recursive definitions (small IIR)
can be reduced to small IR. This simple fact will automatically transfer the results of the
previous sections to small IIR, allowing to conclude a generalisation of the equivalence stated
in theorem 21. We now give the coding for small IIR.

data IIR (D : I → Set) (E : J → Set) : Set1 where

ι : (je : ΣE) → IIR D E
σ : (S : Set) (K : S → IIR D E) → IIR D E
δ : (P : Set) (i : P → I) (K : ((p : P) → D (i p)) → IIR D E) → IIR D E

Note that δ carries an extra argument i, selecting the index for each position in P. One
way to interpret these codes is by translation to the codes for IR ΣD ΣE , as follows:

b·c : IIR D E → IR ΣD ΣE
bι jec = ι je
bσ S Kc = σ S λ s → bK sc
bδ P i Kc = δ P λ iD → σ (i ≡ (π0 ◦ iD)) λ q → bK (π1 ◦ iD)c

In the δ case, the generated IR code yields a ΣD for each position in P, so we constrain its
first component to coincide with the index required by the i in the IIR code. Given this
embedding, we can endow small IIR with the categorical machinery developed for small IR in
Section 5.2. We therefore can straightforwardly define a category of IIR D E -codes and their
morphisms. Theorem 21 in Section 5 immediately give us the following corollary.

I Corollary 22. The category IIR D E and the category Poly ΣD ΣE are equivalent.

We can also follow Dybjer and Setzer by giving a direct interpretation of an IIR code as a
functor between families of slice categories.

Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock and Conor McBride 13

J·KIIR : IIR D E → ((i : I) → Set/(D i)) → ((j : J) → Set/(E j))
Jι (j ′, e)KIIR G j = ((j ′ ≡ j), λ q → · q e)
Jσ S KKIIR G j = (s :S)× (JK sKIIR G j)
Jδ P i KKIIR G j = (ig : (p : P) → dom (G (i p)))× (JK (λ p → fun (G (i p)) (ig p))KIIR G j)

We note that keeping I and D small ensures the following:

(i : I) → Set/(D i) ∼= (i : I) → D i → Set ∼= ΣD → Set ∼= Set/ΣD

Consider G i = (∃.(F ◦ (i,))) for some F : ΣD → Set to see that JγKIIR G corresponds
to JbγcKIR F , up to bureaucratic isomorphism.

Once again, we construct simultaneously an indexed family of data types µ γ i and their
decoders decode i as the initial algebra for JγKIIR.

µd : (γ : IIR D D) → (i : I) → Set/(D i)
µd γ i = (µ γ i, decode γ i)
data µ (γ : IIR D D) (i : I) : Set where

in : dom (JγKIIR (µd γ) i) → µ γ i
decode : (γ : IIR D D) → (i : I) → µ γ i → D i
decode γ i (in t) = fun (JγKIIR (µd γ) i) t

The corresponding fixpoint of JbγcKIR gives the inductive family indexed by pairs in ΣD.

I Example 23. The Bove-Capretta method, applied to call-by-value computation Bove
and Capretta [5] make use of indexed induction-recursion to model the domains of partial
function. A partial function d : (i : I) ⇀ D i has a domain given a code γ : IIR D D. If
h : µ γ i gives evidence that the domain is inhabited at argument i, then decode γ i h is
sure to compute the result.

Let us take a concrete example. One might define a type of λ-terms and seek to give a
call-by-value evaluator for them, as follows.

data Tm : Set where
var : N → Tm
app : Tm → Tm → Tm
lam : Tm → Tm

cbv : Tm ⇀ Tm
cbv (var x) = var x
cbv (lam t) = lam t
cbv (app f s) with cbv f
... | lam t = cbv (subst0 (cbv s) t)
... | f ′ = app f (cbv s)

where, say, we adopt a de Bruijn indexing convention and define subst0 s t to substitute
s for variable 0 in t. Of course, cbv is not everywhere defined. Can we say when it is
defined? It is hard to define the domain inductively, because the app f s case will require
that subst0 (cbv s) t is in the domain whenever f is in the domain and evaluates to lam t. We
need to define the domain simultaneously with evaluation — a job for induction-recursion.

It will prove convenient to define the special case of δ when P = 1.

δ1 : (i : I) → (K : D i → IIR D E) → IIR D E
δ1 i K = δ 1 (λ → i) λ d → K (d ?)

In the code for a domain predicate, a recursive call at i gives rise to a δ1 i K code, where K
explains how to carry on if the call returns. Let us give the domain of cbv.

14 Small IR, Poly and IC are equivalent

cbvD : IIR {Tm} {Tm} (λ → Tm) (λ → Tm)
cbvD = σ Tm λ

{(var x) → ι (var x, var x)
; (lam t) → ι (lam t, lam t)
; (app f s) → δ1 f λ {(lam t) → δ1 s λ s′ → δ1 (subst0 s′ t) λ t′ → ι (app f s, t′)

; f ′ → δ1 s λ s′ → ι (app f s, app f ′ s′)
} }

Note the way the application case makes key use of the delivered values in subsequent
recursive calls, and in every case, the final ι delivers an input-output pair. The type µ cbvD t
thus contains the evidence that cbv t terminates without presupposing a particular value —
decoding that evidence will yield t’s value. The equivalence we have demonstrated in this
paper ensures that the corresponding inductive family indexed over Tm × Tm is exactly
the big-step evaluation relation for cbv.

7 Conclusion and further work

The pioneering work of Dybjer and Setzer on induction recursion has opened up new realms
of data types. They have given us tools to program with universes closed under dependently
typed operators. Despite its evident potential the theory of induction recursion has not
become as widely understood and used as it should be. In this paper we seek to broaden
appreciation of their work by comparing it with better-known theories of data types based
on dependent polynomials, and more practically with indexed containers. In the case of
small IR, these three analyses coincide. We can now pick up the fruits of our central result
(theorem 21).

Initial algebras. When interpreting codes in IR I I we get endofunctors on Set/I .
Theorem 21 ensures that initial algebras for these functors always exist, since they are
nothing but Peterson-Synek’s general tree types, i.e. initial algebras for dependent polynomial
endofunctors. Altenkirch and Morris have generalized in [3] the general tree types to account
for parametrized initial algebras of indexed containers of type IC (I + O) O : in fact, the same
construction carries over into IR (I + O) O functors. We also have a clear understanding
of the dual of initial algebras of IR functors: final coalgebras for small IR functors, recently
investigated by Capretta with the name of wander. These are nothing but coalgebras for
dependent polynomial functors/indexed containers.

Closure properties. The axiomatization of small IR and its semantics provides a new
(but equivalent) grammar to work with the categories Poly and IC. It is known that these
categories have very rich closure properties such as sums, products, composition, as well
as linear and differential structure. Clearly we can transport these properties along the
equivalence of theorem 21.

Compositions. A difficult open question in the theory of induction-recursion is whether
the Dybjer-Setzer functors are closed under composition: given codes γ : IR I J and
γ′ : IR J O is it always possible to find a code ξ in IR I O such that Jγ′K ◦ JγK ∼= JξK ?
Theorem 21 ensures that we can transport composition in Poly or IC to obtain closure under
composition of small IR functors.

Further work. We have proved that Poly I O, IC I O and IR I O are equivalent
categories which define the same class of functors. It is easy to generalize this result to a
biequivalence of bicategories. Since it is possible to define reindexing of IR codes and IR
functors, in future work we would like to explore this extra-structure of small IR and compare

Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock and Conor McBride 15

it with the double category of Poly. Abstracting from the category of sets we also aim to
investigate to which extent this result applies to arbitrary locally cartesian closed categories.

References
1 Abbott M., Altenkirch T., Ghani N. Containers. Constructing Strictly Positive Types
2 Altenkirch et al. Indexed containers Unpublished manuscript. Retrieved 2008-10-30.
3 Altenkirch T., Morris P. Indexed containers, Proceedings of the 24th Annual IEEE Sym-

posium on Logic in Computer Science (LICS 2009), IEEE Computer Society, 2009.
4 Aczel P. An introduction to inductive definition in J. Barwise editor, Handbook of math-

ematical logic pages 739-782, North-Holland, Amsterdam, 1977.
5 Bove, A., Capretta, V. Nested General Recursion and Partiality in Type Theory in R.

Boulton, P. Jackson editors, Theorem Proving in Higher Order Logics, 14th International
Conference, TPHOLs 2001, Springer LNCS 2152, pages 121-135, 2001.

6 Clairambault P., Dybjer P. The Biequivalence of Locally Cartesian Closed Category and
Martin Löf Type Theories, arXiv:1112.3456v1 [cs.LO] 15 Dec 2011.

7 Coquand T., Dybjer P. Inductive Definitions and Type Theory an Introduction in Founda-
tion of Software Technology and Theoretical Computer Science: 14th Conference, Madras,
India, P. S. Thiagarajain editor, Springer LNCS 880, pages 60-76, 1994.

8 Curien P.-L. Substitution up to isomorphism, Fundamenta Informaticae, vol. 19, issue 1-2,
pages 51-86, 1993

9 Ghani N., Hancock P. Induction Recusion. Reimagined. Categorically, draft.
10 Dybjer P., A general formulation of simultaneous inductive-recursive definitions in type

theory, Journal of Symbolic Logic, vol. 65, Nr. 2, pages 525-549, 2000.
11 Dybjer P., Setzer A. A Finite Axiomatization of Inductive Recursive Definitions in J.-Y.

Girard, editor, Typed Lambda Calculi and Applications, vol. 1581 of Lectures Notes in
Computer Science, pages 129-146, Springer, April 1999.

12 Dybjer P., Setzer A. Induction-recursion and initial algebras, Annales of Pure and Applied
Logic, vol. 124, pages 1-47, 2003.

13 Dybjer P., Setzer A. Indexed Induction-Recursion, Journal of Logic and Algebraic Program-
ming, vol. 66, issue 1, pages 1-49, January 2006.

14 Gambino N., Hyland M. Wellfounded trees and dependent polynomial functors in Types
for proofs and programs, S. Berardi, M. Coppo and F. Damiani eds., Lecture Notes in
Computer Science, vol. 3085, pages 210-225, Springer, 2004.

15 Gambino N., Kock J. Polynomial functors and polynomial monads arXiv:0906.4931v2
[math.CT] 6 Mar 2010;

16 Hofmann M., On the interpretation of type theory in locally cartesian closed categories, in
Computer Science Logic ’94, LNCS 933, pages 427-441, Springer, 1995.

17 Kock J. Notes on Polynomial functors available at http://www.mat.uab.es/ kock/cat/poly-
nomial.html;

18 Mac Lane S. Categories for the working mathematician, Second Edition, Springer-Verlag,
New York, Berlin, Heidelberg, 1998;

19 Martin-Löf P. An intuitionistic theory of types: Predicative part. In Logic Colloquium ’73,
pages 73-118, North-Holland, Amsterdam, 1973

20 Moerdijk I., Palmgren E. Wellfounded trees in categories Annals of pure and Applied Logic,
vol. 104, pages 189-218, 2000.

21 Seely R. A. G. Locally cartesian closed categories and type theory, Math. Proc. Cambridge
Philos. Soc., issue 95, pages 33-48, 1984.

16 Small IR, Poly and IC are equivalent

A Proofs of section 4

thecode : {O S P I : Set} →
(q : S → O) → (t : P → S) → (r : P → I) → IR I O

thecode {O} {S } {P } {I } q t r = σ S (λ s →
let Ps = (P, t)−1 s in

δ Ps (λ i →
σ ((a : Ps) → i a ≡ r (π0 a)) (λ →
ι (q s))))

iso : (I : Set) → (O : Set) → Set
iso I O = (f :I → O)× (g :O → I)× ·

((i :I)→ g (f i) ≡ i) × ((o :O)→ f (g o) ≡ o)

transport : {I : Set} → {F : I → Set} → {i i ′ : I } → F i → i ≡ i ′ → F i ′

transport fi refl = fi

postulate ext : forall {S : Set} {T : S → Set} (f g : (x : S) → T x) →
((x : S) → f x ≡ g x) → f ≡ g

dpright : forall {S : Set} {T : S → Set} {s : S } {t t′ : T s} → t ≡ t′ →
_ == _ {(· :S)× ·} (s, t) (s, t′)

dpright refl = refl

PIrr : Set → Set
PIrr X = forall (x y : X) → x ≡ y

uip : forall {X } {x y : X } → PIrr (x ≡ y)
uip refl refl = refl

SgPIrr : forall {S T } → PIrr S → ((s : S) → PIrr (T s)) → PIrr (· :S)× ·
SgPIrr si ti (s, t) (s′, t′) with si s s′

SgPIrr si ti (s, t) (.s, t′) | refl with ti s t t′

SgPIrr si ti (s, t) (.s, .t) | refl | refl = refl

PiPIrr : forall {S T } → ((s : S) → PIrr (T s)) → PIrr (· :S)→ ·
PiPIrr ti f g = ext f g (λ x → ti x (f x) (g x))

pi1Irr : forall {S T } → ((s : S) → PIrr (T s)) → {s s′ : S } → (s ≡ s′) →
{t : T s} {t′ : T s′} → _ == _ {(· :S)× ·} (s, t) (s′, t′)

pi1Irr ti refl = dpright (ti)

transl : forall {S T s} {x : (· : ·)× · S T } (q : π0 x ≡ s) →
(s, transport {F = T } (π1 x) q) ≡ x

transl refl = refl

theclaim : {O S P I : Set} →
(q : S → O) → (t : P → S) → (r : P → I) →
(F : I → Set) → (o : O) →
let lhs = Jthecode q t rKIR F o

rhs = Σ· q Πt ∆r F o
in iso lhs rhs

theclaim {O} {S } {P } {I } q t r
F o = let l2r : Jthecode q t rKIR F o → Σ· q Πt ∆r F o

l2r x = let s : S
s = π0 x
Ps : Set

Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock and Conor McBride 17

Ps = (P, t)−1 s
thing = π1 x
fun : Ps → (i :I)× F i
fun = π0 thing
fun0 : Ps → I
fun0 x = π0 (fun x)
fun1 : (pe :Ps)→ F (fun0 pe)
fun1 x = π1 (fun x)
otherthing : ((pe : Ps) → fun0 pe ≡ r (π0 pe)) × (q s ≡ o)
otherthing = π1 thing
ue : (pe : Ps) → fun0 pe ≡ r (π0 pe)
ue = π0 otherthing
secondbit : q s ≡ o
secondbit = π1 otherthing
thirdbit : (p : P) → t p ≡ s → F (r p)
thirdbit p etps = let pe = (p, etps)

in transport {I } {F } {fun0 pe} {r p} (fun1 pe) (ue pe)
in (s, (secondbit, thirdbit))

r2l : Σ· q Πt ∆r F o → Jthecode q t rKIR F o
r2l y = let s : S

s = π0 y
thing : (q s ≡ o) × ((p : P) → t p ≡ s → F (r p))
thing = π1 y
eqso : q s ≡ o
eqso = π0 thing
tofrp : (p : P) → t p ≡ s → F (r p)
tofrp = π1 thing
Ps = (P, t)−1 s
secondbit : Ps → ((i :I)× F i)
secondbit petps = (r (π0 petps), tofrp (π0 petps) (π1 petps))
thirdbit : (pe : Ps) → π0 (secondbit pe) ≡ r (π0 pe)
thirdbit = refl -- plain weird

in (s, (secondbit, (thirdbit, eqso)))
in l2r , (r2l, ((λ {(s, (pif , (paf , qs))) →

dpright (pi1Irr (λ if → SgPIrr (PiPIrr (λ → uip)) (λ → uip))
(ext (λ x → transl (paf x))))}),

(λ → refl))) -- not much hope of this – au contraire

Proof of Lemma 7. We will show that a dependent polynomial (r, t, q): Poly I O, has the
same functorial semantics as the IR-code

σ S λ s →
let Ps = (P, t)−1 s in

δ Ps λ i →
σ ((a : Ps) → i a ≡ r (π0 a)) λ →
ι (q s)

Some definitions:

18 Small IR, Poly and IC are equivalent

Ŝ : O → Set
Ŝ = (S , q)−1

Then

(o :O)× Ŝ o = (o :O)× (s :S)× q s ≡ o
∼= (s :S)× (o :O)× q s ≡ o
∼= S

P̂ : (o : O) → Ŝ o → Set
P̂ o s = (P, t)−1 (o, s)

where we have converted the dependent polynomial (r, t, q) into its representation as
an indexed container (Ŝ, P̂ , n) in the internal language. This means we have Ŝ : O → Set,
P̂ : (o : O)→ Ŝ o→ Set and n : (o : O)→ (s : Ŝ o)→ P̂ o s→ I.

We can now prove that the interpretation of this code corresponds to the extension of the
given dependent polynomial. We do this using the internal language. So, given X : I → Set

Jσ(o : O). σ(s : Ŝ o). δ(f : P̂ o s→ I). σ(_ : f ≡ n o s). ι oKIRX o′

=
∑

o : O.
∑

s : Ŝ o. Jδ(f : P̂ o s→ I). σ(_ : f ≡ n o s). ι oKIRX o′

=
∑

o : O.
∑

s : Ŝ o.
∑

g : P̂ o s→ I. (
∏

p : P̂ o s.X (g p))× Jσ(_ : g ≡ n o s). ι oKIRX o′

=
∑

o : O.
∑

s : Ŝ o.
∑

g : P̂ o s→ I. (
∏

p : P̂ o s.X (g p))× (g ≡ n o s)× o ≡ o′

=
∑

s : Ŝ o′.
∑

g : P̂ o′ s→ I. (
∏

p : P̂ o′ s.X (g p))× (g ≡ n o′ s)

=
∑

s : Ŝ o′.
∏

p : P̂ o′ s.X (n o′ s p)

The last line is exactly JŜ, P̂ , nKICX o′. Thus the dependent polynomial (r, t, q) and the IR
code given above have the same functorial semantics in the internal language. They thus
have the same functorial semantics. J

Proof of Lemma 9. We prove the lemma by constructing a function φ : IR I O → Poly I O
defined structural recursion on its argument. We will then prove that for every γ : IR I O

JγKIR = Jφ(γ)KPoly. (1)

Let γ : IR I O we define φ(γ) as follow:
1. if γ is ι o for some o : O then

φ(γ) = (rι o, tι o, qι o)

2. if γ is σ Af for some A : Set, f : A→ IR I O then

φ(γ) = (rσAh, tσAh, qσAh)

where h = φ ◦ f : A→ Poly I O
3. if γ is δ AF for some A : Set, F : (A→ I)→ IR I O then

φ(γ) = (rδ AH , tδ AH , qδ AH)

where H = φ ◦ F : IA → Poly I O.

Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock and Conor McBride 19

We can now prove that (1) holds. As before we will use the internal language and we will
associate to k : X → I in Set/I the Set-valued function X : I → Set. Moreover, for every
dependent polynomial (rγ , tγ , qγ) representing an IR code we define by recursion on the
structure of the code its representation as an indexed container (Ŝγ , P̂ γ , nγ).
1. if γ is ι o : IR I O we can compute the fibre at o′ : O of Jφ(ι o)KPoly k as follows

Jφ(ι o)KIC X o′

= J(Ŝι o, P̂ ι o, nι o)KIC X o′

=
∑

s : Ŝι o o′.
∏

p : P̂ ι o s.X (nι oo′ s p)

=
∑

m : (o′ ≡ o).
∏

p : ∅. X (nι oo′ s p)
∼= (o′ ≡ o)
= Jι oKIRX o′

2. if γ is σ A f : IR I O we can compute the fibre at o : O of Jφ(σ Af)KPoly k as follows

Jφ(σ Af)KIC X o

= J(ŜσAh, P̂σAh, nσAh)KIC X o

=
∑

s : ŜσAh o.
∏

p : P̂σAh s.X (nσAho s p)

=
∑

a : A.
∑

s : Ŝh(a) o.
∏

p : P̂h(a) s.X (nh(a)o s p)
∼=
∑

a : A. J(Ŝh(a), P̂h(a), nh(a))KIC X o

=
∑

a : A. Jφ(f a)KIC X o (inductive hypothesis)

=
∑

a : A.Jf aKIRX o

= Jσ AfKIRX o

3. if γ is δ AF : IR I O we can compute the fibre at o : O of Jφ(δ AF)KPoly k as follows

Jφ(δ AF)KIC X, o

= J(Ŝδ AH , P̂ δ AH , nδ AH)KIC X, o

=
∑

s : Ŝδ AHo.
∏

p : P̂ δ AH s.X (nδ AHo s p)

=
∑

g : A→ I.
∑

s : ŜH g o.
∏

p : A+ P̂H g s.X[g, (nH g o s)](p)

(universal property of coproduct)
∼=
∑

g : A→ I.
∑

s : ŜH g o. (
∏

a : A.X (g a))× (
∏

p : P̂H g s.X nH g o s p))
∼=
∑

g : A→ I. (
∏

a : A.X (g a))× (
∑

s : ŜH g o.
∏

p : P̂H g s.X (nH g o s p))

=
∑

g : A→ I. (
∏

a : A.X (g a))× J(ŜH g, P̂H g, nH g)KIC X o (definiton of H)

=
∑

g : A→ I.(
∏

a : A.X (g a))× Jφ(F g)KIC X o (inductive hypothesis)

=
∑

g : A→ I. (
∏

a : A.X (g a))× JF gKIRX o

= Jδ AF KIRX o

J

20 Small IR, Poly and IC are equivalent

B Proofs of section 5.2

Proof of Theorem 15.

Jδ AF KIR (k : X → I)
(lemma 14)
∼=

∐
g:A→I

JF gK k ⊗HomSet/I(g, k)

(every functor is its own left Kan extension along the identity functor)

∼=
∐

g:A→I

(
LanIdSet/I

JF gK
)
⊗HomSet/I(g, k)

(compute Lan with coend and tensor product)

∼=
∐

g:A→I

(∫ l:Set/I
JF gK l ⊗HomSet/I(l, k)

)
⊗HomSet/I(g, k)

(tensor distributes over colimits)

∼=
∐

g:A→I

∫ l:Set/I (
JF gK l ⊗HomSet/I(l, k)⊗HomSet/I(g, k)

)
(tensor between sets is product)

∼=
∐

g:A→I

∫ l:Set/I (
JF gK l ⊗HomSet/I(l, k)×HomSet/I(g, k)

)
(universal property of coproduct)

∼=
∐

g:A→I

∫ l:Set/I (
JF gK l ⊗HomSet/I(g + l, k)

)
(definition of (+g))

∼=
∐

g:A→I

∫ l:Set/I (
JF gK l ⊗HomSet/I((+g) l, k)

)
definition of Lan with coend and tensor product

∼=
∐

g:A→I

(
Lan(+g)JF gK

)
k

J

Proof of Theorem 18. We first prove by induction on the structure of IR morphisms that
the assignment of natural transformations to IR morphisms is injective and surjective. This
enable us to define a category of IR I O-codes.

1.A Since Jι oK is the constant functor with value λ_.o : 1 → O, a natural transformation
η : Jι oK ·→ Jι o′K consists of a morphism in Set/O

Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock and Conor McBride 21

1 1

O

id1

o o′

Such a morphism exists if and only if o ≡ o′
1.B Given g : k → k′ in Set/I , a naturality square for η : Jι oK ·→ Jσ AfK is a commuting

diagram in Set/O of the form ∐
a:AJfaKk

λ_.o

∐
a:AJfaKk′

ηk

ηk′

Jσ AfKg

Now observe that every component ηk is uniquely determined by ηk = Jσ AfK!k ◦η! where
! : ∅ → I is the initial object in Set/I and !k :! → k is the unique morphism from the
initial object into k. Therefore η! define for some a : A, a morphism ηa! : Jι oK!→ JfaK!.
This morphism gives, for all k : Set/I , a morphism ηak : Jι oKk → JfaKk, natural in k,
defined by ηak = JfaK!k ◦ ηa! , and therefore a natural transformation ηa : Jι oK ·→ JfaK.

1.C Given two objects k : X → I, k′ : Y → I in Set/I and a morphism g : k → k′ (k = k′ ◦ g),
a naturality square for η : Jι oK ·→ Jδ AF K is a commuting diagram in Set/O of the form∐

g:A→XJF (k ◦ g)Kk

λ_.o

∐
f :A→Y JF (k′ ◦ f)Kk′

ηk

ηk′

Jσ AfKg

Reasoning as above we have, for every k in Set/I , ηk = Jδ AF K!k ◦ η!. Therefore η! define
a morphism ηg! : Jι oK!→ JF (! ◦ g)K! for some g : A→ ∅. For every k in Set/I we define
the component at k of ηg : Jι oK ·→ JF (! ◦ g)K to be JF (! ◦ g)K!k ◦ ηg! .

2.

Nat(Jσ AfKJγK)

= Nat(
∐
a:A

Jf(a)K, JγK)

∼=
∏
a:A

Nat(Jf(a)K, JγK) (inductive hypothesis)

∼=
∏
a:A

IR(f(a), γ)

∼= IR(σ Af, γ)

22 Small IR, Poly and IC are equivalent

3.

Nat(Jδ AF KJγK)
∼= Nat(

∐
g:A→I

Lan+gJF gK, JγK)

∼=
∏

g:A→I
Nat(JF gK, JγK ◦ (+g))

∼=
∏

g:A→I
Nat(JF gK, JγgK) (inductive hypothesis)

∼=
∏

g:A→I
IR(F g, γg)

= IR(δ AF, γ)

J

Proof of Corollary 19. Theorem 18 already established a full and faithful assignment of
natural transformation to IR morphisms. This guarantees that we can define identity and
composition, making IR I O a category. J

	Introduction
	Preliminaries and internal languages
	Three theories of data types
	From Poly to small IR and back
	From Poly to small IR
	From small IR to Poly

	Equivalence between small IR and Poly
	The categories PolyIO and ICIO
	The category of small IR codes
	An equivalence

	Small indexed Induction Recursion
	Conclusion and further work
	Bibliography
	Proofs of section 4
	Proofs of section 5.2

