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Chapter 1

Haskell Curiosities

1.1 What is () in Haskell, exactly?

tl;dr () does not add a “null” value to every type, hell no; () is a “dull” value in a type of its
own: ().

Let me step back from the question a moment and address a common source of confusion. A
key thing to absorb when learning Haskell is the distinction between its expression language and
its type language. You’re probably aware that the two are kept separate. But that allows the same
symbol to be used in both, and that is what is going on here. There are simple textual cues to
tell you which language you’re looking at. You don’t need to parse the whole language to detect
these cues.

The top level of a Haskell module lives, by default, in the expression language. You define
functions by writing equations between expressions. But when you see foo :: bar in the expres-
sion language, it means that foo is an expression and bar is its type. So when you read () ::
(), you’re seeing a statement which relates the () in the expression language with the () in the
type language. The two () symbols mean different things, because they are not in the same lan-
guage. This repetition often causes confusion for beginners, until the expression/type language
separation installs itself in their subconscious, at which point it becomes helpfully mnemonic.

The keyword data introduces a new datatype declaration, involving a careful mixture of the
expression and type languages, as it says first what the new type is, and secondly what its values
are.

In such a declaration, type constructor TyCon is being added to the type language and the
ValCon value constructors are being added to the expression language (and its pattern sublan-
guage). In a data declaration, the things which stand in argument places for the ValCon s tell
you the types given to the arguments when that ValCon is used in expressions. For example,

data Tree a = Leaf | Node (Tree a) a (Tree a)

declares a type constructor Tree for binary tree types storing elements at nodes, whose values
are given by value constructors Leaf and Node. I like to colour type constructors (Tree) blue and
value constructors (Leaf, Node) red. There should be no blue in expressions and (unless you’re
using advanced features) no red in types. The built-in type Bool could be declared,

data Bool = True | False

adding blue Bool to the type language, and red True and False to the expression language.
Sadly, my markdown-fu is inadequate to the task of adding the colours to this post, so you’ll just
have to learn to add the colours in your head.

The “unit” type uses () as a special symbol, but it works as if declared

data () = () -- the left () is blue; the right () is red

7
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meaning that a notionally blue () is a type constructor in the type language, but that a no-
tionally red () is a value constructor in the expression language, and indeed () :: (). [It is not
the only example of such a pun. The types of larger tuples follow the same pattern: pair syntax
is as if given by

data (a, b) = (a, b)

adding (,) to both type and expression languages. But I digress.
So the type (), often pronounced “Unit”, is a type containing one value worth speaking of:

that value is written () but in the expression language, and is sometimes pronounced “void”.
A type with only one value is not very interesting. A value of type () contributes zero bits of
information: you already know what it must be. So, while there is nothing special about type ()
to indicate side effects, it often shows up as the value component in a monadic type. Monadic
operations tend to have types which look like

where the return type is a type application: the function tells you which effects are possible
and the argument tells you what sort of value is produced by the operation. For example

put :: s -> State s ()

which is read (because application associates to the left [“as we all did in the sixties”, Roger
Hindley]) as

put :: s -> (State s) ()

has one value input type s, the effect-monad State s, and the value output type (). When
you see () as a value output type, that just means “this operation is used only for its effect; the
value delivered is uninteresting”. Similarly

putStr :: String -> IO ()

delivers a string to stdout but does not return anything exciting.
The () type is also useful as an element type for container-like structures, where it indicates

that the data consists just of a shape, with no interesting payload. For example, if Tree is declared
as above, then Tree () is the type of binary tree shapes, storing nothing of interest at nodes.
Similarly [()] is the type of lists of dull elements, and if there is nothing of interest in a list’s
elements, then the only information it contributes is its length.

To sum up, () is a type. Its one value, (), happens to have the same name, but that’s ok
because the type and expression languages are separate. It’s useful to have a type representing
“no information” because, in context (e.g., of a monad or a container), it tells you that only the
context is interesting.

1.2 What does () mean in Haskell?

() means “Boring”. It means the boring type which contains one thing, also boring. There
is nothing interesting to be gained by comparing one element of the boring type with another,
because there is nothing to learn about an element of the boring type by giving it any of your
attention.

It is very different from the empty type, called (by people I wish had chosen a better name
like the one I suggested) in Haskell Void. The empty type is very exciting, because if somebody
ever gives you a value belonging to it, you know that you are already dead and in Heaven and
that anything you want is yours.

But if somebody gives you a value in (), don’t get excited. Just throw it away.
Sometimes it’s fun to take type constructors parametrised by an “element type” and fill the

parameter in with (). You can see just what information is inherent in the type constructor,
rather than coming from the elements. E.g, Maybe () is a version of Bool, with Just () or
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Nothing. Also, [()] amounts to the (possibly infinite) natural numbers: the only information
you have is a length.

So, () means “Boring”, but it’s often a clue that something interesting is happening some-
where else.

1.3 Implement the function lines in Haskell

Suppose you had already knew the result of lines for all but the first character of your input.
How would you add the first character onto that result?

charon :: Char -> [[Char]] -> [[Char]]
charon ’\n’ css = [] : css -- to begin with newline, insert blank line
charon c [] = [[c]] -- very last char is in line of its own
charon c (cs : css) = (c : cs) : css -- else put char in first line

And with that mystery solved,

lines = foldr charon []

For years, I have made students bang their fists on the furniture and chant “what do you do
with the empty list? what do you do with x cons xs?”. Sometimes it helps.

1.4 Boolean Expression evaluation (subtle type error)

Your suspicion, “I think there is a problem in the data BExp declaration itself”, is correct. What
you’ve written doesn’t mean what I suspect you hope it does. The error is at the far right end (as
errors often are) so I had to scroll to find it. Using more vertical space, let’s see.

data BExp
= Eq AExp AExp
| Lt AExp AExp
| Gt AExp AExp
| ELt AExp AExp
| EGt AExp AExp
| And BExp BExp
| Or BExp BExp
| Bool

And it’s the last that is the big problem. It’s harder to spot because although you tell us, “I
want the type to be :: BExp -> Bool”, you do not tell the compiler. If you had done the decent
thing and communicated your intention by writing an explicit type signature, the error report
might have been more helpful. Your program begins

evalBExp True = True

and that is enough to convince the typechecker that the intended type is

evalBExp :: Bool -> Bool

because True :: Bool. When line 3 shows up with

evalBExp (Eq a1 a2) = evalAExp (a1) == evalAExp (a2)

suddenly it wonders why you’re giving evalBExp a BExp instead of a Bool.
Now, I suspect that you have the impression that your final clause in BExp



10 CHAPTER 1. HASKELL CURIOSITIES

| Bool

makes True :: BExp and False :: BExp, but that’s not what it does at all. Instead, you
will discover that you have a nullary data constructor Bool :: BExp whose name is coincident
with the datatype Bool but lives in an entirely separate namespace. I believe your intention is to
embed the values of Bool into BExp silently, but Haskell does not allow such subtle subtyping.
To achieve the intended effect, you will need a constructor which explicitly packs up a Bool, so
try

data BExp
= ...
| BVal Bool

and

evalBExp :: BExp -> Bool
evalBExp (BVal b) = b
...

to get closer to your plan.
You are, of course, free to use the name Bool for the BVal constructor, and so write

data BExp
= ...
| Bool Bool

where the first Bool is a data constructor and the second is a type constructor, but I would
find that choice confusing.

1.5 Purely functional data structures for text editors

I don’t know whether this suggestion is “good” for sophisticated definitions of “good”, but it’s
easy and fun. I often set an exercise to write the core of a text editor in Haskell, linking with
rendering code that I provide. The data model is as follows.

First, I define what it is to be a cursor inside a list of x-elements, where the information avail-
able at the cursor has some type m. (The x will turn out to be Char or String.)

type Cursor x m = (Bwd x, m, [x])

This Bwd thing is just the backward “snoc-lists”. I want to keep strong spatial intuitions, so I
turn things around in my code, not in my head. The idea is that the stuff nearest the cursor is the
most easily accessible. That’s the spirit of The Zipper.

data Bwd x = B0 | Bwd x :< x deriving (Show, Eq)

I provide a gratuitous singleton type to act as a readable marker for the cursor. . .

data Here = Here deriving Show

. . . and I can thus say what it is to be somewhere in a String

type StringCursor = Cursor Char Here

Now, to represent a buffer of multiple lines, we need Strings above and below the line with
the cursor, and a StringCursor in the middle, for the line we’re currently editing.

type TextCursor = Cursor String StringCursor
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This TextCursor type is all I use to represent the state of the edit buffer. It’s a two layer
zipper. I provide the students with code to render a viewport on the text in an ANSI-escape-
enabled shell window, ensuring that the viewport contains the cursor. All they have to do is
implement the code that updates the TextCursor in response to keystrokes.

handleKey :: Key -> TextCursor -> Maybe (Damage, TextCursor)

where handleKey should return Nothing if the keystroke is meaningless, but otherwise
deliver Just an updated TextCursor and a “damage report”, the latter being one of

data Damage
= NoChange -- use this if nothing at all happened
| PointChanged -- use this if you moved the cursor but kept the text
| LineChanged -- use this if you changed text only on the current line
| LotsChanged -- use this if you changed text off the current line
deriving (Show, Eq, Ord)

(If you’re wondering what the difference is between returning Nothing and returning Just
(NoChange, ...), consider whether you also want the editor to go beep.) The damage report
tells the renderer how much work it needs to do to bring the displayed image up to date.

The Key type just gives a readable dataype representation to the possible keystrokes, abstract-
ing away from the raw ANSI escape sequences. It’s unremarkable.

I provide the students with a big clue about to go up and down with this data model by
offering these pieces of kit:

deactivate :: Cursor x Here -> (Int, [x])
deactivate c = outward 0 c where

outward i (B0, Here, xs) = (i, xs)
outward i (xz :< x, Here, xs) = outward (i + 1) (xz, Here, x : xs)

The deactivate function is used to shift focus out of a Cursor, giving you an ordinary list,
but telling you where the cursor was. The corresponding activate function attempts to place
the cursor at a given position in a list:

activate :: (Int, [x]) -> Cursor x Here
activate (i, xs) = inward i (B0, Here, xs) where

inward _ c@(_, Here, []) = c -- we can go no further
inward 0 c = c -- we should go no further
inward i (xz, Here, x : xs) = inward (i - 1) (xz :< x, Here, xs) -- and on!

I offer the students a deliberately incorrect and incomplete definition of handleKey

handleKey :: Key -> TextCursor -> Maybe (Damage, TextCursor)
handleKey (CharKey c) (sz,

(cz, Here, cs),
ss)

= Just (LineChanged, (sz,
(cz, Here, c : cs),
ss))

handleKey _ _ = Nothing

which just handles ordinary character keystrokes but makes the text come out backwards.
It’s easy to see that the character c appears right of Here. I invite them to fix the bug and add
functionality for the arrow keys, backspace, delete, return, and so on.

It may not be the most efficient representation ever, but it’s purely functional and enables the
code to conform concretely to our spatial intuitions about the text that’s being edited.



12 CHAPTER 1. HASKELL CURIOSITIES

1.6 What are some motivating examples for Cofree CoMonad in
Haskell?

Let’s just recap the definition of the Cofree datatype.

data Cofree f a = a :< f (Cofree f a)

That’s at least enough to diagnose the problem with the example. When you wrote

1 :< [2, 3]

you made a small error that’s reported rather more subtly than is helpful. Here, f = [] and
a is something numeric, because 1 :: a. Correspondingly you need

[2, 3] :: [Cofree [] a]

and hence

2 :: Cofree [] a

which could be ok if Cofree [] a were also and instance of Num. Your definition thus ac-
quires a constraint which is unlikely to be satisfied, and indeed, when you use your value, the
attempt to satisfy the constraint fails.

Try again with

1 :< [2 :< [], 3 :< []]

and you should have better luck.
Now, let’s see what we’ve got. Start by keeping it simple. What’s Cofree f ()? What, in

particular, is Cofree [] ()? The latter is isomorphic to the fixpoint of []: the tree structures
where each node is a list of subtrees, also known as “unlabelled rose trees”. E.g.,

() :< [ () :< [ () :< []
, () :< []
]

, () :< []
]

Similarly, Cofree Maybe () is more or less the fixpoint of Maybe: a copy of the natural
numbers, because Maybe gives us either zero or one position into which to plug a subtree.

zero :: Cofree Maybe ()
zero = () :< Nothing
succ :: Cofree Maybe () -> Cofree Maybe ()
succ n = () :< Just n

An important trivial case is Cofree (Const y) (), which is a copy of y. The Const y
functor gives no positions for subtrees.

pack :: y -> Cofree (Const y) ()
pack y = () :< Const y

Next, let’s get busy with the other parameter. It tells you what sort of label you attach to each
node. Renaming the parameters more suggestively

data Cofree nodeOf label = label :< nodeOf (Cofree nodeOf label)
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When we label up the (Const y) example, we get pairs

pair :: x -> y -> Cofree (Const y) x
pair x y = x :< Const y

When we attach labels to the nodes of our numbers, we get nonempty lists

one :: x -> Cofree Maybe x
one = x :< Nothing
cons :: x -> Cofree Maybe x -> Cofree Maybe x
cons x xs = x :< Just xs

And for lists, we get labelled rose trees.

0 :< [ 1 :< [ 3 :< []
, 4 :< []
]

, 2 :< []
]

These structures are always “nonempty”, because there is at least a top node, even if it has no
children, and that node will always have a label. The extract operation gives you the label of
the top node.

extract :: Cofree f a -> a
extract (a :< _) = a

That is, extract throws away the context of the top label.
Now, the duplicate operation decorates every label with its own context.

duplicate :: Cofree f a -> Cofree f (Cofree f a)
duplicate a :< fca = (a :< fca) :< fmap duplicate fca -- f’s fmap

We can get a Functor instance for Cofree f by visiting the whole tree

fmap :: (a -> b) -> Cofree f a -> Cofree f b
fmap g (a :< fca) = g a :< fmap (fmap g) fca

-- ˆˆˆˆ ˆˆˆˆ
-- f’s fmap ||||
-- (Cofree f)’s fmap, used recursively

It’s not hard to see that

fmap extract . duplicate = id

because duplicate decorates every node with its context, then fmap extract throws
away the decoration.

Note that fmap gets to look only at the labels of the input to compute the labels of the output.
Suppose we wanted to compute output labels depending on each input label in its context? E.g.,
given an unlabelled tree, we might want to label each node with the size of its entire subtree.
Thanks to the Foldable instance for Cofree f, we should be able to count nodes with.

length :: Foldable f => Cofree f a -> Int

So that means

fmap length . duplicate :: Cofree f a -> Cofree f Int
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The key idea of comonads is that they capture “things with some context”, and they let you
apply context-dependent maps everywhere.

extend :: Comonad c => (c a -> b) -> c a -> c b
extend f = fmap f -- context-dependent map everywhere

. -- after
duplicate -- decorating everything with its context

Defining extend more directly saves you the trouble of duplication (although that amounts
only to sharing).

extend :: (Cofree f a -> b) -> Cofree f a -> Cofree f b
extend g ca@(_ :< fca) = g ca :< fmap (extend g) fca

And you can get duplicate back by taking

duplicate = extend id -- the output label is the input label in its context

Moreover, if you pick extract as the thing to do to each label-in-context, you just put each
label back where it came from:

extend extract = id

These “operations on labels-in-context” are called “co-Kleisli arrows”,

g :: c a -> b

and the job of extend is to interpret a co-Kleisli arrow as a function on whole structures. The
extract operation is the identity co-Kleisli arrow, and it’s interpreted by extend as the identity
function. Of course, there is a co-Kleisli composition

(=<=) :: Comonad c => (c s -> t) -> (c r -> s) -> (c r -> t)
(g =<= h) = g . extend h

and the comonad laws ensure that =<= is associative and absorbs extract, giving us the
co-Kleisli category. Moreover we have

extend (g =<= h) = extend g . extend h

so that extend is a functor (in the categorical sense) from the co-Kleisli category to sets-and-
functions. These laws are not hard to check for Cofree, as they follow from the Functor laws
for the node shape.

Now, one useful way to see a structure in a cofree comonad is as a kind of “game server”. A
structure

a :< fca

represents the state of the game. A move in the game consists either of “stopping”, in which
case you get the a, or of “continuing”, by choosing a subtree of the fca. For example, consider

Cofree ((->) move) prize

A client for this server must either stop, or continue by giving a move: it’s a list of moves. The
game is played out as follows:

play :: [move] -> Cofree ((->) move) prize -> prize
play [] (prize :< _) = prize
play (m : ms) (_ :< f) = play ms (f m)
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Perhaps a move is a Char and the prize is the result of parsing the character sequence.
If you stare hard enough, you’ll see that [move] is a version of Free ((,) move) (). Free

monads represent client strategies. The functor ((,) move) amounts to a command interface
with only the command “send a move”. The functor ((->) move) is the corresponding struc-
ture “respond to the sending of a move”.

Some functors can be seen as capturing a command interface; the free monad for such a func-
tor represents programs that make commands; the functor will have a “dual” which represents
how to respond to commands; the cofree comonad of the dual is the general notion of environ-
ment in which programs that make commands can be run, with the label saying what to do if
the program stops and returns a value, and the substructures saying how to carry on running the
program if it issues a command.

For example,

data Comms x = Send Char x | Receive (Char -> x)

describes being allowed to send or receive characters. Its dual is

data Responder x = Resp {ifSend :: Char -> x, ifReceive :: (Char, x)}

As an exercise, see if you can implement the interaction

chatter :: Free Comms x -> Cofree Responder y -> (x, y)

1.7 Find indices of things in lists

I’d use zip and a list comprehension.

indicesOf :: Eq a => a -> [a] -> [Int]
indicesOf a as = [i | (b, i) <- zip as [0..], b == a]

Zipping with [0..] is a standard way to label every element with an index, and then it’s a
simple query.

1.8 How do I extend this mergeWords function to any number
of strings?

The puzzle is effectively to merge a list of words, a character at a time, into lines with trailing
newline characters.

mergeWords :: [String] -> String

We need to take a list like

[ "hello"
, "jim"
, "nice"
, "day"
]

and rearrange it into the lists of things at a given position

[ "hjnd"
, "eiia"
, "lmcy"
, "le"
, "o"
]
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That’s what the library function transpose does.
And then we need to make a single string which treats those as lines, separated by newlines.

Which is what unlines does.
So

mergeWords = unlines . transpose

and we’re done.

1.9 Example of UndecidableInstances yielding nonterminating
typecheck

There’s a classic, somewhat alarming example (involving interaction with functional dependen-
cies) in this paper from HQ:

class Mul a b c | a b -> c where
mul :: a -> b -> c

instance Mul a b c => Mul a [b] [c] where
mul a = map (mul a)

f b x y = if b then mul x [y] else y

We need mul x [y] to have the same type as y, so, taking x :: x and y :: y, we need

instance Mul x [y] y

which, according to the given instance, we can have. Of course, we must take y ˜ [z] for
some z such that

instance Mul x y z

i.e.

instance Mul x [z] z

and we’re in a loop.
It’s disturbing, because that Mul instance looks like its recursion is structurally reducing, un-

like the clearly pathological instance in Petr’s answer. Yet it makes GHC loop (with the boredom
threshold kicking in to avoid hanging).

The trouble, as I’m sure I’ve mentioned somewhere somewhen, is that the identification y ˜
[z] is made in spite of the fact that z depends functionally on y. If we used a functional notation
for the functional dependency, we might see that the constraint says y ˜ Mul x [y] and reject
the substitution as in violation of the occurrence check.

Intrigued, I thought I’d give this a whirl,

class Mul’ a b where
type MulT a b
mul’ :: a -> b -> MulT a b

instance Mul’ a b => Mul’ a [b] where
type MulT a [b] = [MulT a b]
mul’ a = map (mul’ a)

g b x y = if b then mul’ x [y] else y

With UndecidableInstances enabled, it takes quite a while for the loop to time out. With
UndecidableInstances disabled, the instance is still accepted and the typechecker still loops,
but the cutoff happens much more quickly.

So. . . funny old world.

http://research.microsoft.com/en-us/um/people/simonpj/papers/fd-chr/
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1.10 Why do 3 and x (which was assigned 3) have different in-
ferred types in Haskell?

There’s another factor here, mentioned in some of the links which acfoltzer includes, but it might
be worth making explicit here. You’re encountering the effect of the monomorphism restriction.
When you say

let x = 5

you make a top-level definition of a variable. The MR insists that such definitions, when oth-
erwise unaccompanied by a type signature, should be specialized to a monomorphic value by
choosing (hopefully) suitable default instances for the unresolved type variables. By contrast,
when you use :t to ask for an inferred type, no such restriction or defaulting is imposed. So

> :t 3
3 :: (Num t) => t

because 3 is indeed overloaded: it is admitted by any numeric type. The defaulting rules
choose Integer as the default numeric type, so

> let x = 3
> :t x
x :: Integer

But now let’s switch off the MR.

> :set -XNoMonomorphismRestriction
> let y = 3
> :t y
y :: (Num t) => t

Without the MR, the definition is just as polymorphic as it can be, just as overloaded as 3. Just
checking. . .

> :t y * (2.5 :: Float)
y * (2.5 :: Float) :: Float
> :t y * (3 :: Int)
y * (3 :: Int) :: Int

Note that the polymorphic y = 3 is being differently specialized in these uses, according to
the fromInteger method supplied with the relevant Num instance. That is, y is not associated
with a particular representation of 3, but rather a scheme for constructing representations of 3.
Naı̈vely compiled, that’s a recipe for slow, which some people cite as a motivation for the MR.

I’m (locally pretending to be) neutral on the debate about whether the monomorphism restric-
tion is a lesser or greater evil. I always write type signatures for top-level definitions, so there is
no ambiguity about what I’m trying to achieve and the MR is beside the point.

When trying to learn how the type system works, it’s really useful to separate the aspects of
type inference which

1. ‘follow the plan’, specializing polymorphic definitions to particular use cases: a fairly ro-
bust matter of constraint-solving, requiring basic unification and instance resolution by
backchaining; and

2. ‘guess the plan’, generalizing types to assign a polymorphic type scheme to a definition
with no type signature: that’s quite fragile, and the more you move past the basic Hindley-
Milner discipline, with type classes, with higher-rank polymorphism, with GADTs, the
stranger things become.

It’s good to learn how the first works, and to understand why the second is difficult. Much
of the weirdness in type inference is associated with the second, and with heuristics like the
monomorphism restriction trying to deliver useful default behaviour in the face of ambiguity.

http://www.haskell.org/haskellwiki/Monomorphism_restriction
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1.11 Use case for rank-3 (or higher) polymorphism?

I may be able to help, although such beast are inevitably a bit involved. Here’s a pattern I some-
times use in developing well-scoped syntax with binding and de Bruijn indexing, bottled.

mkRenSub ::
forall v t x y. -- variables represented by v, terms by t

(forall x. v x -> t x) -> -- how to embed variables into terms
(forall x. v x -> v (Maybe x)) -> -- how to shift variables
(forall i x y. -- for thingies, i, how to traverse terms...

(forall z. v z -> i z) -> -- how to make a thingy from a variable
(forall z. i z -> t z) -> -- how to make a term from a thingy
(forall z. i z -> i (Maybe z)) -> -- how to weaken a thingy
(v x -> i y) -> -- ...turning variables into thingies
t x -> t y) -> -- wherever they appear

((v x -> v y) -> t x -> t y, (v x -> t y) -> t x -> t y)
-- acquire renaming and substitution

mkRenSub var weak mangle = (ren, sub) where
ren = mangle id var weak -- take thingies to be vars to get renaming
sub = mangle var id (ren weak) -- take thingies to be terms to get substitution

Normally, I’d use type classes to hide the worst of the gore, but if you unpack the dictionaries,
this is what you’ll find.

The point is that mangle is a rank-2 operation which takes a notion of thingy equipped with
suitable operations polymorphic in the variable sets over which they work: operations which
map variables to thingies get turned into term-transformers. The whole thing shows how to use
mangle to generate both renaming and substitution.

Here’s a concrete instance of that pattern:

data Id x = Id x

data Tm x
= Var (Id x)
| App (Tm x) (Tm x)
| Lam (Tm (Maybe x))

tmMangle :: forall i x y.
(forall z. Id z -> i z) ->
(forall z. i z -> Tm z) ->
(forall z. i z -> i (Maybe z)) ->
(Id x -> i y) -> Tm x -> Tm y

tmMangle v t w f (Var i) = t (f i)
tmMangle v t w f (App m n) = App (tmMangle v t w f m) (tmMangle v t w f n)
tmMangle v t w f (Lam m) = Lam (tmMangle v t w g m) where

g (Id Nothing) = v (Id Nothing)
g (Id (Just x)) = w (f (Id x))

subst :: (Id x -> Tm y) -> Tm x -> Tm y
subst = snd (mkRenSub Var (\ (Id x) -> Id (Just x)) tmMangle)

We implement the term traversal just once, but in a very general way, then we get substitution
by deploying the mkRenSub pattern (which uses the general traversal in two different ways).

For another example, consider polymorphic operations between type operators

type (f :-> g) = forall x. f x -> g x
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An IMonad (indexed monad) is some m :: (* -> *) -> * -> * equipped with poly-
morphic operators

ireturn :: forall p. p :-> m p
iextend :: forall p q. (p :-> m q) -> m p :-> m q

so those operations are rank 2.
Now any operation which is parametrized by an arbitrary indexed monad is rank 3. So, for

example, constructing the usual monadic composition,

compose :: forall m p q r. IMonad m => (q :-> m r) -> (p :-> m q) -> p :-> m r
compose qr pq = iextend qr . pq

relies on rank 3 quantification, once you unpack the definition of IMonad.
Moral of story: once you’re doing higher order programming over polymorphic/indexed

notions, your dictionaries of useful kit become rank 2, and your generic programs become rank
3. This is, of course, an escalation that can happen again.

1.12 Why don’t Haskell compilers facilitate deterministic mem-
ory management?

It is sensible to ask whether functional programming languages can do less GC by tracking us-
age. Although the general problem of whether some data can safely be discarded is undecidable
(because of conditional branching), it’s surely plausible to work harder statically and find more
opportunities for direct deallocation.

It’s worth paying attention to the work of Martin Hofmann and the team on the Mobile Re-
source Guarantees project, who made type-directed memory (de/re)allocation a major theme.
The thing that makes their stuff work, though, is something Haskell doesn’t have in its type
system — linearity. If you know that a function’s input data are secret from the rest of the com-
putation, you can reallocate the memory they occupy. The MRG stuff is particularly nice be-
cause it manages a realistic exchange rate between deallocation for one type and allocation for
another which turns into good old-fashioned pointer-mangling underneath a purely functional
exterior. In fact, lots of lovely parsimonious mutation algorithms (e.g. pointer-reversing traversal,
overwrite-the-tail-pointer construction, etc) can be made to look purely functional (and checked
for nasty bugs) using these techniques.

In effect, the linear typing of resources gives a conservative but mechanically checkable ap-
proximation to the kind of usage analysis that might well help to reduce GC. Interesting ques-
tions then include how to mix this treatment cleanly (deliberate adverb choice) with the usual
persistent deal. It seems to me that quite a lot of intermediate data structures has an initial
single-threaded phase in recursive computation, before being either shared or dropped when the
computation finishes. It may be possible to reduce the garbage generated by such processes.

TL;DR There are good typed approaches to usage analysis which cut GC, but Haskell has the
wrong sort of type information just now to be particularly useful for this purpose.

1.13 How does ArrowLoop work? Also, mfix?

In this code, they key piece is the delay 0 arrow in the rec block. To see how it works, it helps
to think of values as varying over time and time as chopped into slices. I think of the slices as
‘days’. The rec block explains how each day’s computation works. It’s organised by value, rather
than by causal order, but we can still track causality if we’re careful. Crucially, we must make sure
(without any help from the types) that each day’s work relies on the past but not the future. The
one-day delay 0 buys us time in that respect: it shifts its input signal one day later, taking care
of the first day by giving the value 0. The delay’s input signal is ‘tomorrow’s next’.
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rec output <- returnA -< if reset then 0 else next
next <- delay 0 -< output+1

So, looking at the arrows and their outputs, we’re delivering today’s output but tomorrow’s
next. Looking at the inputs, we’re relying on today’s reset and next values. It’s clear that we
can deliver those outputs from those inputs without time travel. The output is today’s next
number unless we reset to 0; tomorrow, the next number is the successor of today’s output.
Today’s next value thus comes from yesterday, unless there was no yesterday, in which case it’s
0.

At a lower level, this whole setup works because of Haskell’s laziness. Haskell computes by a
demand-driven strategy, so if there is a sequential order of tasks which respects causality, Haskell
will find it. Here, the delay establishes such an order.

Be aware, though, that Haskell’s type system gives you very little help in ensuring that such
an order exists. You’re free to use loops for utter nonsense! So your question is far from trivial.
Each time you read or write such a program, you do need to think ‘how can this possibly work?’.
You need to check that delay (or similar) is used appropriately to ensure that information is
demanded only when it can be computed. Note that constructors, especially (:) can act like
delays, too: it’s not unusual to compute the tail of a list, apparently given the whole list (but
being careful only to inspect the head). Unlike imperative programming, the lazy functional
style allows you to organize your code around concepts other than the sequence of events, but
it’s a freedom that demands a more subtle awareness of time.

1.14 What does⇒mean in a type signature?

Here’s another way of looking at it. Some of a function’s arguments are invisible, others are
visible. A type input -> output tells us that a visible input is expected as an argument. A
type (Constraint) => output tells us that some invisible information is expected. They’re
not interchangeable, because the visible arguments must be written, and the invisible arguments
must not be written. The invisible arguments are for the compiler to figure out for himself (well,
he sounds like a himself to me), and he insists on puzzling them out: he refuses just to be told
what they are!

Secretly, the full type of this tell example is

tell :: forall (a :: *). (Show a) => [a] -> String

What I’ve done is to make clear where this a variable comes in and what kind of a thing it is.
You can also read this as a “deal”: tell offers to work for all types a which satisfy the demand
(Show a).

In order for a usage of tell to make sense, it needs three things. Two of them are invisible
and one is visible. That is, when you use tell, you make the visibile argument explicit, and the
compiler tries to fill in the invisible parts. Let’s work through that type more slowly.

tell :: forall (a :: *). -- the type of elements to tell (invisible)
(Show a) => -- how to make a String from one element (invisible)
[a] -> -- the list of elements to be told (visible)
String -- the String made by showing all the elements

So, when you use tell, e.g.,

tell [True, False]

you give only the visible argument: the list [True, False] of things to tell, and the com-
piler figures out the invisible arguments. He knows that True and False are both values of type
Bool, so that means
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[True, False] :: [Bool]

which is how the compiler figures out that the a in the type of tell must be Bool, making
[a] = [Bool]

(By the way, about [True, False] :: [Bool]. Left of ::, the square brackets, [..], make
list values. Right of ::, the square brackets, [..], make a type of lists. They may just look black
on a grey background to you, but my brain colours the value-making brackets red and the type-
making brackets blue. They are entirely different. I wish I could colour code on this site. I
digress.)

So, now, the other invisible argument must satisfy this (Show a) thing, which we now know
is specifically (Show Bool) because we figured out that a is Bool. We call this part of the type
a “constraint”, but really it’s a demand not just that a fact is true, but that some useful stuff exists.
The stuff that is being demanded here is that there is a function

show :: Bool -> String

That’s the function used to turn the individual elements True and False into Strings in
the process of evaluating tell [True, False].

The identifier Show is the name of a type class and show is the method of that type class. A type
class specifies an interface of operations which must be implemented for each instance. The
invisible argument to the function is a record (or “dictionary”) packaging the implementations
of those operations for the type in question (here, the implementation of show). Without that
information, the compiled code would have no way to do its job, but we don’t have to write that
information, because the compiler can (at least in this case) search through the instances it knows
about and fill in the right one for the job.

So, we don’t just have invisible type arguments (which are inferred at compile time, then
erased before run time), signalled by lowercase type variables, or more explicitly by forall
blah .. We also have invisible implementations of type class operations (which are looked up
at compile time, to provide vital run time information). So, something very important happens
between inferring and erasing types: while the compiler still knows the types, it uses them to figure
out which invisible implementations will be needed at run time, so that we can get away with
not writing them ourselves.

Zooming out, => in a type documents our expectation that the compiler will make use of type
information to guide the generation of run time code that we don’t have to bother writing. That’s
a nice little bit of win, right there.

Ulterior motive for type system hackers. The message that the invisible-visible distinction
is in a different place from the erasable-useful distinction is one that some people have not yet
received. That is the classic Hindley-Milner position, but the fact is that these distinctions are
orthogonal, and the sooner people learn to enjoy that, the better.

1.15 Meaning of Double and Floating point?

A useful thing to try interactively in ghci is the :info <something> command, which can
sometimes tell you helpful things.

> :info Floating
class Fractional a => Floating a where

pi :: a
exp :: a -> a
log :: a -> a
sqrt :: a -> a
(**) :: a -> a -> a
---------------------------------------- loads more stuff

-- Defined in ‘GHC.Float’
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instance Floating Float -- Defined in ‘GHC.Float’
instance Floating Double -- Defined in ‘GHC.Float’

What does this mean? Floating is a type class. There is more than one type of floating point
numbers. Indeed, two come as standard: Float and Double, where Double gives you twice
the precision of Float. The a in Floating a stands for any type, and the big list of operations
(including sqrt) is an interface which any instance of the class must implement. The fact that
sqrt is in the interface for Floating means that it can always and only be used for instances of
Floating. That is, to you its type is given as you say

sqrt :: Floating a => a -> a

The => syntax signals a constraint, here Floating a to its left. The type says

for any type a which is an instance of Floating, given an input of type a, the output
will have type a

You can specialize this type by filling in a with any type for which the constraint Floating
a can be satisfied, so the following are both true

sqrt :: Float -> Float
sqrt :: Double -> Double

Now, Float and Double are represented by different bit-patterns, so the computational
mechanisms for taking square roots is different in each case. It’s handy not to have to remember
different names for the different versions used for different types. The “constraint” Floating a
really stands for the record (or dictionary) of the implementations for type a of all the operations
in the interface. What the type of sqrt is really saying is

given a type a and a dictionary of implementations for all the Floating operations,
I’ll take an a and give you an a

and it works by extracting the relevant sqrt implementation from the dictionary and using
it on the given input.

So the => signals a function type with an invisible dictionary input just as -> signals a func-
tion type with a visible value input. You don’t (indeed, you can’t) write the dictionary when you
use the function: the compiler figures it out from the type. When we write

sqrt :: Double -> Double

we mean the general sqrt function invisibly applied to the Floating Double dictionary.

1.16 Haskell terminology: meaning of type vs. data type, are
they synonyms?

A type (in Haskell) is a piece of syntax which can meaningfully be put right of :: to classify an
expression left of ::. Each syntactic component of a type is itself classified by a kind, where the
kind of types (which classify expressions) is *. Some people are happy to use the word “type” to refer
to any component of the type syntax, whether or not its kind allows it to classify expressions.

The syntax of types can be extended by various declaration forms.

1. A type synonym, e.g., type Foo x y z = [x] -> IO (y, z), adds type components
of fully applied form Foo x y z, which expand macro-fashion in accordance with their defin-
ing equation.
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2. A data declaration, e.g., data Goo x y z = ThisGoo x | ThatGoo (Goo y z x)
introduces a fresh type constructor symbol Goo to the syntax of types, which is used to
build the types which classify values generated by the data constructors, here ThisGoo
and ThatGoo.

3. A newtype declaration, e.g., newtype Noo x y z = MkNoo (x, [y], z) makes a
copy of an existing type which is distinguished from the original in the syntax of types.

A type is polymorphic if it contains type variables which can be substituted with other type
components: the values classified by polymorphic types can be specialized to any substitution
instance of the type variables. E.g. append (++) :: [a] -> [a] -> [a] works on lists
whose elements have the same type, but any type will do. Values with polymorphic types are
often referred to as “polymorphic values”.

Sometimes, “data type” is used to mean, quite simply, a type introduced by a data declara-
tion. In this sense, all data types are types, but not all types are data types. Examples of types
which are not data types include IO () and Int -> Int. Also, Int is not a data type in
this sense: it is a hardwired primitive type. For the avoidance of doubt, some people call these
types algebraic data types, because the constructors give an algebra, meaning “a bunch of op-
erations for building values by combining other values”. A “polymorphic data type” is a data
type with type variables in it, such as [(a, Bool)], by contrast with [Int]. Sometimes people
talk about “declaring a polymorphic data type” or say things like “Maybe is a polymorphic data
type” when they really just mean that the type constructor has parameters (and can thus be used
to form polymorphic types): pedantically, one does declare a polymorphic data type, but not any
old polymorphic datatype, rather a type constructor applied to formal parameters).

Of course, all first-class values classified by types are in some sense “data”, and in Haskell,
types are not used to classify anything which is not a first-class value, so in that looser sense,
every “type” is a “data type”. The distinction becomes more meaningful in languages where
there are things other than data which have types (e.g., methods in Java).

Informal usage is often somewhere in the middle and not very well defined. People are of-
ten driving at some sort of distinction between functions or processes and the sort of stuff (the
“data”) on which they operate. Or they might think of data as being “understood in terms of
the way they’re made” (and exposing their representation, e.g. by pattern matching) rather than
“understood in terms of the way they’re used”. This last usage of “data” sits a little uncomfort-
ably with the notion of an abstract data type, being a type which hides the representation of the
underlying stuff. Representation-hiding abstract data types thus contrast rather strongly with
representation-exposing algebraic data types, which is why it is rather unfortunate that “ADT”
is casually used as an abbreviation for both.

The upshot, I’m afraid, is vague.

1.17 Can you formulate the Bubble sort as a monoid or semi-
group?

I’m using my phone with a poor network connection, but here goes.
tl;dr bubblesort is insertion sort is the monoidal “crush” for the monoid of ordered lists with

merging.
Ordered lists form a monoid.

newtype OL x = OL [x]
instance Ord x => Monoid (OL x) where

mempty = OL []
mappend (OL xs) (OL ys) = OL (merge xs ys) where

merge [] ys = ys
merge xs [] = xs
merge xs@(x : xs’) ys@(y : ys’)
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| x <= y = x : merge xs’ ys
| otherwise = y : merge xs ys’

Insertion sort is given by

isort :: Ord x => [x] -> OL x
isort = foldMap (OL . pure)

because insertion is exactly merging a singleton list with another list. (Mergesort is given by
building a balanced tree, then doing the same foldMap.)

What has this to do with bubblesort? Insertion sort and bubblesort have exactly the same
comparison strategy. You can see this if you draw it as a sorting network made from compare-
and-swap boxes. Here, data flows downward and lower inputs to boxes [n] go left:

| | | |
[1] | |
| [2] |
[3] [4]
| [5] |
[6] | |
| | | |

If you perform the comparisons in the sequence given by the above numbering, cutting the
diagram in / slices, you get insertion sort: the first insertion needs no comparison; the second
needs comparison 1; the third 2,3; the last 4,5,6.

But if, instead, you cut in slices. . .

| | | |
[1] | |
| [2] |
[4] [3]
| [5] |
[6] | |
| | | |

. . . you are doing bubblesort: first pass 1,2,3; second pass 4,5; last pass 6.

1.18 Is this a correctly implemented mergesort in Haskell?

No, that’s not mergeSort. That’s insertionSort, which is essentially the same algorithm as bub-
bleSort, depending on how you stare at it. At each step, a singleton list is merged with the
accumulated ordered-list-so-far, so, effectively, the element of that singleton is inserted.

As other commenters have already observed, to get mergeSort (and in particular, its effi-
ciency), it’s necessary to divide the problem repeatedly into roughly equal parts (rather than
“one element” and “the rest”). The “official” solution gives a rather clunky way to do that. I
quite like

foldr (\ x (ys, zs) -> (x : zs, ys)) ([], [])

as a way to split a list in two, not in the middle, but into elements in even and odd positions.
If, like me, you like to have structure up front where you can see it, you can make ordered

lists a Monoid.
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import Data.Monoid
import Data.Foldable
import Control.Newtype

newtype Merge x = Merge {merged :: [x]}
instance Newtype (Merge x) [x] where

pack = Merge
unpack = merged

instance Ord x => Monoid (Merge x) where
mempty = Merge []
mappend (Merge xs) (Merge ys) = Merge (merge xs ys) where

-- merge is as you defined it

And now you have insertion sort just by

ala’ Merge foldMap (:[]) :: [x] -> [x]

One way to get the divide-and-conquer structure of mergeSort is to make it a data structure:
binary trees.

data Tree x = None | One x | Node (Tree x) (Tree x) deriving Foldable

I haven’t enforced a balancing invariant here, but I could. The point is that the same operation
as before has another type

ala’ Merge foldMap (:[]) :: Tree x -> [x]

which merges lists collected from a treelike arrangement of elements. To obtain said arrange-
ments, think “what’s cons for Tree?” and make sure you keep your balance, by the same kind
of twistiness I used in the above “dividing” operation.

twistin :: x -> Tree x -> Tree x -- a very cons-like type
twistin x None = One x
twistin x (One y) = Node (One x) (One y)
twistin x (Node l r) = Node (twistin x r) l

Now you have mergeSort by building a binary tree, then merging it.

mergeSort :: Ord x => [x] -> [x]
mergeSort = ala’ Merge foldMap (:[]) . foldr twistin None

Of course, introducing the intermediate data structure has curiosity value, but you can easily
cut it out and get something like

mergeSort :: Ord x => [x] -> [x]
mergeSort [] = []
mergeSort [x] = [x]
mergeSort xs = merge (mergeSort ys) (mergeSort zs) where

(ys, zs) = foldr (\ x (ys, zs) -> (x : zs, ys)) ([], []) xs

where the tree has become the recursion structure of the program.
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1.19 Haskell type system nuances (ambiguity)

This is a variant of the notorious show . read problem. The classic version uses

read :: Read a => String -> a
show :: Show a => a -> String

so the composition might seem to be a plain old String transducer

moo :: String -> String
moo = show . read

except that there is no information in the program to determine the type in the middle, hence
what to read and then show.

Ambiguous type variable ‘b’ in the constraints:
‘Read b’ arising from a use of ‘read’ at ...
‘Show b’ arising from a use of ‘show’ at ...

Probable fix: add a type signature that fixes these type variable(s)

Please not that ghci does a bunch of crazy extra defaulting, resolving ambiguity arbitrarily.

> (show . read) "()"
"()"

Your C class is a variant of Read, except that it decodes an Int instead of reading a String,
but the problem is essentially the same.

Type system enthusiasts will note that underconstrained type variables are not per se a big
deal. It’s ambiguous instance inference that’s the issue here. Consider

poo :: String -> a -> a
poo _ = id

qoo :: (a -> a) -> String
qoo _ = ""

roo :: String -> String
roo = qoo . poo

In the construction of roo, it is never determined what the type in the middle must be, nor is
roo polymorphic in that type. Type inference neither solves nor generalizes the variable! Even
so,

> roo "magoo"
""

it’s not a problem, because the construction is parametric in the unknown type. The fact that
the type cannot be determined has the consequence that the type cannot matter.

But unknown instances clearly do matter. The completeness result for Hindley-Milner type
inference relies on parametricity and is thus lost when we add overloading. Let us not weep for
it.
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1.20 Understanding a case of Haskell Type Ambiguity

This is a classic problem. The “ad hoc” polymorphism of type classes makes type inference
incomplete, and you’ve just been bitten. Let’s look at the pieces.

read :: Read x => String -> x
flatten :: NestedList a -> [a]
print :: Show y => y -> IO ()

and we’ll also have machine-generated instances for

Read a => Read (NestedList a)
Show a => Show (NestedList a)
Read a => Read [a]
Show a => Show [a]

Now let’s solve the equations we get when we try to build the composition.

print . flatten . read

y = [a] NestedList a = x

That means we need

Show [a] Read (NestedList a)

and thus

Show a Read a

and we’ve used all our information without determining a, and hence the relevant Read and
Show instances.

As J. Abrahamson has already suggested, you need to do something which determines the a.
There are lots of ways to do it. I tend to prefer type annotations to writing strange terms whose
only purpose is to make a type more obvious. I second the proposal to give a type to one of the
components in the composition, but I’d probably pick (read :: String -> NestedList
Int), as that’s the operation which introduces the ambiguously typed thing.

1.21 Why does Haskell use→ instead of =?

It would be unfortunate to write

(0, _) = []

because that is not true.
In the tradition of Robert Recorde, we try to write equations only when we intend the left-

hand side to equal the right-hand side. So we write

dup x = (x, x)

to make dup x equal to (x, x), or

dup = \ x -> (x, x)

to make dup equal to the function which maps x to (x, x), but not

\ x = (x, x)

because there is no way to make x equal (x, x).
We depart from the tradition only slightly when we allow “falling through”, e.g.,

f 0 = 1
f n = 2 * f (n - 1)

but only in the sense that the second line has a silent “otherwise”.
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1.22 Is it possible to make a type an instance of a class if its type
parameters are in the wrong order?

Biased am I, but I think this is a great opportunity to make use of Control.Newtype, a little piece
of kit that’s a mere “cabal install newtype” away.

Here’s the deal. You want to flip around type constructors to get your hands on functoriality
(for example) in a different parameter. Define a newtype

newtype Flip f x y = Flip (f y x)

and add it to the Newtype class thus

instance Newtype (Flip f x y) (f y x) where
pack = Flip
unpack (Flip z) = z

The Newtype class is just a directory mapping newtypes to their unvarnished equivalents,
providing handy kit, e.g. op Flip is the inverse of Flip: you don’t need to remember what you
called it.

For the problem in question, we can now do stuff like this:

data Bif x y = BNil | BCons x y (Bif x y) deriving Show

That’s a two parameter datatype which happens to be functorial in both parameters. (Proba-
bly, we should make it an instance of a Bifunctor class, but anyway. . . ) We can make it a Functor
twice over: once for the last parameter. . .

instance Functor (Bif x) where
fmap f BNil = BNil
fmap f (BCons x y b) = BCons x (f y) (fmap f b)

. . . and once for the first:

instance Functor (Flip Bif y) where
fmap f (Flip BNil) = Flip BNil
fmap f (Flip (BCons x y b)) = Flip (BCons (f x) y (under Flip (fmap f) b))

where under p f is a neat way to say op p . f . p.
I tell you no lies: let us try.

someBif :: Bif Int Char
someBif = BCons 1 ’a’ (BCons 2 ’b’ (BCons 3 ’c’ BNil))

and then we get

*Flip> fmap succ someBif
BCons 1 ’b’ (BCons 2 ’c’ (BCons 3 ’d’ BNil))

*Flip> under Flip (fmap succ) someBif
BCons 2 ’a’ (BCons 3 ’b’ (BCons 4 ’c’ BNil))

In these circumstances, there really are many ways the same thing can be seen as a Functor,
so it’s right that we have to make some noise to say which way we mean. But the noise isn’t all
that much if you’re systematic about it.

http://hackage.haskell.org/packages/archive/newtype/0.2/doc/html/Control-Newtype.html


1.23. FUNCTOR TYPE VARIABLES FOR FLIP DATA TYPE 29

1.23 Functor type variables for Flip data type

The future is now, when you (use ghc 8 and) switch on a flag or two

Prelude> :set -XPolyKinds -XFlexibleInstances

Let us declare

Prelude> newtype Flip f a b = MkFlip (f b a)

and then enquire

Prelude> :kind Flip
Flip :: (k1 -> k -> *) -> k -> k1 -> *

Prelude> :type MkFlip
MkFlip

:: forall k k1 (b :: k) (f :: k -> k1 -> *) (a :: k1).
f b a -> Flip f a b

The type constructor Flip takes two implicit arguments, being k and k1, and three explicit
arguments, being a binary function producing a type, then its two arguments in reverse order.
The arguments to this function are of unconstrained type (old people can say “kind” if they like),
but it certainly returns a type (in the strict sense of “thing in *”, rather than the uselessly vague
sense of “any old rubbish right of ::”) because it is certainly used as a type in the declaration of
MkFlip.

The data constructor, MkFlip, takes five implicit arguments (exactly the arguments of Flip)
and one explicit argument, being some data in f b a.

What’s going on is Hindley-Milner type inference one level up. Constraints are collected (e.g.,
f b a must inhabit * because a constructor argument must inhabit f b a) but otherwise a most
general type is delivered: a and b could be anything, so their types are generalised as k1 and k.

Let’s play the same game with the constant type constructor:

Prelude> newtype K a b = MkK a

Prelude> :kind K
K :: * -> k -> *

Prelude> :type MkK
MkK :: forall k (b :: k) a. a -> K a b

We see that a :: * but b can be any old rubbish (and for that matter, k :: *, as these
days, * :: *). Clearly, a is actually used as the type of a thing, but b is not used at all, hence
unconstrained.

We may then declare

Prelude> instance Functor (Flip K b) where fmap f (MkFlip (MkK a)) = MkFlip (MkK (f a))

and ask

Prelude> :info Flip
...
instance [safe] forall k (b :: k). Functor (Flip K b)

which tells us that the unused b can still be any old rubbish. Because we had
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K :: * -> k -> *
Flip :: (k1 -> k -> *) -> k -> k1 -> *

we can unify k1 = * and get

Flip K :: k -> * -> *

and so

Flip K b :: * -> *

for any old b. A Functor instance is thus plausible, and indeed deliverable, with the function
acting on the packed up a element, corresponding to the argument of Flip K b which becomes
the first argument of K, hence the type of the stored element.

Unification-based type inference is alive and (fairly) well, right of ::.

1.24 Why does product [] return 1?

Lists form a monoid structure, with associative binary operation ++ and neutral element []. That
is, we have

[] ++ xs = xs = xs ++ [] (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

Meanwhile, numbers have lots of monoid structure, but the relevant one here is that where
the operation is * and the neutral element is 1.

1 * x = x = x * 1 (x * y) * z = x * (y * z)

The product function is not only a map from lists of numbers to numbers: it’s a monoid
homomorphism, reflecting the list monoid structure in the numerical monoid. Crucially,

product (xs ++ ys) = product xs * product ys

and

product [] = 1

In fact, to get the former, we pretty much have the latter forced upon us.

1.25 Minimum of Two Maybes

It is possible to satisfy the specification using operators from Control.Applicative.

myMin :: Ord x => Maybe x -> Maybe x -> Maybe x
myMin a b = min <$> a <*> b <|> a <|> b

where the <|> for Maybe implements “preference”

Nothing <|> b = b
a <|> _ = a

The thing is

min <$> Just a <*> Just b = Just (min a b)

but
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min <$> Just a <*> Nothing = Nothing

which has resulted in some incorrect answers to this question. Using<|> allows you to prefer
the computed min value when it’s available, but recover with either individual when only one is
Just.

But you should ask if it is appropriate to use Maybe in this way. With the inglorious exception
of its Monoid instance, Maybe is set up to model failure-prone computations. What you have
here is the extension of an existing Ord with a “top” element.

data Topped x = Val x | Top deriving (Show, Eq, Ord)

and you’ll find that min for Topped x is just what you need. It’s good to think of types as
not just the representation of data but the equipment of data with structure. Nothing usually
represents some kind of failure, so it might be better to use a different type for your purpose.

1.26 Is the equivalent of Haskell’s Foldable and Traversable sim-
ply a sequence in Clojure?

No. Whilst any kind of Functor representing finite sequences of elements will be Traversable
(hence Foldable), there are plenty of other structures which are Traversable, but which
aren’t sequence-like, in that they don’t have an obvious notion of concatenation. There will be
a way to obtain the sequence of contained elements, but the structure may consist of more than
just that sequence.

What Traversable fmeans, in effect, is that structures with type f x contain finitely many
elements of type x, and that there is some way to traverse the structure visiting each ele-
ment of x exactly once. So things like “terms in a syntax, seen as containing variables” can be
Traversable.

data Term x
= Var x
| Val Integer
| Add (Term x) (Term x)

instance Traversable Term where
traverse f (Var x) = pure Var <*> f x
traverse f (Val i) = pure (Val i)
traverse f (Add s t) = pure Add <*> traverse f s <*> traverse f t

You can always use traverse to do operations on all elements. We get fmap by taking pure
= id and <*> to be ordinary application.

instance Functor Term where
fmap = fmapDefault

where

fmap :: (x -> y) -> Term x -> Term y

implements simultaneous renaming.
Meanwhile, the Foldable instance

instance Foldable Term where
foldMap = foldMapDefault

takes pure to give the neutral element of some monoid and <*> to the combining operation,
so we get reduce-like operations. E.g.,
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foldMap (:[]) :: Term x -> [x]

gives the list of variables occurring in a term. That is we can always obtain the sequence of
elements from Traversable data, but the data might have structure other than those elements.
Terms have structure other than variables (their Vals and Adds), and it’s not so clear what “cons”
means for syntax trees.

So, while more structures than sequences are Traversable, the Traversable interface
offers you fewer sequence-like operations. The point of Traversable is to generalize map-like
and reduce-like operations, not to capture list-ness.

1.27 How do you keep track of multiple properties of a string
without traversing it multiple times?

I’d start by defining the traditional “indicator function”

indicate :: Num a => Bool -> a
indicate b = if b then 1 else 0

so that

indicate . isVowel :: Char -> Integer

Next, I’d get hold of two key pieces of kit from Control.Arrow

(&&&) :: (x -> y) -> (x -> z) -> x -> (y, z)
(***) :: (a -> b) -> (c -> d) -> (a, c) -> (b, d)

so (remembering that some characters are neither vowels nor consonants)

(indicate . isVowel) &&& (indicate . isConsonant)
:: Char -> (Integer, Integer)

And then I’d grab hold of Sum from Data.Monoid.

(Sum . indicate . isVowel) &&& (Sum . indicate . isConsonant)
:: Char -> (Sum Integer, Sum Integer)

getSum *** getSum :: (Sum Integer, Sum Integer) -> (Integer, Integer)

Now I deploy foldMap, because we’re doing some sort of monoidal “crush”.

(getSum *** getSum) .
foldMap ((Sum . indicate . isVowel) &&& (Sum . indicate . isConsonant))

:: String -> (Integer, Integer)

Then I remember that I wrote some code which got turned into Control.Newtype and I
discover the following is missing but should be there.

instance (Newtype n o, Newtype n’ o’) => Newtype (n, n’) (o, o’) where
pack = pack *** pack
unpack = unpack *** unpack

And now I need only write

ala’ (Sum *** Sum) foldMap ((indicate . isVowel) &&& (indicate . isConsonant))
:: String -> (Integer, Integer)
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The key gadget is

ala’ :: (Newtype n o, Newtype n’ o’) =>
(o -> n) -> ((a -> n) -> b -> n’) -> (a -> o) -> b -> o’

-- ˆ-packer ˆ-higher-order operator ˆ-action-on-elements

where the packer’s job is to select the newtype with the correct behavioral instance and also
determine the unpacker. It’s exactly designed to support working locally at a more specific type
that signals the intended structure.

1.28 Checking whether a binary tree is a binary search tree

Here’s a way to do it without flattening the tree.
From the definition, here,

data BinaryTree a = Null | Node (BinaryTree a) a (BinaryTree a)
deriving Show

one can see that traversing the tree left to right, ignoring Node and parentheses, gives you an
alternating sequence of Nulls and as. That is, between every two values, there is a Null.

My plan is to check that each subtree satisfies suitable requirements: we can refine the require-
ments at each Node, remembering which values we are between, then test them at each Null.
As there is a Null between every in order pair of values, we will have tested that all in order
(left-to-right) pairs are non-decreasing.

What is a requirement? It’s a loose lower and upper bound on the values in the tree. To express
requirements, including those at the leftmost and rightmost ends, we may extend any ordering
with Bottom and Top elements, as follows:

data TopBot a = Bot | Val a | Top deriving (Show, Eq, Ord)

Now let us check that a given tree satisfies the requirements of being both in order and be-
tween given bounds.

ordBetween :: Ord a => TopBot a -> TopBot a -> BinaryTree a -> Bool
-- tighten the demanded bounds, left and right of any Node

ordBetween lo hi (Node l x r) = ordBetween lo (Val x) l && ordBetween (Val x) hi r
-- check that the demanded bounds are in order when we reach Null

ordBetween lo hi Null = lo <= hi

A binary search tree is a tree that is in order and between Bot and Top.

isBSTree :: Ord a => BinaryTree a -> Bool
isBSTree = ordBetween Bot Top

Computing the actual extremal values in each subtree, bubbling them outwards, gives you
more information than you need, and is fiddly in the edge cases where a left or right subtree is
empty. Maintaining and checking the requirements, pushing them inwards, is rather more uni-
form.

1.29 Finding a leaf with value x in a binary tree

Your language, about what you thought the program should do, suggests to me that you need
help to escape from the trap of imperative thinking. Let me try to offer some help, based on
thinking about what things are, not what things do.
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For findpath (Leaf y) x, you’re heading in the right direction. You just need to give if
a lowercase i, and think about what the correct Path to a Leaf must be.

Now, let’s think about the other possibility. You know more than that it’s some t. You know
that you’re really trying to figure out what

findpath (Node l r) x

is (what it =, indeed), because that’s the other possibility for a BTree. Think of splitting the
problem by asking “Is this BTree a (Leaf y) or a (Node l r)?” as one conceptual step of
program design. Now, in order to figure out what the above left-hand side equals, you’re entitled
to some recursively computed information, namely what

findpath l x

and

findpath r x

are. If you know Path information for both l and r, can you say what the Path for the whole
Node l r is? Let me rephrase that question by writing it in Haskell:

findpath :: Eq a => BTree a -> a -> Path
findpath (Leaf y) x = if y==x then ??? else Nothing
findpath (Node l r) x = nodepath (findpath l x) (findpath r x) where

nodepath :: Path -> Path -> Path
nodepath ???

I have expressed my question by introducing a helper function nodepath which takes as ar-
guments the recursively computed information. Now you can try to implement nodepath by
pattern matching on those two paths for the left and right subtrees, respectively. If you know
whether they are (Just p) or Nothing, then you should be able to say what the path for the
whole node must be.

Lesson one, the useful thoughts are of the form: “If this is like such-and-such, then that must
be so-and-so.”. Being, not doing.

Lesson two, the basic method of programming over a datatype is: split into constructor cases
(Leaf versus Node, Just versus Nothing); collect useful information from any substructures
by recursive calls; say what the value for the whole structure must be.

If you follow my advice and figure out what nodepath should be, you may find that it’s
simple enough not to merit being a separate named definition. In that case, just replace the
nodepath call with its meaning and cut out the where-clause. But it’s good to start by introduc-
ing nodepath, as it expresses a useful conceptual step towards solving the problem.

1.30 Taking from a list until encountering a duplicate

Your point that takeWhile doesn’t work because you have no contextual information for the
individual elements suggests the following strategy: get it.

This answer of mine makes reference to the decorate-with-context operation, which I called
picks (because it shows you all the way to pick one element on which to focus). It’s the general
decorate-with-its-context operation that we just ought to have for free for every containery thing.
For lists, it is

picks :: [x] -> [(x, ([x], [x]))] -- [(x-here, ([x-before], [x-after]))]
picks [] = []
picks (x : xs) = (x, ([], xs)) : [(y, (x : ys, zs)) | (y, (ys, zs)) <- picks xs]

https://stackoverflow.com/a/12872133/828361
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and it works perfectly well for infinite lists, while we’re about it.
Now have a go with

takeUntilDuplicate :: Eq x => [x] -> [x]
takeUntilDuplicate = map fst . takeWhile (\ (x, (ys, _)) -> not (elem x ys)) . picks

(Curiously, I’m disturbed that the above one-liner is rejected for ambiguity of Eq if not given
the above type signature. I’m tempted to ask a question about it, here. Oh, it’s the monomorphism
restriction. How annoying.)

Remark. It makes a lot of sense to (and I normally would) represent the “elements before”
component that picks delivers using snoc-lists (lists which grow on the right), the better to
preserve sharing and visual left-to-right-ness.

1.31 RankNTypes and PolyKinds (quantifier alternation issues)

Let’s be bloody. We must quantify everything and give the domain of quantification. Values have
types; type-level things have kinds; kinds live in BOX.

f1 :: forall (k :: BOX).
(forall (a :: k) (m :: k -> *). m a -> Int)
-> Int

f2 :: (forall (k :: BOX) (a :: k) (m :: k -> *). m a -> Int)
-> Int

Now, in neither example type is k quantified explicitly, so ghc is deciding where to put that
forall (k :: BOX), based on whether and where k is mentioned. I am not totally sure I
understand or am willing to defend the policy as stated.

Ørjan gives a good example of the difference in practice. Let’s be bloody about that, too. I’ll
write /\ (a :: k). t to make explicit the abstraction that corresponds to forall, and f @
type for the corresponding application. The game is that we get to pick the @-ed arguments, but
we have to be ready to put up with whatever /\-ed arguments the devil may choose.

We have

x :: forall (a :: *) (m :: * -> *). m a -> Int

and may accordingly discover that f1 x is really

f1 @ * (/\ (a :: *) (m :: * -> *). x @ a @ m)

However, if we try to give f2 x the same treatment, we see

f2 (/\ (k :: BOX) (a :: k) (m :: k -> *). x @ ?m0 @ ?a0)
?m0 :: *
?a0 :: * -> *
where m a = m0 a0

The Haskell type system treats type application as purely syntactic, so the only way that
equation can be solved is by identifying the functions and identifying the arguments

(?m0 :: * -> *) = (m :: k -> *)
(?a0 :: *) = (a :: k)

but those equations are not even well kinded, because k is not free to be chosen: it’s being
/\-ed not @-ed.

Generally, to get to grips with these uber-polymorphic types, it’s good to write out all the
quantifiers and then figure out how that turns into your game against the devil. Who chooses
what, and in what order. Moving a forall inside an argument type changes its chooser, and
can often make the difference between victory and defeat.
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1.32 How to write this case expression with the view pattern
syntax?

They’re not equivalent. The case version has one readMaybe, the view pattern version has two.
For every readMaybe, the compiler has to infer which type is the target of the attempt to read.
When the code says

parse xs x = case readMaybe x of
Just x -> Right (x : xs)
Nothing -> Left "Syntax error

the GHC detective notices that in your Just x case, x ends up consed to xs, and so must
take whatever type the elements of xs have. And that’s good work.

But when you write

parse xs (readMaybe -> Just x ) = Right (x : xs)
parse xs (readMaybe -> Nothing) = Left "Syntax error"

you create two separate find-the-target-type problems, one for each use of readMaybe. The
first of these is solved in just the same way as in the case case, but for the second, read individ-
ually,

parse xs (readMaybe -> Nothing) = Left "Syntax error"

there is just no clue what it is that you are failing to read, and no reason to believe it is the
same thing as in the line above.

Generally, it is inappropriate to use view patterns unless there is only one outcome of interest.
They are the wrong syntax if you want to do an intermediate computation once, but analyse
the result into more than one case. I am happy to remain on the record that I consider them a
misfeature for this reason.

1.33 Recursive Type Families

Type inference is, by default, a guessing game. Haskell’s surface syntax makes it rather awkward
to be explicit about which types should instantiate a forall, even if you know what you want.
This is a legacy from the good old days of Damas-Milner completeness, when ideas interesting
enough to require explicit typing were simply forbidden.

Let’s imagine we’re allowed to make type application explicit in patterns and expressions us-
ing an Agda-style f {a = x} notation, selectively accessing the type parameter corresponding
to a in the type signature of f. Your

idT = StateT $ \ s -> idT

is supposed to mean

idT {a = a}{m = m} = StateT $ \ s -> idT {a = a}{m = m}

so that the left has type C a a (StateT s m) r and the right has type StateT s (C a
a m) r, which are equal by definition of the type family and joy radiates over the world. But
that’s not the meaning of what you wrote. The “variable-rule” for invoking polymorphic things
requires that each forall is instantiated with a fresh existential type variable which is then
solved by unification. So what your code means is

idT {a = a}{m = m} = StateT $ \ s -> idT {a = a’}{m = m’}
-- for a suitably chosen a’, m’
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The available constraint, after computing the type family, is

C a a m ˜ C a’ a’ m’

but that doesn’t simplify, nor should it, because there is no reason to assume C is injective.
And the maddening thing is that the machine cares more than you about the possibility of finding
a most general solution. You have a suitable solution in mind already, but the problem is to
achieve communication when the default assumption is guesswork.

There are a number of strategies which might help you out of this jam. One is to use data
families instead. Pro: injectivity no problem. Con: structor. (Warning, untested speculation
below.)

class MonadPipe m where
data C a b (m :: * -> *) r
idT :: C a a m r
(<-<) :: C b c m r -> C a b m r -> C a c m r

instance (MonadPipe m) => MonadPipe (StateT s m) where
data C a b (StateT s m) r = StateTPipe (StateT s (C a b m) r)
idT = StateTPipe . StateT $ \ s -> idT
StateTPipe (StateT f) <-< StateTPipe (StateT g) =

StateTPipe . StateT $ \ s - f s <-< g s

Another con is that the resulting data family is not automatically monadic, nor is it so very
easy to unwrap it or make it monadic in a uniform way.

I’m thinking of trying out a pattern for these things where you keep your type family, but
define a newtype wrapper for it

newtype WrapC a b m r = WrapC {unwrapC :: C a b m r}

then use WrapC in the types of the operations to keep the typechecker on the right track. I
don’t know if that’s a good strategy, but I plan to find out, one of these days.

A more direct strategy is to use proxies, phantom types, and scoped type variables (although
this example shouldn’t need them). (Again, speculation warning.)

data Proxy (a :: *) = Poxy
data ProxyF (a :: * -> *) = PoxyF

class MonadPipe m where
data C a b (m :: * -> *) r
idT :: (Proxy a, ProxyF m) -> C a a m r
...

instance (MonadPipe m) => MonadPipe (StateT s m) where
data C a b (StateT s m) r = StateTPipe (StateT s (C a b m) r)
idT pp = StateTPipe . StateT $ \ s -> idT pp

That’s just a crummy way of making the type applications explicit. Note that some people
use a itself instead of Proxy a and pass undefined as the argument, thus failing to mark the
proxy as such in the type and relying on not accidentally evaluating it. Recent progress with
PolyKinds may at least mean we can have just one kind-polymorphic phantom proxy type.
Crucially, the Proxy type constructors are injective, so my code really is saying “same parameters
here as there”.

But there are times when I wish that I could drop to the System FC level in source code, or oth-
erwise express a clear manual override for type inference. Such things are quite standard in the
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dependently typed community, where nobody imagines that the machine can figure everything
out without a nudge here and there, or that hidden arguments carry no information worth in-
specting. It’s quite common that hidden arguments to a function can be suppressed at usage sites
but need to be made explicit within the definition. The present situation in Haskell is based on a
cultural assumption that “type inference is enough” which has been off the rails for a generation
but still somehow persists.

1.34 Determine whether a value is a function in Haskell

Parametricity says no. The only functions of type

a -> Bool

are constant functions.
However, with a bit of ad hoc polymorphism and a bit more chutzpah, you can do this:

{-# LANGUAGE OverlappingInstances, FlexibleInstances #-}

class Sick x where
isFunc :: x -> Bool

instance Sick (a -> b) where
isFunc _ = True

instance Sick x where
isFunc _ = False

and then it looks like you have

*Sick> isFunc 3
False

*Sick> isFunc id
True

But it does seem like a peculiar thing to do. What use is the resulting Bool to you?

1.35 Automatic Functor Instance (not)

Working in ghci, if you make the incantation

Prelude> :set -XDeriveFunctor

then the compiler will become as clever as you are hoping for, if not quite as enthusiastic. You
will need to invoke the functionality, thus,

Prelude> data Foo a = Foo a deriving (Show, Functor)

(the Show is just for printing the output, below) and then you will be able to do stuff like

Prelude> fmap (++"bar") (Foo "foo")
Foo "foobar"

In a module, you achieve the same by adding the pragma

{-# LANGUAGE DeriveFunctor #-}
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before the module declaration. It’s good for at least the more straightforward Functor in-
stances, but you can fool it into a false negative.

Prelude> data Boo a = Boo (Either a Bool) deriving Functor

<interactive>:9:43:
Can’t make a derived instance of ‘Functor Boo’:

Constructor ‘Boo’ must use the type variable only as the
last argument of a data type

In the data declaration for ‘Boo’

Meanwhile

data Goo a = Goo (Either Bool a) deriving Functor

is ok, and the machinery has clearly been hacked to work with pairing, as

data Woo a = Woo (a, Bool) deriving Functor

is permitted.
So it’s not as clever as it could be, but it’s better than a poke in the eye.

1.36 How do I apply the first partial function that works in Haskell?

In Data.Monoid, a newtype copy of Maybe, called First, has the “take the first Just” be-
haviour.

If you were looking for a function of type

[a -> First b] -> a -> First b

with the behaviour you describe, it would simply be

fold

from Data.Foldable, because the monoid behaviour for a -> does the pointwise lifting
needed: the Monoid for a -> First b is exactly picking the first application outcome whic
works. Sadly (for my tears over this have been many), to get Maybe instead of First takes a
little more work.

Note that the pointwise lifting, yanking a -> out through [], is just the sort of job for
sequenceA, so

(asum .) . sequenceA

will do the job.
It’s good to get the monoid structure you need cued from the type: in this case, accessing the

Alternative behaviour with asum will have to do.

1.37 ‘Zipping’ a plain list with a nested list

Will this do?

flip . (evalState .) . traverse . traverse . const . state $ head &&& tail
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EDIT: let me expand on the construction. . .
The essential centre of it is traverse . traverse. If you stare at the problem with suf-

ficiently poor spectacles, you can see that it’s “do something with the elements of a container
of containers”. For that sort of thing, traverse (from Data.Traversable) is a very useful
gadget (ok, I’m biased).

traverse :: (Traversable f, Applicative a) => (s -> a t) -> f s -> a (f t)

or, if I change to longer but more suggestive type variables

traverse :: (Traversable containerOf, Applicative doingSomethingToGet) =>
(s -> doingSomethingToGet t) ->
containerOf s -> doingSomethingToGet (containerOf t)

Crucially, traverse preserves the structure of the container it operates on, whatever that
might be. If you view traverse as a higher-order function, you can see that it gives back an
operator on containers whose type fits with the type of operators on elements it demands. That’s
to say (traverse . traverse) makes sense, and gives you structure-preserving operations
on two layers of container.

traverse . traverse ::
(Traversable g, Traversable f, Applicative a) => (s -> a t) -> g (f s) -> a (g (f t))

So we’ve got the key gadget for structure-preserving “do something” operations on lists of
lists. The length and splitAt approach works fine for lists (the structure of a list is given by
its length), but the essential characteristic of lists which enables that approach is already pretty
much bottled by the Traversable class.

Now we need to figure out how to “do something”. We want to replace the old elements
with new things drawn successively from a supply stream. If we were allowed the side-effect of
updating the supply, we could say what to do at each element: “return head of supply, updating
supply with its tail”. The State s monad (in Control.Monad.State which is an instance
of Applicative, from Control.Applicative) lets us capture that idea. The type State s
a represents computations which deliver a value of type a whilst mutating a state of type s.
Typical such computations are made by this gadget.

state :: (s -> (a, s)) -> State s a

That’s to say, given an initial state, just compute the value and the new state. In our case, s is a
stream, head gets the value, tail gets the new state. The &&& operator (from Control.Arrow)
is a nice way to glue two functions on the same data to get a function making a pair. So

head &&& tail :: [x] -> (x, [x])

which makes

state $ head &&& tail :: State [x] x

and thus

const . state $ head &&& tail :: u -> State [x] x

explains what to “do” with each element of the old container, namely ignore it and take a new
element from the head of the supply stream.

Feeding that into (traverse . traverse) gives us a big mutatey traversal of type

f (g u) -> State [x] (f (g x))
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where f and g are any Traversable structures (e.g. lists).
Now, to extract the function we want, taking the initial supply stream, we need to unpack the

state-mutating computation as a function from initial state to final value. That’s what this does:

evalState :: State s a -> s -> a

So we end up with something in

f (g u) -> [x] -> f (g x)

which had better get flipped if it’s to match the original spec.
tl;dr The State [x] monad is a readymade tool for describing computations which read

and update an input stream. The Traversable class captures a readymade notion of structure-
preserving operation on containers. The rest is plumbing (and/or golf).

1.38 Bunched accumulations

I see we’re accumulating over some data structure. I think foldMap. I ask “Which Monoid”?
It’s some kind of lists of accumulations. Like this

newtype Bunch x = Bunch {bunch :: [x]}
instance Semigroup x => Monoid (Bunch x) where

mempty = Bunch []
mappend (Bunch xss) (Bunch yss) = Bunch (glom xss yss) where

glom [] yss = yss
glom xss [] = xss
glom (xs : xss) (ys : yss) = (xs <> ys) : glom xss yss

Our underlying elements have some associative operator <>, and we can thus apply that
operator pointwise to a pair of lists, just like zipWith does, except that when we run out of
one of the lists, we don’t truncate, rather we just take the other. Note that Bunch is a name I’m
introducing for purposes of this answer, but it’s not that unusual a thing to want. I’m sure I’ve
used it before and will again.

If we can translate

0 -> Bunch [[0]] -- single 0 in place 0
1 -> Bunch [[],[1]] -- single 1 in place 1
2 -> Bunch [[],[],[2]] -- single 2 in place 2
3 -> Bunch [[],[],[],[3]] -- single 3 in place 3
...

and foldMap across the input, then we’ll get the right number of each in each place. There
should be no need for an upper bound on the numbers in the input to get a sensible output, as
long as you are willing to interpret [] as “the rest is silence”. Otherwise, like Procrustes, you can
pad or chop to the length you need.

Note, by the way, that when mappend’s first argument comes from our translation, we do a
bunch of ([]++) operations, a.k.a. ids, then a single ([i]++), a.k.a. (i:), so if foldMap is
right-nested (which it is for lists), then we will always be doing cheap operations at the left end
of our lists.

Now, as the question works with lists, we might want to introduce the Bunch structure only
when it’s useful. That’s what Control.Newtype is for. We just need to tell it about Bunch.

instance Newtype (Bunch x) [x] where
pack = Bunch
unpack = bunch
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And then it’s

groupInts :: [Int] -> [[Int]]
groupInts = ala’ Bunch foldMap (basis !!) where

basis = ala’ Bunch foldMap id [iterate ([]:) [], [[[i]] | i <- [0..]]]

What? Well, without going to town on what ala' is in general, its impact here is as follows:

ala’ Bunch foldMap f = bunch . foldMap (Bunch . f)

meaning that, although f is a function to lists, we accumulate as if f were a function to
Bunches: the role of ala' is to insert the correct pack and unpack operations to make that
just happen.

We need (basis !!) :: Int -> [[Int]] to be our translation. Hence basis :: [[[Int]]]
is the list of images of our translation, computed on demand at most once each (i.e., the transla-
tion, memoized).

For this basis, observe that we need these two infinite lists

[ [] [ [[0]]
, [[]] , [[1]]
, [[],[]] , [[2]]
, [[],[],[]] , [[3]]
... ...

combined Bunchwise. As both lists have the same length (infinity), I could also have written

basis = zipWith (++) (iterate ([]:) []) [[[i]] | i <- [0..]]

but I thought it was worth observing that this also is an example of Bunch structure.
Of course, it’s very nice when something like accumArray hands you exactly the sort of

accumulation you need, neatly packaging a bunch of grungy behind-the-scenes mutation. But
the general recipe for an accumulation is to think “What’s the Monoid?” and “What do I do with
each element?”. That’s what foldMap asks you.

1.39 Functor on Phantom Type

A crucial skill in functional programming is grasping, in a given situation, the right way to do
nothing. Classic errors arise, e.g., from giving [] meaning “no solutions” as the base case of
a recursive search, when [[]] meaning “one trivial solution” is needed. Thus also Functor
instances for phantom types, i.e. constant functors, are useful as the apparently trivial base case
of a larger pattern.

I can present the general toolkit for building container-like structures as follows:

newtype K a x = K a deriving Functor -- K for konstant
{- fmap _ (K a) = K a -}

newtype I x = I x deriving Functor -- I for identity
{- fmap k (I x) = I (k x) -}

newtype P f g x = P (f x, g x) deriving Functor -- P for product
{- will give (Functor f, Functor g) => Functor (P f g), such that

fmap k (P (fx, gx)) = P (fmap k fx, fmap k gx) -}

newtype S f g x = S (Either (f x) (g x)) -- S for sum
instance (Functor f, Functor g) => Functor (S f g) where

fmap k (S (Left fx)) = S (Left (fmap k fx))
fmap k (S (Right gx)) = S (Right (fmap k gx))
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Now, any recursive data structure can be presented as a top node which acts as a container
for substructures.

data Data f = Node (f (Data f))

For example, if I want to make binary trees with numbers at the leaves, I can write

type Tree = S (K Int) (P I I)

to indicate that the node structure for a tree is either a leaf with an Int and no subtrees or a
fork with a pair of subtrees. I need K to point out the absence of recursive substructures. The type
of trees is then Data Tree.

The usual recursion scheme for these things is

fold :: Functor f => (f t -> t) -> Data f -> t
fold k (Node fd) = k (fmap (fold k) fd)

We don’t need to do any work to instantiate that for trees, because Tree is already a Functor,
as it was built from functorial components. The trivial fmap for K Int amounts to saying that
the recursion stops when you reach a leaf.

Of course, these “encoded” data types make it harder to see what you’re doing when you
write ordinary programs by pattern matching. That’s where the PatternSynonyms extension
comes to your rescue. You can say

pattern Leaf i = Node (S (Left (K i)))
pattern Fork l r = Node (S (Right (P (I l, I r))))

to recover the usual interface. I recommend leaving off the outer Node, to fit with the way
fold strips Node for you.

pattern Leaf i = S (Left (K i))
pattern Fork l r = S (Right (P (I l, I r)))

add :: Data Tree -> Int
add = fold $ \ t -> case t of

Leaf i -> i
Fork x y -> x + y

I’ve barely scratched the surface of the kinds of generic functionality you can roll out to lots of
data types whenever you can develop them just for K, I, P and S. The K cases are always trivial,
but they have to be there.

Similar considerations apply to the Void data type (in Data.Void). Why on earth would we
bother to introduce a data type with no elements worth speaking of? To model the impossible
cases of a larger scheme.

1.40 Creating an Interpreter (with store) in Haskell

It’s a little difficult to answer your question, because you didn’t actually ask one. Let me just pick
out a few of the things that you’ve said, in order to give you a few clues.

I am not sure if I need to use evalE in this problem or not. I have written it in a
previous problem. The signature for evalE is evalE :: Expression -> Store
-> (Value, Store)

evalS (Expr e) s = ... Not sure what to do, here.
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What does it mean to execute a statement which consists of an expression? If it has some-
thing to do with evaluating the expression, then the fact that you have an expression evaluator
available might help with “what to do, here”.

Next, compare the code you’ve been given for “while” (which contains a fine example of a
sensible thing to do with an expression, by the way). . .

evalS w@(While e s1) s = case (evalE e s) of‘
(BoolVal True,s’) -> let s’’ = evalS s1 s’ in evalS w s’’
(BoolVal False,s’) -> s’
_ -> error "Condition must be a BoolVal"

. . . and compare it with your code for “if”

evalS (If e s1 s2) s = do
x <- evalE e
case x of

BoolVal True -> evalS s1
BoolVal False -> evalS s2

Your code is in a rather different style — the “monadic” style. Where are you getting that
from? It would make sense if the types of the evaluators were something like

evalE :: Expression -> State Store Value
evalS :: Statement -> State Store ()

The monadic style is a very nice way to thread the mutating store through the evaluation
process without talking about it too much. E.g., your x <- evalE e means “let x be the result
of evaluating e (quietly receiving the initial store and passing along the resulting store)”. It’s a
good way to work which I expect you’ll explore in due course.

But those aren’t the types you’ve been given, and the monadic style is not appropriate. You
have

evalE :: Expression -> Store -> (Value, Store)
evalS :: Statement -> Store -> Store

and the example code threads the store explicitly. Look again

evalS w@(While e s1) s = case (evalE e s) of‘
(BoolVal True,s’) -> let s’’ = evalS s1 s’ in evalS w s’’
(BoolVal False,s’) -> s’
_ -> error "Condition must be a BoolVal"

See? evalS receives its initial store, s, explicitly, and uses it explicitly in evalE e s. The
resulting new store is called s' in both case branches. If the loop is over, then s' is given back
as the final store. Otherwise, s' is used as the store for one pass through the loop body, s1, and
the store s'' resulting from that is used for the next time around the loop, w.

Your code will need to be similarly explicit in the way it names and uses the store at each
stage of evaluation. Let’s walk through.

evalS Skip s = show s -- I am assuming that since Skip returns an empty String, I just need to return an empty String.

You assume incorrectly. The evalS function does not return a String, empty or otherwise:
it returns a Store. Now, which Store? Your initial store is s: how will the store after “skip”
relate to s?

evalS (Sequence s1 s2) s = evalS s1 >> evalS s2 -- sequence1 then sequence2. I am not quite sure what to do with the s.
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Again, that’s a monadic approach which does not fit with this question. You need to thread
the store, intially s, through the process of evaluating statements s1 and s2 in sequence. The
“while” case has a good example of how to do something like that.

evalS (Expr e) s = ... Not sure what to do, here.

Again, the “while” example shows you one way to extract a value and an updated store by
evaluating an expression. Food for thought, isn’t it?

evalS (If e s1 s2) s = ...

Now “if” starts out by evaluating a condition, rather a lot like “while”, no?
So, my advice amounts to this:

• drop the monadic style code for now, but come back to it later when it’s appropriate;
• read the example implementation of “while” and understand how it treats expressions and

sequences of statements, passing the store explicitly;
• deploy the similar techniques to implement the other constructs.

The person who set the question has been kind enough to give you code which gives an
example of everything you will need. Please reciprocate that kindness by comprehending and
then taking the hint!

1.41 Existential type wrappers necessity

Your first attempt is not using existential types. Rather your

lists :: [(Int, forall a. Show a => Int -> a)]

demands that the second components can deliver an element of any showable type that I
choose, not just some showable type that you choose. You’re looking for

lists :: [(Int, exists a. Show a * (Int -> a))] -- not real Haskell

but that’s not what you’ve said. The datatype packaging method allows you to recover
exists from forall by currying. You have

HRF :: forall a. Show a => (Int -> a) -> HRF

which means that to build an HRF value, you must supply a triple containing a type a, a Show
dictionary for a and a function in Int -> a. That is, the HRF constructor’s type effectively
curries this non-type

HRF :: (exists a. Show a * (Int -> a)) -> HRF -- not real Haskell

You might be able to avoid the datatype method by using rank-n types to Church-encode the
existential

type HRF = forall x. (forall a. Show a => (Int -> a) -> x) -> x

but that’s probably overkill.
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1.42 Non-linear Patterns in Type-Level Functions

Haskell’s type-level language is a purely first-order language, in which “application” is just
another constructor, rather than a thing which computes. There are binding constructs, like
forall, but the notion of equality for type-level stuff is fundamentally mere alpha-equivalence:
structural up to renaming of bound variables. Indeed, the whole of our constructor-class machin-
ery, monads, etc relies on being able to take an application m v apart unambiguously.

Type-level functions don’t really live in the type-level language as first-class citizens: only
their full applications do. We end up with an equational (for the ˜ notion of equality) theory of
type-level expressions in which constraints are expressed and solved, but the underlying notion
of value that these expressions denote is always first-order, and thus always equippable with
equality.

Hence it always makes sense to interpret repeated pattern variables by a structural equality
test, which is exactly how pattern matching was designed in its original 1969 incarnation, as an
extension to another language rooted in a fundamentally first-order notion of value, LISP.

1.43 Initial algebra for rose trees

I would discourage talk of “the Hask Category” because it subconsciously conditions you against
looking for other categorical structure in Haskell programming.

Indeed, rose trees can be seen as the fixpoint of an endofunctor on types-and-functions, a
category which we might be better to call Type, now that Type is the type of types. If we give
ourselves some of the usual functor kit. . .

newtype K a x = K a deriving Functor -- constant functor
newtype P f g x = P (f x, g x) deriving Functor -- products

. . . and fixpoints. . .

newtype FixF f = InF (f (FixF f))

. . . then we may take

type Rose a = FixF (P (K a) [])
pattern Node :: a -> [Rose a] -> Rose a
pattern Node a ars = InF (P (K a, ars))

The fact that [] is itself recursive does not prevent its use in the formation of recursive
datatypes via Fix. To spell out the recursion explicitly, we have nested fixpoints, here with
bound variable names chosen suggestively:

Rose a = µrose. a * (µlist. 1 + (rose * list))

Now, by the time we’ve arrived in the second fixpoint, we have a type formula

1 + (rose * list)

which is functorial (indeed, strictly positive) in both rose and list. One might say it is a
Bifunctor, but that’s unnecessary terminology: it’s a functor from (Type, Type) to Type.
You can make a Type -> Type functor by taking a fixpoint in the second component of the
pair, and that’s just what happened above.

The above definition of Rose loses an important property. It is not true that

Rose :: Type -> Type -- GHC might say this, but it’s lying

merely that Rose x :: Type if x :: Type. In particular,
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Functor Rose

is not a well typed constraint, which is a pity, as intuitively, rose trees ought to be functorial
in the elements they store.

You can fix this by building Rose as itself being the fixpoint of a Bifunctor. So, in effect, by
the time we get to lists, we have three type variables in scope, a, rose and list, and we have
functoriality in all of them. You need a different fixpoint type constructor, and a different kit for
building Bifunctor instances: for Rose, life gets easier because the a parameter is not used in
the inner fixpoint, but in general, to define bifunctors as fixpoints requires trifunctors, and off we
go!

This answer of mine shows how to fight the proliferation by showing how indexed types are
closed under a fixpoint-of-functor construction. That’s to say, work not in Type but in i ->
Type (for the full variety of index types i) and you’re ready for mutual recursion, GADTs, and
so on.

So, zooming out, rose trees are given by mutual fixpoints, which have a perfectly sensible
categorical account, provided you see which categories are actually at work.

https://stackoverflow.com/a/45257691/828361
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Chapter 2

Pattern Matching

2.1 Algorithm for typechecking ML-like pattern matching?

Here’s a sketch of an algorithm. It’s also the basis of Lennart Augustsson’s celebrated technique
for compiling pattern matching efficiently. (The paper is in that incredible FPCA proceedings
(LNCS 201) with oh so many hits.) The idea is to reconstruct an exhaustive, non-redundant
analysis by repeatedly splitting the most general pattern into constructor cases.

In general, the problem is that your program has a possibly empty bunch of ‘actual’ patterns
{p1, .., pn}, and you want to know if they cover a given ‘ideal’ pattern q. To kick off, take q to be
a variable x. The invariant, initially satisfied and subsequently maintained, is that each pi is σiq
for some substitution σi mapping variables to patterns.

How to proceed. If n=0, the bunch is empty, so you have a possible case q that isn’t covered
by a pattern. Complain that the ps are not exhaustive. If σ1 is an injective renaming of variables,
then p1 catches every case that matches q, so we’re warm: if n=1, we win; if n>1 then oops, there’s
no way p2 can ever be needed. Otherwise, we have that for some variable x, σ1x is a constructor
pattern. In that case split the problem into multiple subproblems, one for each constructor cj of
x’s type. That is, split the original q into multiple ideal patterns qj = [x:=cj y1 .. yarity(cj)]q, and
refine the patterns accordingly for each qj to maintain the invariant, dropping those that don’t
match.

Let’s take the example with {[], x :: y :: zs} (using :: for cons). We start with

xs covering {[], x :: y :: zs}

and we have [xs := []] making the first pattern an instance of the ideal. So we split xs, getting

[] covering {[]}
x :: ys covering {x :: y :: zs}

The first of these is justified by the empty injective renaming, so is ok. The second takes [x :=
x, ys := y :: zs], so we’re away again, splitting ys, getting.

x :: [] covering {}
x :: y :: zs covering {x :: y :: zs}

and we can see from the first subproblem that we’re banjaxed.
The overlap case is more subtle and allows for variations, depending on whether you want to

flag up any overlap, or just patterns which are completely redundant in a top-to-bottom priority
order. Your basic rock’n’roll is the same. E.g., start with

xs covering {[], ys}
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with [xs := []] justifying the first of those, so split. Note that we have to refine ys with con-
structor cases to maintain the invariant.

[] covering {[], []}
x :: xs covering {y :: ys}

Clearly, the first case is strictly an overlap. On the other hand, when we notice that refining
an actual program pattern is needed to maintain the invariant, we can filter out those strict re-
finements that become redundant and check that at least one survives (as happens in the :: case
here).

So, the algorithm builds a set of ideal exhaustive overlapping patterns q in a way that’s moti-
vated by the actual program patterns p. You split the ideal patterns into constructor cases when-
ever the actual patterns demand more detail of a particular variable. If you’re lucky, each actual
pattern is covered by disjoint nonempty sets of ideal patterns and each ideal pattern is covered
by just one actual pattern. The tree of case splits which yield the ideal patterns gives you the
efficient jump-table driven compilation of the actual patterns.

The algorithm I’ve presented is clearly terminating, but if there are datatypes with no con-
structors, it can fail to accept that the empty set of patterns is exhaustive. This is a serious issue
in dependently typed languages, where exhaustiveness of conventional patterns is undecidable:
the sensible approach is to allow “refutations” as well as equations. In Agda, you can write (),
pronounced “my Aunt Fanny”, in any place where no constructor refinement is possible, and
that absolves you from the requirement to complete the equation with a return value. Every
exhaustive set of patterns can be made recognizably exhaustive by adding in enough refutations.

Anyhow, that’s the basic picture.

2.2 Haskell Pattern Matching

The datatype declaration for Expr gives rise, systematically, to a set of patterns which cover all
possible things that a value of type Expr can be. Let’s do the translation

data Expr -- any e :: Expr must be one of
= T -- T
| Var Variable -- (Var x) -- where x :: Variable
| And Expr Expr -- (And e1 e2) -- where e1 :: Expr, e2 :: Expr
| Not Expr -- (Not e1) -- where e1 :: Expr

You can see that the T, Var, And and Not that head up each data clause are constructors,
and live in the value language; the rest of the things in each clause live in the type language,
saying what type each component of an Expr must have. Each of the corresponding patterns
consists of the constructor applied to pattern variables standing for components which have the
given types. Basically, the patterns that show up on the left-hand side of a function are made
by repeatedly refining pattern variables to the patterns that their values can possibly take, as
indicated by their type.

Writing a function by pattern matching does not consist of saying what to do: it consists of
saying what the output is for the possible cases of what the input is. You need to analyse the
input into cases where you can easily say what the output must be. So, start with one general
case. . .

v :: Expr -> [Variable]
v e = undefined

. . . and refine it. Ask “Can you tell what it is yet?”. We can’t tell what v e is without knowing
more about e. So we’d better split e. We know that e :: Expr, so we know what patterns its
value can match. Make four copies of your program line, and in each, replace e by one of the
four possible pattern listed above.
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v :: Expr -> [Variable]
v T = undefined
v (Var x) = undefined
v (And e1 e2) = undefined
v (Not e1) = undefined

Now, in each case, can you tell what the output is? The handy thing is that you can make use
of recursive calls on components. Assume you already know what vars e1 and vars e2 are
when you’re trying to say what v (And e1 e2) must be. If you get the steps right, the program
will be correct.

I find it’s often helpful to think in terms of concrete examples. Take your test example.

v (Not (And (Var "y") T))

That’s supposed to be ["y"], right? Which pattern does it match?

Not e1 -- with e1 = And (Var "y") T

What’s

v e1

? Looking at it, it had better be

["y"]

In this example, what’s v (Not e1) in terms of v e1? The very same. That might suggest
a suitable expression to replace undefined in

v (Not e1) = undefined -- can you tell what this is now?

(Of course, a suggestive example is just a good start, not a guarantee of correctness.)
The takeaway messages: (1) build patterns by splitting pattern variables, figuring out the

possible patterns by looking at the declaration of the type; (2) assume that recursive calls on com-
ponents give you the right answer, then try to construct the right answer for the whole problem.

Shameless plug: shplit is a simple tool I built for my students, capturing message (1) mechanically.

2.3 Complex pattern matching

When I was a wee boy back in the 1980s, I implemented a functional language with complex
patterns in that style. It amounted to allowing ++ in patterns. The resulting patterns were am-
biguous, so matching involved a backtracking search process: the programmer could effectively
specify whether to minimize or maximize the length of the prefix matching the pattern left of ++.
The language had a form of “pattern guards”, so that a candidate match could be tested to see if
a subsequent computation succeeded and rejected in the case of failure. The resulting programs
were often in-your-face obvious as to their meaning. It was a lot of fun.

These days, when faced with such problems, I reach for span, and if that won’t cut it, I use
parser combinators.

span :: (a -> Bool) -> [a] -> ([a], [a])

span, applied to a predicate p and a list xs, returns a tuple where first element is
longest prefix (possibly empty) of xs of elements that satisfy p and second element is
the remainder of the list

So, in particular span (/= ',') will split a String into whatever is before the first comma
(or the whole thing if there is no comma), and the rest (starting with the comma if there is one).

And if that won’t cut it, I use parser combinators.
But I always remember how it used to be easy.

http://personal.cis.strath.ac.uk/~conor/pub/shplit
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2.4 How to return an element before I entered?

It is well observed in the comments that your otherwise (which is just a synonym for True)
needs an = sign like any other guard, but I’d make a few other adjustments.

Partial functions head and tail are probably better avoided, especially as there is a good
way to solve this problem with pattern matching.

elementBefore :: Eq a => a -> [a] -> Maybe a
elementBefore elt (x : xs@(y : _)) | y == elt = Just x

| otherwise = elementBefore elt xs
elementBefore _ _ = Nothing

The key is the use of @ to make an “as-pattern”, simultaneously naming the tail of the list xs
(for use if we’re unlucky) and matching it as (y : ) (so we can see if we’ve won).

When I was a child, my father and I would have written something like this

elementBefore elt (_ ++ x : elt : _) = Just x
elementBefore _ _ = Nothing

but that has always been too simple to be valid Haskell.

2.5 Buzzard Bazooka Zoom

The specification is not entirely clear, but it sounds like you want to collect all the characters
which occur three places after a 'Z' in the input, so that from

"BUZZARD BAZOOKA ZOOM"

we get

"RDKM"

Without a clearer presentation of the problem, it is difficult to give precise advice. But I hope
I can help you get past some of the small irritations, so that you can engage with the actual logic
of the problem.

Let’s start with the type. You have

someFun :: String => String -> String -> String

but left of => is the place for properties of type expressions, usually involving variables that
could stand for lots of types, such as Eq a (meaning that whatever type a is, we can test equality).
String is a type, not a property, so it cannot stand left of =>. Drop it. That gives

someFun :: String -- input
-> String -- accumulating the output (?)
-> String -- output

It is not clear whether you really need an accumulator. Suppose you know the output for

"ZARD BAZOOKA BOOM" -- "DKM", right?

Can you compute the output for

"ZZARD BAZOOKA BOOM" -- "RDKM"
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? Just an extra 'R' on the front, right? You’re using tail recursion to do the next thing, when
it is usually simpler to think about what things should be. If you know what the output is for the
tail of the list, then say what the output is for the whole of the list. Why not just map input to
output directly, so

someFun :: String -> String

Now, pattern matching, start with the simplest possible pattern

someFun s = undefined

Can you see enough about the input to determine the output? Clearly not. It matters whether
the input is empty or has a first character. Split into two cases.

someFun "" = undefined
someFun (c : s) = undefined -- c is the first Char, s is the rest of the String

It also matters whether the first character is 'Z' or not. Be careful to use single quotes for
Char and double quotes for String: they are different types.

someFun "" = undefined
someFun (’Z’ : s) = undefined -- the first Char is Z
someFun (c : s) = undefined

In the case wit 'Z', you also want to make sure that s has at least three characters, and we
care about the third, so

someFun "" = undefined -- input empty
someFun (’Z’ : s@(_ : _ : d : _)) = undefined -- first is ’Z’ and d is 3 later
someFun (c : s) = undefined -- input nonempty

The @ is an “as pattern”, allowing me to name the whole tail s and also check that it matches
( : : d : ), grabbing the third character after the 'Z'.

So far, I’ve given no thought to the output, just what I need to see about the input. Let’s figure
out what the output must be. In the first case, empty input gives empty output

someFun "" = ""
someFun (’Z’ : s@(_ : _ : d : _)) = undefined -- first is ’Z’ and d is 3 later
someFun (c : s) = undefined -- input nonempty

and in the other two cases, we can assume that someFun s already tells us the output for the
tail of the list, so we just need to figure out how to finish the output for the whole list. In the last
line, the output for the tail is just what we want.

someFun "" = ""
someFun (’Z’ : s@(_ : _ : d : _)) = undefined -- first is ’Z’ and d is 3 later
someFun (c : s) = someFun s

But in the case where we’ve found that d is three places after the initial 'Z', we need to make
sure d is at the start of the output.

someFun "" = ""
someFun (’Z’ : s@(_ : _ : d : _)) = d : someFun s
someFun (c : s) = someFun s

Just checking:

*Main> someFun "BUZZARD BAZOOKA ZOOM"
"RDKM"

The key idea is to figure out how to express the output for the whole input in terms of the
output for its pieces: what it is, not what to do. Here, you can assume that the output for the tail, s
is correctly computed, so you just need to figure out whether you have anything extra to return.
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2.6 Why ++ is not allowed in pattern matching?

This is a deserving question, and it has so far received sensible answers (mutter only constructors
allowed, mutter injectivity, mutter ambiguity), but there’s still time to change all that.

We can say what the rules are, but most of the explanations for why the rules are what they are
start by over-generalising the question, addressing why we can’t pattern match against any old
function (mutter Prolog). This is to ignore the fact that ++ isn’t any old function: it’s a (spatially)
linear plugging-stuff-together function, induced by the zipper-structure of lists. Pattern matching
is about taking stuff apart, and indeed, notating the process in terms of the plugger-togetherers
and pattern variables standing for the components. Its motivation is clarity. So I’d like

lookup :: Eq k => k -> [(k, v)] -> Maybe v
lookup k (_ ++ [(k, v)] ++ _) = Just v
lookup _ _ = Nothing

and not only because it would remind me of the fun I had thirty years ago when I imple-
mented a functional language whose pattern matching offered exactly that.

The objection that it’s ambiguous is a legitimate one, but not a dealbreaker. Plugger-togetherers
like ++ offer only finitely many decompositions of finite input (and if you’re working on infinite
data, that’s your own lookout), so what’s involved is at worst search, rather than magic (inventing
arbitrary inputs that arbitrary functions might have thrown away). Search calls for some means
of prioritisation, but so do our ordered matching rules. Search can also result in failure, but so,
again, can matching.

We have a sensible way to manage computations offering alternatives (failure and choice) via
the Alternative abstraction, but we are not used to thinking of pattern matching as a form of
such computation, which is why we exploit Alternative structure only in the expression lan-
guage. The noble, if quixotic, exception is match-failure in do-notation, which calls the relevant
fail rather than necessarily crashing out. Pattern matching is an attempt to compute an envi-
ronment suitable for the evaluation of a ‘right-hand side’ expression; failure to compute such an
environment is already handled, so why not choice?

(Edit: I should, of course, add that you only really need search if you have more than one
stretchy thing in a pattern, so the proposed xs++[x] pattern shouldn’t trigger any choices. Of
course, it takes time to find the end of a list.)

Imagine there was some sort of funny bracket for writing Alternative computations, e.g.,
with (|) meaning empty, (|a1|a2|) meaning (|a1|) <|> (|a2|), and a regular old (|f s1 ..
sn|) meaning pure f <*> s1 .. <*> sn. One might very well also imagine (|case a
of {p1 -> a1; .. pn->an}|) performing a sensible translation of search-patterns (e.g. in-
volving ++) in terms of Alternative combinators. We could write

lookup :: (Eq k, Alternative a) => k -> [(k, v)] -> a k
lookup k xs = (|case xs of _ ++ [(k, v)] ++ _ -> pure v|)

We may obtain a reasonable language of search-patterns for any datatype generated by fix-
points of differentiable functors: symbolic differentiation is exactly what turns tuples of struc-
tures into choices of possible substructures. Good old ++ is just the sublists-of-lists example
(which is confusing, because a list-with-a-hole-for-a-sublist looks a lot like a list, but the same is
not true for other datatypes).

Hilariously, with a spot of LinearTypes, we might even keep hold of holey data by their
holes as well as their root, then plug away destructively in constant time. It’s scandalous be-
haviour only if you don’t notice you’re doing it.
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Recursion

3.1 What are paramorphisms?

Yes, that’s para. Compare with catamorphism, or foldr:

para :: (a -> [a] -> b -> b) -> b -> [a] -> b
foldr :: (a -> b -> b) -> b -> [a] -> b

para c n (x : xs) = c x xs (para c n xs)
foldr c n (x : xs) = c x (foldr c n xs)
para c n [] = n
foldr c n [] = n

Some people call paramorphisms “primitive recursion” by contrast with catamorphisms (foldr)
being “iteration”.

Where foldr’s two parameters are given a recursively computed value for each recursive
subobject of the input data (here, that’s the tail of the list), para’s parameters get both the original
subobject and the value computed recursively from it.

An example function that’s nicely expressed with para is the collection of the proper suffices
of a list.

suff :: [x] -> [[x]]
suff = para (\ x xs suffxs -> xs : suffxs) []

so that

suff "suffix" = ["uffix", "ffix", "fix", "ix", "x", ""]

Possibly simpler still is

safeTail :: [x] -> Maybe [x]
safeTail = para (\ _ xs _ -> Just xs) Nothing

in which the “cons” branch ignores its recursively computed argument and just gives back
the tail. Evaluated lazily, the recursive computation never happens and the tail is extracted in
constant time.

You can define foldr using para quite easily; it’s a little trickier to define para from foldr,
but it’s certainly possible, and everyone should know how it’s done!

foldr c n = para (\ x xs t -> c x t) n
para c n = snd . foldr (\ x (xs, t) -> (x : xs, c x xs t)) ([], n)

55
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The trick to defining para with foldr is to reconstruct a copy of the original data, so that we
gain access to a copy of the tail at each step, even though we had no access to the original. At the
end, snd discards the copy of the input and gives just the output value. It’s not very efficient, but
if you’re interested in sheer expressivity, para gives you no more than foldr. If you use this
foldr-encoded version of para, then safeTail will take linear time after all, copying the tail
element by element.

So, that’s it: para is a more convenient version of foldr which gives you immediate access
to the tail of the list as well as the value computed from it.

In the general case, working with a datatype generated as the recursive fixpoint of a functor

data Fix f = In (f (Fix f))

you have

cata :: Functor f => (f t -> t) -> Fix f -> t
para :: Functor f => (f (Fix f, t) -> t) -> Fix f -> t

cata phi (In ff) = phi (fmap (cata phi) ff)
para psi (In ff) = psi (fmap keepCopy ff) where

keepCopy x = (x, para psi x)

and again, the two are mutually definable, with para defined from cata by the same “make
a copy” trick

para psi = snd . cata (\ fxt -> (In (fmap fst fxt), psi fxt))

Again, para is no more expressive than cata, but more convenient if you need easy access
to substructures of the input.

Edit: I remembered another nice example.
Consider binary search trees given by Fix TreeF where

data TreeF sub = Leaf | Node sub Integer sub

and try defining insertion for binary search trees, first as a cata, then as a para. You’ll find
the para version much easier, as at each node you will need to insert in one subtree but preserve
the other as it was.

3.2 Why can you reverse list with foldl, but not with foldr in
Haskell

Every foldl is a foldr.
Let’s remember the definitions.

foldr :: (a -> s -> s) -> s -> [a] -> s
foldr f s [] = s
foldr f s (a : as) = f a (foldr f s as)

That’s the standard issue one-step iterator for lists. I used to get my students to bang on the
tables and chant “What do you do with the empty list? What do you do with a : as”? And
that’s how you figure out what s and f are, respectively.

If you think about what’s happening, you see that foldr effectively computes a big compo-
sition of f a functions, then applies that composition to s.

foldr f s [1, 2, 3]
= f 1 . f 2 . f 3 . id $ s
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Now, let’s check out foldl

foldl :: (t -> a -> t) -> t -> [a] -> t
foldl g t [] = t
foldl g t (a : as) = foldl g (g t a) as

That’s also a one-step iteration over a list, but with an accumulator which changes as we go.
Let’s move it last, so that everything to the left of the list argument stays the same.

flip . foldl :: (t -> a -> t) -> [a] -> t -> t
flip (foldl g) [] t = t
flip (foldl g) (a : as) t = flip (foldl g) as (g t a)

Now we can see the one-step iteration if we move the = one place leftward.

flip . foldl :: (t -> a -> t) -> [a] -> t -> t
flip (foldl g) [] = \ t -> t
flip (foldl g) (a : as) = \ t -> flip (foldl g) as (g t a)

In each case, we compute what we would do if we knew the accumulator, abstracted with \ t
->. For [], we would return t. For a : as, we would process the tail with g t a as the
accumulator.

But now we can transform flip (foldl g) into a foldr. Abstract out the recursive call.

flip . foldl :: (t -> a -> t) -> [a] -> t -> t
flip (foldl g) [] = \ t -> t
flip (foldl g) (a : as) = \ t -> s (g t a)

where s = flip (foldl g) as

And now we’re good to turn it into a foldr where type s is instantiated with t -> t.

flip . foldl :: (t -> a -> t) -> [a] -> t -> t
flip (foldl g) = foldr (\ a s -> \ t -> s (g t a)) (\ t -> t)

So s says “what as would do with the accumulator” and we give back \ t -> s (g t a)
which is “what a : as does with the accumulator”. Flip back.

foldl :: (t -> a -> t) -> t -> [a] -> t
foldl g = flip (foldr (\ a s -> \ t -> s (g t a)) (\ t -> t))

Eta-expand.

foldl :: (t -> a -> t) -> t -> [a] -> t
foldl g t as = flip (foldr (\ a s -> \ t -> s (g t a)) (\ t -> t)) t as

Reduce the flip.

foldl :: (t -> a -> t) -> t -> [a] -> t
foldl g t as = foldr (\ a s -> \ t -> s (g t a)) (\ t -> t) as t

So we compute “what we’d do if we knew the accumulator”, and then we feed it the initial
accumulator.

It’s moderately instructive to golf that down a little. We can get rid of \ t ->.

foldl :: (t -> a -> t) -> t -> [a] -> t
foldl g t as = foldr (\ a s -> s . (‘g‘ a)) id as t

Now let me reverse that composition using >>> from Control.Arrow.
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foldl :: (t -> a -> t) -> t -> [a] -> t
foldl g t as = foldr (\ a s -> (‘g‘ a) >>> s) id as t

That is, foldl computes a big reverse composition. So, for example, given [1,2,3], we get

foldr (\ a s -> (‘g‘ a) >>> s) id [1,2,3] t
= ((‘g‘ 1) >>> (‘g‘ 2) >>> (‘g‘ 3) >>> id) t

where the “pipeline” feeds its argument in from the left, so we get

((‘g‘ 1) >>> (‘g‘ 2) >>> (‘g‘ 3) >>> id) t
= ((‘g‘ 2) >>> (‘g‘ 3) >>> id) (g t 1)
= ((‘g‘ 3) >>> id) (g (g t 1) 2)
= id (g (g (g t 1) 2) 3)
= g (g (g t 1) 2) 3

and if you take g = flip (:) and t = [] you get

flip (:) (flip (:) (flip (:) [] 1) 2) 3
= flip (:) (flip (:) (1 : []) 2) 3
= flip (:) (2 : 1 : []) 3
= 3 : 2 : 1 : []
= [3, 2, 1]

That is,

reverse as = foldr (\ a s -> (a :) >>> s) id as []

by instantiating the general transformation of foldl to foldr.
For mathochists only. Do cabal install newtype and import Data.Monoid, Data.Foldable

and Control.Newtype. Add the tragically missing instance:

instance Newtype (Dual o) o where
pack = Dual
unpack = getDual

Observe that, on the one hand, we can implement foldMap by foldr

foldMap :: Monoid x => (a -> x) -> [a] -> x
foldMap f = foldr (mappend . f) mempty

but also vice versa

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f = flip (ala’ Endo foldMap f)

so that foldr accumulates in the monoid of composing endofunctions, but now to get foldl,
we tell foldMap to work in the Dual monoid.

foldl :: (b -> a -> b) -> b -> [a] -> b
foldl g = flip (ala’ Endo (ala’ Dual foldMap) (flip g))

What is mappend for Dual (Endo b)? Modulo wrapping, it’s exactly the reverse composi-
tion, >>>.
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3.3 Can fold be used to create infinite lists?

The foldl and foldr functions are list-consumers. As svenningsson’s answer rightly points out,
unfoldr is a list-producer which is suitable for capturing the co-recursive structure of fibs.

However, given that foldl and foldr are polymorphic in their return types, i.e. what they’re
producing by consuming a list, it is reasonable to ask whether they might be used to consume
one list and produce another. Might any of these produced lists be infinite?

Looking at the definition of foldl

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f a [] = a
foldl f a (b : bs) = foldl f (f a b) bs

we see that for foldl to produce anything at all, the list it consumes must be finite. Thus if
foldl f a produces infinite output, it is because a is infinite or because f sometimes performs
infinite list generation.

It’s a different story with foldr

foldr :: (b -> a -> a) -> a -> [b] -> a
foldr f a [] = a
foldr f a (b : bs) = f b (foldr f a bs)

which admits the lazy possibility that f might generate some output for each b consumed
from the input. Operations like

map g = foldr (\ b gbs -> g b : gbs) [] -- golfers prefer ((:) . g)
stutter = foldr (\ x xxs -> x : x : xxs) []

producing a little bit of output for each input, deliver infinite output from infinite input.
A cheeky person can thus express any infinitary recursion as a non-recursive foldr on an

infinite list. E.g.,

foldr (\ _ fibs -> 1 : 1 : zipWith (+) fibs (tail fibs)) undefined [1..]

(Edit: or, for that matter

foldr (\_ fib a b -> a : fib b (a + b)) undefined [1..] 1 1

which is closer to the definition in the question.)
although this observation, whilst true, is hardly indicative of a healthy programming style.

3.4 How do I give a Functor instance to a datatype built for gen-
eral recursion schemes?

This is an old sore for me. The crucial point is that your ExprF is functorial in both its parameters.
So if we had

class Bifunctor b where
bimap :: (x1 -> y1) -> (x2 -> y2) -> b x1 x2 -> b y1 y2

then you could define (or imagine a machine defining for you)

instance Bifunctor ExprF where
bimap k1 k2 (Val a) = Val (k1 a)
bimap k1 k2 (Add x y) = Add (k2 x) (k2 y)

https://stackoverflow.com/a/12298382/828361
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and now you can have

newtype Fix2 b a = MkFix2 (b a (Fix2 b a))

accompanied by

map1cata2 :: Bifunctor b => (a -> a’) -> (b a’ t -> t) -> Fix2 b a -> t
map1cata2 e f (MkFix2 bar) = f (bimap e (map1cata2 e f) bar)

which in turn gives you that when you take a fixpoint in one of the parameters, what’s left is
still functorial in the other

instance Bifunctor b => Functor (Fix2 b) where
fmap k = map1cata2 k MkFix2

and you sort of get what you wanted. But your Bifunctor instance isn’t going to be built by
magic. And it’s a bit annoying that you need a different fixpoint operator and a whole new kind
of functor. The trouble is that you now have two sorts of substructure: “values” and “subexpres-
sions”.

And here’s the turn. There is a notion of functor which is closed under fixpoints. Turn on the
kitchen sink (especially DataKinds) and

type s :-> t = forall x. s x -> t x

class FunctorIx (f :: (i -> *) -> (o -> *)) where
mapIx :: (s :-> t) -> f s :-> f t

Note that “elements” come in a kind indexed over i and “structures” in a kind indexed over
some other o. We take i-preserving functions on elements to o preserving functions on struc-
tures. Crucially, i and o can be different.

The magic words are “1, 2, 4, 8, time to exponentiate!”. A type of kind * can easily be turned
into a trivially indexed GADT of kind () -> *. And two types can be rolled together to make
a GADT of kind Either () () -> *. That means we can roll both sorts of substructure to-
gether. In general, we have a kind of type level either.

data Case :: (a -> *) -> (b -> *) -> Either a b -> * where
CL :: f a -> Case f g (Left a)
CR :: g b -> Case f g (Right b)

equipped with its notion of “map”

mapCase :: (f :-> f’) -> (g :-> g’) -> Case f g :-> Case f’ g’
mapCase ff gg (CL fx) = CL (ff fx)
mapCase ff gg (CR gx) = CR (gg gx)

So we can refunctor our bifactors as Either-indexed FunctorIx instances.
And now we can take the fixpoint of any node structure fwhich has places for either elements

p or subnodes. It’s just the same deal we had above.

newtype FixIx (f :: (Either i o -> *) -> (o -> *))
(p :: i -> *)
(b :: o)

= MkFixIx (f (Case p (FixIx f p)) b)

mapCata :: forall f p q t. FunctorIx f =>
(p :-> q) -> (f (Case q t) :-> t) -> FixIx f p :-> t

mapCata e f (MkFixIx node) = f (mapIx (mapCase e (mapCata e f)) node)
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But now, we get the fact that FunctorIx is closed under FixIx.

instance FunctorIx f => FunctorIx (FixIx f) where
mapIx f = mapCata f MkFixIx

Functors on indexed sets (with the extra freedom to vary the index) can be very precise and
very powerful. They enjoy many more convenient closure properties than Functors do. I don’t
suppose they’ll catch on.

3.5 Are there (term-transforming) morphisms in Haskell?

For reference, here are the terms. . .

data Term a =
Var a

| Lambda a (Term a)
| Apply (Term a) (Term a)

(I note that the representation of variables is abstracted, which is often a good plan.)
. . . and here is the proposed function.

fmap’ :: (Term a → Term a) → Term a → Term a
fmap’ f (Var v) = f (Var v)
fmap’ f (Lambda v t) = Lambda v (fmap’ f t)
fmap’ f (Apply t1 t2) = Apply (fmap’ f t1) (fmap’ f t2)

What bothers me about this definition is that f is only ever applied to terms of form (Var
v), so you might as well implement substitution.

subst :: (a → Term a) → Term a → Term a
subst f (Var v) = f v
subst f (Lambda v t) = Lambda v (subst f t)
subst f (Apply t1 t2) = Apply (subst f t1) (subst f t2)

If you took slightly more care to distinguish bound from free variables, you’d be able to make
Term a Monad with substitution implementing (>>=). In general, terms can have a Functor
structure for renaming and a Monad structure for substitution. There’s a lovely paper by Bird
and Paterson about that, but I digress.

Meanwhile, if you do want to act other than at variables, one general approach is to use gen-
eral purpose traversal toolkits like uniplate, as augustss suggests. Another possibility, perhaps
slightly more disciplined, is to work with the ‘fold’ for your type.

tmFold :: (x -> y) -> (x -> y -> y) -> (y -> y -> y) -> Term x -> y
tmFold v l a (Var x) = v x
tmFold v l a (Lambda x t) = l x (tmFold v l a t)
tmFold v l a (Apply t t’) = a (tmFold v l a t) (tmFold v l a t’)

Here, v, l and a define an alternative algebra for your Term-forming operations, only acting
on y, rather than Term x, explaining how to handle variables, lambdas and applications. You
might choose y to be m (Term x) for some suitable monad m (e.g., threading an environment
for the variables), rather than just Term x itself. Each subterm is processed to give a y, then
the appropriate function is chosen to produce the y for the whole term. The fold captures the
standard recursion pattern.

Ordinary first-order datatypes (and some well-behaved higher-order datatypes) can all be
equipped with fold-operators. At a cost to readability, you can even write the fold operator once
and for all.

http://www.cs.ox.ac.uk/people/richard.bird/online/BirdPaterson99DeBruijn.pdf
http://www.cs.ox.ac.uk/people/richard.bird/online/BirdPaterson99DeBruijn.pdf
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data Fix f = In (f (Fix f))

fixFold :: Functor f => (f y -> y) -> Fix f -> y
fixFold g (In xf) = g (fmap (fixFold g) xf)

data TermF a t
= VarF a
| LambdaF a t
| ApplyF t t

type Term a = Fix (TermF a)

Unlike your recursive Term a, this TermF a t explains how to make one layer of a term,
with t elements in the subterm places. We get back the recursive Term structure by using the
recursive Fix type. We lose a little cosmetically, in that each layer has an extra In wrapping it.
We can define

var x = In (VarF x)
lambda x t = In (LambdaF x t)
apply t t’ = In (Apply x t t’)

but we can’t use those definitions in pattern matching. The payoff, though, is that we can use
the generic fixFold at no extra cost. To compute a y from a term, we need only give a function
of type

TermF a y -> y

which (just like v, l, and a above) explains how to handle any term whose subterms have
already been processed to values of type y. By being explicit in types about what one layer
consists of, we can tap into the general pattern of working layer by layer.

3.6 Is this Fibonacci sequence function recursive?

My, what a rat’s nest of subtle terminological distinctions. What is “this”?

fib=0:1:zipWith (+) fib (tail fib)

It is not a recursive function. It is not recursive data. It is a recursive definition.
What is being defined?

fib

What type of thing is fib, according to this definition?

[Integer]

A list of integers (or perhaps a list of any old numeric stuff).
Is fib a function? No, it is a list. Is fib recursively defined? Yes. Would fib be recursively

defined if we replaced zipWith by a nonrecursive function of the same type (e.g. \ f xs ys
-> xs)? Yes, although it would be a different recursively defined list.

Is fib a cyclic list? No. Does “recursive data structure” mean “cyclic data structure”? Not ac-
cording to Hoare’s paper, “Recursive Data Structures”: http://portal.acm.org/book gateway.cfm?id=63445&type=pdf&bookpath=%2F70000%2F63445%2Fcb-
p217-hoare.pdf&coll=&dl=&CFID=15151515&CFTOKEN=6184618

In a typed setting, “recursive data structure” means no more or less than “inhabitant of a
recursively defined type”. Correspondingly "fred" is a recursive data structure, even though it
is not recursively defined, and indeed it can be acted upon by recursive functions such as ++.
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The phrase “recursive function” means “recursively defined function”. The phrase “recursive
value” means “recursively defined value”, such as exist in nonstrict languages: strict languages
have the “value recursion” problem.

And if you think that’s pedantic, try defining fib that way in a total programming language,
and you’ll discover that the notion of “recursive definition” splits into “definition by structural
recursion” (consuming data in a way which stops) and “definition by guarded corecursion” (pro-
ducing data in a way which goes), and that fib is of the latter variety. In that setting, the pro-
ductivity of fib depends crucially on the laziness of zipWith. In the Haskell setting, of course,
you don’t need to worry about any of that stuff to figure out what sort of definition something is,
just to figure out whether it has half a chance of actually working.

3.7 Can someone explain this lazy Fibonacci solution?

Your “Because” is not telling the whole story. You’re truncating the lists at “the story so far” and
evaluating eagerly, then wondering where the rest comes from. That’s not quite to grasp what’s
really going on, so good question.

What gets computed when you make the definition

fibs = 0 : 1 : zipWith (+) fibs (drop 1 fibs)

? Very little. Computation starts once you begin to use the list. Lazy computation happens
only on demand.

What’s a demand? You get to ask “are you [] or x : xs?” and if it’s the latter, you get a
handle on the pieces.

When we ask that question of fibs, we get that

fibs = x0 : xs0
x0 = 0
xs0 = 1 : zipWith (+) fibs (drop 1 fibs)

but that means (substituting for fibs and then x0)

xs0 = 1 : zipWith (+) (0 : xs0) (drop 1 (0 : xs0))

and when we ask again, we get that

xs0 = x1 : xs1
x1 = 1
xs1 = zipWith (+) (0 : xs0) (drop 1 (0 : xs0))

so

xs1 = zipWith (+) (0 : 1 : xs1) (drop 1 (0 : 1 : xs1))

but now it gets interesting, because we have to do some work. Just enough work to answer
the question, mind? When we look at xs1, we force zipWith which forces drop.

xs1 = zipWith (+) (0 : 1 : xs1) (drop 1 (0 : 1 : xs1))
= zipWith (+) (0 : 1 : xs1) (1 : xs1)
= (0 + 1) : zipWith (+) (1 : xs1) xs1

so

xs1 = x2 : xs2
x2 = 0 + 1 = 1
xs2 = zipWith (+) (1 : xs1) xs1

= zipWith (+) (1 : 1 : xs2) (1 : xs2)
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See? We’ve maintained that we still know the first two elements of one zipped list, and the
first element of the other. That means we’ll be able to deliver the next output and refresh our
“buffer”. When we look at xs2, we get

xs2 = zipWith (+) (1 : 1 : xs2) (1 : xs2)
= (1 + 1) : zipWith (1 : xs2) xs2

xs2 = x3 : xs3
x3 = 1 + 1 = 2
xs3 = zipWith (1 : xs2) xs2

= zipWith (1 : 2 : xs3) (2 : xs3)

and we’re good to go again!
Each time we demand the next element, we also move one step further away from zipWith

running out of elements, which is just as well, just in the nick of time.
None of the discipline that makes values show up in the nick of time is expressed in the types.

At the moment, it’s for programmers to make sure that well typed programs don’t go wrong by
running out of data when a demand is made. (I have plans to do something about that, but I’ll
try not to digress here.)

The key is that lazy, “on demand” computation means that we don’t have to truncate lists to
just the elements we can see when the process starts. We just need to know that we can always
take the next step.

3.8 Monoidal folds on fixed points

Here’s the essence of a solution. I’ve switched on

{-# LANGUAGE DeriveFunctor, DeriveFoldable, DeriveTraversable, PatternSynonyms #-}

Let’s just recap fixpoints and catamorphisms.

newtype Fix f = In {out :: f (Fix f)}

cata :: Functor f => (f t -> t) -> Fix f -> t
cata alg = alg . fmap (cata alg) . out

The algebra, alg :: f t -> t, takes a node where the children have already been re-
placed by a t value, then returns the t for the parent. The cata operator works by unpacking
the parent node, processing all its children recursively, then applying alg to finish the job.

So, if we want to count leaves in such a structure, we can start like this:

leaves :: (Foldable f, Functor f) => Fix f -> Integer
leaves = cata sumOrOne where

-- sumOrOne :: f Integer -> Integer

The algebra, sumOrOne can see the number of leaves in each child of the parent node. We
can use cata because f is a Functor. And because f is Foldable, we can compute the total
number of leaves in the children.

sumOrOne fl = case sum fl of
...

There are then two possibilities: if the parent has no children, its leaf sum will be 0, which we
can detect, but that means the parent is itself a leaf, so 1 should be returned. Otherwise, the leaf
sum will be nonzero, in which case the parent is not a leaf, so its leaf sum is indeed the total leaf
sum of its children. That gives us
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leaves :: (Foldable f, Functor f) => Fix f -> Integer
leaves = cata sumOrOne where

sumOrOne fl{- number of leaves in each child-} = case sum fl of
0 -> 1 -- no leaves in my children means I am a leaf
l -> l -- otherwise, pass on the total

A quick example, based on Hutton’s Razor (the expression language with integers and addi-
tion, which is often the simplest thing that illustrates the point). The expressions are generated
from Hutton’s functor.

data HF h = Val Int | h :+: h deriving (Functor, Foldable, Traversable)

I introduce some pattern synonyms to recover the look and feel of a bespoke type.

pattern V x = In (Val x)
pattern s :+ t = In (s :+: t)

I cook up a quick example expression, with some leaves that are three levels deep.

example :: Fix HF
example = (V 1 :+ V 2) :+ ((V 3 :+ V 4) :+ V 5)

Sure enough

Ok, modules loaded: Leaves.

*Leaves> leaves example
5

An alternative approach is to be functorial and foldable in substructures of interest, in this
case, stuff at leaves. (We get exactly the free monads.)

data Tree f x = Leaf x | Node (f (Tree f x)) deriving (Functor, Foldable)

Once you’ve made the leaf/node separation part of your basic construction, you can visit the
leaves directly with foldMap. Throwing in a bit of Control.Newtype, we get

ala’ Sum foldMap (const 1) :: Foldable f => f x -> Integer

which is below the Fairbairn Threshold (i.e., short enough not to need a name and all the
clearer for not having one).

The trouble, of course, is that data structures are often functorial in “substructures of in-
terest” in multiple interesting but conflicting ways. Haskell isn’t always the best at letting us
access “found functoriality”: we somehow have to predict the functoriality we need when we
parametrise a data type at declaration time. But there’s still time to change all that. . .

3.9 List Created Evaluating List Elements

Here’s my thought process for this problem. . . We want to chop a list into ‘chains’ (so a list of
lists), given a test to see if two elements link up.

chains :: (x -> x -> Bool) -> [x] -> [[x]]

I don’t remember any such thing in the library, so I decide to roll my own. I want to identify
a suitable recursion strategy for processing the list.

Can I just think about elements? No: I quickly rule out map and foldMap, as elements don’t
seem to be treated independently of each other in this problem.

Next, I ask ‘Does the output type have a list algebra?’. That may not sound like an obvious
thing to think, phrased that way, but it unpacks to the following sensible question. Are there ‘nil’
and ‘cons’ operations that build up outputs (lists of chains), instead of inputs (lists)? If so, I can
use foldr to transform input nil-and-cons into output nil-and-cons, like this.
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chains :: (x -> x -> Bool) -> [x] -> [[x]]
chains link = foldr chCons chNil where

-- chNil :: [[x]]
-- chCons :: x -> [[x]] -> [[x]]

It’s clear what chNil has to be, as I’m grouping the original elements. Empty in? Empty out!

chains :: (x -> x -> Bool) -> [x] -> [[x]]
chains link = foldr chCons [] where

-- chCons :: x -> [[x]] -> [[x]]

Can I write chCons? Suppose I get a list of chains: how do I add a new element? Well, if
there’s a front chain I can link to then I should grow that chain, otherwise I should start a new
chain. So I have a special case for a nonempty chain at the start of a nonempty list of chains, and
a default to cons a singleton.

chains :: (x -> x -> Bool) -> [x] -> [[x]]
chains link = foldr chCons [] where

chCons y (xs@(x : _) : xss) | link y x = (y : xs) : xss
chCons y xss = [y] : xss

And we’re home!

> chains (\ x y -> x + 1 == y) [1,2,3,4,5,6,8,9,10]
[[1,2,3,4,5,6],[8,9,10]]

A bunch of operators has an algebra for a given type if you can implement those operators for
values of that type. The constructors of a datatype are just one algebra, one implementation of a
bunch of operators, building values in that very datatype. A good way to compute with inputs
from a datatype is to implement its algebra for your desired type of outputs. The point of foldr
is to capture this ‘find the algebra’ pattern, and it’s right on the money for this problem.

3.10 Functions of GADTs

The error you report is not the only error.
Let’s put on the special spectacles which show the things usually kept invisible by “type

inference”.
Firstly, the data constructor:

Simple :: forall a. (Typeable a, Show a) =>
Message -> (String -> a) -> Question

Effectively, a value of type Question looks like

Simple {a}{typeableDict4a}{showDict4a} message parser

where I’ve written the invisible things in braces. The constructor packs up a type and the two
typeclass dictionaries that give the implementations for the members of Typeable and Show.

Now let’s have the main program. I’ve renamed the type variable to make a point.

runQuestion :: forall b. (Typeable b, Show b) => Question -> IO b

The type to be given back is chosen by the caller of runQuestion, separately from whatever
type is packed inside the argument of type Question. Now let’s fill in the invisible components
in the program itself.
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runQuestion {b}{typeableDict4b}{showDict4b}
(Simple {a}{typeableDict4a}{showDict4a} message parser) = do

-- so parser :: String -> a
putStrLn message -- ok, as message :: String
ans <- getLine -- ensures ans :: String

return $ parser ans -- has type IO a, not IO b

The parser computes a value of the type a packed up in the Question, which is totally
separate from the type b passed directly to runQuestion. The program does not typecheck
because there’s a conflict between two types which can be made different by the program’s caller.

Meanwhile, let’s look at print

print :: forall c. Show c => c -> IO ()

When you write

main = getLine >>= (runQuestion . getQuestion) >>= print

you get

main = getLine >>=
(runQuestion {b}{typeableDict4b}{showDict4b} . getQuestion) >>=
print {b}{showDict4b}

and as the return type of runQuestion {b} is IO b, it must be the case that print’s c type
is the same as runQuestion’s b type, but other than that, there is nothing to determine which
type b is, or why it is an instance either of Typeable or Show. With the type annotation, the need
for Typeable shows up first (in the runQuestion call); without, the need for Show in print
causes the complaint.

The real problem, is that somehow, you seem to want runQuestion to deliver a thing in
whatever type is hidden inside the question, as if you could somehow write a (dependently
typed) program like

typeFrom :: Question -> *
typeFrom (Simple {a}{typeableDict4a}{showDict4a} message parser) = a

runQuestion :: (q :: Question) -> IO (typeFrom q)

That’s a perfectly sensible thing to want, but it isn’t Haskell: there’s no way to name “the type
packed up inside that argument”. Everything which involves that type has to live in the scope
of the case analysis or pattern match which exposes it. It’s your attempt to do the print outside
that scope that won’t be allowed.
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Chapter 4

Applicative Functors

4.1 Where to find programming exercises for applicative func-
tors?

It seems amusing to post some questions as an answer. This is a fun one, on the interplay between
Applicative and Traversable, based on sudoku.

(1) Consider

data Triple a = Tr a a a

Construct

instance Applicative Triple
instance Traversable Triple

so that the Applicative instance does “vectorization” and the Traversable instance works
left-to-right. Don’t forget to construct a suitable Functor instance: check that you can extract
this from either of the Applicative or the Traversable instance. You may find

newtype I x = I {unI :: x}

useful for the latter.

(2) Consider

newtype (:.) f g x = Comp {comp :: f (g x)}

Show that

instance (Applicative f, Applicative g) => Applicative (f :. g)
instance (Traversable f, Traversable g) => Traversable (f :. g)

Now define

type Zone = Triple :. Triple

Suppose we represent a Board as a vertical zone of horizontal zones

type Board = Zone :. Zone

Show how to rearrange it as a horizontal zone of vertical zones, and as a square of squares,
using the functionality of traverse.

69
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(3) Consider

newtype Parse x = Parser {parse :: String -> [(x, String)]} deriving Monoid

or some other suitable construction (noting that the library Monoid behaviour for |Maybe| is
inappropriate). Construct

instance Applicative Parse
instance Alternative Parse -- just follow the ‘Monoid‘

and implement

ch :: (Char -> Bool) -> Parse Char

which consumes and delivers a character if it is accepted by a given predicate.

(4) Implement a parser which consumes any amount of whitespace, followed by a single digit
(0 represents blanks)

square :: Parse Int

Use pure and traverse to construct

board :: Parse (Board Int)

(5) Consider the constant functors

newtype K a x = K {unK :: a}

and construct

instance Monoid a => Applicative (K a)

then use traverse to implement

crush :: (Traversable f, Monoid b) => (a -> b) -> f a -> b

Construct newtype wrappers for Bool expressing its conjunctive and disjunctive monoid
structures. Use crush to implement versions of any and allwhich work for any Traversable
functor.

(6) Implement

duplicates :: (Traversable f, Eq a) => f a -> [a]

computing the list of values which occur more than once. (Not completely trivial.) (There’s a
lovely way to do this using differential calculus, but that’s another story.)

(7) Implement

complete :: Board Int -> Bool ok :: Board Int -> Bool

which check if a board is (1) full only of digits in [1..9] and (2) devoid of duplicates in any row,
column or box.
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4.2 N-ary tree traversal

4.2.1 First Attempt: Hard Work

For the case of n-ary trees, there are three things going on: numbering elements, numbering trees,
and numbering lists of trees. It would help to treat them separately. Types first:

aNumber :: a -- thing to number
-> Int -- number to start from
-> ( (a, Int) -- numbered thing

, Int -- next available number afterwards
)

ntNumber :: NT a -- thing to number
-> Int -- number to start from
-> ( NT (a, Int) -- numbered thing

, Int -- next available number afterwards
)

ntsNumber :: [NT a] -- thing to number
-> Int -- number to start from
-> ( [NT (a, Int)] -- numbered thing

, Int -- next available number afterwards
)

Notice that all three types share the same pattern. When you see that there is a pattern that you
are following, apparently by coincidence, you know you have an opportunity to learn something.
But let’s press on for now and learn later.

Numbering an element is easy: copy the starting number into the output and return its suc-
cessor as the next available.

aNumber a i = ((a, i), i + 1)

For the other two, the pattern (there’s that word again) is

1. split the input into its top-level components
2. number each component in turn, threading the numbers through

It’s easy to do the first with pattern matching (inspecting the data visually) and the second
with where clauses (grabbing the two parts of the output).

For trees, a top level split gives us two components: an element and a list. In the where clause,
we call the appropriate numbering functions as directed by those types. In each case, the “thing”
output tells us what to put in place of the “thing” input. Meanwhile, we thread the numbers
through, so the starting number for the whole is the starting number for the first component, the
“next” number for the first component starts the second, and the “next” number from the second
is the “next” number for the whole.

ntNumber (N a ants) i0 = (N ai aints, i2) where
(ai, i1) = aNumber a i0
(aints, i2) = ntsNumber ants i1

For lists, we have two possibilities. An empty list has no components, so we return it directly
without using any more numbers. A “cons” has two components, we do exactly as we did before,
using the appropriate numbering functions as directed by the type.
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ntsNumber [] i = ([], i)
ntsNumber (ant : ants) i0 = (aint : aints, i2) where

(aint, i1) = ntNumber ant i0
(aints, i2) = ntsNumber ants i1

Let’s give it a go.

> let ntree = N "eric" [N "lea" [N "kristy" [],N "pedro" [] ,N "rafael" []],N "anna" [],N "bety" []]
> ntNumber ntree 0
(N ("eric",0) [N ("lea",1) [N ("kristy",2) [],N ("pedro",3) [],N ("rafael",4) []],N ("anna",5) [],N ("bety",6) []],7)

So we’re there. But are we happy? Well, I’m not. I have the annoying sensation that I wrote
pretty much the same type three times and pretty much the same program twice. And if I wanted
to do more element-numbering for differently organised data (e.g., your binary trees), I’d have
to write the same thing again again. Repetitive patterns in Haskell code are always missed op-
portunities: it’s important to develop a sense of self-criticism and ask whether there’s a neater
way.

4.2.2 Second Attempt: Numbering and Threading

Two of the repetitive patterns we saw, above, are 1. the similarity of the types, 2. the similarity of
the way the numbers get threaded.

If you match up the types to see what’s in common, you’ll notice they’re all

input -> Int -> (output, Int)

for different inputs and outputs. Let’s give the largest common component a name.

type Numbering output = Int -> (output, Int)

Now our three types are

aNumber :: a -> Numbering (a, Int)
ntNumber :: NT a -> Numbering (NT (a, Int))
ntsNumber :: [NT a] -> Numbering [NT (a, Int)]

You often see such types in Haskell:

input -> DoingStuffToGet output

Now, to deal with the threading, we can build some helpful tools to work with and combine
Numbering operations. To see which tools we need, look at how we combine the outputs after
we’ve numbered the components. The “thing” parts of the outputs are always built by applying
some functions which don’t get numbered (data constructors, usually) to some “thing” outputs
from numberings.

To deal with the functions, we can build a gadget that looks a lot like our [] case, where no
actual numbering was needed.

steady :: thing -> Numbering thing
steady x i = (x, i)

Don’t be put off by the way the type makes it look as if steady has only one argument:
remember that Numbering thing abbreviates a function type, so there really is another -> in
there. We get

steady [] :: Numbering [a]
steady [] i = ([], i)
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just like in the first line of ntsNumber.
But what about the other constructors, N and (:)? Ask ghci.

> :t steady N
steady N :: Numbering (a -> [NT a] -> NT a)
> :t steady (:)
steady (:) :: Numbering (a -> [a] -> [a])

We get numbering operations with functions as outputs, and we want to generate the argu-
ments to those function by more numbering operations, producing one big overall numbering
operation with the numbers threaded through. One step of that process is to feed a numbering-
generated function one numbering-generated input. I’ll define that as an infix operator.

($$) :: Numbering (a -> b) -> Numbering a -> Numbering b
infixl 2 $$

Compare with the type of the explicit application operator, $

> :t ($)
($) :: (a -> b) -> a -> b

This $$ operator is “application for numberings”. If we can get it right, our code becomes

ntNumber :: NT a -> Numbering (NT (a, Int))
ntNumber (N a ants) i = (steady N $$ aNumber a $$ ntsNumber ants) i

ntsNumber :: [NT a] -> Numbering [NT (a, Int)]
ntsNumber [] i = steady [] i
ntsNumber (ant : ants) i = (steady (:) $$ ntNumber ant $$ ntsNumber ants) i

with aNumber as it was (for the moment). This code just does the data reconstruction, plug-
ging together the constructors and the numbering processes for the components. We had better
give the definition of $$ and make sure it gets the threading right.

($$) :: Numbering (a -> b) -> Numbering a -> Numbering b
(fn $$ an) i0 = (f a, i2) where

(f, i1) = fn i0
(a, i2) = an i1

Here, our old threading pattern gets done once. Each of fn and an is a function, expecting a
starting number, and the whole of fn $$ sn is a function, which gets the starting number i0.
We thread the numbers through, collecting first the function, then the argument. We then do the
actual application and hand back the final “next” number.

Now, notice that in every line of code, the i input is fed in as the argument to a numbering
process. We can simplify this code by just talking about the processes, not the numbers.

ntNumber :: NT a -> Numbering (NT (a, Int))
ntNumber (N a ants) = steady N $$ aNumber a $$ ntsNumber ants

ntsNumber :: [NT a] -> Numbering [NT (a, Int)]
ntsNumber [] = steady []
ntsNumber (ant : ants) = steady (:) $$ ntNumber ant $$ ntsNumber ants

One way to read this code is to filter out all the Numbering, steady and $$ uses.
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ntNumber :: NT a -> ......... (NT (a, Int))
ntNumber (N a ants) = ...... N .. (aNumber a) .. (ntsNumber ants)

ntsNumber :: [NT a] -> ......... [NT (a, Int)]
ntsNumber [] = ...... []
ntsNumber (ant : ants) = ...... (:) .. (ntNumber ant) .. (ntsNumber ants)

and you see it just looks like a preorder traversal, reconstructing the original data structure
after processing the elements. We’re doing the right thing with the values, provided steady and
$$ are correctly combining the processes.

We could try to do the same for aNumber

aNumber :: a -> Numbering a
aNumber a = steady (,) $$ steady a $$ ????

but the ???? is where we actually need the number. We could build a numbering process
that fits in that hole: a numbering process that issues the next number.

next :: Numbering Int
next i = (i, i + 1)

That’s the essence of numbering, the “thing” output is the number to be used now (which is
the starting number), and the “next” number output is the one after. We may write

aNumber a = steady (,) $$ steady a $$ next

which simplifies to

aNumber a = steady ((,) a) $$ next

In our filtered view, that’s

aNumber a = ...... ((,) a) .. next

What we’ve done is to bottle the idea of a “numbering process” and we’ve built the right tools
to do ordinary functional programming with those processes. The threading pattern turns into the
definitions of steady and $$.

Numbering is not the only thing that works this way. Try this. . .

> :info Applicative
class Functor f => Applicative (f :: * -> *) where

pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

. . . and you also get some more stuff. I just want to draw attention to the types of pure and
<*>. They’re a lot like steady and $$, but they are not just for Numbering. Applicative is
the type class for every kind of process which works that way. I’m not saying “learn Applicative
now!”, just suggesting a direction of travel.

4.2.3 Third Attempt: Type-Directed Numbering

So far, our solution is directed towards one particular data structure, NT a, with [NT a] show-
ing up as an auxiliary notion because it’s used in NT a. We can make the whole thing a bit more
plug-and-play if we focus on one layer of the type at a time. We defined numbering a list of trees
in terms of numbering trees. In general, we know how to number a list of stuff if we know how
to number each item of stuff.

If we know how to number an a to get b, we should be able to number a list of a to get a list
of b. We can abstract over “how to process each item”.
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listNumber :: (a -> Numbering b) -> [a] -> Numbering [b]
listNumber na [] = steady []
listNumber na (a : as) = steady (:) $$ na a $$ listNumber na as

and now our old list-of-trees-numbering function becomes

ntsNumber :: [NT a] -> Numbering [NT (a, Int)]
ntsNumber = listNumber ntNumber

which is hardly worth naming. We can just write

ntNumber :: NT a -> Numbering (NT (a, Int))
ntNumber (N a ants) = steady N $$ aNumber a $$ listNumber ntNumber ants

We can play the same game for the trees themselves. If you know how to number stuff, you
know how to number a tree of stuff.

ntNumber’ :: (a -> Numbering b) -> NT a -> Numbering (NT b)
ntNumber’ na (N a ants) = steady N $$ na a $$ listNumber (ntNumber’ na) ants

Now we can do things like this

myTree :: NT [String]
myTree = N ["a", "b", "c"] [N ["d", "e"] [], N ["f"] []]

> ntNumber’ (listNumber aNumber) myTree 0
(N [("a",0),("b",1),("c",2)] [N [("d",3),("e",4)] [],N [("f",5)] []],6)

Here, the node data is now itself a list of things, but we’ve been able to number those things
individually. Our equipment is more adaptable because each component aligns with one layer of
the type.

Now, try this:

> :t traverse
traverse :: (Applicative f, Traversable t) => (a -> f b) -> t a -> f (t b)

It’s an awful lot like the thing we just did, where f is Numbering and t is sometimes lists
and sometimes trees.

The Traversable class captures what it means to be a type-former that lets you thread some
sort of process through the stored elements. Again, the pattern you’re using is very common and
has been anticipated. Learning to use traverse saves a lot of work.

4.2.4 Eventually. . .

. . . you’ll learn that a thing to do the job of Numbering already exists in the library: it’s called
State Int and it belongs to the Monad class, which means it must also be in the Applicative
class. To get hold of it,

import Control.Monad.State

and the operation which kicks off a stateful process with its initial state, like our feeding-in of
0, is this thing:

> :t evalState
evalState :: State s a -> s -> a

Our next operation becomes
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next’ :: State Int Int
next’ = get <* modify (1+)

where get is the process that accesses the state, modify makes a process that changes the
state, and <* means “but also do”.

If you start you file with the language extension pragma

{-# LANGUAGE DeriveFunctor, DeriveFoldable, DeriveTraversable #-}

you can declare your datatype like this

data NT a = N a [NT a] deriving (Show, Functor, Foldable, Traversable)

and Haskell will write traverse for you.
Your program then becomes one line. . .

evalState (traverse (\ a -> pure ((,) a) <*> get <* modify (1+)) ntree) 0
-- ˆ how to process one element ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
-- ˆ how to process an entire tree of elements ˆˆˆˆˆˆˆˆˆ
-- ˆ processing your particular tree ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
-- ˆ kicking off the process with a starting number of 0 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

. . . but the journey to that one line involves a lot of “bottling the pattern” steps, which takes
some (hopefully rewarding) learning.

4.3 Partial application of functions and currying, how to make a
better code instead of a lot of maps?

All the suggestions so far are good. Here’s another, which might seem a bit weird at first, but
turns out to be quite handy in lots of other situations.

Some type-forming operators, like [], which is the operator which maps a type of elements,
e.g. Int to the type of lists of those elements, [Int], have the property of being Applicative.
For lists, that means there is some way, denoted by the operator, <*>, pronounced “apply”, to
turn lists of functions and lists of arguments into lists of results.

(<*>) :: [s -> t] -> [s] -> [t] -- one instance of the general type of <*>

rather than your ordinary application, given by a blank space, or a $

($) :: (s -> t) -> s -> t

The upshot is that we can do ordinary functional programming with lists of things instead of
things: we sometimes call it “programming in the list idiom”. The only other ingredient is that,
to cope with the situation when some of our components are individual things, we need an extra
gadget

pure :: x -> [x] -- again, one instance of the general scheme

which wraps a thing up as a list, to be compatible with <*>. That is pure moves an ordinary
value into the applicative idiom.

For lists, pure just makes a singleton list and <*> produces the result of every pairwise
application of one of the functions to one of the arguments. In particular

pure f <*> [1..10] :: [Int -> Int -> Int -> Int -> Int]
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is a list of functions (just like map f [1..10]) which can be used with <*> again. The rest
of your arguments for f are not listy, so you need to pure them.

pure f <*> [1..10] <*> pure 1 <*> pure 2 <*> pure 3 <*> pure 4

For lists, this gives

[f] <*> [1..10] <*> [1] <*> [2] <*> [3] <*> [4]

i.e. the list of ways to make an application from the f, one of the [1..10], the 1, the 2, the 3 and
the 4.

The opening pure f <*> s is so common, it’s abbreviated f <$> s, so

f <$> [1..10] <*> [1] <*> [2] <*> [3] <*> [4]

is what would typically be written. If you can filter out the<$>, pure and<*> noise, it kind
of looks like the application you had in mind. The extra punctuation is only necessary because
Haskell can’t tell the difference between a listy computation of a bunch of functions or arguments
and a non-listy computation of what’s intended as a single value but happens to be a list. At least,
however, the components are in the order you started with, so you see more easily what’s going
on.

Esoterica. (1) in my (not very) private dialect of Haskell, the above would be

(|f [1..10] (|1|) (|2|) (|3|) (|4|)|)

where each idiom bracket, (|f a1 a2 ... an|) represents the application of a pure function
to zero or more arguments which live in the idiom. It’s just a way to write

pure f <*> a1 <*> a2 ... <*> an

Idris has idiom brackets, but Haskell hasn’t added them. Yet.

(2) In languages with algebraic effects, the idiom of nondeterministic computation is not the
same thing (to the typechecker) as the data type of lists, although you can easily convert
between the two. The program becomes

f (range 1 10) 2 3 4

where range nondeterministically chooses a value between the given lower and upper bounds.
So, nondetermism is treated as a local side-effect, not a data structure, enabling operations for fail-
ure and choice. You can wrap nondeterministic computations in a handler which give meanings
to those operations, and one such handler might generate the list of all solutions. That’s to say,
the extra notation to explain what’s going on is pushed to the boundary, rather than peppered
through the entire interior, like those <*> and pure.

Managing the boundaries of things rather than their interiors is one of the few good ideas
our species has managed to have. But at least we can have it over and over again. It’s why we
farm instead of hunting. It’s why we prefer static type checking to dynamic tag checking. And
so on. . .

4.4 Translating monad to applicative

I’d write

integer :: Parser Integer
integer = read <$ many1 space <*> many1 digit

https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/idiom.html
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There’s a bunch of left associative (like application) parser-building operators<$>,<*>,<$,
<*. The thing in the far left should be the pure function which assembles the result value from the
component values. The thing on the right of each operator should be a parser, collectively giving
the components of the grammar left-to-right. Which operator to use depends on two choices, as
follows.

the thing to the right is signal / noise
_________________________
the thing to the left is \

+-------------------
pure / | <$> <$

a parser | <*> <*

So, having chosen read :: String -> Integer as the pure function which is going to
deliver the semantics of the parser, we can classify the leading space as “noise” and the bunch of
digits as “signal”, hence

read <$ many1 space <*> many1 digit
(..) (.........) (.........)
pure noise parser |
(.................) |

parser signal parser
(.................................)

parser

You can combine multiple possibilities with

p1 <|> ... <|> pn

and express impossibility with

empty

It’s seldom necessary to name components in parsers, and the resulting code looks more like
a grammar with added semantics.

4.5 Applicatives compose, monads don’t

If we compare the types

(<*>) :: Applicative a => a (s -> t) -> a s -> a t
(>>=) :: Monad m => m s -> (s -> m t) -> m t

we get a clue to what separates the two concepts. That (s -> m t) in the type of (>>=)
shows that a value in s can determine the behaviour of a computation in m t. Monads allow
interference between the value and computation layers. The (<*>) operator allows no such
interference: the function and argument computations don’t depend on values. This really bites.
Compare

miffy :: Monad m => m Bool -> m x -> m x -> m x
miffy mb mt mf = do

b <- mb
if b then mt else mf

which uses the result of some effect to decide between two computations (e.g. launching mis-
siles and signing an armistice), whereas
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iffy :: Applicative a => a Bool -> a x -> a x -> a x
iffy ab at af = pure cond <*> ab <*> at <*> af where
cond b t f = if b then t else f

which uses the value of ab to choose between the values of two computations at and af,
having carried out both, perhaps to tragic effect.

The monadic version relies essentially on the extra power of (>>=) to choose a computation
from a value, and that can be important. However, supporting that power makes monads hard
to compose. If we try to build ‘double-bind’

(>>>>==) :: (Monad m, Monad n) => m (n s) -> (s -> m (n t)) -> m (n t)
mns >>>>== f = mns >>-{-m-} \ ns -> let nmnt = ns >>= (return . f) in ???

we get this far, but now our layers are all jumbled up. We have an n (m (n t)), so we need
to get rid of the outer n. As Alexandre C says, we can do that if we have a suitable

swap :: n (m t) -> m (n t)

to permute the n inwards and join it to the other n.
The weaker ‘double-apply’ is much easier to define

(<<**>>) :: (Applicative a, Applicative b) => a (b (s -> t)) -> a (b s) -> a (b t)
abf <<**>> abs = pure (<*>) <*> abf <*> abs

because there is no interference between the layers.
Correspondingly, it’s good to recognize when you really need the extra power of Monads, and

when you can get away with the rigid computation structure that Applicative supports.
Note, by the way, that although composing monads is difficult, it might be more than you

need. The type m (n v) indicates computing with m-effects, then computing with n-effects to a
v-value, where the m-effects finish before the n-effects start (hence the need for swap). If you just
want to interleave m-effects with n-effects, then composition is perhaps too much to ask!

4.6 Examples Separating Functor, Applicative and Monad

My style may be cramped by my phone, but here goes.

newtype Not x = Kill {kill :: x -> Void}

cannot be a Functor. If it were, we’d have

kill (fmap (const ()) (Kill id)) () :: Void

and the Moon would be made of green cheese.
Meanwhile

newtype Dead x = Oops {oops :: Void}

is a functor

instance Functor Dead where
fmap f (Oops corpse) = Oops corpse

but cannot be applicative, or we’d have

oops (pure ()) :: Void
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and Green would be made of Moon cheese (which can actually happen, but only later in the
evening).

(Extra note: Void, as in Data.Void is an empty datatype. If you try to use undefined to
prove it’s a Monoid, I’ll use unsafeCoerce to prove that it isn’t.)

Joyously,

newtype Boo x = Boo {boo :: Bool}

is applicative in many ways, e.g., as Dijkstra would have it,

instance Applicative Boo where
pure _ = Boo True
Boo b1 <*> Boo b2 = Boo (b1 == b2)

but it cannot be a Monad. To see why not, observe that return must be constantly Boo True
or Boo False, and hence that

join . return == id

cannot possibly hold.
Oh yeah, I nearly forgot

newtype Thud x = The {only :: ()}

is a Monad. Roll your own.
Plane to catch. . .

4.7 Parsec: Applicatives vs Monads

It might be worth paying attention to the key semantic difference between Applicative and
Monad, in order to determine when each is appropriate. Compare types:

(<*>) :: m (s -> t) -> m s -> m t
(>>=) :: m s -> (s -> m t) -> m t

To deploy <*>, you choose two computations, one of a function, the other of an argument,
then their values are combined by application. To deploy >>=, you choose one computation,
and you explain how you will make use of its resulting values to choose the next computation. It
is the difference between “batch mode” and “interactive” operation.

When it comes to parsing, Applicative (extended with failure and choice to give Alternative)
captures the context-free aspects of your grammar. You will need the extra power that Monad
gives you only if you need to inspect the parse tree from part of your input in order to decide
what grammar you should use for another part of your input. E.g., you might read a format
descriptor, then an input in that format. Minimizing your usage of the extra power of monads
tells you which value-dependencies are essential.

Shifting from parsing to parallelism, this idea of using>>= only for essential value-dependency
buys you clarity about opportunities to spread load. When two computations are combined with
<*>, neither need wait for the other. Applicative-when-you-can-but-monadic-when-you-must
is the formula for speed. The point of ApplicativeDo is to automate the dependency analysis
of code which has been written in monadic style and thus accidentally oversequentialised.

Your question also relates to coding style, about which opinions are free to differ. But let me
tell you a story. I came to Haskell from Standard ML, where I was used to writing programs in
direct style even if they did naughty things like throw exceptions or mutate references. What
was I doing in ML? Working on an implementation of an ultra-pure type theory (which may
not be named, for legal reasons). When working in that type theory, I couldn’t write direct-style
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programs which used exceptions, but I cooked up the applicative combinators as a way of getting
as close to direct style as possible.

When I moved to Haskell, I was horrified to discover the extent to which people seemed to
think that programming in pseudo-imperative do-notation was just punishment for the slightest
semantic impurity (apart, of course, from non-termination). I adopted the applicative combina-
tors as a style choice (and went even closer to direct style with “idiom brackets”) long before
I had a grasp of the semantic distinction, i.e., that they represented a useful weakening of the
monad interface. I just didn’t (and still don’t) like the way do-notation requires fragmentation of
expression structure and the gratuitous naming of things.

That’s to say, the same things that make functional code more compact and readable than
imperative code also make applicative style more compact and readable than do-notation. I ap-
preciate that ApplicativeDo is a great way to make more applicative (and in some cases that
means faster) programs that were written in monadic style that you haven’t the time to refac-
tor. But otherwise, I’d argue applicative-when-you-can-but-monadic-when-you-must is also the
better way to see what’s going on.

4.8 Refactoring do notation into applicative style

All these operators are left associative; the < and/or > points to things which contribute values;
it’s $ for thing-to-left-is-pure-value and * for thing-to-left-is-applicative-computation.

My rule of thumb for using these operators goes as follows. First, list the components of your
grammatical production and classify them as “signal” or “noise” depending on whether they
contribute semantically important information. Here, we have

char ’(’ -- noise
buildExpr -- signal
char ’)’ -- noise

Next, figure out what the “semantic function” is, which takes the values of the signal compo-
nents and gives the value for the whole production. Here, we have

id -- pure semantic function, then a bunch of component parsers
char ’(’ -- noise
buildExpr -- signal
char ’)’ -- noise

Now, each component parser will need to be attached to what comes before it with an opera-
tor, but which?

• always start with <
• next $ for the first component (as the pure function’s just before), or * for every other

component
• then comes > if the component is signal or if it’s noise

So that gives us

id -- pure semantic function, then a bunch of parsers
<$ char ’(’ -- first, noise
<*> buildExpr -- later, signal
<* char ’)’ -- later, noise

If the semantic function is id, as here, you can get rid of it and use *> to glue noise to the
front of the signal which is id’s argument. I usually choose not to do that, just so that I can see
the semantic function sitting clearly at the beginning of the production. Also, you can build a
choice between such productions by interspersing <|> and you don’t need to wrap any of them
in parentheses.
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4.9 Zip with default values instead of dropping values?

There is some structure to this problem, and here it comes. I’ll be using this stuff:

import Control.Applicative
import Data.Traversable
import Data.List

First up, lists-with-padding are a useful concept, so let’s have a type for them.

data Padme m = (:-) {padded :: [m], padder :: m} deriving (Show, Eq)

Next, I remember that the truncating-zip operation gives rise to an Applicative instance,
in the library as newtype ZipList (a popular example of a non-Monad). The Applicative
ZipList amounts to a decoration of the monoid given by infinity and minimum. Padme has
a similar structure, except that its underlying monoid is positive numbers (with infinity), using
one and maximum.

instance Applicative Padme where
pure = ([] :-)
(fs :- f) <*> (ss :- s) = zapp fs ss :- f s where

zapp [] ss = map f ss
zapp fs [] = map ($ s) fs
zapp (f : fs) (s : ss) = f s : zapp fs ss

I am obliged to utter the usual incantation to generate a default Functor instance.

instance Functor Padme where fmap = (<*>) . pure

Thus equipped, we can pad away! For example, the function which takes a ragged list of
strings and pads them with spaces becomes a one liner.

deggar :: [String] -> [String]
deggar = transpose . padded . traverse (:- ’ ’)

See?

*Padme> deggar ["om", "mane", "padme", "hum"]
["om ","mane ","padme","hum "]

4.10 sum3 with zipWith3 in Haskell

I’ve seen this sort of question before, here: https://stackoverflow.com/q/21349408/828361 My
answer to that question also pertains here.

The ZipList applicative Lists with a designated padding element are applicative (the ap-
plicative grown from the 1 and max monoid structure on positive numbers).

data Padme m = (:-) {padded :: [m], padder :: m} deriving (Show, Eq)

instance Applicative Padme where
pure = ([] :-)
(fs :- f) <*> (ss :- s) = zapp fs ss :- f s where
zapp [] ss = map f ss
zapp fs [] = map ($ s) fs
zapp (f : fs) (s : ss) = f s : zapp fs ss

-- and for those of you who don’t have DefaultSuperclassInstances
instance Functor Padme where fmap = (<*>) . pure

https://stackoverflow.com/a/21350096/828361
https://stackoverflow.com/a/21350096/828361
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Now we can pack up lists of numbers with their appropriate padding

pad0 :: [Int] -> Padme Int
pad0 = (:- 0)

And that gives

padded ((\x y z -> x+y+z) <$> pad0 [1,2,3] <*> pad0 [4,5] <*> pad0 [6])
= [11,7,3]

Or, with the Idiom Brackets that aren’t available, you vould write

padded (|pad0 [1,2,3] + (|pad0 [4,5] + pad0 6|)|)

meaning the same.
Applicative gives you a good way to bottle the essential idea of “padding” that this prob-

lem demands.

4.11 What is the ’Const’ applicative functor useful for?

It’s rather useful when combined with Traversable.

getConst . traverse Const :: (Monoid a, Traversable f) => f a -> a

That’s the general recipe for glomming a bunch of stuff together. It was one of the use cases
which convinced me that it was worth separating Applicative from Monad. I needed stuff like
generalized elem

elem :: Eq x => x -> Term x -> Bool

to do occur-checking for a Traversable Term parametrized by the representation of free
variables. I kept changing the representation of Term and I was fed up modifying a zillion traver-
sal functions, some of which were doing accumulations, rather than effectful mapping. I was glad
to find an abstraction which covered both.

4.12 Applicative instance for free monad

Will this do?

instance (Functor f) => Applicative (Free f) where
pure = Return
Return f <*> as = fmap f as
Roll faf <*> as = Roll (fmap (<*> as) faf)

The plan is to act only at the leaves of the tree which produces the function, so for Return,
we act by applying the function to all the argument values produced by the argument action. For
Roll, we just do to all the sub-actions what we intend to do to the overall action.

Crucially, what we do when we reach Return is already set before we start. We don’t change
our plans depending on where we are in the tree. That’s the hallmark of being Applicative:
the structure of the computation is fixed, so that values depend on values but actions don’t.
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4.13 Examples of a monad whose Applicative part can be better
optimized than the Monad part

Perhaps the canonical example is given by the vectors.

data Nat = Z | S Nat deriving (Show, Eq, Ord)

data Vec :: Nat -> * -> * where
V0 :: Vec Z x
(:>) :: x -> Vec n x -> Vec (S n) x

We can make them applicative with a little effort, first defining singletons, then wrapping
them in a class.

data Natty :: Nat -> * where
Zy :: Natty Z
Sy :: Natty n -> Natty (S n)

class NATTY (n :: Nat) where
natty :: Natty n

instance NATTY Z where
natty = Zy

instance NATTY n => NATTY (S n) where
natty = Sy natty

Now we may develop the Applicative structure

instance NATTY n => Applicative (Vec n) where
pure = vcopies natty
(<*>) = vapp

vcopies :: forall n x. Natty n -> x -> Vec n x
vcopies Zy x = V0
vcopies (Sy n) x = x :> vcopies n x

vapp :: forall n s t. Vec n (s -> t) -> Vec n s -> Vec n t
vapp V0 V0 = V0
vapp (f :> fs) (s :> ss) = f s :> vapp fs ss

I omit the Functor instance (which should be extracted via fmapDefault from the Traversable
instance).

Now, there is a Monad instance corresponding to this Applicative, but what is it? Diagonal
thinking! That’s what’s required! A vector can be seen as the tabulation of a function from a finite
domain, hence the Applicative is just a tabulation of the K- and S-combinators, and the Monad
has a Reader-like behaviour.

vtail :: forall n x. Vec (S n) x -> Vec n x
vtail (x :> xs) = xs

vjoin :: forall n x. Natty n -> Vec n (Vec n x) -> Vec n x
vjoin Zy _ = V0
vjoin (Sy n) ((x :> _) :> xxss) = x :> vjoin n (fmap vtail xxss)
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instance NATTY n => Monad (Vec n) where
return = vcopies natty
xs >>= f = vjoin natty (fmap f xs)

You might save a bit by defining >>= more directly, but any way you cut it, the monadic
behaviour creates useless thunks for off-diagonal computations. Laziness might save us from
slowing down by an armageddon factor, but the zipping behaviour of the <*> is bound to be at
least a little cheaper than taking the diagonal of a matrix.

4.14 How arbitrary is the “ap” implementation for monads?

There are at least three relevant aspects to this question.

1. Given a Monad m instance, what is the specification of its necessary Applicative m su-
perclass instance? Answer: pure is return, <*> is ap, so

mf <*> ms == do f <- mf; s <- ms; return (f s)

Note that this specification is not a law of the Applicative class. It’s a requirement on
Monads, to ensure consistent usage patterns.

2. Given that specification (by candidate implementation), is ap the only acceptable imple-
mentation. Answer: resoundingly, no. The value dependency permitted by the type of>>=
can sometimes lead to inefficient execution: there are situations where <*> can be made
more efficient than ap because you don’t need to wait for the first computation to finish
before you can tell what the second computation is. The “applicative do” notation exists
exactly to exploit this possibility.

3. Do any other candidate instances for Applicative satisfy the Applicative laws, even
though they disagree with the required ap instances? Answer: yes. The “backwards” in-
stance proposed by the question is just such a thing. Indeed, as another answer observes,
any applicative can be turned backwards, and the result is often a different beast.

For a further example and exercise for the reader, note that nonempty lists are monadic in the
way familiar from ordinary lists.

data Nellist x = x :& Maybe (Nellist x)

necat :: Nellist x -> Nellist x -> Nellist x
necat (x :& Nothing) ys = x :& Just ys
necat (x :& Just xs) ys = x :& Just (necat xs ys)

instance Monad Nellist where
return x = x :& Nothing
(x :& Nothing) >>= k = k x
(x :& Just xs) >>= k = necat (k x) (xs >>= k)

Find at least four behaviourally distinct instances of Applicative Nellist which obey the
applicative laws.

4.15 Applicative without a functor (for arrays)

Reading the comments, I’m a little worried that size is under the carpet here. Is there a sensible
behaviour when sizes mismatch?

Meanwhile, there may be something you can sensibly do along the following lines. Even if
your arrays aren’t easy to make polymorphic, you can make an Applicative instance like this.
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data ArrayLike x = MkAL {sizeOf :: Int, eltOf :: Int -> x}

instance Applicative ArrayLike where
pure x = MkAL maxBound (pure x)
MkAL i f <*> MkAL j g = MkAL (min i j) (f <*> g)

(Enthusiasts will note that I’ve taken the product of the (Int ->) applicative with that in-
duced by the (maxBound, min) monoid.)

Could you make a clean correspondence

imAL :: Image -> ArrayLike Float
alIm :: ArrayLike Float -> Image

by projection and tabulation? If so, you can write code like this.

alIm $ (f <$> imAL a1 <*> ... <*> imAL an)

Moreover, if you then want to wrap that pattern up as an overloaded operator,

imapp :: (Float -> ... -> Float) -> (Image -> ... -> Image)

it’s a standard exercise in typeclass programming! (Ask if you need more of a hint.)
The crucial point, though, is that the wrapping strategy means you don’t need to monkey

with your array structures in order to put functional superstructure on top.

4.16 Does this simple Haskell function already have a well-known
name? (strength)

If the Traversable and Foldable instances for (,) x) were in the library (and I suppose I
must take some blame for their absence). . .

instance Traversable ((,) x) where
traverse f (x, y) = (,) x <$> f y

instance Foldable ((,) x) where
foldMap = foldMapDefault

. . . then this (sometimes called ‘strength’) would be a specialisation of Data.Traversable.sequence.

sequence :: (Traversable t, Monad m) => t (m a) -> m (t a)

so

sequence :: (Monad m) => ((,) x) (m a) -> m (((,) x) a)

i.e.

sequence :: (Monad m) => (x, m a) -> m (x, a)

In fact, sequence doesn’t really use the full power of Monad: Applicative will do. More-
over, in this case, pairing-with-x is linear, so the traverse does only <$> rather than other
random combinations of pure and <*>, and (as has been pointed out elsewhere) you only need
m to have functorial structure.
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4.17 The Kids are all Right

Not to gainsay all isRight as a good answer to the question which was asked, I’d question
the question, to some extent. What good is it to compute, as a Bool, whether all the Either
values in a list are Right? What does it enable you to do? One answer is that it entitles you to
strip the Right tags from the entire list, treating the whole as error free.

A more informative option might be to construct something of type

[Either String Int] -> Either String [Int]

so that instead of a mere True or False, you obtain all the Ints untagged or the message
associated with the first pesky Left.

And there is a standard function which does this (and many other things besides). It exploits
the fact that lists are a data structure with a standard traversal pattern and that Either String
encodes a notion of error-managing computation with standard patterns of failure and success
propagation. The type has already done the hard work. All you need to say is. . .

sequenceA

4.18 Why is((,) r) a Functor that is NOT an Applicative?

Suppose we have

pure :: forall r a. a -> (r, a)

then, in particular, we have

magic :: forall r. r
magic = fst (pure ())

Now, we can specialise the type variable r to get

magic :: Void

where Void is the datatype with no constructors, which means

magic = undefined

but as type variables (and the types which specialise them) play no run time role, that means
magic is always undefined.

We’ve discovered that ((,) r) can be Applicative only for inhabited r. And there’s more.
With any such instance, we can write

munge :: r -> r -> r
munge r0 r1 = fst ( pure (\ _ _ -> ()) <*> (r0, ()) <*> (r1, ()) )

to define a binary operator on r. The Applicative laws tell us effectively that munge must
be an associative operator that absorbs magic on either side.

That’s to say there is a sensible instance

instance Monoid r => Applicative ((,) r) where
pure a = (mempty, a)
(r0, f) <*> (r1, s) = (mappend r0 r1, f s)

(exactly what you get when you take pure=return; (<*>)=ap from the Monad (Writer
r)).

Of course, some pedants would argue that it is legal (if unhelpful) to define
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instance Monoid r where
mempty = undefined
mappend _ _ = undefined
-- Monoid laws clearly hold

but I would argue that any sensible type class instance should contribute nontrivially to the
defined fragment of the language.

4.19 Applicative Rewriting (for reader)

Being an idle goodfornothing, I thought I would make a computer do the expansion for me. So
into GHCi, I typed

let pu x = "(\\_ -> " ++ x ++ ")"
let f >*< a = "(\\g -> " ++ f ++ " g (" ++ a ++ " g))"

So now I have funny versions of pure and <*> which map strings which look like expres-
sions to string which look like more complicated expressions. I then defined, similarly, the ana-
logue of sequenceA, replacing functions by strings.

let sqa [] = pu "[]" ; sqa (f : fs) = (pu "(:)" >*< f) >*< sqa fs

I was then able to generate the expanded form of the example as follows

putStrLn $ sqa ["(+3)","(+2)"] ++ " 3"

which duly printed

(\g -> (\g -> (\_ -> (:)) g ((+3) g)) g ((\g -> (\g -> (\_ -> (:)) g ((+2) g)) g ((\_ -> []) g)) g)) 3

This last, copied to the prompt, yielded

[6,5]

Comparing the output from my “metaprogram” with the attempt in the question shows a
shorter initial prefix of lambdas, arising from a shallower nesting of <*> operations. Remember,
it’s

(pure (:) <*> (+3)) <*> ((pure (:) <*> (+2)) <*> pure [])

so the outer (:) should be only three lambdas deep. I suspect the proposed expansion may
correspond to a differently bracketed version of the above, perhaps

pure (:) <*> (+3) <*> pure (:) <*> (+2) <*> pure []

Indeed, when I evaluate

putStrLn $ pu "(:)" >*< "(+3)" >*< pu "(:)" >*< "(+2)" >*< pu "[]" ++ " 3 "

I get

(\g -> (\g -> (\g -> (\g -> (\_ -> (:)) g ((+3) g)) g ((\_ -> (:)) g)) g ((+2) g)) g ((\_ -> []) g)) 3

which looks like it matches the (updated)

(\d -> (\c -> (\b -> (\a -> (\_ -> (:)) a ((+3) a)) b ((\_ -> (:)) b)) c ((+2) c)) d ((\_ -> []) d)) 3

I hope this machine-assisted investigation helps to clarify what’s going on.
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4.20 Serialised Diagonalisation

Not every type is serializable. How can you establish an isomorphism between String ->
String and String? If you give me Read and Show instances for String -> String, I can
find a function which isn’t serialisable like this:

evil :: String -> String
evil s = map succ (read s s ++ " evil")

Suppose

read (show evil) = evil

We get

evil (show evil)
= map succ (read (show evil) (show evil) ++ " evil")
= map succ (evil (show evil) ++ " evil")
= map succ (evil (show evil)) ++ "!fwjm"

so if evil (show evil) is defined, then it has a first character c satisfying c = succ c,
which is impossible.

In general, functions can’t be serialized. Sometimes, we write datatypes which pack up func-
tions, so not every datatype is serializable either. E.g.,

data Psychiatrist
= Listen (String -> Psychiatrist)
| Charge Int

Sometimes, even for these types, you might choose to provide partial implementations of
Read (with some cases missing) and Show (e.g., with placeholders for or tabulations of func-
tions), but there is no canonical way to choose them or reason why you would expect both.

As others have mentioned, serious serialization is the preserve of Serialize. I tend to use
Show and Read for diagnostic purposes, especially trying things out in ghci. For that purpose,
Show is by far more useful, because ghci has a Haskell parser to do the reading.

4.21 Applicative style for infix operators?

SHE lets you write

(|a ++ (|b ++ c|)|)

if that’s any use. Of course, there’s some overhead to introducing a preprocessing layer.

4.22 Where is the Monoid in Applicative?

Perhaps the monoid you’re looking for is this one.

newtype AppM f m = AppM (f m) deriving Show

instance (Applicative f, Monoid m) => Monoid (AppM f m) where
mempty = AppM (pure mempty)
mappend (AppM fx) (AppM fy) = AppM (pure mappend <*> fx <*> fy)

https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/
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As a comment, below, observes, it can be found in the reducers library under the name Ap.
It’s fundamental to Applicative, so let’s unpack it.

Note, in particular, that because () is trivially a Monoid, AppM f () is a Monoid, too. And
that’s the monoid lurking behind Applicative f.

We could have insisted on Monoid (f ()) as a superclass of Applicative, but that would
have fouled things up royally.

> mappend (AppM [(),()]) (AppM [(),(),()])
AppM [(),(),(),(),(),()]

The monoid underlying Applicative [] is multiplication of natural numbers, whereas the
‘obvious’ monoidal structure for lists is concatenation, which specialises to addition of natural
numbers.

Mathematics warning. Dependent types warning. Fake Haskell warning.
One way to see what’s going on is to consider those Applicatives which happen to be contain-

ers in the dependently typed sense of Abbott, Altenkirch and Ghani. We’ll have these in Haskell
sometime soon. I’ll just pretend the future has arrived.

data (<|) (s :: *)(p :: s -> *) (x :: *) where
(:<|:) :: pi (a :: s) -> (p a -> x) -> (s <| p) x

The data structure (s <| p) is characterised by

• Shapes s which tell you what the container looks like.
• Positions p which tell you for a given shape where you can put data.

The above type says that to give data for such a structure is to pick a shape, then fill all the
positions with data.

The container presentation of [] is Nat <| Fin where

data Nat = Z | S Nat
data Fin (n :: Nat) where

FZ :: Fin (S n)
FS :: Fin n -> Fin (S n)

so that Fin n has exactly n values. That is, the shape of a list is its length, and that tells you
how many elements you need to fill up the list.

You can find the shapes for a Haskell Functor f by taking f (). By making the data trivial,
the positions don’t matter. Constructing the GADT of positions generically in Haskell is rather
more difficult.

Parametricity tells us that a polymorphic function between containers in

forall x. (s <| p) x -> (s’ <| p’) x

must be given by

• a function f :: s -> s' mapping input shapes to output shapes
• a function g :: pi (a :: s) -> p' (f a) -> p amapping (for a given input shape)

output positions back to the input positions where the output element will come from.

<!- ->

morph f g (a :<|: d) = f a :<|: (d . g a)

(Secretly, those of us who have had our basic Hancock training also think of “shapes” as
“commands” and “positions” as “valid responses”. A morphism between containers is then
exactly a “device driver”. But I digress.)

Thinking along similar lines, what does it take to make a container Applicative? For
starters,

https://hackage.haskell.org/package/reducers-3.12.1/docs/Data-Semigroup-Applicative.html#t:Ap
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pure :: x -> (s <| p) x

which is equivalently

pure :: (() <| Const ()) x -> (s <| p) x

That has to be given by

f :: () -> s -- a constant in s
g :: pi (a :: ()) -> p (f ()) -> Const () a -- trivial

where f = const neutral for some

neutral :: s

Now, what about

(<*>) :: (s <| p) (x -> y) -> (s <| p) x -> (s <| p) y

? Again, parametricity tells us two things. Firstly, the only useful data for calculating the
output shapes are the two input shapes. We must have a function

outShape :: s -> s -> s

Secondly, the only way we can fill an output position with a y is to pick a position from the
first input to find a function in ‘x -> y’ and then a position in the second input to obtain its
argument.

inPos :: pi (a :: s)(b :: s) -> p (outShape a b) -> (p a, p b)

That is, we can always identify the pair of input positions which determine the output in an
output position.

The applicative laws tell us that neutral and outShape must obey the monoid laws, and
that, moreover, we can lift monoids as follows

mappend (a :<|: f) (b :<|: g) = outShape a b :<|: \ z ->
let (x, y) = inPos a b z
in mappend (f x) (g y)

There’s something more to say here, but for that, I need to contrast two operations on con-
tainers.

Composition

(s <| p) . (s’ <| p’) = ((s <| p) s’) <| \ (a :<|: f) -> Sigma (p a) (p’ . f)

where Sigma is the type of dependent pairs

data Sigma (p :: *)(q :: p -> *) where
Pair :: pi (a :: p) -> q a -> Sigma p q

What on earth does that mean?

• you choose an outer shape
• you choose an inner shape for each outer position
• a composite position is then the pair of an outer position and an inner position appropriate

to the inner shape that sits there

Or, in Hancock
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• you choose an outer command
• you can wait to see the outer response before choosing the inner command
• a composite response is then a response to the outer command, followed by a response to

the inner command chosen by your strategy

Or, more blatantly

• when you make a list of lists, the inner lists can have different lengths

The join of a Monad flattens a composition. Lurking behind it is not just a monoid on shapes,
but an integration operator. That is,

join :: ((s <| p) . (s <| p)) x -> (s <| p) x

requires

integrate :: (s <| p) s -> s

Your free monad gives you strategy trees, where you can use the result of one command to
choose the rest of your strategy. As if you’re interacting at a 1970s teletype.

Meanwhile. . .
Tensor
The tensor (also due to Hancock) of two containers is given by

(s <| p) >< (s’ <| p’) = (s, s’) <| \ (a, b) -> (p a, p’ b)

That is

• you choose two shapes
• a position is then a pair of positions, one for each shape

or

• you choose two commands, without seeing any responses
• a response is then the pair of responses

or

• [] >< [] is the type of rectangular matrices: the ‘inner’ lists must all have the same length

The latter is a clue to why >< is very hard to get your hands on in Haskell, but easy in the
dependently typed setting.

Like composition, tensor is a monoid with the identity functor as its neutral element. If we
replace the composition underlying Monad by tensor, what do we get?

pure :: Id x -> (s <| p) x
mystery :: ((s <| p) >< (s <| p)) x -> (s <| p) x

But whatever can mystery be? It’s not a mystery, because we know there’s a rather rigid way
to make polymorphic functions between containers. There must be

f :: (s, s) -> s
g :: pi ((a, b) :: (s, s)) -> p (f (a, b)) -> (p a, p b)

and those are exactly what we said determined <*> earlier.
Applicative is the notion of effectful programming generated by tensor, where Monad is

generated by composition. The fact that you don’t get to/need to wait for the outer response to
choose the inner command is why Applicative programs are more readily parallelizable.

Seeing [] >< [] as rectangular matrices tells us why <*> for lists is built on top of multi-
plication.

The free applicative functor is the free monoid with knobs on. For containers,
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Free (s <| p) = [s] <| All p

where

All p [] = ()
All p (x : xs) = (p x, All p xs)

So a “command” is a big list of commands, like a deck of punch cards. You don’t get to see
any output before you choose your card deck. The “response” is your lineprinter output. It’s the
1960s.

So there you go. The very nature of Applicative, tensor not composition, demands an
underlying monoid, and a recombination of elements compatible with monoids.

4.23 Applicatives from Monoids including min and max

The basic reason why Applicative [] has the generate-all-possible-combinations behaviour,
rather than any kind of zippy behaviour, is that Applicative is a superclass of Monad and is
intended to behave in accordance with the Monad instance when one exists. Monad [] treats
lists as failure-and-prioritized-choice, so the Applicative [] instance does, too. People of-
ten refactor monadic code using the applicative interface to reduce the number of intermediate
names needed for values, and to increase opportunities for parallelism. It would be pretty scary
if that caused a significant shift in the functional semantics.

That aside, the truth is, you’re spoilt for choice for Applicative [] instances, and even
more so if you consider empty/nonempty and finite/coinductive/infinite variations. Why is
that?

Well, as I mentioned in this answer, every Applicative f begins its life as a Monoid (f
()), combining the shapes of the data, before we start to worry about the values. Lists are a case
in point.

[()] is basically the type of numbers. Numbers are monoids in lots of ways.
Taking Applicative [] from Monad [] amounts to choosing the monoid generated by 1

and *.
Meanwhile, Applicative ZipList exploits Haskell’s coinductive conflation and amounts

to choosing the monoid generated by infinity and minimum.
The question proposes an instance which is not lawful, but is close to one that is. You’ll notice

<*> isn’t defined for an empty list of functions, but for nonempty lists of functions, it pads
out to match the list of arguments. Asymmetrically, it truncates when the arguments run out.
Something’s not quite right.

Two candidate fixes follow.
One is to truncate on empty on both sides, and then you must take pure = repeat and you

have ZipList.
The other is to rule out empty lists and pad on both sides. Then you get the Applicative

generated from the Monoid on positive numbers generated by 1 and maximum. So it’s not ZipList
at all. That’s the thing I called PadMe in this answer. The reason you need to rule out 0 is that for
every position in the output of <*>, you need to point to the position in both inputs where the
function and its arguments (respectively) come from. You can’t pad if you have nothing to pad
with.

It’s a fun game. Pick a Monoid on numbers and see if you can grow it into an Applicative
for lists!

https://stackoverflow.com/a/50717675/828361
https://stackoverflow.com/a/21350096/828361


94 CHAPTER 4. APPLICATIVE FUNCTORS



Chapter 5

Monads

5.1 Why we use monadic functions a→ m b

In a sense, you’re right. As every monad m is a functor, we can use fmap f with a function f ::
a -> b to turn an m a into an m b, but there’s a catch. What’s b?

I like to think of such an m as meaning “plan-to-get”, where “plans” involve some sort of
additional interaction beyond pure computation. If you have a “plan-to-get Int” and you want
a “plan-to-get String”, you can use fmap with a function in Int -> String, but the type of
that function tells you that getting the String from the Int involves no further interaction.

That isn’t always so: perhaps the Int is a student registration number and the String is
their name, so the plan to convert from one to the other needs an external lookup in some table.
Then I don’t have a pure function from Int to String, but rather a pure function from Int to
“plan-to-get String”. If I fmap that across my “plan-to-get Int”, that’s fine, but I end up with
“plan-to-get (plan-to-get String)” and I need to join the outer and inner plans.

The general situation is that we have enough information to compute the plan to get more.
That’s what a -> m b models. In particular, we have return :: a -> m a, which turns
the information we have into the plan that gives us exactly that information by taking no further
action, and we have (>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c) which
composes two such things. We also have that (>=>) is associative and absorbs return on left
and right, much the way ; is associative and absorbs skip in classic imperative programming.

It’s more convenient to build larger plans from smaller ones using this compositional ap-
proach, keeping the number of “plan-to-get” layers a consistent one. Otherwise, you need to
build up an n-layer plan with fmap, then do the right number of joins on the outside (which
will be a brittle property of the plan).

Now, as Haskell is a language with a concept of “free variable” and “scope”, the a in

(>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c)

representing the “overall input information” can just be taken to come from the scope of
things we already have, leaving

(>>=) :: m b -> (b -> m c) -> m c

and we get back “bind”, which is the tool that presents the compositional structure in the
most programmer-friendly form, resembling a local definition.

To sum up, you can work with a -> b, but often you need b to be “plan-to-get something”,
and that’s the helpful thing to choose if you want to build plans compositionally.

95
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FIXME: http://i.stack.imgur.com/7ts7a.jpg

Figure 5.1: tree of trees

FIXME: http://i.stack.imgur.com/Dw5vO.jpg

Figure 5.2: enter image description here

5.2 Monads with Join instead of Bind

Without plumbing the depths of metaphor, might I suggest to read a typical monad m as “strategy
to produce a”, so the type m value is a first class “strategy to produce a value”. Different notions
of computation or external interaction require different types of strategy, but the general notion
requires some regular structure to make sense:

• if you already have a value, then you have a strategy to produce a value (return :: v
-> m v) consisting of nothing other than producing the value that you have;

• if you have a function which transforms one sort of value into another, you can lift it to
strategies (fmap :: (v -> u) -> m v -> m u) just by waiting for the strategy to de-
liver its value, then transforming it;

• if you have a strategy to produce a strategy to produce a value, then you can construct a
strategy to produce a value (join :: m (m v) -> m v) which follows the outer strat-
egy until it produces the inner strategy, then follows that inner strategy all the way to a
value.

Let’s have an example: leaf-labelled binary trees. . .

data Tree v = Leaf v | Node (Tree v) (Tree v)

. . . represent strategies to produce stuff by tossing a coin. If the strategy is Leaf v, there’s
your v; if the strategy is Node h t, you toss a coin and continue by strategy h if the coin shows
“heads”, t if it’s “tails”.

instance Monad Tree where
return = Leaf

A strategy-producing strategy is a tree with tree-labelled leaves: in place of each such leaf, we
can just graft in the tree which labels it. . .

join (Leaf tree) = tree
join (Node h t) = Node (join h) (join t)

. . . and of course we have fmap which just relabels leaves.

instance Functor Tree where
fmap f (Leaf x) = Leaf (f x)
fmap f (Node h t) = Node (fmap f h) (fmap f t)

Here’s an strategy to produce a strategy to produce an Int.
Toss a coin: if it’s “heads”, toss another coin to decide between two strategies (producing,

respectively, “toss a coin for producing 0 or producing 1” or “produce 2”); if it’s “tails” produce
a third (“toss a coin for producing 3 or tossing a coin for 4 or 5”).

That clearly joins up to make a strategy producing an Int.
What we’re making use of is the fact that a “strategy to produce a value” can itself be seen as

a value. In Haskell, the embedding of strategies as values is silent, but in English, I use quotation
marks to distinguish using a strategy from just talking about it. The join operator expresses the

http://i.stack.imgur.com/7ts7a.jpg
http://i.stack.imgur.com/Dw5vO.jpg
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FIXME: http://i.stack.imgur.com/BFJSD.jpg

Figure 5.3: jigsaw pieces for computations

strategy “somehow produce then follow a strategy”, or “if you are told a strategy, you may then
use it”.

(Meta. I’m not sure whether this “strategy” approach is a suitably generic way to think about
monads and the value/computation distinction, or whether it’s just another crummy metaphor.
I do find leaf-labelled tree-like types a useful source of intuition, which is perhaps not a surprise
as they’re the free monads, with just enough structure to be monads at all, but no more.)

PS The type of “bind”

(>>=) :: m v -> (v -> m w) -> m w

says “if you have a strategy to produce a v, and for each v a follow-on strategy to produce a
w, then you have a strategy to produce a w”. How can we capture that in terms of join?

mv >>= v2mw = join (fmap v2mw mv)

We can relabel our v-producing strategy by v2mw, producing instead of each v value the w-
producing strategy which follows on from it — ready to join!

5.3 Using return versus not using return in the list monad

To see why you get the particular answers that arise, the desugaring explanations are very help-
ful. Let me supplement them with a little general advice about developing perceptions of Haskell
code.

Haskell’s type system makes no distinction between two separable “moral” purposes:

• [x] the type of values which are lists with elements drawn from x
• [x] the type of computations of elements of x which allow prioritized choice

The fact that these two notions have the same representation does not mean that they play
the same roles. In f1, the [x, x+1] is playing the role of computation, so the possibilities it
generates are merged into the choice generated by the whole computation: that’s what the >>=
of the list monad does. In f2, however, the [x, x+1] is playing the role of value, so that the
whole computation generates a prioritized choice between two values (which happen to be list
values).

Haskell does not use types to make this distinction [and you may have guessed by now that I
think it should, but that’s another story]. Instead, it uses syntax. So you need to train your head
to perceive the value and computation roles when you read code. The do notation is a special
syntax for constructing computations. What goes inside the do is built from the following template
kit:

The three blue pieces make do-computations. I’ve marked the computation holes in blue and
the value holes in red. This is not meant to be a complete syntax, just a guide to how to perceive
pieces of code in your mind.

Indeed, you may write any old expression in the blue places provided it has a suitably monadic
type, and the computation so generated will be merged into the overall computation using >>=
as needed. In your f1 example, your list is in a blue place and treated as prioritized choice.

Similarly, you may write expressions in red places which may very well have monadic types
(like lists in this case), but they will be treated as values all the same. That’s what happens in f2:
as it were, the result’s outer brackets are blue, but the inner brackets are red.

Train your brain to make the value/computation separation when you read code, so that you
know instinctively which parts of the text are doing which job. Once you’ve reprogrammed your
head, the distinction between f1 and f2 will seem completely normal!

http://i.stack.imgur.com/BFJSD.jpg
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5.4 Example showing monads don’t compose

For a small concrete counterexample, consider the terminal monad.

data Thud x = Thud

The return and >>= just go Thud, and the laws hold trivially.
Now let’s also have the writer monad for Bool (with, let’s say, the xor-monoid structure).

data Flip x = Flip Bool x

instance Monad Flip where
return x = Flip False x
Flip False x >>= f = f x
Flip True x >>= f = Flip (not b) y where Flip b y = f x

Er, um, we’ll need composition

newtype (:.:) f g x = C (f (g x))

Now try to define. . .

instance Monad (Flip :.: Thud) where -- that’s effectively the constant ‘Bool‘ functor
return x = C (Flip ??? Thud)
...

Parametricity tells us that ??? can’t depend in any useful way on x, so it must be a constant.
As a result, join . return is necessarily a constant function also, hence the law

join . return = id

must fail for whatever definitions of join and return we choose.

5.5 The Pause monad

Here’s how I’d go about it, using free monads. Er, um, what are they? They’re trees with actions
at the nodes and values at the leaves, with >>= acting like tree grafting.

data f :ˆ* x
= Ret x
| Do (f (f :ˆ* x))

It’s not unusual to write F*X for such a thing in the mathematics, hence my cranky infix type
name. To make an instance, you just need f to be something you can map over: any Functor
will do.

instance Functor f => Monad ((:ˆ*) f) where
return = Ret
Ret x >>= k = k x
Do ffx >>= k = Do (fmap (>>= k) ffx)

That’s just “apply k at all the leaves and graft in the resulting trees”. These can trees represent
strategies for interactive computation: the whole tree covers every possible interaction with the
environment, and the environment chooses which path in the tree to follow. Why are they free?
They’re just trees, with no interesting equational theory on them, saying which strategies are
equivalent to which other strategies.

Now let’s have a kit for making Functors which correspond to a bunch of commands we
might want to be able to do. This thing
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data (:>>:) s t x = s :? (t -> x)

instance Functor (s :>>: t) where
fmap k (s :? f) = s :? (k . f)

captures the idea of getting a value in x after one command with input type s and output type
t. To do that, you need to choose an input in s and explain how to continue to the value in x
given the command’s output in t. To map a function across such a thing, you tack it onto the
continuation. So far, standard equipment. For our problem, we may now define two functors:

type Modify s = (s -> s) :>>: ()
type Yield = () :>>: ()

It’s like I’ve just written down the value types for the commands we want to be able to do!
Now let’s make sure we can offer a choice between those commands. We can show that a

choice between functors yields a functor. More standard equipment.

data (:+:) f g x = L (f x) | R (g x)

instance (Functor f, Functor g) => Functor (f :+: g) where
fmap k (L fx) = L (fmap k fx)
fmap k (R gx) = R (fmap k gx)

So, Modify s :+: Yield represents the choice between modifying and yielding. Any sig-
nature of simple commands (communicating with the world in terms of values rather than ma-
nipulating computations) can be turned into a functor this way. It’s a bother that I have to do it
by hand!

That gives me your monad: the free monad over the signature of modify and yield.

type Pause s = (:ˆ*) (Modify s :+: Yield)

I can define the modify and yield commands as one-do-then-return. Apart from negotiating
the dummy input for yield, that’s just mechanical.

mutate :: (s -> s) -> Pause s ()
mutate f = Do (L (f :? Ret))

yield :: Pause s ()
yield = Do (R (() :? Ret))

The step function then gives a meaning to the strategy trees. It’s a control operator, construct-
ing one computation (maybe) from another.

step :: s -> Pause s () -> (s, Maybe (Pause s ()))
step s (Ret ()) = (s, Nothing)
step s (Do (L (f :? k))) = step (f s) (k ())
step s (Do (R (() :? k))) = (s, Just (k ()))

The step function runs the strategy until either it finishes with a Ret, or it yields, mutating
the state as it goes.

The general method goes like this: separate the commands (interacting in terms of values) from
the control operators (manipulating computations); build the free monad of “strategy trees” over
the signature of commands (cranking the handle); implement the control operators by recursion
over the strategy trees.
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5.6 Haskell monad return arbitrary data type

One way to define a Monad instance for this type is to treat it as a free monad. In effect, this takes
A a to be a little syntax with one binary operator C, and variables represented by values of type
a embedded by the B constructor. That makes return the B constructor, embedding variables,
and >>= the operator which performs subsitution.

instance Monad A where
return = B
B x >>= f = f x
C l r >>= f = C (l >>= f) (r >>= f)

It’s not hard to see that (>>= B) performs the identity substitution, and that composition of
substitutions is associative.

Another, more “imperative” way to see this monad is that it captures the idea of computations
that can flip coins (or read a bitstream or otherwise have some access to a sequence of binary
choices).

data Coin = Heads | Tails

Any computation which can flip coins must either stop flipping and be a value (with B), or
flip a coin and carry on (with C) in one way if the coin comes up Heads and another if Tails.
The monadic operation which flips a coin and tells you what came up is

coin :: A Coin
coin = C (B Heads) (B Tails)

The>>= of A can now be seen as sequencing coin-flipping computations, allowing the choice
of a subsequent computation to depend on the value delivered by an earlier computation.

If you have an infinite stream of coins, then (apart from your extraordinary good fortune)
you’re also lucky enough to be able to run any A-computation to its value, as follows

data Stream x = x :> Stream x -- actually, I mean "codata"

flipping :: Stream Coin -> A v -> v
flipping _ (B v) = v
flipping (Heads :> cs) (C h t) = flipping cs h
flipping (Tails :> cs) (C h t) = flipping cs t

The general pattern in this sort of monad is to have one constructor for returning a value (B
here) and a bunch of others which represent the choice of possible operations and the different
ways computations can continue given the result of an operation. Here C has no non-recursive
parameters and two subtrees, so I could tell that there must be just one operation and that it must
have just two possible outcomes, hence flipping a coin.

So, it’s substitution for a syntax with variables and one binary operator, or it’s a way of se-
quencing computations that flip coins. Which view is better? Well. . . they’re two sides of the
same coin.

5.7 Should I avoid using Monad fail?

Some monads have a sensible failure mechanism, e.g. the terminal monad:

data Fail x = Fail

Some monads don’t have a sensible failure mechanism (undefined is not sensible), e.g. the
initial monad:
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data Return x = Return x

In that sense, it’s clearly a wart to require all monads to have a failmethod. If you’re writing
programs that abstract over monads (Monad m) =>, it’s not very healthy to make use of that
generic m’s fail method. That would result in a function you can instantiate with a monad
where fail shouldn’t really exist.

I see fewer objections to using fail (especially indirectly, by matching Pat <- computation)
when working in a specific monad for which a good fail behaviour has been clearly specified.
Such programs would hopefully survive a return to the old discipline where nontrivial pattern
matching created a demand for MonadZero instead of just Monad.

One might argue that the better discipline is always to treat failure-cases explicitly. I object to
this position on two counts: (1) that the point of monadic programming is to avoid such clutter,
and (2) that the current notation for case analysis on the result of a monadic computation is so
awful. The next release of SHE will support the notation (also found in other variants)

case <- computation of
Pat_1 -> computation_1
...
Pat_n -> computation_n

which might help a little.
But this whole situation is a sorry mess. It’s often helpful to characterize monads by the op-

erations which they support. You can see fail, throw, etc as operations supported by some
monads but not others. Haskell makes it quite clumsy and expensive to support small localized
changes in the set of operations available, introducing new operations by explaining how to han-
dle them in terms of the old ones. If we seriously want to do a neater job here, we need to rethink
how catch works, to make it a translator between different local error-handling mechanisms. I
often want to bracket a computation which can fail uninformatively (e.g. by pattern match fail-
ure) with a handler that adds more contextual information before passing on the error. I can’t
help feeling that it’s sometimes more difficult to do that than it should be.

So, this is a could-do-better issue, but at the very least, use fail only for specific monads
which offer a sensible implementation, and handle the ‘exceptions’ properly.

5.8 Why isn’t Kleisli an instance of Monoid?

In the business of library design, we face a choice point here, and we have chosen to be less than
entirely consistent in our collective policy (or lack of it).

Monoid instances for Monad (or Applicative) type constructors can come about in a variety
of ways. Pointwise lifting is always available, but we don’t define

instance (Applicative f, Monoid x) => Monoid (f x) {- not really -} where
mempty = pure mempty
mappend fa fb = mappend <$> fa <*> fb

Note that the instance Monoid (a -> b) is just such a pointwise lifting, so the point-
wise lifting for (a -> m b) does happen whenever the monoid instance for m b does pointwise
lifting for the monoid on b.

We don’t do pointwise lifting in general, not only because it would prevent other Monoid
instances whose carriers happen to be applied types, but also because the structure of the f is
often considered more significant than that of the x. A key case in point is the free monoid,
better known as [x], which is a Monoid by [] and (++), rather than by pointwise lifting. The
monoidal structure comes from the list wrapping, not from the elements wrapped.

My preferred rule of thumb is indeed to prioritise monoidal structure inherent in the type
constructor over either pointwise lifting, or monoidal structure of specific instantiations of a type,
like the composition monoid for a -> a. These can and do get newtype wrappings.
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Arguments break out over whether Monoid (m x) should coincide with MonadPlus m
whenever both exist (and similarly with Alternative). My sense is that the only good MonadPlus
instance is a copy of a Monoid instance, but others differ. Still, the library is not consistent in this
matter, especially not in the matter of (many readers will have seen this old bugbear of mine
coming). . .

. . . the monoid instance for Maybe, which ignores the fact that we routinely use Maybe to
model possible failure and instead observes that that the same data type idea of chucking in
an extra element can be used to give a semigroup a neutral element if it didn’t already have
one. The two constructions give rise to isomorphic types, but they are not conceptually cognate.
(Edit To make matters worse, the idea is implemented awkwardly, giving instance a Monoid
constraint, when only a Semigroup is needed. I’d like to see the Semigroup-extends-to-Monoid
idea implemented, but not for Maybe.)

Getting back to Kleisli in particular, we have three obvious candidate instances:

1. Monoid (Kleisli m a a) with return and Kleisli composition
2. MonadPlus m => Monoid (Kleisli m a b) lifting mzero and mplus pointwise over

->
3. Monoid b => Monoid (Kleisli m a b) lifting the monoid structure of b over m then

->

I expect no choice has been made, just because it’s not clear which choice to make. I hesitate
to say so, but my vote would be for 2, prioritising the structure coming from Kleisli m a over
the structure coming from b.

5.9 Monads at the prompt?

As things stand, the IO-specific behaviour relies on the way IO actions are a bit statelike and
unretractable. So you can say things like

s <- readFile "foo.txt"

and get an actual value s :: String.
It’s pretty clear that it takes more than just Monad structure to sustain that sort of interaction.

It would not be so easy with

n <- [1, 2, 3]

to say what value n has.
One could certainly imagine adapting ghci to open a prompt allowing a monadic computation

to be constructed do-style in multiple command-line interactions, delivering the whole compu-
tation when the prompt is closed. It’s not clear what it would mean to inspect the intermediate
values (other than to generate collections of printing computations of type m (IO ()), for the
active monad m, of course).

But it would be interesting to ask whether what’s special about IO that makes a nice interac-
tive prompt behaviour possible can be isolated and generalized. I can’t help sniffing a whiff of
a comonadic value-in-context story about interaction at a prompt, but I haven’t tracked it down
yet. One might imagine addressing my list example by considering what it would mean to have a
cursor into a space of possible values, the way IO has a cursor imposed on it by the here-and-now
of the real world. Thank you for the food for thought.

5.10 Is this a case to use liftM?

liftM and friends serve the purpose of jacking up pure functions to a monadic setting, much as
the Applicative combinators do.
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liftM :: Monad m => (s -> t) -> m s -> m t

There are two issues with the code you tried. One is just a lack of parentheses.

liftM sendAllTo :: IO Socket -> IO (ByteString -> SockAddr -> IO ())

which is not what you meant. The other issue is that

sendAllTo :: Socket -> ByteString -> SockAddr -> IO ()

is a monadic operation, so lifting it will deliver two layers of IO. The usual method is to paren-
thesize the pure prefix of the application, like so

liftM (sendAllTo s datastring) :: IO SockAddr -> IO (IO ())

You can then build the argument with liftM2.

liftM2 SockAddrInet ioport (inet_adder host) :: IO SockAddr

That gives you

liftM (sendAllTo s datastring) (liftM2 SockAddrInet ioport (inet_adder host))
:: IO (IO ())

which will achieve precisely nothing as it stands, because it explains how to compute an
operation but doesn’t actually invoke it! That’s where you need

join (liftM (sendAllTo s datastring) (liftM2 SockAddrInet ioport (inet_addr host)))
:: IO ()

or, more compactly

sendAllTo s datastring =<< liftM2 SockAddrInet ioport (inet_adder host)

Plug. The Strathclyde Haskell Enhancement supports idiom brackets, where
(|f a1 .. an|) :: m t if f :: s1 -> ... -> sn -> t and a1 :: m s1 . . . an

:: m sn.
These do the same job for Applicative m as the liftM family do for monads, treating f as a

pure n-ary function and a1..an as effectful arguments. Monads can and should be Applicative
too, so

(|SockAddrInet ioprot (inet_addr host)|) :: IO SockAddr

and

(|(sendAllTo s datastring) (|SockAddrInet ioprot (inet_addr host)|)|) :: IO (IO ())

The notation then allows you to invoke computed monadic computations like the above, with
a postfixed @.

(|(sendAllTo s datastring) (|SockAddrInet ioprot (inet_addr host)|) @|) :: IO ()

Note that I’m still parenthesizing the pure prefix of the application, so that the f of the tem-
plate is the whole of (sendAllTo s datastring). The notation allows you to mark pure
arguments in any position with a ˜, so you can write this

(|sendAllTo ˜s ˜datastring (|SockAddrInet ioprot (inet_addr host)|) @|) :: IO ()

if the mood takes you.
Rant. We spend far too much energy on figuring out the right liftM, join, =<<, do,

(|...˜...@|) punctuation in order to explain how to cut up a type as a value-explaining kernel
(() here) in an effect-explaining context (IO here). If this up-cutting were made more explicitly
in types, we should need less noise in our programs to slap values and computations into align-
ment. I should much prefer the computer to infer where the ˜ and @ marks go, but as things
stand, Haskell types are too ambiguous a document to make that feasible.

https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/
https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/idiom.html
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5.11 Zappy colists do not form a monad

I just thought I should clarify that the version with exercises and “Idioms” in the title is a rather
earlier draft of the paper which eventually appeared in JFP. At that time, I mistakenly thought
that colists (by which I mean possibly infinite, possibly finite lists) were a monad in a way which
corresponds to zapp: there is a plausible candidate for the join (alluded to in other answers) but
Jeremy Gibbons was kind enough to point out to us that it does not satisfy the monad laws. The
counterexamples involve “ragged” lists of lists with varying finite lengths. Correspondingly, in
the JFP article, we stood corrected. (We were rather happy about it, because we love to find
applicative functors whose (<*>) is not the ap of a Monad.)

The necessarily infinite lists (i.e. streams), by ruling out the ragged cases, do indeed form a
monad whose ap behaves like zapp. For a clue, note that Stream x is isomorphic to Nat -> x.

My apologies for the confusion. It’s sometimes dangerous leaving old, unfinished drafts (re-
plete with errors) lying (ha ha) around on the web.

5.12 Haskell io-streams and forever produces no output to std-
out

The meaning of the forever in your code is that it takes for ever to choose each value in the
stream. Its type

forever :: Monad m => m a -> m b

is a big clue that a computation built with forever never returns a value: the caller of
forever gets to pick the type b arbitrarily, so no program can actually promise to deliver a
value of that type. That’s also why your program typechecks. The computation you pass to
forever is repeatedly executed for its effect (in this case, choosing a random number), but no
value is ever delivered, hence the stream never gets going.

You shouldn’t need a forever to make a stream that keeps going. The behaviour of makeInputStream
is to run its argument computation each time a value is demanded from the stream, so you’ve
got your repetition there already.



Chapter 6

Differential Calculus for Types

6.1 Find the preceding element of an element in list

One of my favourite underappreciated utilities is rather handy for problems like this. Let me
have backward lists, so I don’t need to reverse my brain.

data Bwd x = B0 | Bwd x :< x -- rightmost is nearest

Think of list elements as the beads on an abacus wire. Flick a few to the left and leave your
finger resting on the next one. What have you? A list of beads to the left of your finger (with the
rightmost nearest), a list of beads to the right of your finger (with the leftmost nearest), and the
bead with your finger on it.

That is, a one-hole element context for lists is given by the pair of backward and forward lists
either side of the hole.

type ListContext x = (Bwd x, [x])

Those who know my old songs recognize ListContext as the derivative of [].
An element in focus (your finger on a bead) is

type ListFocus x = (ListContext x, x)

And there is a useful operation which decorates every list element with its context, putting it
in focus.

focus :: [x] -> [ListFocus x]
focus = go B0 where

go xz [] = []
go xz (x : xs) = ((xz, xs), x) : go (xz :< x) xs

For example,

focus [1,2,3] = [((B0,[2,3]),1), ((B0 :< 1,[3]),2), ((B0 :< 1 :< 2,[]),3)]

and now it is very easy to answer all sorts of questions that concern an element and its imme-
diate surroundings. You mightn’t construct focus just to solve this problem, but it’s the sort of
thing I keep around because it solves lots of problems.

[p | ((_ :< p,_),q) <- focus xs, q == x]

computes all the values p which sit to the left of an x in xs. As you can see.
(By the way, this focus operation didn’t come from nowhere. It arises from the differential

structure of the datatype of lists. This answer (where it is called picks) tells the list story in more
detail, and this answer develops the datatype generic story.)
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6.2 Splitting a List

This answer is in two parts. The first part addresses the question directly. The second part goes off on a
tangent (literally) in order to dig about in the mathematics behind the first part: it may thus prove to be
difficult material of limited interest, but I thought a few extremists might enjoy it.

The answers I’ve seen so far make neat use of list comprehensions or their monadic equiva-
lent, but they use equality to rule out duplicates, thus requiring an extra Eq constraint. Here’s a
solution which makes all the pairs of elements in two different positions.

Firstly, I write a handy function which decorates each element of a list with the list of elements
in other positions: all the ways to “pick one and leave the others”. It’s very useful whenever lists
are being used to collect stuff for selection-without-replacement, and it’s something I find I use a
lot.

picks :: [x] -> [(x, [x])]
picks [] = []
picks (x : xs) = (x, xs) : [(y, x : ys) | (y, ys) <- picks xs]

Note that map fst . picks = id, so that the selected element in each position of the re-
sult is the element from that position in the original list: that’s what I meant by “decorates”.

Now it’s easy to pick two, using the same list comprehension method as in the other answers.
But instead of selecting the first component from the list itself, we can select from its picks, at
the same time acquiring the list of candidates for the second component.

allPairs :: [x] -> [(x, x)]
allPairs xs = [(y, z) | (y, ys) <- picks xs, z <- ys]

It’s just as easy to get hold of the triples, taking picks twice.

allTriples :: [x] -> [(x, x, x)]
allTriples ws = [(x, y, z) | (x, xs) <- picks ws, (y, ys) <- picks xs, z <- ys]

For uniformity, it’s almost tempting to make the code slightly less efficient, writing (z, )
<- picks ys rather than z <- ys in both.

If the input list has no duplicates, you won’t get any duplicating tuples in the output, because
the tuples take their elements from different positions. However, you will get

Picks> allPairs ["cat", "cat"]
[("cat","cat"),("cat","cat")]

To avoid that, feel free to use allPairs . nub, which removes duplicates before selection
and demands once more an Eq instance for the element type. For extremists only: containers,
calculus, comonads and combinatorics ahoy!

picks is one instance of a more general construct, arising from the differential calculus. It’s
an amusing fact that for any given containery sort of a functor f, its mathematical derivative, ∂f,
represents f-structures with one element removed. For example,

newtype Trio x = Trio (x, x, x) -- xˆ3

has derivative

data DTrio x = Left3 ((), x, x) | Mid3 (x, (), x) | Right3 (x, x, ()) -- 3*xˆ2

A number of operations can be associated with this construction. Imagine we can really use
∂ (and we can kinda code it up using type families). We could then say

data InContext f x = (:-) {selected :: x, context :: ∂f x}
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to give a type of selected elements decorated by context. We should certainly expect to have
the operation

plug :: InContext f x -> f x -- putting the element back in its place

This plug operation moves us towards the root if we’re zippering about in a tree whose nodes
are seen as containers of subtrees.

We should also expect InContext f to be a comonad, with

counit :: InContext f x -> x
counit = selected

projecting out the selected element and

cojoin :: InContext f x -> InContext f (InContext f x)

decorating every element with its context, showing all possible way you could refocus, select-
ing a different element.

The inestimable Peter Hancock once suggested to me that we should also expect to be able
to move “down” (meaning “away from the root”), collecting all the possible ways to pick an
element-in-context from a whole structure.

picks :: f x -> f (InContext f x)

should decorate every x-element in the input f-structure with its context. We should expect
that

fmap selected . picks = id

which is the law we had earlier, but also

fmap plug (picks fx) = fmap (const fx) fx

telling us that every decorated element is a decomposition of the original data. We didn’t
have that law above. We had

picks :: [x] -> [(x, [x])]

decorating every element not quite with something a bit like its context: from just the list of
other elements, you can’t see where the “hole” is. In truth,

∂[] x = ([x], [x])

separating the list of elements before the hole from the elements after the hole. Arguably, I
should have written

picks :: [x] -> [(x, ([x], [x]))]
picks [] = []
picks (x : xs) = (x, ([], xs)) : [(y, (x : ys, ys’)) | (y, (ys, ys’)) <- picks xs]

and that’s certainly a very useful operation too.
But what’s really going on is quite sensible, and only a slight abuse. In the code I originally

wrote, I’m locally taking [] to represent finite bags or unordered lists. Bags are lists without a
notion of specific position, so if you select one element, its context is just the bag of the remaining
elements. Indeed

∂Bag = Bag -- really? why?
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so the right notion of picks is indeed

picks :: Bag x -> Bag (x, Bag x)

Represent Bag by [] and that’s what we had. Moreover, for bags, plug is just (:) and, up
to bag equality (i.e., permutation), the second law for picks does hold.

Another way of looking at bags is as a power series. A bag is a choice of tuples of any size,
with all possible permutations (n! for size n) identified. So we can write it combinatorially as a
big sum of powers quotiented by factorials, because you have to divide by xˆn by n! to account
for the fact that each of the n! orders in which you could have chosen the x’s gives you the same
bag.

Bag x = 1 + x + xˆ2/2! + xˆ3/3! + ...

so

∂Bag x = 0 + 1 + x + xˆ2/2! + ...

shifting the series sideways. Indeed, you may well have recognized the power series for Bag
as being that for exp (or eˆx), which is famous for being its own derivative.

So, phew! There you go. An operation naturally arising from the datatype interpretation of
the exponential function, being its own derivative, is the handy piece of kit for solving problems
based on selection-without-replacement.

6.3 nub as a List Comprehension

The comment from @amalloy that list comprehensions are confined to a “local” perspective is the
key insight here. There is a sensible way to write nub as a list comprehension, but you first need
to change your perspective.

An often useful function sadly omitted from the library is the function which decorates each
element of a list with its context.

picks :: [x] -> [([x], x, [x])]
picks [] = []
picks (x : xs) = ([], x, xs) : [(x : bs, y, as) | (bs, y, as) <- picks xs]

So

picks [1,2,3] =
[([],1,[2,3]), ([1],2,[3]), ([1,2],3,[])]

Each element of the list is put in the middle of a triple, with the elements ‘before’ to its left
and the elements ‘after’ to its right.

This answer of mine explains the deep structure which makes picks in some sense a “stan-
dard” operation, derivable from the structure of lists. But we don’t need that background infor-
mation to deploy it.

The picks function gives us exactly the contextual information we need to write nub as a
list comprehension. All we need to do is pick out the elements which don’t occur in their own
‘before lists’.

myNub :: Eq x => [x] -> [x]
myNub xs = [x | (bs, x, as) <- picks xs, not (elem x bs)]

I make no promises as to the efficiency of this operation, but I do like the clarity that comes
from combining list comprehensions with extra spatial context.

https://stackoverflow.com/a/12872133/828361
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6.4 How to make a binary tree zipper an instance of Comonad?

In the differential calculus, Leibniz’s notation causes less confusion than Newton’s because it is
explicit about the variable with respect to which we differentiate. Contexts in things are given by
differentiation, so we must take care what is being contextualized. Here, there are two notions of
“substructure” at work: subtrees and elements. They each have different (but related) notions of
“context” and hence of “zipper”, where a zipper is the pair of a thing and its context.

Your BTZ type is presented as the notion of zipper for subtrees. However, the zipper comonadic
construction works on zippers for elements: extract means “give element here”; duplicate
means “decorate each element with its context”. So you need element contexts. Confusingly,
for these binary trees, element zippers and subtree zippers are isomorphic, but that is for a very
particular reason (namely that they form a cofree comonad).

Generally, element- and subtree-zippers differ, e.g., for lists. If we start by building the
element-zipper comonad for lists, we are less likely to get lost when we come back to trees. Let
me try also to fill in a bit more of the general picture, for others as well as yourself.

Sublist contexts
The sublist-contexts for [a] are just given by [a], being the list of elements we pass by on the

way out from the sublist to the whole list. The sublist context for [3,4] in [1,2,3,4] is [2,1].
Subnode contexts for recursive data are always lists representing what you see on the path from
the node to the root. The type of each step is given by the partial derivative of the formula for
one node of data with respect to the recursive variable. So here

[a] = t where -- t is the recursive variable standing for [a]
t = 1 + a*t -- lists of a are either [] or an (a : t) pair

∂/∂t (1 + a*t) = a -- that’s one step on a path from node to root
sublist contexts are [a] -- a list of such steps

So a sublist-zipper is a pair

data LinLZ a = LinLZ
{ subListCtxt :: [a]
, subList :: [a]
}

We can write the function which plugs a sublist back into its context, reversing back up the
path

plugLinLZ :: LinLZ a -> [a]
plugLinLZ (LinLZ { subListCtxt = [], subList = ys}) = ys
plugLinLZ (LinLZ { subListCtxt = x : xs, subList = ys})

= plugLinLZ (LinLZ { subListCtxt = xs, subList = x : ys})

But we can’t make LinLZ a Comonad, because (for example) from

LinLZ { subListCtxt = [], subList = [] }

we can’t extract an element (an a from LinLZ a), only a sublist.
List Element Contexts
A list element context is a pair of lists: the elements before the element in focus, and the ele-

ments after it. An element context in a recursive structure is always a pair: first give the subnode-
context for the subnode where the element is stored, then give the context for the element in its
node. We get the element-in-its-node context by differentiating the formula for a node with re-
spect to the variable which stands for elements.

[a] = t where -- t is the recursive variable standing for [a]
t = 1 + a*t -- lists of a are either [] or an (a : t) pair

∂/∂a (1 + a*t) = t = [a] -- the context for the head element is the tail list
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So an element context is given by a pair

type DL a =
( [a] -- the sublist context for the node where the element is
, [a] -- the tail of the node where the element is
)

and an element zipper is given by pairing such a context with the element “in the hole”.

data ZL a = ZL
{ this :: a
, between :: DL a
} deriving (Show, Eq, Functor)

You can turn such a zipper back into a list (going “out” from an element) by first reconstituting
the sublist where the element sits, giving us a sublist zipper, then plugging the sublist into its
sublist-context.

outZL :: ZL a -> [a]
outZL (ZL { this = x, between = (zs, xs) })

= plugLinLZ (LinLZ { subListCtxt = zs, subList = x : xs })

Putting each element into context
Given a list, we can pair each element up with its context. We get the list of ways we can “go

into” one of the elements. We start like this,

into :: [a] -> [ZL a]
into xs = moreInto (LinLZ { subListCtxt = [], subList = xs })

but the real work is done by the helper function which works on a list-in-context.

moreInto :: LinLZ a -> [ZL a]
moreInto (LinLZ { subListCtxt = _, subList = [] }) = []
moreInto (LinLZ { subListCtxt = zs, subList = x : xs })

= ZL { this = x, between = (zs, xs) }
: moreInto (LinLZ { subListCtxt = x : zs, subList = xs })

Notice that the output echoes the shape of the current subList. Also, the zipper in x’s place
has this = x. Also, the generating zipper for decorating xs has subList = xs and the correct
context, recording that we have moved past x. Testing,

into [1,2,3,4] =
[ ZL {this = 1, between = ([],[2,3,4])}
, ZL {this = 2, between = ([1],[3,4])}
, ZL {this = 3, between = ([2,1],[4])}
, ZL {this = 4, between = ([3,2,1],[])}
]

Comonadic structure for list element zippers
We’ve seen how to go out from an element, or into one of the available elements. The

comonadic structure tells us how to move between elements, either staying where we are, or
moving to one of the others.

instance Comonad ZL where

The extract gives us the element we’re visiting.
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extract = this

To duplicate a zipper, we replace the current element x with the whole current zipper zl
(whose this = x). . .

duplicate zl@(ZL { this = x, between = (zs, ys) }) = ZL
{ this = zl

. . . and we work our way through the context, showing how to refocus at each element. Our
existing moreInto lets us move inward, but we must also move outward. . .

, between =
( outward (LinLZ { subListCtxt = zs, subList = x : ys })
, moreInto (LinLZ { subListCtxt = x : zs, subList = ys })
)

}

. . . which involves travelling back along the context, moving elements into the sublist, as fol-
lows

where
outward (LinLZ { subListCtxt = [], subList = _ }) = []
outward (LinLZ { subListCtxt = z : zs, subList = ys })

= ZL { this = z, between = (zs, ys) }
: outward (LinLZ { subListCtxt = zs, subList = z : ys })

So we get

duplicate ZL {this = 2, between = ([1],[3,4])}
= ZL
{ this = ZL {this = 2, between = ([1],[3,4])}
, between =

( [ ZL {this = 1, between = ([],[2,3,4])} ]
, [ ZL {this = 3, between = ([2,1],[4])}

, ZL {this = 4, between = ([3,2,1],[])}
]

)
}

where this is “staying at 2” and we are between “moving to 1” and “moving to 3 or moving
to 4”.

So, the comonadic structure shows us how we can move between different elements located
inside a list. The sublist structure plays a key role in finding the nodes where the elements are,
but the zipper structure duplicated is an element zipper.

So what about trees?
Digression: labelled trees are comonads already
Let me refactor your type of binary trees to bring out some structure. Literally, let us pull the

element which labels a leaf or a fork out as a common factor. Let us also isolate the functor (TF)
which explains this leaf-or-fork subtree structure.

data TF t = Leaf | Fork (t, t) deriving (Show, Eq, Functor)
data BT a = a :& TF (BT a) deriving (Show, Eq, Functor)

That is, every tree node has a label, whether it is a leaf or a fork.
Wherever we have the structure that every node has a label and a blob of substructures, we

have a comonad: the cofree comonad. Let me refactor a little more, abstracting out TF. . .
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data CoFree f a = a :& f (CoFree f a) deriving (Functor)

. . . so we have a general f where we had TF before. We can recover our specific trees.

data TF t = Leaf | Fork (t, t) deriving (Show, Eq, Functor)
type BT = CoFree TF
deriving instance Show a => Show (BT a)
deriving instance Eq a => Eq (BT a)

And now, once for all, we can give the cofree comonad construction. As every subtree has a
root element, every element can be decorated with the tree whose root it is.

instance Functor f => Comonad (CoFree f) where
extract (a :& _) = a -- extract root element
duplicate t@(a :& ft) = t :& fmap duplicate ft -- replace root element by whole tree

Let’s have an example

aTree =
0 :& Fork
( 1 :& Fork

( 2 :& Leaf
, 3 :& Leaf
)

, 4 :& Leaf
)

duplicate aTree =
(0 :& Fork (1 :& Fork (2 :& Leaf,3 :& Leaf),4 :& Leaf)) :& Fork
( (1 :& Fork (2 :& Leaf,3 :& Leaf)) :& Fork

( (2 :& Leaf) :& Leaf
, (3 :& Leaf) :& Leaf
)

, (4 :& Leaf) :& Leaf
)

See? Each element has been paired with its subtree!
Lists do not give rise to a cofree comonad, because not every node has an element: specifically,

[] has no element. In a cofree comonad, there is always an element where you are, and you can
see further down into the tree structure, but not further up.

In an element zipper comonad, there is always an element where you are, and you can see
both up and down.

Subtree and element contexts in binary trees
Algebraically

d/dt (TF t) = d/dt (1 + t*t) = 0 + (1*t + t*1)

so we may define

type DTF t = Either ((), t) (t, ())

saying that a subtree inside the “blob of substructures” is either on the left or the right. We
can check that “plugging in” works.

plugF :: t -> DTF t -> TF t
plugF t (Left ((), r)) = Fork (t, r)
plugF t (Right (l, ())) = Fork (l, t)
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If we instantiate t and pair up with the node label, we get one step of subtree context

type BTStep a = (a, DTF (BT a))

which is isomorphic to Partial in the question.

plugBTinBT :: BT a -> BTStep a -> BT a
plugBTinBT t (a, d) = a :& plugF t d

So, a subtree-context for one BT a inside another is given by [BTStep a].
But what about an element context? Well, every element labels some subtree, so we should

record both that subtree’s context and the rest of the tree labelled by the element.

data DBT a = DBT
{ below :: TF (BT a) -- the rest of the element’s node
, above :: [BTStep a] -- the subtree context of the element’s node
} deriving (Show, Eq)

Annoyingly, I have to roll my own Functor instance.

instance Functor DBT where
fmap f (DBT { above = a, below = b }) = DBT

{ below = fmap (fmap f) b
, above = fmap (f *** (either

(Left . (id *** fmap f))
(Right . (fmap f *** id)))) a

}

Now I can say what an element zipper is.

data BTZ a = BTZ
{ here :: a
, ctxt :: DBT a
} deriving (Show, Eq, Functor)

If you’re thinking “what’s new?”, you’re right. We have a subtree context, above, together
with a subtree given by here and below. And that’s because the only elements are those which
label nodes. Splitting a node up into an element and its context is the same as splitting it into its
label and its blob of substructures. That is, we get this coincidence for cofree comonads, but not
in general.

However, this coincidence is only a distraction! As we saw with lists, we don’t need element-
zippers to be the same as subnode-zippers to make element-zippers a comonad.

Following the same pattern as lists above, we can decorate every element with its context.
The work is done by a helper function which accumulates the subtree context we are currently
visiting.

down :: BT a -> BT (BTZ a)
down t = downIn t []

downIn :: BT a -> [BTStep a] -> BT (BTZ a)
downIn (a :& ft) ads =

BTZ { here = a, ctxt = DBT { below = ft, above = ads } }
:& furtherIn a ft ads

Note that a is replaced by a zipper focused on a. The subtrees are handled by another helper.



114 CHAPTER 6. DIFFERENTIAL CALCULUS FOR TYPES

furtherIn :: a -> TF (BT a) -> [BTStep a] -> TF (BT (BTZ a))
furtherIn a Leaf ads = Leaf
furtherIn a (Fork (l, r)) ads = Fork

( downIn l ((a, Left ((), r)) : ads)
, downIn r ((a, Right (l, ())) : ads)
)

See that furtherIn preserves the tree structure, but grows the subtree context suitably when
it visits a subtree.

Let’s double check.

down aTree =
BTZ { here = 0, ctxt = DBT {

below = Fork (1 :& Fork (2 :& Leaf,3 :& Leaf),4 :& Leaf),
above = []}} :& Fork

( BTZ { here = 1, ctxt = DBT {
below = Fork (2 :& Leaf,3 :& Leaf),
above = [(0,Left ((),4 :& Leaf))]}} :& Fork

( BTZ { here = 2, ctxt = DBT {
below = Leaf,
above = [(1,Left ((),3 :& Leaf)),(0,Left ((),4 :& Leaf))]}} :& Leaf

, BTZ { here = 3, ctxt = DBT {
below = Leaf,
above = [(1,Right (2 :& Leaf,())),(0,Left ((),4 :& Leaf))]}} :& Leaf

)
, BTZ { here = 4, ctxt = DBT {

below = Leaf,
above = [(0,Right (1 :& Fork (2 :& Leaf,3 :& Leaf),()))]}} :& Leaf)

See? Each element is decorated with its whole context, not just the tree below it.
Binary tree zippers form a Comonad
Now that we can decorate elements with their contexts, let us build the Comonad instance.

As before. . .

instance Comonad BTZ where
extract = here

. . .extract tells us the element in focus, and we can make use of our existing machinery to
go further into the tree, but we need to build new kit to explore the ways we can move outwards.

duplicate z@(BTZ { here = a, ctxt = DBT { below = ft, above = ads }}) = BTZ
{ here = z
, ctxt = DBT

{ below = furtherIn a ft ads -- move somewhere below a
, above = go_a (a :& ft) ads -- go above a
}

} where

To go outwards, as with lists, we must move back along the path towards the root. As with
lists, each step on the path is a place we can visit.

go_a t [] = []
go_a t (ad : ads) = go_ad t ad ads : go_a (plugBTinBT t ad) ads
go_ad t (a, d) ads =

( BTZ { here = a, ctxt = DBT { below = plugF t d, above = ads } } -- visit here
, go_d t a d ads -- try other subtree
)
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Unlike with lists, there are alternative branches along that path to explore. Wherever the path
stores an unvisited subtree, we must decorate its elements with their contexts.

go_d t a (Left ((), r)) ads = Left ((), downIn r ((a, Right (t, ())) : ads))
go_d t a (Right (l, ())) ads = Right (downIn l ((a, Left ((), t)) : ads), ())

So now we’ve explained how to refocus from any element position to any other.
Let’s see. Here we were visiting 1:

duplicate (BTZ {here = 1, ctxt = DBT {
below = Fork (2 :& Leaf,3 :& Leaf),
above = [(0,Left ((),4 :& Leaf))]}}) =

BTZ {here = BTZ {here = 1, ctxt = DBT {
below = Fork (2 :& Leaf,3 :& Leaf),
above = [(0,Left ((),4 :& Leaf))]}}, ctxt = DBT {

below = Fork (BTZ {here = 2, ctxt = DBT {
below = Leaf,
above = [(1,Left ((),3 :& Leaf)),(0,Left ((),4 :& Leaf))]}} :& Leaf

,BTZ {here = 3, ctxt = DBT {
below = Leaf,
above = [(1,Right (2 :& Leaf,())),(0,Left ((),4 :& Leaf))]}} :& Leaf

),
above = [(BTZ {here = 0, ctxt = DBT {

below = Fork (1 :& Fork (2 :& Leaf,3 :& Leaf),4 :& Leaf),
above = []}}

,Left ((),BTZ {here = 4, ctxt = DBT {
below = Leaf,
above = [(0,Right (1 :& Fork (2 :& Leaf,3 :& Leaf),()))]}} :& Leaf)

)
]}}

By way of testing the comonad laws on a small sample of data, let us check:

fmap (\ z -> extract (duplicate z) == z) (down aTree)
= True :& Fork (True :& Fork (True :& Leaf,True :& Leaf),True :& Leaf)

fmap (\ z -> fmap extract (duplicate z) == z) (down aTree)
= True :& Fork (True :& Fork (True :& Leaf,True :& Leaf),True :& Leaf)

fmap (\ z -> fmap duplicate (duplicate z) == duplicate (duplicate z)) (down aTree)
= True :& Fork (True :& Fork (True :& Leaf,True :& Leaf),True :& Leaf)

6.5 What’s the absurd function in Data.Void useful for?

Consider this representation for lambda terms parametrized by their free variables. (See papers
by Bellegarde and Hook 1994, Bird and Paterson 1999, Altenkirch and Reus 1999.)

data Tm a = Var a
| Tm a :$ Tm a
| Lam (Tm (Maybe a))

You can certainly make this a Functor, capturing the notion of renaming, and a Monad cap-
turing the notion of substitution.

instance Functor Tm where
fmap rho (Var a) = Var (rho a)
fmap rho (f :$ s) = fmap rho f :$ fmap rho s



116 CHAPTER 6. DIFFERENTIAL CALCULUS FOR TYPES

fmap rho (Lam t) = Lam (fmap (fmap rho) t)

instance Monad Tm where
return = Var
Var a >>= sig = sig a
(f :$ s) >>= sig = (f >>= sig) :$ (s >>= sig)
Lam t >>= sig = Lam (t >>= maybe (Var Nothing) (fmap Just . sig))

Now consider the closed terms: these are the inhabitants of Tm Void. You should be able to
embed the closed terms into terms with arbitrary free variables. How?

fmap absurd :: Tm Void -> Tm a

The catch, of course, is that this function will traverse the term doing precisely nothing.
But it’s a touch more honest than unsafeCoerce. And that’s why vacuous was added to
Data.Void. . .

Or write an evaluator. Here are values with free variables in b.

data Val b
= b :$$ [Val b] -- a stuck application
| forall a. LV (a -> Val b) (Tm (Maybe a)) -- we have an incomplete environment

I’ve just represented lambdas as closures. The evaluator is parametrized by an environment
mapping free variables in a to values over b.

eval :: (a -> Val b) -> Tm a -> Val b
eval g (Var a) = g a
eval g (f :$ s) = eval g f $$ eval g s where

(b :$$ vs) $$ v = b :$$ (vs ++ [v]) -- stuck application gets longer
LV g t $$ v = eval (maybe v g) t -- an applied lambda gets unstuck

eval g (Lam t) = LV g t

You guessed it. To evaluate a closed term at any target

eval absurd :: Tm Void -> Val b

More generally, Void is seldom used on its own, but is handy when you want to instantiate
a type parameter in a way which indicates some sort of impossibility (e.g., here, using a free
variable in a closed term). Often these parametrized types come with higher-order functions
lifting operations on the parameters to operations on the whole type (e.g., here, fmap, >>=,
eval). So you pass absurd as the general-purpose operation on Void.

For another example, imagine using Either e v to capture computations which hopefully
give you a v but might raise an exception of type e. You might use this approach to document
risk of bad behaviour uniformly. For perfectly well behaved computations in this setting, take e
to be Void, then use

either absurd id :: Either Void v -> v

to run safely or

either absurd Right :: Either Void v -> Either e v

to embed safe components in an unsafe world.
Oh, and one last hurrah, handling a “can’t happen”. It shows up in the generic zipper con-

struction, everywhere that the cursor can’t be.
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class Differentiable f where
type D f :: * -> * -- an f with a hole
plug :: (D f x, x) -> f x -- plugging a child in the hole

newtype K a x = K a -- no children, just a label
newtype I x = I x -- one child
data (f :+: g) x = L (f x) -- choice

| R (g x)
data (f :*: g) x = f x :&: g x -- pairing

instance Differentiable (K a) where
type D (K a) = K Void -- no children, so no way to make a hole
plug (K v, x) = absurd v -- can’t reinvent the label, so deny the hole!

I decided not to delete the rest, even though it’s not exactly relevant.

instance Differentiable I where
type D I = K ()
plug (K (), x) = I x

instance (Differentiable f, Differentiable g) => Differentiable (f :+: g) where
type D (f :+: g) = D f :+: D g
plug (L df, x) = L (plug (df, x))
plug (R dg, x) = R (plug (dg, x))

instance (Differentiable f, Differentiable g) => Differentiable (f :*: g) where
type D (f :*: g) = (D f :*: g) :+: (f :*: D g)
plug (L (df :&: g), x) = plug (df, x) :&: g
plug (R (f :&: dg), x) = f :&: plug (dg, x)

Actually, maybe it is relevant. If you’re feeling adventurous, this unfinished article shows
how to use Void to compress the representation of terms with free variables

data Term f x = Var x | Con (f (Term f x)) -- the Free monad, yet again

in any syntax generated freely from a Differentiable and Traversable functor f. We
use Term f Void to represent regions with no free variables, and [D f (Term f Void)]
to represent tubes tunnelling through regions with no free variables either to an isolated free
variable, or to a junction in the paths to two or more free variables. Must finish that article
sometime.

For a type with no values (or at least, none worth speaking of in polite company), Void is
remarkably useful. And absurd is how you use it.

6.6 Writing cojoin or cobind for n-dimensional grids

Jagger/Richards: you can’t always get what you want, but if you try sometime you just might
find that you get what you need.

6.6.1 Cursors in Lists

Let me rebuild the components of your structure using snoc- and cons-lists to keep the spatial
properties clear. I define

http://www.strictlypositive.org/Holes.pdf
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data Bwd x = B0 | Bwd x :< x deriving (Functor, Foldable, Traversable, Show)
data Fwd x = F0 | x :> Fwd x deriving (Functor, Foldable, Traversable, Show)
infixl 5 :<
infixr 5 :>

data Cursor x = Cur (Bwd x) x (Fwd x) deriving (Functor, Foldable, Traversable, Show)

Let’s have comonads

class Functor f => Comonad f where
counit :: f x -> x
cojoin :: f x -> f (f x)

and let’s make sure cursors are comonads

instance Comonad Cursor where
counit (Cur _ x _) = x
cojoin c = Cur (lefts c) c (rights c) where

lefts (Cur B0 _ _) = B0
lefts (Cur (xz :< x) y ys) = lefts c :< c where c = Cur xz x (y :> ys)
rights (Cur _ _ F0) = F0
rights (Cur xz x (y :> ys)) = c :> rights c where c = Cur (xz :< x) y ys

If you’re turned on to this kind of stuff, you’ll note that Cursor is a spatially pleasing variant
of InContext []

InContext f x = (x, ∂f x)

where ∂ takes the formal derivative of a functor, giving its notion of one-hole context. InContext
f is always a Comonad, as mentioned in this answer, and what we have here is just that Comonad
induced by the differential structure, where counit extracts the element at the focus and cojoin
decorates each element with its own context, effectively giving you a context full of refocused
cursors and with an unmoved cursor at its focus. Let’s have an example.

> cojoin (Cur (B0 :< 1) 2 (3 :> 4 :> F0))
Cur (B0 :< Cur B0 1 (2 :> 3 :> 4 :> F0))

(Cur (B0 :< 1) 2 (3 :> 4 :> F0))
( Cur (B0 :< 1 :< 2) 3 (4 :> F0)
:> Cur (B0 :< 1 :< 2 :< 3) 4 F0
:> F0)

See? The 2 in focus has been decorated to become the cursor-at-2; to the left, we have the list
of the cursor-at-1; to the right, the list of the cursor-at-3 and the cursor-at-4.

6.6.2 Composing Cursors, Transposing Cursors?

Now, the structure you’re asking to be a Comonad is the n-fold composition of Cursor. Let’s
have

newtype (:.:) f g x = C {unC :: f (g x)} deriving Show

To persuade comonads f and g to compose, the counits compose neatly, but you need a
“distributive law”

transpose :: f (g x) -> g (f x)

so you can make the composite cojoin like this

https://stackoverflow.com/a/12872133/828361
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f (g x)
-(fmap cojoin)->

f (g (g x))
-cojoin->

f (f (g (g x)))
-(fmap transpose)->

f (g (f (g x)))

What laws should transpose satisfy? Probably something like

counit . transpose = fmap counit
cojoin . transpose = fmap transpose . transpose . fmap cojoin

or whatever it takes to ensure that any two ways to shoogle some sequence of f’s and g’s from
one order to another give the same result.

Can we define a transpose for Cursor with itself? One way to get some sort of transposi-
tion cheaply is to note that Bwd and Fwd are zippily applicative, hence so is Cursor.

instance Applicative Bwd where
pure x = pure x :< x
(fz :< f) <*> (sz :< s) = (fz <*> sz) :< f s
_ <*> _ = B0

instance Applicative Fwd where
pure x = x :> pure x
(f :> fs) <*> (s :> ss) = f s :> (fs <*> ss)
_ <*> _ = F0

instance Applicative Cursor where
pure x = Cur (pure x) x (pure x)
Cur fz f fs <*> Cur sz s ss = Cur (fz <*> sz) (f s) (fs <*> ss)

And here you should begin to smell the rat. Shape mismatch results in truncation, and that’s
going to break the obviously desirable property that self-transpose is self-inverse. Any kind of
raggedness will not survive. We do get a transposition operator: sequenceA, and for completely
regular data, all is bright and beautiful.

> regularMatrixCursor
Cur (B0 :< Cur (B0 :< 1) 2 (3 :> F0))

(Cur (B0 :< 4) 5 (6 :> F0))
(Cur (B0 :< 7) 8 (9 :> F0) :> F0)

> sequenceA regularMatrixCursor
Cur (B0 :< Cur (B0 :< 1) 4 (7 :> F0))

(Cur (B0 :< 2) 5 (8 :> F0))
(Cur (B0 :< 3) 6 (9 :> F0) :> F0)

But even if I just move one of the inner cursors out of alignment (never mind making the sizes
ragged), things go awry.

> raggedyMatrixCursor
Cur (B0 :< Cur ((B0 :< 1) :< 2) 3 F0)

(Cur (B0 :< 4) 5 (6 :> F0))
(Cur (B0 :< 7) 8 (9 :> F0) :> F0)

> sequenceA raggedyMatrixCursor
Cur (B0 :< Cur (B0 :< 2) 4 (7 :> F0))

(Cur (B0 :< 3) 5 (8 :> F0))
F0
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When you have one outer cursor position and multiple inner cursor positions, there’s no
transposition which is going to behave well. Self-composing Cursor allows the inner structures
to be ragged relative to one another, so no transpose, no cojoin. You can, and I did, define

instance (Comonad f, Traversable f, Comonad g, Applicative g) =>
Comonad (f :.: g) where

counit = counit . counit . unC
cojoin = C . fmap (fmap C . sequenceA) . cojoin . fmap cojoin . unC

but it’s an onus on us to make sure we keep the inner structures regular. If you’re willing to
accept that burden, then you can iterate, because Applicative and Traversable are readily
closed under composition. Here are the bits and pieces

instance (Functor f, Functor g) => Functor (f :.: g) where
fmap h (C fgx) = C (fmap (fmap h) fgx)

instance (Applicative f, Applicative g) => Applicative (f :.: g) where
pure = C . pure . pure
C f <*> C s = C (pure (<*>) <*> f <*> s)

instance (Functor f, Foldable f, Foldable g) => Foldable (f :.: g) where
fold = fold . fmap fold . unC

instance (Traversable f, Traversable g) => Traversable (f :.: g) where
traverse h (C fgx) = C <$> traverse (traverse h) fgx

Edit: for completeness, here’s what it does when all is regular,

> cojoin (C regularMatrixCursor)
C {unC = Cur (B0 :< Cur (B0 :<

C {unC = Cur B0 (Cur B0 1 (2 :> (3 :> F0))) (Cur B0 4 (5 :> (6 :> F0)) :> (Cur B0 7 (8 :> (9 :> F0)) :> F0))})
(C {unC = Cur B0 (Cur (B0 :< 1) 2 (3 :> F0)) (Cur (B0 :< 4) 5 (6 :> F0) :> (Cur (B0 :< 7) 8 (9 :> F0) :> F0))})
(C {unC = Cur B0 (Cur ((B0 :< 1) :< 2) 3 F0) (Cur ((B0 :< 4) :< 5) 6 F0 :> (Cur ((B0 :< 7) :< 8) 9 F0 :> F0))} :> F0))

(Cur (B0 :<
C {unC = Cur (B0 :< Cur B0 1 (2 :> (3 :> F0))) (Cur B0 4 (5 :> (6 :> F0))) (Cur B0 7 (8 :> (9 :> F0)) :> F0)})
(C {unC = Cur (B0 :< Cur (B0 :< 1) 2 (3 :> F0)) (Cur (B0 :< 4) 5 (6 :> F0)) (Cur (B0 :< 7) 8 (9 :> F0) :> F0)})
(C {unC = Cur (B0 :< Cur ((B0 :< 1) :< 2) 3 F0) (Cur ((B0 :< 4) :< 5) 6 F0) (Cur ((B0 :< 7) :< 8) 9 F0 :> F0)} :> F0))

(Cur (B0 :<
C {unC = Cur ((B0 :< Cur B0 1 (2 :> (3 :> F0))) :< Cur B0 4 (5 :> (6 :> F0))) (Cur B0 7 (8 :> (9 :> F0))) F0})
(C {unC = Cur ((B0 :< Cur (B0 :< 1) 2 (3 :> F0)) :< Cur (B0 :< 4) 5 (6 :> F0)) (Cur (B0 :< 7) 8 (9 :> F0)) F0})
(C {unC = Cur ((B0 :< Cur ((B0 :< 1) :< 2) 3 F0) :< Cur ((B0 :< 4) :< 5) 6 F0) (Cur ((B0 :< 7) :< 8) 9 F0) F0} :> F0)

:> F0)}

6.6.3 Hancock’s Tensor Product

For regularity, you need something stronger than composition. You need to be able to capture
the notion of “an f-structure of g-structures-all-the-same-shape”. This is what the inestimable
Peter Hancock calls the “tensor product”, which I’ll write f :><: g: there’s one “outer” f-
shape and one “inner” g-shape common to all the inner g-structures, so transposition is readily
definable and always self-inverse. Hancock’s tensor is not conveniently definable in Haskell,
but in a dependently typed setting, it’s easy to formulate a notion of “container” which has this
tensor.

To give you the idea, consider a degenerate notion of container

data (:<|) s p x = s :<| (p -> x)
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where we say s is the type of “shapes” and p the type of “positions”. A value consists of
the choice of a shape and the storage of an x in each position. In the dependent case, the type
of positions may depend on the choice of the shape (e.g., for lists, the shape is a number (the
length), and you have that many positions). These containers have a tensor product

(s :<| p) :><: (s’ :<| p’) = (s, s’) :<| (p, p’)

which is like a generalised matrix: a pair of shapes give the dimensions, and then you have an
element at each pair of positions. You can do this perfectly well when types p and p' depend on
values in s and s', and that is exactly Hancock’s definition of the tensor product of containers.

6.6.4 InContext for Tensor Products

Now, as you may have learned in high school, ∂(s :<| p) = (s, p) :<| (p-1) where p-1
is some type with one fewer element than p. Like ∂(sxˆp) = (sp)xˆ(p-1). You select one position
(recording it in the shape) and delete it. The snag is that p-1 is tricky to get your hands on without
dependent types. But InContext selects a position without deleting it*.

InContext (s :<| p) ˜= (s, p) :<| p

This works just as well for the dependent case, and we joyously acquire

InContext (f :><: g) ˜= InContext f :><: InContext g

Now we know that InContext f is always a Comonad, and this tells us that tensor products
of InContexts are comonadic because they are themselves InContexts. That’s to say, you pick
one position per dimension (and that gives you exactly one position in the whole thing), where
before we had one outer position and lots of inner positions. With the tensor product replacing
composition, everything works sweetly.

6.6.5 Naperian Functors

But there is a subclass of Functor for which the tensor product and the composition coincide.
These are the Functors f for which f () ˜ (): i.e., there is only one shape anyway, so raggedy
values in compositions are ruled out in the first place. These Functors are all isomorphic to (p
->) for some position set p which we can think of as the logarithm (the exponent to which x
must be raised to give f x). Correspondingly, Hancock calls these Naperian functors after John
Napier (whose ghost haunts the part of Edinburgh where Hancock lives).

class Applicative f => Naperian f where
type Log f
project :: f x -> Log f -> x
positions :: f (Log f)
--- project positions = id

A Naperian functor has a logarithm, inducing a projection function mapping positions
to the elements found there. Naperian functors are all zippily Applicative, with pure and
<*> corresponding to the K and S combinators for the projections. It’s also possible to construct
a value where at each position is stored that very position’s representation. Laws of logarithms
which you might remember pop up pleasingly.

newtype Id x = Id {unId :: x} deriving Show

instance Naperian Id where
type Log Id = ()
project (Id x) () = x
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positions = Id ()

newtype (:*:) f g x = Pr (f x, g x) deriving Show

instance (Naperian f, Naperian g) => Naperian (f :*: g) where
type Log (f :*: g) = Either (Log f) (Log g)
project (Pr (fx, gx)) (Left p) = project fx p
project (Pr (fx, gx)) (Right p) = project gx p
positions = Pr (fmap Left positions, fmap Right positions)

Note that a fixed size array (a vector) is given by (Id :*: Id :*: ... :*: Id :*: One),
where One is the constant unit functor, whose logarithm is Void. So an array is Naperian. Now,
we also have

instance (Naperian f, Naperian g) => Naperian (f :.: g) where
type Log (f :.: g) = (Log f, Log g)
project (C fgx) (p, q) = project (project fgx p) q
positions = C $ fmap (\ p -> fmap (p ,) positions) positions

which means that multi-dimensional arrays are Naperian.
To construct a version of InContext f for Naperian f, just point to a position!

data Focused f x = f x :@ Log f

instance Functor f => Functor (Focused f) where
fmap h (fx :@ p) = fmap h fx :@ p

instance Naperian f => Comonad (Focused f) where
counit (fx :@ p) = project fx p
cojoin (fx :@ p) = fmap (fx :@) positions :@ p

So, in particular, a Focused n-dimensional array will indeed be a comonad. A composition
of vectors is a tensor product of n vectors, because vectors are Naperian. But the Focused n-
dimensional array will be the n-fold tensor product, not the composition, of the n Focused vectors
which determine its dimensions. To express this comonad in terms of zippers, we’ll need to
express them in a form which makes it possible to construct the tensor product. I’ll leave that as
an exercise for the future.

6.7 Zipper Comonads, Generically

Like the childcatcher in Chitty-Chitty-Bang-Bang luring kids into captivity with sweets and toys,
recruiters to undergraduate Physics like to fool about with soap bubbles and boomerangs, but
when the door clangs shut, it’s “Right, children, time to learn about partial differentiation!”. Me
too. Don’t say I didn’t warn you.

Here’s another warning: the following code needs {-# LANGUAGE KitchenSink #-}, or
rather

{-# LANGUAGE TypeFamilies, FlexibleContexts, TupleSections, GADTs, DataKinds,
TypeOperators, FlexibleInstances, RankNTypes, ScopedTypeVariables,
StandaloneDeriving, UndecidableInstances #-}

in no particular order.
Differentiable functors give comonadic zippers
What is a differentiable functor, anyway?
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class (Functor f, Functor (DF f)) => Diff1 f where
type DF f :: * -> *
upF :: ZF f x -> f x
downF :: f x -> f (ZF f x)
aroundF :: ZF f x -> ZF f (ZF f x)

data ZF f x = (:<-:) {cxF :: DF f x, elF :: x}

It’s a functor which has a derivative, which is also a functor. The derivative represents a one-
hole context for an element. The zipper type ZF f x represents the pair of a one-hole context and
the element in the hole.

The operations for Diff1 describe the kinds of navigation we can do on zippers (without any
notion of “leftward” and “rightward”, for which see my Clowns and Jokers paper). We can go
“upward”, reassembling the structure by plugging the element in its hole. We can go “down-
ward”, finding every way to visit an element in a give structure: we decorate every element with
its context. We can go “around”, taking an existing zipper and decorating each element with its
context, so we find all the ways to refocus (and how to keep our current focus).

Now, the type of aroundF might remind some of you of

class Functor c => Comonad c where
extract :: c x -> x
duplicate :: c x -> c (c x)

and you’re right to be reminded! We have, with a hop and a skip,

instance Diff1 f => Functor (ZF f) where
fmap f (df :<-: x) = fmap f df :<-: f x

instance Diff1 f => Comonad (ZF f) where
extract = elF
duplicate = aroundF

and we insist that

extract . duplicate == id
fmap extract . duplicate == id
duplicate . duplicate == fmap duplicate . duplicate

We also need that

fmap extract (downF xs) == xs -- downF decorates the element in position
fmap upF (downF xs) = fmap (const xs) xs -- downF gives the correct context

Polynomial functors are differentiable
Constant functors are differentiable.

data KF a x = KF a
instance Functor (KF a) where

fmap f (KF a) = KF a

instance Diff1 (KF a) where
type DF (KF a) = KF Void
upF (KF w :<-: _) = absurd w
downF (KF a) = KF a
aroundF (KF w :<-: _) = absurd w

http://strictlypositive.org/CJ.pdf
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There’s nowhere to put an element, so it’s impossible to form a context. There’s nowhere to
go upF or downF from, and we easily find all none of the ways to go downF.

The identity functor is differentiable.

data IF x = IF x
instance Functor IF where

fmap f (IF x) = IF (f x)

instance Diff1 IF where
type DF IF = KF ()
upF (KF () :<-: x) = IF x
downF (IF x) = IF (KF () :<-: x)
aroundF z@(KF () :<-: x) = KF () :<-: z

There’s one element in a trivial context, downF finds it, upF repacks it, and aroundF can only
stay put.

Sum preserves differentiability.

data (f :+: g) x = LF (f x) | RF (g x)
instance (Functor f, Functor g) => Functor (f :+: g) where

fmap h (LF f) = LF (fmap h f)
fmap h (RF g) = RF (fmap h g)

instance (Diff1 f, Diff1 g) => Diff1 (f :+: g) where
type DF (f :+: g) = DF f :+: DF g
upF (LF f’ :<-: x) = LF (upF (f’ :<-: x))
upF (RF g’ :<-: x) = RF (upF (g’ :<-: x))

The other bits and pieces are a bit more of a handful. To go downF, we must go downF inside
the tagged component, then fix up the resulting zippers to show the tag in the context.

downF (LF f) = LF (fmap (\ (f’ :<-: x) -> LF f’ :<-: x) (downF f))
downF (RF g) = RF (fmap (\ (g’ :<-: x) -> RF g’ :<-: x) (downF g))

To go aroundF, we strip the tag, figure out how to go around the untagged thing, then restore
the tag in all the resulting zippers. The element in focus, x, is replaced by its entire zipper, z.

aroundF z@(LF f’ :<-: (x :: x)) =
LF (fmap (\ (f’ :<-: x) -> LF f’ :<-: x) . cxF $ aroundF (f’ :<-: x :: ZF f x))
:<-: z

aroundF z@(RF g’ :<-: (x :: x)) =
RF (fmap (\ (g’ :<-: x) -> RF g’ :<-: x) . cxF $ aroundF (g’ :<-: x :: ZF g x))
:<-: z

Note that I had to use ScopedTypeVariables to disambiguate the recursive calls to aroundF.
As a type function, DF is not injective, so the fact that f' :: D f x is not enough to force f'
:<-: x :: Z f x.

Product preserves differentiability.

data (f :*: g) x = f x :*: g x
instance (Functor f, Functor g) => Functor (f :*: g) where

fmap h (f :*: g) = fmap h f :*: fmap h g

To focus on an element in a pair, you either focus on the left and leave the right alone, or vice
versa. Leibniz’s famous product rule corresponds to a simple spatial intuition!
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instance (Diff1 f, Diff1 g) => Diff1 (f :*: g) where
type DF (f :*: g) = (DF f :*: g) :+: (f :*: DF g)
upF (LF (f’ :*: g) :<-: x) = upF (f’ :<-: x) :*: g
upF (RF (f :*: g’) :<-: x) = f :*: upF (g’ :<-: x)

Now, downF works similarly to the way it did for sums, except that we have to fix up the
zipper context not only with a tag (to show which way we went) but also with the untouched
other component.

downF (f :*: g)
= fmap (\ (f’ :<-: x) -> LF (f’ :*: g) :<-: x) (downF f)
:*: fmap (\ (g’ :<-: x) -> RF (f :*: g’) :<-: x) (downF g)

But aroundF is a massive bag of laughs. Whichever side we are currently visiting, we have
two choices:

1. Move aroundF on that side.
2. Move upF out of that side and downF into the other side.

Each case requires us to make use of the operations for the substructure, then fix up contexts.

aroundF z@(LF (f’ :*: g) :<-: (x :: x)) =
LF (fmap (\ (f’ :<-: x) -> LF (f’ :*: g) :<-: x)

(cxF $ aroundF (f’ :<-: x :: ZF f x))
:*: fmap (\ (g’ :<-: x) -> RF (f :*: g’) :<-: x) (downF g))

:<-: z
where f = upF (f’ :<-: x)

aroundF z@(RF (f :*: g’) :<-: (x :: x)) =
RF (fmap (\ (f’ :<-: x) -> LF (f’ :*: g) :<-: x) (downF f) :*:

fmap (\ (g’ :<-: x) -> RF (f :*: g’) :<-: x)
(cxF $ aroundF (g’ :<-: x :: ZF g x)))

:<-: z
where g = upF (g’ :<-: x)

Phew! The polynomials are all differentiable, and thus give us comonads.
Hmm. It’s all a bit abstract. So I added deriving Show everywhere I could, and threw in

deriving instance (Show (DF f x), Show x) => Show (ZF f x)

which allowed the following interaction (tidied up by hand)

> downF (IF 1 :*: IF 2)
IF (LF (KF () :*: IF 2) :<-: 1) :*: IF (RF (IF 1 :*: KF ()) :<-: 2)

> fmap aroundF it
IF (LF (KF () :*: IF (RF (IF 1 :*: KF ()) :<-: 2)) :<-: (LF (KF () :*: IF 2) :<-: 1))
:*:
IF (RF (IF (LF (KF () :*: IF 2) :<-: 1) :*: KF ()) :<-: (RF (IF 1 :*: KF ()) :<-: 2))

Exercise Show that the composition of differentiable functors is differentiable, using the chain
rule.

Sweet! Can we go home now? Of course not. We haven’t differentiated any recursive struc-
tures yet.

Making recursive functors from bifunctors
A Bifunctor, as the existing literature on datatype generic programming (see work by Pa-

trik Jansson and Johan Jeuring, or excellent lecture notes by Jeremy Gibbons) explains at length is
a type constructor with two parameters, corresponding to two sorts of substructure. We should
be able to “map” both.
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class Bifunctor b where
bimap :: (x -> x’) -> (y -> y’) -> b x y -> b x’ y’

We can use Bifunctors to give the node structure of recursive containers. Each node has
subnodes and elements. These can just be the two sorts of substructure.

data Mu b y = In (b (Mu b y) y)

See? We “tie the recursive knot” in b’s first argument, and keep the parameter y in its second.
Accordingly, we obtain once for all

instance Bifunctor b => Functor (Mu b) where
fmap f (In b) = In (bimap (fmap f) f b)

To use this, we’ll need a kit of Bifunctor instances.
The Bifunctor Kit
Constants are bifunctorial.

newtype K a x y = K a

instance Bifunctor (K a) where
bimap f g (K a) = K a

You can tell I wrote this bit first, because the identifiers are shorter, but that’s good because
the code is longer.

Variables are bifunctorial.
We need the bifunctors corresponding to one parameter or the other, so I made a datatype to

distinguish them, then defined a suitable GADT.

data Var = X | Y

data V :: Var -> * -> * -> * where
XX :: x -> V X x y
YY :: y -> V Y x y

That makes V X x y a copy of x and V Y x y a copy of y. Accordingly

instance Bifunctor (V v) where
bimap f g (XX x) = XX (f x)
bimap f g (YY y) = YY (g y)

Sums and Products of bifunctors are bifunctors

data (:++:) f g x y = L (f x y) | R (g x y) deriving Show

instance (Bifunctor b, Bifunctor c) => Bifunctor (b :++: c) where
bimap f g (L b) = L (bimap f g b)
bimap f g (R b) = R (bimap f g b)

data (:**:) f g x y = f x y :**: g x y deriving Show

instance (Bifunctor b, Bifunctor c) => Bifunctor (b :**: c) where
bimap f g (b :**: c) = bimap f g b :**: bimap f g c

So far, so boilerplate, but now we can define things like
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List = Mu (K () :++: (V Y :**: V X))

Bin = Mu (V Y :**: (K () :++: (V X :**: V X)))

If you want to use these types for actual data and not go blind in the pointilliste tradition of
Georges Seurat, use pattern synonyms.

But what of zippers? How shall we show that Mu b is differentiable? We shall need to show
that b is differentiable in both variables. Clang! It’s time to learn about partial differentiation.

Partial derivatives of bifunctors
Because we have two variables, we shall need to be able to talk about them collectively some-

times and individually at other times. We shall need the singleton family:

data Vary :: Var -> * where
VX :: Vary X
VY :: Vary Y

Now we can say what it means for a Bifunctor to have partial derivatives at each variable,
and give the corresponding notion of zipper.

class (Bifunctor b, Bifunctor (D b X), Bifunctor (D b Y)) => Diff2 b where
type D b (v :: Var) :: * -> * -> *
up :: Vary v -> Z b v x y -> b x y
down :: b x y -> b (Z b X x y) (Z b Y x y)
around :: Vary v -> Z b v x y -> Z b v (Z b X x y) (Z b Y x y)

data Z b v x y = (:<-) {cxZ :: D b v x y, elZ :: V v x y}

This D operation needs to know which variable to target. The corresponding zipper Z b v
tells us which variable vmust be in focus. When we “decorate with context”, we have to decorate
x-elements with X-contexts and y-elements with Y-contexts. But otherwise, it’s the same story.

We have two remaining tasks: firstly, to show that our bifunctor kit is differentiable; secondly,
to show that Diff2 b allows us to establish Diff1 (Mu b).

Differentiating the Bifunctor kit
I’m afraid this bit is fiddly rather than edifying. Feel free to skip along.
The constants are as before.

instance Diff2 (K a) where
type D (K a) v = K Void
up _ (K q :<- _) = absurd q
down (K a) = K a
around _ (K q :<- _) = absurd q

On this occasion, life is too short to develop the theory of the type level Kronecker-delta, so I
just treated the variables separately.

instance Diff2 (V X) where
type D (V X) X = K ()
type D (V X) Y = K Void
up VX (K () :<- XX x) = XX x
up VY (K q :<- _) = absurd q
down (XX x) = XX (K () :<- XX x)
around VX z@(K () :<- XX x) = K () :<- XX z
around VY (K q :<- _) = absurd q

instance Diff2 (V Y) where
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type D (V Y) X = K Void
type D (V Y) Y = K ()
up VX (K q :<- _) = absurd q
up VY (K () :<- YY y) = YY y
down (YY y) = YY (K () :<- YY y)
around VX (K q :<- _) = absurd q
around VY z@(K () :<- YY y) = K () :<- YY z

For the structural cases, I found it useful to introduce a helper allowing me to treat variables
uniformly.

vV :: Vary v -> Z b v x y -> V v (Z b X x y) (Z b Y x y)
vV VX z = XX z
vV VY z = YY z

I then built gadgets to facilitate the kind of “retagging” we need for down and around. (Of
course, I saw which gadgets I needed as I was working.)

zimap :: (Bifunctor c) => (forall v. Vary v -> D b v x y -> D b’ v x y) ->
c (Z b X x y) (Z b Y x y) -> c (Z b’ X x y) (Z b’ Y x y)

zimap f = bimap
(\ (d :<- XX x) -> f VX d :<- XX x)
(\ (d :<- YY y) -> f VY d :<- YY y)

dzimap :: (Bifunctor (D c X), Bifunctor (D c Y)) =>
(forall v. Vary v -> D b v x y -> D b’ v x y) ->
Vary v -> Z c v (Z b X x y) (Z b Y x y) -> D c v (Z b’ X x y) (Z b’ Y x y)

dzimap f VX (d :<- _) = bimap
(\ (d :<- XX x) -> f VX d :<- XX x)
(\ (d :<- YY y) -> f VY d :<- YY y)
d

dzimap f VY (d :<- _) = bimap
(\ (d :<- XX x) -> f VX d :<- XX x)
(\ (d :<- YY y) -> f VY d :<- YY y)
d

And with that lot ready to go, we can grind out the details. Sums are easy.

instance (Diff2 b, Diff2 c) => Diff2 (b :++: c) where
type D (b :++: c) v = D b v :++: D c v
up v (L b’ :<- vv) = L (up v (b’ :<- vv))
down (L b) = L (zimap (const L) (down b))
down (R c) = R (zimap (const R) (down c))
around v z@(L b’ :<- vv :: Z (b :++: c) v x y)

= L (dzimap (const L) v ba) :<- vV v z
where ba = around v (b’ :<- vv :: Z b v x y)

around v z@(R c’ :<- vv :: Z (b :++: c) v x y)
= R (dzimap (const R) v ca) :<- vV v z
where ca = around v (c’ :<- vv :: Z c v x y)

Products are hard work, which is why I’m a mathematician rather than an engineer.

instance (Diff2 b, Diff2 c) => Diff2 (b :**: c) where
type D (b :**: c) v = (D b v :**: c) :++: (b :**: D c v)
up v (L (b’ :**: c) :<- vv) = up v (b’ :<- vv) :**: c
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up v (R (b :**: c’) :<- vv) = b :**: up v (c’ :<- vv)
down (b :**: c) =

zimap (const (L . (:**: c))) (down b) :**: zimap (const (R . (b :**:))) (down c)
around v z@(L (b’ :**: c) :<- vv :: Z (b :**: c) v x y)

= L (dzimap (const (L . (:**: c))) v ba :**:
zimap (const (R . (b :**:))) (down c))

:<- vV v z where
b = up v (b’ :<- vv :: Z b v x y)
ba = around v (b’ :<- vv :: Z b v x y)

around v z@(R (b :**: c’) :<- vv :: Z (b :**: c) v x y)
= R (zimap (const (L . (:**: c))) (down b):**:

dzimap (const (R . (b :**:))) v ca)
:<- vV v z where
c = up v (c’ :<- vv :: Z c v x y)
ca = around v (c’ :<- vv :: Z c v x y)

Conceptually, it’s just as before, but with more bureaucracy. I built these using pre-type-hole
technology, using undefined as a stub in places I wasn’t ready to work, and introducing a
deliberate type error in the one place (at any given time) where I wanted a useful hint from the
typechecker. You too can have the typechecking as videogame experience, even in Haskell.

Subnode zippers for recursive containers
The partial derivative of b with respect to X tells us how to find a subnode one step inside a

node, so we get the conventional notion of zipper.

data MuZpr b y = MuZpr
{ aboveMu :: [D b X (Mu b y) y]
, hereMu :: Mu b y
}

We can zoom all the way up to the root by repeated plugging in X positions.

muUp :: Diff2 b => MuZpr b y -> Mu b y
muUp (MuZpr {aboveMu = [], hereMu = t}) = t
muUp (MuZpr {aboveMu = (dX : dXs), hereMu = t}) =

muUp (MuZpr {aboveMu = dXs, hereMu = In (up VX (dX :<- XX t))})

But we need element-zippers.
Element-zippers for fixpoints of bifunctors
Each element is somewhere inside a node. That node is sitting under a stack of X-derivatives.

But the position of the element in that node is given by a Y-derivative. We get

data MuCx b y = MuCx
{ aboveY :: [D b X (Mu b y) y]
, belowY :: D b Y (Mu b y) y
}

instance Diff2 b => Functor (MuCx b) where
fmap f (MuCx { aboveY = dXs, belowY = dY }) = MuCx

{ aboveY = map (bimap (fmap f) f) dXs
, belowY = bimap (fmap f) f dY
}

Boldly, I claim

instance Diff2 b => Diff1 (Mu b) where
type DF (Mu b) = MuCx b
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but before I develop the operations, I’ll need some bits and pieces.
I can trade data between functor-zippers and bifunctor-zippers as follows:

zAboveY :: ZF (Mu b) y -> [D b X (Mu b y) y] -- the stack of ‘X‘-derivatives above me
zAboveY (d :<-: y) = aboveY d

zZipY :: ZF (Mu b) y -> Z b Y (Mu b y) y -- the ‘Y‘-zipper where I am
zZipY (d :<-: y) = belowY d :<- YY y

That’s enough to let me define:

upF z = muUp (MuZpr {aboveMu = zAboveY z, hereMu = In (up VY (zZipY z))})

That is, we go up by first reassembling the node where the element is, turning an element-
zipper into a subnode-zipper, then zooming all the way out, as above.

Next, I say

downF = yOnDown []

to go down starting with the empty stack, and define the helper function which goes down
repeatedly from below any stack:

yOnDown :: Diff2 b => [D b X (Mu b y) y] -> Mu b y -> Mu b (ZF (Mu b) y)
yOnDown dXs (In b) = In (contextualize dXs (down b))

Now, down b only takes us inside the node. The zippers we need must also carry the node’s
context. That’s what contextualise does:

contextualize :: (Bifunctor c, Diff2 b) =>
[D b X (Mu b y) y] ->
c (Z b X (Mu b y) y) (Z b Y (Mu b y) y) ->
c (Mu b (ZF (Mu b) y)) (ZF (Mu b) y)

contextualize dXs = bimap
(\ (dX :<- XX t) -> yOnDown (dX : dXs) t)
(\ (dY :<- YY y) -> MuCx {aboveY = dXs, belowY = dY} :<-: y)

For every Y-position, we must give an element-zipper, so it is good we know the whole con-
text dXs back to the root, as well as the dY which describes how the element sits in its node. For
every X-position, there is a further subtree to explore, so we grow the stack and keep going!

That leaves only the business of shifting focus. We might stay put, or go down from where
we are, or go up, or go up and then down some other path. Here goes.

aroundF z@(MuCx {aboveY = dXs, belowY = dY} :<-: _) = MuCx
{ aboveY = yOnUp dXs (In (up VY (zZipY z)))
, belowY = contextualize dXs (cxZ $ around VY (zZipY z))
} :<-: z

As ever, the existing element is replaced by its entire zipper. For the belowY part, we look
where else we can go in the existing node: we will find either alternative element Y-positions
or further X-subnodes to explore, so we contextualise them. For the aboveY part, we must
work our way back up the stack of X-derivatives after reassembling the node we were visiting.

yOnUp :: Diff2 b => [D b X (Mu b y) y] -> Mu b y ->
[D b X (Mu b (ZF (Mu b) y)) (ZF (Mu b) y)]

yOnUp [] t = []
yOnUp (dX : dXs) (t :: Mu b y)

= contextualize dXs (cxZ $ around VX (dX :<- XX t))
: yOnUp dXs (In (up VX (dX :<- XX t)))
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At each step of the way, we can either turn somewhere else that’s around, or keep going up.
And that’s it! I haven’t given a formal proof of the laws, but it looks to me as if the operations

carefully maintain the context correctly as they crawl the structure.
What have we learned?
Differentiability induces notions of thing-in-its-context, inducing a comonadic structure where

extract gives you the thing and duplicate explores the context looking for other things to
contextualise. If we have the appropriate differential structure for nodes, we can develop differ-
ential structure for whole trees.

Oh, and treating each individual arity of type constructor separately is blatantly horrendous.
The better way is to work with functors between indexed sets

f :: (i -> *) -> (o -> *)

where we make o different sorts of structure storing i different sorts of element. These are
closed under the Jacobian construction

J f :: (i -> *) -> ((o, i) -> *)

where each of the resulting (o, i)-structures is a partial derivative, telling you how to make
an i-element-hole in an o-structure. But that’s dependently typed fun, for another time.

6.8 Traversable and zippers: necessity and sufficiency

Every Traversable functor is a container with finitely many positions for elements. In order to
combine the effects for computations at each element, there must only be finitely many. So, for
example, the infinite Stream functor is not Traversable, because there is no way to deliver a
reliable function which pulls Maybe through. We’d need

sequence :: Stream (Maybe x) -> Maybe (Stream x)

but if you want to check that everything in the stream succeeds, you’ll have a long wait.
Zippers correspond to the ability to identify a particular element position (which further gives

rise to a connection with derivatives, but that’s another story). To be able to plug an element
back in its hole, you need an effective way to decide equality on positions. If you have only
finitely many positions, that’s bound to be true (in the absence of information-hiding). So being
Traversable is certainly sufficient for having a Zipper.

It’s not necessary, however. Stream has a perfectly sensible Zipper

type StreamContext x = ([x], Stream x)
type StreamZipper x = (StreamContext x, x)

which represents the context as a finite (ok, ok, add a bang or two) list before the selected
element and an infinite stream after it.

The positions in an infinite Stream are natural numbers. Natural numbers have a decidable
equality, but there are infintely many of them.

tl;dr finite implies countable, but not vice versa.

6.9 How to write this (funny filter) function idiomatically?

You can assemble this function from pieces which either are standard or should be. The accepted
answer has the right clue about zippers. My answer about differentiation and comonads gives a
general treatment of the relevant operations, but let me be specific here.

I define the type of “lists with one element hole” as follows:

https://stackoverflow.com/a/25572148/828361
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data Bwd x = B0 | Bwd x :< x deriving Show
type HoleyList x = (Bwd x, [x])

Strictly speaking, I don’t need to introduce backward lists to do that, but I get so easily con-
fused if I have to reverse things in my head. (It so happens that HoleyList is the formal deriva-
tive of [].)

I can now define what it is to be a list element in its context.

type InContext x = (HoleyList x, x)

The idea is that the second component of the pair belongs in between the backward list and
the forward list. I can define the function which plugs the list back together (Called upF in the
generic treatment.)

plug :: InContext x -> [x]
plug ((B0, xs), y) = y : xs
plug ((xz :< x, xs), y) = plug ((xz, y : xs), x)

I can also define the function that gives all the ways to take a list apart (downF, generically).

selections :: [x] -> [InContext x]
selections = go B0 where

go xz [] = []
go xz (x : xs) = ((xz, xs), x) : go (xz :< x) xs

Note that

map snd (selections xs) = xs
map plug (selections xs) = map (const xs) xs

And now we’re good to follow Bartek’s recipe.

selectModify :: (a -> Bool) -> (a -> a) -> [a] -> [[a]]
selectModify p f = map (plug . (id *** f)) . filter (p . snd) . selections

That is: filter the selections by the test, apply the function to the element in focus, then plug
back together. If you have the zipper equipment lying about, it’s a one-liner, and it should work
for any differentiable functor, not just lists! Job done!

> selectModify ((1 ==) . (‘mod‘ 2)) (2*) [1..10]
[[2,2,3,4,5,6,7,8,9,10]
,[1,2,6,4,5,6,7,8,9,10]
,[1,2,3,4,10,6,7,8,9,10]
,[1,2,3,4,5,6,14,8,9,10]
,[1,2,3,4,5,6,7,8,18,10]]

6.10 Computing a term of a list depending on all previous terms

Statutory Calculus Warning. The basic answer to this question involves specialising a standard
recursion scheme. But I got a bit carried away pulling at the thread of it. Things take a more
abstract turn as I seek to apply the same method to structures other than lists. I end up reaching
for Isaac Newton and Ralph Fox, and in the process devise the alopegmorphism, which may be
something new.

But anyway, something of the sort ought to exist. It looks like a special case of the anamorphism
or “unfold”. Let’s start with what’s called unfoldr in the library.
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unfoldr :: (seed -> Maybe (value, seed)) -> seed -> [value]

It shows how to grow a list of values from a seed, repeatedly using a function called a coalge-
bra. At each step, the coalgebra says whether to stop with [] or to carry on by consing a value
onto a list grown from a new seed.

unfoldr coalg s = case coalg s of
Nothing -> []
Just (v, s’) -> v : unfoldr coalg s’

Here, the seed type can be whatever you like — whatever local state is appropriate to the
unfolding process. One entirely sensible notion of seed is simply “the list so far”, perhaps in
reverse order, so that the most recently added elements are nearest.

growList :: ([value] -> Maybe value) -> [value]
growList g = unfoldr coalg B0 where

coalg vz = case g vz of -- I say "vz", not "vs" to remember it’s reversed
Nothing -> Nothing
Just v -> Just (v, v : vz)

At each step, our g operation looks at the context of values we already have and decides
whether to add another: if so, the new value becomes both the head of the list and the most
recent value in the new context.

So, this growList hands you at each step your list of previous results, ready for zipWith
(*). The reversal is rather handy for the convolution, so perhaps we’re looking at something
like

ps = growList $ \ pz -> Just (sum (zipWith (*) sigmas pz) ‘div‘ (length pz + 1))
sigmas = [sigma j | j <- [1..]]

perhaps?
A recursion scheme? For lists, we have a special case of the anamorphism, where the seed

is the context of what we’ve built so far, and once we’ve said how to build a bit more, we know
how to grow the context by the same token. It’s not hard to see how that works for lists. But how
does it work for anamorphisms in general? Here’s where things get hairy.

We build up possibly infinite values whose node shape is given by some functor f (whose
parameter turns out to be “substructures” when we “tie the knot”).

newtype Nu f = In (f (Nu f))

In an anamorphism, the coalgebra uses the seed to choose a shape for the outermost node,
populated with seeds for the substructures. (Co)recursively, we map the anamorphism across,
growing those seeds into substructures.

ana :: Functor f => (seed -> f seed) -> seed -> Nu f
ana coalg s = In (fmap (ana coalg) (coalg s))

Let’s reconstruct unfoldr from ana. We can build lots of ordinary recursive structures from
Nu and a few simple parts: the polynomial Functor kit.

newtype K1 a x = K1 a -- constants (labels)
newtype I x = I x -- substructure places
data (f :+: g) x = L1 (f x) | R1 (g x) -- choice (like Either)
data (f :*: g) x = f x :*: g x -- pairing (like (,))

with Functor instances
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instance Functor (K1 a) where fmap f (K1 a) = K1 a
instance Functor I where fmap f (I s) = I (f s)
instance (Functor f, Functor g) => Functor (f :+: g) where

fmap h (L1 fs) = L1 (fmap h fs)
fmap h (R1 gs) = R1 (fmap h gs)

instance (Functor f, Functor g) => Functor (f :*: g) where
fmap h (fx :*: gx) = fmap h fx :*: fmap h gx

For lists of value, the node shape functor is

type ListF value = K1 () :+: (K1 value :*: I)

meaning “either a boring label (for nil) or the (cons) pair of a value label and a sublist”. The
type of a ListF value coalgebra becomes

seed -> (K1 () :+: (K1 value :*: I)) seed

which is isomorphic (by “evaluating” the polynomial ListF value at seed) to

seed -> Either () (value, seed)

which is but a hair’s breadth from the

seed -> Maybe (value, seed)

that unfoldr expects. You can recover an ordinary list like so

list :: Nu (ListF a) -> [a]
list (In (L1 _)) = []
list (In (R1 (K1 a :*: I as))) = a : list as

Now, how do we grow some general Nu f? A good start is to choose the shape for the out-
ermost node. A value of type f () gives just the shape of a node, with trivial stubs in the
substructure positions. Indeed, to grow our trees, we basically need some way to choose the
“next” node shape given some idea where we’ve got to and what we’ve done so far. We should
expect

grow :: (..where I am in a Nu f under construction.. -> f ()) -> Nu f

Note that for growing lists, our step function returns a ListF value (), which is isomor-
phic to Maybe value.

But how do we express where we are in a Nu f so far? We’re going to be so-many-nodes-
in from the root of the structure, so we should expect a stack of layers. Each layer should tell
us (1) its shape, (2) which position we’re currently at, and (3) the structures already built to the
left of that position, but we expect still to have stubs in the positions at which we have not yet
arrived. In other words, it’s an example of the dissection structure from my 2008 POPL paper
about Clowns and Jokers.

The dissection operator turns a functor f (seen as a container of elements) into a bifunctor
Diss f with two different sorts of elements, those on the left (clowns) and those on the right
(jokers) of a “cursor position” within an f structure. First, let’s have the Bifunctor class and
some instances.

class Bifunctor b where
bimap :: (c -> c’) -> (j -> j’) -> b c j -> b c’ j’

newtype K2 a c j = K2 a
data (f :++: g) c j = L2 (f c j) | R2 (g c j)

http://strictlypositive.org/CJ.pdf
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data (f :**: g) c j = f c j :**: g c j
newtype Clowns f c j = Clowns (f c)
newtype Jokers f c j = Jokers (f j)

instance Bifunctor (K2 a) where
bimap h k (K2 a) = K2 a

instance (Bifunctor f, Bifunctor g) => Bifunctor (f :++: g) where
bimap h k (L2 fcj) = L2 (bimap h k fcj)
bimap h k (R2 gcj) = R2 (bimap h k gcj)

instance (Bifunctor f, Bifunctor g) => Bifunctor (f :**: g) where
bimap h k (fcj :**: gcj) = bimap h k fcj :**: bimap h k gcj

instance Functor f => Bifunctor (Clowns f) where
bimap h k (Clowns fc) = Clowns (fmap h fc)

instance Functor f => Bifunctor (Jokers f) where
bimap h k (Jokers fj) = Jokers (fmap k fj)

Note that Clowns f is the bifunctor which amounts to an f structure containing only clowns,
whilst Jokers f has only jokers. If you feel bothered by the repetition of all the Functor para-
phernalia to get the Bifunctor paraphernalis, you’re right to be bothered: it gets less laborious
if we abstract away the arity and work with functors between indexed sets, but that’s a whole
other story.

Let’s define dissection as a class which associates a bifunctor with a functor.

class (Functor f, Bifunctor (Diss f)) => Dissectable f where
type Diss f :: * -> * -> *
rightward :: Either (f j) (Diss f c j, c) ->

Either (j, Diss f c j) (f c)

The type Diss f c j represents an f-structure with a “hole” or “cursor position” at one
element position, and in the positions to the left of the hole we have “clowns” in c, and to the
right we have “jokers” in j. (The terminology is lifted from the Stealer’s Wheel song “Stuck in the
Middle with You”.)

The key operation in the class is the isomorphism rightward which tells us how to move
one place to the right, starting from either

• left of a whole structure full of jokers, or
• a hole in the structure, together with a clown to put in the hole

and arriving at either

• a hole in the structure, together with the joker which came out of it, or
• right of a whole structure full of clowns.

Isaac Newton was fond of dissections, but he called them divided differences and defined them
on real-valued functions to get the slope between two points on a curve, thus

divDiff f c j = (f c - f j) / (c - j)

and he used them to make best polynomial approximations to any old functions, and the like.
Multiply up and multiply out

divDiff f c j * c - j * divDiff f c j = f c - f j

then get rid of the subtraction by adding to both sides

f j + divDiff f c j * c = f c + j * divDiff f c j
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and you’ve got the rightward isomorphism.
We might build a bit more intuition for these things if we look at the instances, and then we

can get back to our original problem.
A boring old constant has zero as its divided difference.

instance Dissectable (K1 a) where
type Diss (K1 a) = K2 Void
rightward (Left (K1 a)) = (Right (K1 a))
rightward (Right (K2 v, _)) = absurd v

If we start to the left and go to the right, we jump over the whole structure, because there are
no element positions. If we start in an element position, someone is lying!

The identity functor has just one position.

instance Dissectable I where
type Diss I = K2 ()
rightward (Left (I j)) = Left (j, K2 ())
rightward (Right (K2 (), c)) = Right (I c)

If we start to the left, we arrive in the position and out pops the joker; push in a clown and
we finish on the right.

For sums, the structure is inherited: we just have to get the detagging and retagging correct.

instance (Dissectable f, Dissectable g) => Dissectable (f :+: g) where
type Diss (f :+: g) = Diss f :++: Diss g
rightward x = case x of

Left (L1 fj) -> ll (rightward (Left fj))
Right (L2 df, c) -> ll (rightward (Right (df, c)))
Left (R1 gj) -> rr (rightward (Left gj))
Right (R2 dg, c) -> rr (rightward (Right (dg, c)))

where
ll (Left (j, df)) = Left (j, L2 df)
ll (Right fc) = Right (L1 fc)
rr (Left (j, dg)) = Left (j, R2 dg)
rr (Right gc) = Right (R1 gc)

For products, we must be somewhere in a pair of structures: either we’re on the left between
clowns and jokers with the right structure all jokers, or the left structure is all clowns and we’re
on the right between clowns and jokers.

instance (Dissectable f, Dissectable g) => Dissectable (f :*: g) where
type Diss (f :*: g) = (Diss f :**: Jokers g) :++: (Clowns f :**: Diss g)
rightward x = case x of

Left (fj :*: gj) -> ll (rightward (Left fj)) gj
Right (L2 (df :**: Jokers gj), c) -> ll (rightward (Right (df, c))) gj
Right (R2 (Clowns fc :**: dg), c) -> rr fc (rightward (Right (dg, c)))

where
ll (Left (j, df)) gj = Left (j, L2 (df :**: Jokers gj))
ll (Right fc) gj = rr fc (rightward (Left gj)) -- (!)
rr fc (Left (j, dg)) = Left (j, R2 (Clowns fc :**: dg))
rr fc (Right gc) = Right (fc :*: gc)

The rightward logic ensures that we work our way through the left structure, then once
we’re done with it, we start work on the right. The line marked (!) is the key moment in the
middle, where we emerge from the right of the left structure and then enter the left of the right
structure.
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Huet’s notion of “left” and “right” cursor movements in data structures arise from dissectabil-
ity (if you complete the rightward isomorphism with its leftward counterpart). The derivative
of f is just the limit when the difference between clowns and jokers tend to zero, or for us, what
you get when you have the same sort of stuff either side of the cursor.

Moreover, if you take clowns to be zero, you get

rightward :: Either (f x) (Diss f Void x, Void) -> Either (x, Diss f Void x) (f Void)

but we can remove the impossible input case to get

type Quotient f x = Diss f Void x
leftmost :: f x -> Either (x, Quotient f x) (f Void)
leftmost = rightward . Left

which tells us that every f structure either has a leftmost element or none at all, a result we
learn in school as the “Remainder Theorem”. The multivariate version of the Quotient operator
is the “derivative” which Brzozowski applied to regular expressions.

But our special case is Fox’s derivative (about which I learned from Dan Piponi):

type Fox f x = Diss f x ()

That’s the type of f-structures with stubs to the right of a cursor. Now we can give the type of
our general grow operator.

grow :: Dissectable f => ([Fox f (Nu f)] -> f ()) -> Nu f

Our “context” is a stack of layers, each of which has fully grown data to the left and stubs to
the right. We can implement grow directly as follows:

grow g = go [] where
go stk = In (walk (rightward (Left (g stk)))) where

walk (Left ((), df)) = walk (rightward (Right (df, go (df : stk))))
walk (Right fm) = fm

As we arrive at each position, the joker we extract is just a stub, but its context tells us how
to extend the stack in order to grow a substructure of the tree, which gives us the clown that we
need to move right. Once we’ve filled in all the stubs with trees, we’re done!

But here’s the twist: grow is not so easy to express as an anamorphism. It’s easy to give the
“seed” for the leftmost child of each node, because we have only stubs to the right of us. But
to give the next seed to the right, we need more than the leftmost seed — we need the tree that
grows from it! The anamorphism pattern requires us to give all the seeds for substructures before
growing any of them. Our growList is an anamorphism only because list nodes have at most
one child.

So it’s something new, after all, growing from nothing, but allowing later growth at a given
layer to depend on earlier trees, with the Fox derivative capturing the idea of “stubs where we
have yet to work”. Perhaps we should call it an alopegmorphism, from the Greek αλωπηξ for
“fox”.

6.11 Reasonable Comonad implementations (for nonempty lists)

Nonempty lists arise as two distinct comonads by two standard constructions.
Firstly, the cofree comonad is given thus.

http://blog.sigfpe.com/2007/01/foxs-ubiquitous-free-derivative.html
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data Cofree f x = x :& f (Cofree f x) -- every node is labelled with an x

instance Functor f => Functor (Cofree f) where
fmap f (x :& fcx) = f x :& fmap (fmap f) fcx

instance Functor f => Comonad (Cofree f) where
extract (x :& _) = x -- get the label of the top node
duplicate cx@(_ :& fcx) = cx :& fmap duplicate fcx

Nonempty lists can be given as

type Nellist1 = Cofree Maybe

and are thus automatically comonadic. That gives you the “tails” comonad.
Meanwhile, the decomposition of a structure as an “element zipper” induces comonadic

structure. As I explained at great length,
Differentiability amounts to this bunch of operations on zippers (individual elements picked

out of their context and put “in focus”)

class (Functor f, Functor (DF f)) => Diff1 f where
type DF f :: * -> *
upF :: ZF f x -> f x -- defocus
downF :: f x -> f (ZF f x) -- find all ways to focus
aroundF :: ZF f x -> ZF f (ZF f x) -- find all ways to *re*focus

data ZF f x = (:<-:) {cxF :: DF f x, elF :: x}

so we get a functor and a comonad

instance Diff1 f => Functor (ZF f) where
fmap f (df :<-: x) = fmap f df :<-: f x

instance Diff1 f => Comonad (ZF f) where
extract = elF
duplicate = aroundF

In principle, nonempty lists arise by this construction, too. The trouble is that the functor
being differentiated is not so easy to express in Haskell, even though the derivative is sensible.
Let’s go nuts. . .

Nonempty lists amount to ZF thingy x where DF thingy = []. Can we integrate lists?
Fooling about algebraically might give us a clue

[x] = Either () (x, [x]) = 1 + x * [x]

so as a power series, we get

[x] = Sum(n :: Nat). xˆn

and we can integrate power series

Integral [x] dx = Sum(n :: Nat). xˆ(n+1)/(n+1)

which means we get some sort of arbitrary tuples of size (n+1), but we have to identify them
up to some relation where the equivalence classes have size (n+1). One way to do that is to
identify tuples up to rotation, so you don’t know which of the (n+1) positions is “first”.

That is, lists are the derivative of nonempty cycles. Think about a bunch of people at a round
table playing cards (possibly solitaire). Rotate the table and you get the same bunch of people

https://stackoverflow.com/questions/25554062/zipper-comonads-generically
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playing cards. But once you designate the dealer, you fix the list of other players in order, clock-
wise starting left of the dealer.

Two standard constructions; two comonads for the same functor.
(In my comment earlier, I remarked about the possibility of multiple monads. It’s a bit in-

volved, but here’s a starting point. Every monad m is also applicative, and the applicative laws
make m () a monoid. Correspondingly, every monoid structure for m () at least gives a candi-
date for a monad structure on m. In the case of writer monads (,) s, we get that the candidates
for monads are the monoids on (s,()) which are just the same as the monoids on s.)

Edit Nonempty lists are also monadic in at least two distinct ways.
I define the identity and pairing for functors, as follows.

newtype I x = I x
data (f :*: g) x = (:&:) {lll :: f x, rrr :: g x}

Now, I can introduce nonempty lists as follows, then define concatenation.

newtype Ne x = Ne ((I :*: []) x)

cat :: Ne x -> Ne x -> Ne x
cat (Ne (I x :&: xs)) (Ne (I y :&: ys)) = Ne (I x :&: (xs ++ y : ys))

These are monadic just the way possibly empty lists are:

instance Monad Ne where
return x = Ne (I x :&: [])
Ne (I x :&: xs) >>= k = foldl cat (k x) (map k xs)

However, I is a monad:

instance Monad I where
return = I
I a >>= k = k a

Moreover, monads are closed under pairing:

instance (Monad f, Monad g) => Monad (f :*: g) where
return x = return x :&: return x
(fa :&: ga) >>= k = (fa >>= (lll . k)) :&: (ga >>= (rrr . k))

So we could just have written

newtype Ne x = Ne ((I :*: []) x) deriving (Monad, Applicative, Functor)

but the return for that monad gives us double vision.

return x = Ne (I x :&: [x])

So there you are: nonempty lists are comonadic two ways, monadic two ways, applicative six
ways,. . .

(Lots more to say about this, but I have to stop somewhere.)
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6.12 Representable (or Naperian) Functors

And Noah said unto the animals “Go forth and multiply!”, but the snakes said “We
cannot multiply, for we are adders.”, so Noah took wood from the Ark and, shaping
it, said “I am building you a table of logs.”.

Representable functors are sometimes also called “Naperian” functors (it’s Peter Hancock’s
term: Hank’s a denizen of the same part of Edinburgh as John Napier, of logarithmic fame)
because when F x ˜= T -> x, and remembering that, combinatorially, T -> x is “x to the
power T”, we see that T is in some sense Log F.

The first thing to note is that F () ˜= T -> () ˜= (). That tells us there is only one shape.
Functors which offer us a choice of shape cannot be Naperian, because they don’t give a uniform
presentation of the positions for data. That means [] is not Naperian, because different-length
lists have positions represented by different types. However, an infinite Stream has positions
given by the natural numbers.

Correspondingly, given any two F structures, their shapes are bound to match, so they have
a sensible zip, giving us the basis for an Applicative F instance.

Indeed, we have

a -> p x
=====================

(Log p, a) -> x

making p a right adjoint, so p preserves all limits, hence unit and products in particular,
making it a monoidal functor, not just a lax monoidal functor. That is, the alternative presentation
of Applicative has operations which are isomorphisms.

unit :: () ˜= p ()
mult :: (p x, p y) ˜= p (x, y)

Let’s have a type class for the things. I cook it a bit differently from the Representable
class.

class Applicative p => Naperian p where
type Log p
logTable :: p (Log p)
project :: p x -> Log p -> x
tabulate :: (Log p -> x) -> p x
tabulate f = fmap f logTable
-- LAW1: project logTable = id
-- LAW2: project px <$> logTable = px

We have a type Log f, representing at least some of the positions inside an f; we have a
logTable, storing in each position the representative of that position, acting like a ‘map of an f’
with placenames in each place; we have a project function extracting the data stored at a given
position.

The first law tells us that the logTable is accurate for all the positions which are represented.
The second law tells us that we have represented all the positions. We may deduce that

tabulate (project px)
= {definition}

fmap (project px) logTable
= {LAW2}

px

and that
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project (tabulate f)
= {definition}

project (fmap f logTable)
= {free theorem for project}

f . project logTable
= {LAW1}

f . id
= {composition absorbs identity}

f

We could imagine a generic instance for Applicative

instance Naperian p => Applicative p where
pure x = fmap (pure x) logTable
pf <$> px = fmap (project pf <*> project ps) logTable

which is as much as to say that p inherits its own K and S combinators from the usual K and
S for functions.

Of course, we have

instance Naperian ((->) r) where
type Log ((->) r) = r -- log_x (xˆr) = r
logTable = id
project = ($)

Now, all the limit-like constructions preserve Naperianity. Log maps limity things to colimity
things: it calculates left adjoints.

We have the terminal object and products.

data K1 x = K1
instance Applicative K1 where

pure x = K1
K1 <*> K1 = K1

instance Functor K1 where fmap = (<*>) . pure

instance Naperian K1 where
type Log K1 = Void -- "log of 1 is 0"
logTable = K1
project K1 nonsense = absurd nonsense

data (p * q) x = p x :*: q x
instance (Applicative p, Applicative q) => Applicative (p * q) where
pure x = pure x :*: pure x
(pf :*: qf) <*> (ps :*: qs) = (pf <*> ps) :*: (qf <*> qs)

instance (Functor p, Functor q) => Functor (p * q) where
fmap f (px :*: qx) = fmap f px :*: fmap f qx

instance (Naperian p, Naperian q) => Naperian (p * q) where
type Log (p * q) = Either (Log p) (Log q) -- log (p * q) = log p + log q
logTable = fmap Left logTable :*: fmap Right logTable
project (px :*: qx) (Left i) = project px i
project (px :*: qx) (Right i) = project qx i

We have identity and composition.
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data I x = I x
instance Applicative I where

pure x = I x
I f <*> I s = I (f s)

instance Functor I where fmap = (<*>) . pure

instance Naperian I where
type Log I = () -- log_x x = 1
logTable = I ()
project (I x) () = x

data (p << q) x = C (p (q x))
instance (Applicative p, Applicative q) => Applicative (p << q) where

pure x = C (pure (pure x))
C pqf <*> C pqs = C (pure (<*>) <*> pqf <*> pqs)

instance (Functor p, Functor q) => Functor (p << q) where
fmap f (C pqx) = C (fmap (fmap f) pqx)

instance (Naperian p, Naperian q) => Naperian (p << q) where
type Log (p << q) = (Log p, Log q) -- log (q ˆ log p) = log p * log q
logTable = C (fmap (\ i -> fmap (i ,) logTable) logTable)
project (C pqx) (i, j) = project (project pqx i) j

Naperian functors are closed under greatest fixpoints, with their logarithms being the corre-
sponding least fixpoints. E.g., for streams, we have

log_x (Stream x)
=

log_x (nu y. x * y)
=

mu log_xy. log_x (x * y)
=

mu log_xy. log_x x + log_x y
=

mu log_xy. 1 + log_xy
=

Nat

It’s a bit fiddly to render that in Haskell without introducing Naperian bifunctors (which have
two sets of positions for two sorts of things), or (better) Naperian functors on indexed types
(which have indexed positions for indexed things). What’s easy, though, and hopefully gives the
idea, is the cofree comonad.

data{-codata-} CoFree p x = x :- p (CoFree p x)
-- i.e., (I * (p << CoFree p)) x

instance Applicative p => Applicative (CoFree p) where
pure x = x :- pure (pure x)
(f :- pcf) <*> (s :- pcs) = f s :- (pure (<*>) <*> pcf <*> pcs)

instance Functor p => Functor (CoFree p) where
fmap f (x :- pcx) = f x :- fmap (fmap f) pcx

instance Naperian p => Naperian (CoFree p) where
type Log (CoFree p) = [Log p] -- meaning finite lists only
logTable = [] :- fmap (\ i -> fmap (i :) logTable) logTable
project (x :- pcx) [] = x
project (x :- pcx) (i : is) = project (project pcx i) is
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We may take Stream = CoFree I, giving

Log Stream = [Log I] = [()] ˜= Nat

Now, the derivative D p of a functor gives its type of one-hole context, telling us i) the shape
of a p, ii) the position of the hole, iii) the data that are not in the hole. If p is Naperian, there is
no choice of shape, so putting trivial data in the non-hole positions, we find that we just get the
position of the hole.

D p () ˜= Log p

More on that connection can be found in this answer of mine about tries.
Anyhow, Naperian is indeed a funny local Scottish name for Representable, which are the

things for which you can build a table of logs: they are the constructions characterized entirely
by projection, offering no choice of ‘shape’.

6.13 Tries as Naperian Functors; Matching via their Derivatives

Edit: I remembered a very helpful fact about logarithms and derivatives which I discovered
whilst disgustingly hung over on a friend’s sofa. Sadly, that friend (the late great Kostas Tourlas)
is no longer with us, but I commemorate him by being disgustingly hung over on a different
friend’s sofa.

Let’s remind ourselves about tries. (Lots of my mates were working on these structures in
the early noughties: Ralf Hinze, Thorsten Altenkirch and Peter Hancock spring instantly to mind
in that regard.) What’s really going on is that we’re computing the exponential of a type t,
remembering that t -> x is a way of writing x ˆ t.

That is, we expect to equip a type t with a functor Expo t such that Expo t x represents
t -> x. We should further expect Expo t to be applicative (zippily). Edit: Hancock calls such
functors “Naperian”, because they have logarithms, and they’re applicative in the same way as
functions, with pure being the K combinator and <*> being S. It is immediate that Expo t
() must be isomorphic with (), with const (pure ()) and const () doing the (not much)
work.

class Applicative (Expo t) => EXPO t where
type Expo t :: * -> *
appl :: Expo t x -> (t -> x) -- trie lookup
abst :: (t -> x) -> Expo t x -- trie construction

Another way of putting it is that t is the logarithm of Expo t.
(I nearly forgot: fans of calculus should check that t is isomorphic to ∂ (Expo t) (). This

isomorphism might actually be rather useful. Edit: it’s extremely useful, and we shall add it to
EXPO later.)

We’ll need some functor kit stuff. The identity functor is zippiy applicative. . .

data I :: (* -> *) where
I :: x -> I x
deriving (Show, Eq, Functor, Foldable, Traversable)

instance Applicative I where
pure x = I x
I f <*> I s = I (f s)

. . . and its logarithm is the unit type

https://stackoverflow.com/a/45254970/828361
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instance EXPO () where
type Expo () = I
appl (I x) () = x
abst f = I (f ())

Products of zippy applicatives are zippily applicative. . .

data (:*:) :: (* -> *) -> (* -> *) -> (* -> *) where
(:*:) :: f x -> g x -> (f :*: g) x
deriving (Show, Eq, Functor, Foldable, Traversable)

instance (Applicative p, Applicative q) => Applicative (p :*: q) where
pure x = pure x :*: pure x
(pf :*: qf) <*> (ps :*: qs) = (pf <*> ps) :*: (qf <*> qs)

. . . and their logarithms are sums.

instance (EXPO s, EXPO t) => EXPO (Either s t) where
type Expo (Either s t) = Expo s :*: Expo t
appl (sf :*: tf) (Left s) = appl sf s
appl (sf :*: tf) (Right t) = appl tf t
abst f = abst (f . Left) :*: abst (f . Right)

Compositions of zippy applicatives are zippily applicative. . .

data (:<:) :: (* -> *) -> (* -> *) -> (* -> *) where
C :: f (g x) -> (f :<: g) x
deriving (Show, Eq, Functor, Foldable, Traversable)

instance (Applicative p, Applicative q) => Applicative (p :<: q) where
pure x = C (pure (pure x))
C pqf <*> C pqs = C (pure (<*>) <*> pqf <*> pqs)

and their logarithms are products.

instance (EXPO s, EXPO t) => EXPO (s, t) where
type Expo (s, t) = Expo s :<: Expo t
appl (C stf) (s, t) = appl (appl stf s) t
abst f = C (abst $ \ s -> abst $ \ t -> f (s, t))

If we switch on enough stuff, we may now write

newtype Tree = Tree (Either () (Tree, Tree))
deriving (Show, Eq)

pattern Leaf = Tree (Left ())
pattern Node l r = Tree (Right (l, r))

newtype ExpoTree x = ExpoTree (Expo (Either () (Tree, Tree)) x)
deriving (Show, Eq, Functor, Applicative)

instance EXPO Tree where
type Expo Tree = ExpoTree
appl (ExpoTree f) (Tree t) = appl f t
abst f = ExpoTree (abst (f . Tree))

The TreeMap a type in the question, being
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data TreeMap a
= TreeMap {

tm_leaf :: Maybe a,
tm_node :: TreeMap (TreeMap a)

}

is exactly Expo Tree (Maybe a), with lookupTreeMap being flip appl.
Now, given that Tree and Tree -> x are rather different things, it strikes me as odd to

want code to work “on both”. The tree equality test is a special case of the lookup only in that
the tree equality test is any old function which acts on a tree. There is a coincidence coincidence,
however: to test equality, we must turn each tree into own self-recognizer. Edit: that’s exactly
what the log-diff iso does.

The structure which gives rise to an equality test is some notion of matching. Like this:

class Matching a b where
type Matched a b :: *
matched :: Matched a b -> (a, b)
match :: a -> b -> Maybe (Matched a b)

That is, we expect Matched a b to represent somehow a pair of an a and a b which match.
We should be able to extract the pair (forgetting that they match), and we should be able to take
any pair and try to match them.

Unsurprisingly, we can do this for the unit type, quite successfully.

instance Matching () () where
type Matched () () = ()
matched () = ((), ())
match () () = Just ()

For products, we work componentwise, with component mismatch being the only danger.

instance (Matching s s’, Matching t t’) => Matching (s, t) (s’, t’) where
type Matched (s, t) (s’, t’) = (Matched s s’, Matched t t’)
matched (ss’, tt’) = ((s, t), (s’, t’)) where

(s, s’) = matched ss’
(t, t’) = matched tt’

match (s, t) (s’, t’) = (,) <$> match s s’ <*> match t t’

Sums offer some chance of mismatch.

instance (Matching s s’, Matching t t’) =>
Matching (Either s t) (Either s’ t’) where

type Matched (Either s t) (Either s’ t’)
= Either (Matched s s’) (Matched t t’)

matched (Left ss’) = (Left s, Left s’) where (s, s’) = matched ss’
matched (Right tt’) = (Right t, Right t’) where (t, t’) = matched tt’
match (Left s) (Left s’) = Left <$> match s s’
match (Right t) (Right t’) = Right <$> match t t’
match _ _ = Nothing

Amusingly, we can obtain an equality test for trees now as easily as

instance Matching Tree Tree where
type Matched Tree Tree = Tree
matched t = (t, t)
match (Tree t1) (Tree t2) = Tree <$> match t1 t2
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(Incidentally, the Functor subclass that captures a notion of matching, being

class HalfZippable f where -- "half zip" comes from Roland Backhouse
halfZip :: (f a, f b) -> Maybe (f (a, b))

is sadly neglected. Morally, for each such f, we should have

Matched (f a) (f b) = f (Matched a b)

A fun exercise is to show that if (Traversable f, HalfZippable f), then the free monad
on f has a first-order unification algorithm.)

I suppose we can build “singleton association lists” like this:

mapOne :: forall a. (Tree, a) -> Expo Tree (Maybe a)
mapOne (t, a) = abst f where

f :: Tree -> Maybe a
f u = pure a <* match t u

And we could try combining them with this gadget, exploiting the zippiness of all the Expo
ts. . .

instance Monoid x => Monoid (ExpoTree x) where
mempty = pure mempty
mappend t u = mappend <$> t <*> u

. . . but, yet again, the utter stupidity of the Monoid instance for Maybe x continues to frus-
trate clean design.

We can at least manage

instance Alternative m => Alternative (ExpoTree :<: m) where
empty = C (pure empty)
C f <|> C g = C ((<|>) <$> f <*> g)

An amusing exercise is to fuse abst with match, and perhaps that’s what the question is
really driving at. Let’s refactor Matching.

class EXPO b => Matching a b where
type Matched a b :: *
matched :: Matched a b -> (a, b)
match’ :: a -> Proxy b -> Expo b (Maybe (Matched a b))

data Proxy x = Poxy -- I’m not on GHC 8 yet, and Simon needs a hand here

For (), what’s new is

instance Matching () () where
-- skip old stuff
match’ () (Poxy :: Proxy ()) = I (Just ())

For sums, we need to tag successful matches, and fill in the unsuccessful parts with a magnif-
icently Glaswegian pure Nothing.

instance (Matching s s’, Matching t t’) =>
Matching (Either s t) (Either s’ t’) where

-- skip old stuff
match’ (Left s) (Poxy :: Proxy (Either s’ t’)) =

((Left <$>) <$> match’ s (Poxy :: Proxy s’)) :*: pure Nothing
match’ (Right t) (Poxy :: Proxy (Either s’ t’)) =

pure Nothing :*: ((Right <$>) <$> match’ t (Poxy :: Proxy t’))
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For pairs, we need to build matching in sequence, dropping out early if the first component
fails.

instance (Matching s s’, Matching t t’) => Matching (s, t) (s’, t’) where
-- skip old stuff
match’ (s, t) (Poxy :: Proxy (s’, t’))

= C (more <$> match’ s (Poxy :: Proxy s’)) where
more Nothing = pure Nothing
more (Just s) = ((,) s <$>) <$> match’ t (Poxy :: Proxy t’)

So we can see that there is a connection between a constructor and the trie for its matcher.
Homework: fuse abst with match', effectively tabulating the entire process.
Edit: writing match', we parked each sub-matcher in the position of the trie corresponding

to the sub-structure. And when you think of things in particular positions, you should think of
zippers and differential calculus. Let me remind you.

We’ll need functorial constants and coproducts to manage choice of “where the hole is”.

data K :: * -> (* -> *) where
K :: a -> K a x
deriving (Show, Eq, Functor, Foldable, Traversable)

data (:+:) :: (* -> *) -> (* -> *) -> (* -> *) where
Inl :: f x -> (f :+: g) x
Inr :: g x -> (f :+: g) x
deriving (Show, Eq, Functor, Foldable, Traversable)

And now we may define

class (Functor f, Functor (D f)) => Differentiable f where
type D f :: (* -> *)
plug :: (D f :*: I) x -> f x
-- there should be other methods, but plug will do for now

The usual laws of calculus apply, with composition giving a spatial interpretation to the chain
rule.

instance Differentiable (K a) where
type D (K a) = K Void
plug (K bad :*: I x) = K (absurd bad)

instance Differentiable I where
type D I = K ()
plug (K () :*: I x) = I x

instance (Differentiable f, Differentiable g) => Differentiable (f :+: g) where
type D (f :+: g) = D f :+: D g
plug (Inl f’ :*: I x) = Inl (plug (f’ :*: I x))
plug (Inr g’ :*: I x) = Inr (plug (g’ :*: I x))

instance (Differentiable f, Differentiable g) => Differentiable (f :*: g) where
type D (f :*: g) = (D f :*: g) :+: (f :*: D g)
plug (Inl (f’ :*: g) :*: I x) = plug (f’ :*: I x) :*: g
plug (Inr (f :*: g’) :*: I x) = f :*: plug (g’ :*: I x)

instance (Differentiable f, Differentiable g) => Differentiable (f :<: g) where
type D (f :<: g) = (D f :<: g) :*: D g
plug ((C f’g :*: g’) :*: I x) = C (plug (f’g :*: I (plug (g’ :*: I x))))
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It will not harm us to insist that Expo t is differentiable, so let us extend the EXPO class.
What’s a “trie with a hole”? It’s a trie which is missing the output entry for exactly one of the
possible inputs. And that’s the key.

class (Differentiable (Expo t), Applicative (Expo t)) => EXPO t where
type Expo t :: * -> *
appl :: Expo t x -> t -> x
abst :: (t -> x) -> Expo t x
hole :: t -> D (Expo t) ()
eloh :: D (Expo t) () -> t

Now, hole and eloh will witness the isomorphism.

instance EXPO () where
type Expo () = I
-- skip old stuff
hole () = K ()
eloh (K ()) = ()

The unit case wasn’t very exciting, but the sum case begins to show structure:

instance (EXPO s, EXPO t) => EXPO (Either s t) where
type Expo (Either s t) = Expo s :*: Expo t
hole (Left s) = Inl (hole s :*: pure ())
hole (Right t) = Inr (pure () :*: hole t)
eloh (Inl (f’ :*: _)) = Left (eloh f’)
eloh (Inr (_ :*: g’)) = Right (eloh g’)

See? A Left is mapped to a trie with a hole on the left; a Right is mapped to a trie with a
hole on the right.

Now for products.

instance (EXPO s, EXPO t) => EXPO (s, t) where
type Expo (s, t) = Expo s :<: Expo t
hole (s, t) = C (const (pure ()) <$> hole s) :*: hole t
eloh (C f’ :*: g’) = (eloh (const () <$> f’), eloh g’)

A trie for a pair is a right trie stuffed inside a left trie, so the hole for a particular pair is found
by making a hole for the right element in the particular subtrie for the left element.

For trees, we make another wrapper.

newtype DExpoTree x = DExpoTree (D (Expo (Either () (Tree, Tree))) x)
deriving (Show, Eq, Functor)

So, how do we turn a tree into its trie recognizer? First, we grab its “everyone but me” trie,
and we fill in all those outputs with False, then we plug in True for the missing entry.

matchMe :: EXPO t => t -> Expo t Bool
matchMe t = plug ((const False <$> hole t) :*: I True)

Homework hint: D f :*: I is a comonad.
Absent friends!



Chapter 7

Dependently Typed Haskell

7.1 Dependently typed language best suited to “real world” pro-
gramming?

The accepted answer contains misinformation. Typechecking in Agda is decidable unless you
switch off positivity/termination/universe checking. Moreover, infinite processes are programmable
in Agda, just as IO processes are programmable in Haskell: the only restriction is that infinite pro-
cesses cannot be unfolded indefinitely when being executed in the course of typechecking. You can
implement a Turing Machine simulator in Agda: you just can’t tell the lie that it’s guaranteed to
terminate or persuade the typechecker to run it in an unbounded way.

I do, however, agree that dependently typed languages are still at the experimental stage
when it comes to “real world” programming. We can’t yet support heavy duty development, but
we can sustain a significant hobby amongst those with an eye to the future, rather like functional
languages in the old days.

Idris, as suggested by Twey, is the closest candidate to a “real world” dependently typed
language. It’s much more focused on getting stuff done than Agda is. I’d recommend Agda as
the better vehicle for getting to grips with the ideas behind dependently typed programming,
but Idris is the more practical option.

It is, I’m pleased to say, worth considering recent releases of Haskell as a candidate in this
discussion. Since GHC 7.4, Haskell has started supporting a useful notion of type level data, and
with at least the singleton technique (a kludge though that is), we can really have types depending
on run-time values (by making them depend on static variables constrained to equal run-time
values). Haskell is thus a real “real world” language in the early phase of experimenting with
dependent types.

7.2 Why not be dependently typed?

Dependently Typed Haskell, Now?

Haskell is, to a small extent, a dependently typed language. There is a notion of type-level data,
now more sensibly typed thanks to DataKinds, and there is some means (GADTs) to give a run-
time representation to type-level data. Hence, values of run-time stuff effectively show up in
types, which is what it means for a language to be dependently typed.

Simple datatypes are promoted to the kind level, so that the values they contain can be used in
types. Hence the archetypal example

data Nat = Z | S Nat

data Vec :: Nat -> * -> * where
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VNil :: Vec Z x
VCons :: x -> Vec n x -> Vec (S n) x

becomes possible, and with it, definitions such as

vApply :: Vec n (s -> t) -> Vec n s -> Vec n t
vApply VNil VNil = VNil
vApply (VCons f fs) (VCons s ss) = VCons (f s) (vApply fs ss)

which is nice. Note that the length n is a purely static thing in that function, ensuring that
the input and output vectors have the same length, even though that length plays no role in the
execution of vApply. By contrast, it’s much trickier (i.e., impossible) to implement the function
which makes n copies of a given x (which would be pure to vApply’s <*>)

vReplicate :: x -> Vec n x

because it’s vital to know how many copies to make at run-time. Enter singletons.

data Natty :: Nat -> * where
Zy :: Natty Z
Sy :: Natty n -> Natty (S n)

For any promotable type, we can build the singleton family, indexed over the promoted type,
inhabited by run-time duplicates of its values. Natty n is the type of run-time copies of the
type-level n :: Nat. We can now write

vReplicate :: Natty n -> x -> Vec n x
vReplicate Zy x = VNil
vReplicate (Sy n) x = VCons x (vReplicate n x)

So there you have a type-level value yoked to a run-time value: inspecting the run-time copy
refines static knowledge of the type-level value. Even though terms and types are separated, we
can work in a dependently typed way by using the singleton construction as a kind of epoxy
resin, creating bonds between the phases. That’s a long way from allowing arbitrary run-time
expressions in types, but it ain’t nothing.

What’s Nasty? What’s Missing?

Let’s put a bit of pressure on this technology and see what starts wobbling. We might get the idea
that singletons should be manageable a bit more implicitly

class Nattily (n :: Nat) where
natty :: Natty n

instance Nattily Z where
natty = Zy

instance Nattily n => Nattily (S n) where
natty = Sy natty

allowing us to write, say,

instance Nattily n => Applicative (Vec n) where
pure = vReplicate natty
(<*>) = vApply
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That works, but it now means that our original Nat type has spawned three copies: a kind, a
singleton family and a singleton class. We have a rather clunky process for exchanging explicit
Natty n values and Nattily n dictionaries. Moreover, Natty is not Nat: we have some sort
of dependency on run-time values, but not at the type we first thought of. No fully dependently
typed language makes dependent types this complicated!

Meanwhile, although Nat can be promoted, Vec cannot. You can’t index by an indexed
type. Full on dependently typed languages impose no such restriction, and in my career as a
dependently typed show-off, I’ve learned to include examples of two-layer indexing in my talks,
just to teach folks who’ve made one-layer indexing difficult-but-possible not to expect me to
fold up like a house of cards. What’s the problem? Equality. GADTs work by translating the
constraints you achieve implicitly when you give a constructor a specific return type into explicit
equational demands. Like this.

data Vec (n :: Nat) (x :: *)
= n ˜ Z => VNil
| forall m. n ˜ S m => VCons x (Vec m x)

In each of our two equations, both sides have kind Nat.
Now try the same translation for something indexed over vectors.

data InVec :: x -> Vec n x -> * where
Here :: InVec z (VCons z zs)
After :: InVec z ys -> InVec z (VCons y ys)

becomes

data InVec (a :: x) (as :: Vec n x)
= forall m z (zs :: Vec x m). (n ˜ S m, as ˜ VCons z zs) => Here
| forall m y z (ys :: Vec x m). (n ˜ S m, as ˜ VCons y ys) => After (InVec z ys)

and now we form equational constraints between as :: Vec n x and VCons z zs ::
Vec (S m) x where the two sides have syntactically distinct (but provably equal) kinds. GHC
core is not currently equipped for such a concept!

What else is missing? Well, most of Haskell is missing from the type level. The language
of terms which you can promote has just variables and non-GADT constructors, really. Once
you have those, the type family machinery allows you to write type-level programs: some of
those might be quite like functions you would consider writing at the term level (e.g., equipping
Nat with addition, so you can give a good type to append for Vec), but that’s just a coincidence!

Another thing missing, in practice, is a library which makes use of our new abilities to index
types by values. What do Functor and Monad become in this brave new world? I’m thinking
about it, but there’s a lot still to do.

Running Type-Level Programs

Haskell, like most dependently typed programming languages, has two operational semanticses.
There’s the way the run-time system runs programs (closed expressions only, after type erasure,
highly optimised) and then there’s the way the typechecker runs programs (your type families,
your “type class Prolog”, with open expressions). For Haskell, you don’t normally mix the two
up, because the programs being executed are in different languages. Dependently typed lan-
guages have separate run-time and static execution models for the same language of programs,
but don’t worry, the run-time model still lets you do type erasure and, indeed, proof erasure:
that’s what Coq’s extraction mechanism gives you; that’s at least what Edwin Brady’s compiler
does (although Edwin erases unnecessarily duplicated values, as well as types and proofs). The
phase distinction may not be a distinction of syntactic category any longer, but it’s alive and well.

Dependently typed languages, being total, allow the typechecker to run programs free from
the fear of anything worse than a long wait. As Haskell becomes more dependently typed, we
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face the question of what its static execution model should be? One approach might be to restrict
static execution to total functions, which would allow us the same freedom to run, but might
force us to make distinctions (at least for type-level code) between data and codata, so that we
can tell whether to enforce termination or productivity. But that’s not the only approach. We
are free to choose a much weaker execution model which is reluctant to run programs, at the
cost of making fewer equations come out just by computation. And in effect, that’s what GHC
actually does. The typing rules for GHC core make no mention of running programs, but only for
checking evidence for equations. When translating to the core, GHC’s constraint solver tries to
run your type-level programs, generating a little silvery trail of evidence that a given expression
equals its normal form. This evidence-generation method is a little unpredictable and inevitably
incomplete: it fights shy of scary-looking recursion, for example, and that’s probably wise. One
thing we don’t need to worry about is the execution of IO computations in the typechecker:
remember that the typechecker doesn’t have to give launchMissiles the same meaning that
the run-time system does!

Hindley-Milner Culture

The Hindley-Milner type system achieves the truly awesome coincidence of four distinct dis-
tinctions, with the unfortunate cultural side-effect that many people cannot see the distinction
between the distinctions and assume the coincidence is inevitable! What am I talking about?

• terms vs types
• explicitly written things vs implicitly written things
• presence at run-time vs erasure before run-time
• non-dependent abstraction vs dependent quantification

We’re used to writing terms and leaving types to be inferred. . . and then erased. We’re used
to quantifying over type variables with the corresponding type abstraction and application hap-
pening silently and statically.

You don’t have to veer too far from vanilla Hindley-Milner before these distinctions come out
of alignment, and that’s no bad thing. For a start, we can have more interesting types if we’re
willing to write them in a few places. Meanwhile, we don’t have to write type class dictionaries
when we use overloaded functions, but those dictionaries are certainly present (or inlined) at run-
time. In dependently typed languages, we expect to erase more than just types at run-time, but
(as with type classes) that some implicitly inferred values will not be erased. E.g., vReplicate’s
numeric argument is often inferable from the type of the desired vector, but we still need to know
it at run-time.

Which language design choices should we review because these coincidences no longer hold?
E.g., is it right that Haskell provides no way to instantiate a forall x. t quantifier explicitly?
If the typechecker can’t guess x by unifiying t, we have no other way to say what x must be.

More broadly, we cannot treat “type inference” as a monolithic concept that we have either
all or nothing of. For a start, we need to split off the “generalisation” aspect (Milner’s “let”
rule), which relies heavily on restricting which types exist to ensure that a stupid machine can
guess one, from the “specialisation” aspect (Milner’s “var” rule) which is as effective as your
constraint solver. We can expect that top-level types will become harder to infer, but that internal
type information will remain fairly easy to propagate.

Next Steps For Haskell

We’re seeing the type and kind levels grow very similar (and they already share an internal
representation in GHC). We might as well merge them. It would be fun to take * :: * if we
can: we lost logical soundness long ago, when we allowed bottom, but type soundness is usually
a weaker requirement. We must check. If we must have distinct type, kind, etc levels, we can
at least make sure everything at the type level and above can always be promoted. It would
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be great just to re-use the polymorphism we already have for types, rather than re-inventing
polymorphism at the kind level.

We should simplify and generalise the current system of constraints by allowing heterogeneous
equations a ˜ b where the kinds of a and b are not syntactically identical (but can be proven
equal). It’s an old technique (in my thesis, last century) which makes dependency much eas-
ier to cope with. We’d be able to express constraints on expressions in GADTs, and thus relax
restrictions on what can be promoted.

We should eliminate the need for the singleton construction by introducing a dependent func-
tion type, pi x :: s -> t. A function with such a type could be applied explicitly to any ex-
pression of type s which lives in the intersection of the type and term languages (so, variables,
constructors, with more to come later). The corresponding lambda and application would not be
erased at run-time, so we’d be able to write

vReplicate :: pi n :: Nat -> x -> Vec n x
vReplicate Z x = VNil
vReplicate (S n) x = VCons x (vReplicate n x)

without replacing Nat by Natty. The domain of pi can be any promotable type, so if GADTs
can be promoted, we can write dependent quantifier sequences (or “telescopes” as de Briuijn
called them)

pi n :: Nat -> pi xs :: Vec n x -> ...

to whatever length we need.
The point of these steps is to eliminate complexity by working directly with more general tools,

instead of making do with weak tools and clunky encodings. The current partial buy-in makes
the benefits of Haskell’s sort-of dependent types more expensive than they need to be.

Too Hard?

Dependent types make a lot of people nervous. They make me nervous, but I like being nervous,
or at least I find it hard not to be nervous anyway. But it doesn’t help that there’s quite such a
fog of ignorance around the topic. Some of that’s due to the fact that we all still have a lot to
learn. But proponents of less radical approaches have been known to stoke fear of dependent
types without always making sure the facts are wholly with them. I won’t name names. These
“undecidable typechecking”, “Turing incomplete”, “no phase distinction”, “no type erasure”,
“proofs everywhere”, etc, myths persist, even though they’re rubbish.

It’s certainly not the case that dependently typed programs must always be proven correct.
One can improve the basic hygiene of one’s programs, enforcing additional invariants in types
without going all the way to a full specification. Small steps in this direction quite often result
in much stronger guarantees with few or no additional proof obligations. It is not true that
dependently typed programs are inevitably full of proofs, indeed I usually take the presence of
any proofs in my code as the cue to question my definitions.

For, as with any increase in articulacy, we become free to say foul new things as well as fair.
E.g., there are plenty of crummy ways to define binary search trees, but that doesn’t mean there
isn’t a good way. It’s important not to presume that bad experiences cannot be bettered, even if
it dents the ego to admit it. Design of dependent definitions is a new skill which takes learning,
and being a Haskell programmer does not automatically make you an expert! And even if some
programs are foul, why would you deny others the freedom to be fair?

Why Still Bother With Haskell?

I really enjoy dependent types, but most of my hacking projects are still in Haskell. Why? Haskell
has type classes. Haskell has useful libraries. Haskell has a workable (although far from ideal)

https://stackoverflow.com/a/10659438/828361
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treatment of programming with effects. Haskell has an industrial strength compiler. The depen-
dently typed languages are at a much earlier stage in growing community and infrastructure,
but we’ll get there, with a real generational shift in what’s possible, e.g., by way of metaprogram-
ming and datatype generics. But you just have to look around at what people are doing as a
result of Haskell’s steps towards dependent types to see that there’s a lot of benefit to be gained
by pushing the present generation of languages forwards, too.

7.3 Simple dependent type example in Haskell for Dummies.
How are they useful in practice in Haskell? Why should I
care about dependent types ?

Late to the party, this answer is basically a shameless plug.
Sam Lindley and I wrote a paper about Hasochism, the pleasure and pain of dependently

typed programming in Haskell. It gives plenty of examples of what’s possible now in Haskell
and draws points of comparison (favourable as well as not) with the Agda/Idris generation of
dependently typed languages.

Although it is an academic paper, it is about actual programs, and you can grab the code from
Sam’s repo. We have lots of little examples (e.g. orderedness of mergesort output) but we end
up with a text editor example, where we use indexing by width and height to manage screen
geometry: we make sure that components are regular rectangles (vectors of vectors, not ragged
lists of lists) and that they fit together exactly.

The key power of dependent types is to maintain consistency between separate data com-
ponents (e.g., the head vector in a matrix and every vector in its tail must all have the same
length). That’s never more important than when writing conditional code. The situation (which
will one day come to be seen as having been ridiculously naı̈ve) is that the following are all
type-preserving rewrites

• if b then t else e => if b then e else t
• if b then t else e => t
• if b then t else e => e

Although we are presumably testing b because it gives us some useful insight into what
would be appropriate (or even safe) to do next, none of that insight is mediated via the type
system: the idea that b’s truth justifies t and its falsity justifies e is missing, despite being critical.

Plain old Hindley-Milner does give us one means to ensure some consistency. Whenever we
have a polymorphic function

f :: forall a. r[a] -> s[a] -> t[a]

we must instantiate a consistently: however the first argument fixes a, the second argument
must play along, and we learn something useful about the result while we are at it. Allowing
data at the type level is useful because some forms of consistency (e.g. lengths of things) are
more readily expressed in terms of data (numbers).

But the real breakthrough is GADT pattern matching, where the type of a pattern can refine
the type of the argument it matches. You have a vector of length n; you look to see whether it’s
nil or cons; now you know whether n is zero or not. This is a form of testing where the type of
the code in each case is more specific than the type of the whole, because in each case something
which has been learned is reflected at the type level. It is learning by testing which makes a
language dependently typed, at least to some extent.

Here’s a silly game to play, whatever typed language you use. Replace every type variable
and every primitive type in your type expressions with 1 and evaluate types numerically (sum
the sums, multiply the products, s -> t means t-to-the-s) and see what you get: if you get
0, you’re a logician; if you get 1, you’re a software engineer; if you get a power of 2, you’re an

https://personal.cis.strath.ac.uk/conor.mcbride/pub/hasochism.pdf
https://github.com/slindley/dependent-haskell/tree/master/Hasochism
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electronic engineer; if you get infinity, you’re a programmer. What’s going on in this game is a
crude attempt to measure the information we’re managing and the choices our code must make.
Our usual type systems are good at managing the “software engineering” aspects of coding:
unpacking and plugging together components. But as soon as a choice has been made, there is
no way for types to observe it, and as soon as there are choices to make, there is no way for types
to guide us: non-dependent type systems approximate all values in a given type as the same.
That’s a pretty serious limitation on their use in bug prevention.

7.4 Haskell singletons: What do we gain with SNat?

What do we gain? Hmm. The status of singletons is that of awkward but currently necessary
workaround, and the sooner we can do away with them, the better.

Let me see if I can clarify the picture. We have a data type Nat:

data Nat = Zero | Suc Nat

(wars have been started over even more trivial issues than the number of ’c’s in Suc)
The type Nat has run-time values which are indistinguishable at the type level. The Haskell

type system currently has the replacement property, which means that in any well typed program,
you may replace any well typed subexpression by an alternative subexpression with the same
scope and type, and the program will continue to be well typed. For example, you can rewrite
every occurrence of

if <b> then <t> else <e>

to

if <b> then <e> else <t>

and you can be sure that nothing will go wrong. . . with the outcome of checking your pro-
gram’s type.

The replacement property is an embarrassment. It’s clear proof that your type system gives
up at the very moment that meaning starts to matter.

Now, by being a data type for run-time values, Nat also becomes a type of type-level values
'Zero and 'Suc. The latter live only in Haskell’s type language and have no run-time presence
at all. Please note that although 'Zero and 'Suc exist at the type level, it is unhelpful to refer
to them as “types” and the people who currently do that should desist. They do not have type *
and can thus not classify values which is what types worthy of the name do.

There is no direct means of exchange between run-time and type-level Nats, which can be a
nuisance. The paradigmatic example concerns a key operation on vectors:

data Vec :: Nat -> * -> * where
VNil :: Vec ’Zero x
VCons :: x -> Vec n x -> Vec (’Suc n) x

We might like to compute a vector of copies of a given element (perhaps as part of an Applicative
instance). It might look like a good idea to give the type

vec :: forall (n :: Nat) (x :: *). x -> Vec n x

but can that possibly work? In order to make n copies of something, we need to know n at
run time: a program has to decide whether to deploy VNil and stop or to deploy VCons and
keep going, and it needs some data to do that. A good clue is the forall quantifier, which is
parametric: it indicates thats the quantified information is available only to types and is erased by
run time.
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Haskell currently enforces an entirely spurious coincidence between dependent quantifica-
tion (what forall does) and erasure for run time. It does not support a dependent but not
erased quantifier, which we often call pi. The type and implementation of vec should be some-
thing like

vec :: pi (n :: Nat) -> forall (x :: *). Vec n x
vec ’Zero x = VNil
vec (’Suc n) x = VCons x (vec n x)

where arguments in pi-positions are written in the type language, but the data are available
at run time.

So what do we do instead? We use singletons to capture indirectly what it means to be a
run-time copy of type-level data.

data SNat :: Nat -> * where
SZero :: SNat Zero
SSuc :: SNat n -> SNat (Suc n)

Now, SZero and SSuc make run-time data. SNat is not isomorphic to Nat: the former has
type Nat -> *, while the latter has type *, so it is a type error to try to make them isomorphic.
There are many run-time values in Nat, and the type system does not distinguish them; there is
exactly one run-time value (worth speaking of) in each different SNat n, so the fact that the type
system cannot distinguish them is beside the point. The point is that each SNat n is a different
type for each different n, and that GADT pattern matching (where a pattern can be of a more
specific instance of the GADT type it is known to be matching) can refine our knowledge of n.

We may now write

vec :: forall (n :: Nat). SNat n -> forall (x :: *). x -> Vec n x
vec SZero x = VNil
vec (SSuc n) x = VCons x (vec n x)

Singletons allow us to bridge the gap between run time and type-level data, by exploiting the
only form of run-time analysis that allows the refinement of type information. It’s quite sensible
to wonder if they’re really necessary, and they presently are, only because that gap has not yet
been eliminated.

7.5 Motivation for limitation on data kind promotion

An interesting thing happens if you promote types indexed by promoted types. Imagine we
build

data Nat = Ze | Su Nat

and then

data Vec :: Nat -> * -> * where
VNil :: Vec Ze x
VCons :: x -> Vec n x -> Vec (Su n) x

Behind the scenes, the internal types of the constructors represent the instantiated return in-
dices by constraints, as if we had written

data Vec (n :: Nat) (a :: *)
= n ˜ Ze => VNil
| forall k. n ˜ Su k => VCons a (Vec k a)
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Now if we were allowed something like

data Elem :: forall n a. a -> Vec n a -> * where
Top :: Elem x (VCons x xs)
Pop :: Elem x xs -> Elem x (VCons y xs)

the translation to internal form would have to be something like

data Elem (x :: a) (zs :: Vec n a)
= forall (k :: Nat), (xs :: Vec k a). (n ˜ Su k, zs ˜ VCons x xs) =>

Top
| forall (k :: Nat), (xs :: Vec k s), (y :: a). (n ˜ Su k, zs ˜ VCons y xs) =>

Pop (Elem x xs)

but look at the second constraint in each case! We have

zs :: Vec n a

but

VCons x xs, VCons y xs :: Vec (Su k) a

But in System FC as then defined, equality constraints must have types of the same kind on
both sides, so this example is not inconsiderably problematic.

One fix is use the evidence for the first constraint to fix up the second, but then we’d need
dependent constraints

(q1 :: n ˜ Su k, zs |> q1 ˜ VCons x xs)

Another fix is just to allow heterogeneous equations, as I did in dependent type theory fifteen
years ago. There will inevitably be equations between things whose kinds are equal in ways
which are not syntactically obvious.

It’s the latter plan that is currently favoured. As far as I understand, the policy you men-
tion was adopted as a holding position, until the design for a core language with heterogeneous
equality (as proposed by Weirich and colleagues) has matured to implementation. We live in
interesting times.

7.6 What is an indexed monad?

As ever, the terminology people use is not entirely consistent. There’s a variety of inspired-by-
monads-but-strictly-speaking-isn’t-quite notions. The term “indexed monad” is one of a number
(including “monadish” and “parameterised monad” (Atkey’s name for them)) of terms used to
characterize one such notion. (Another such notion, if you’re interested, is Katsumata’s “para-
metric effect monad”, indexed by a monoid, where return is indexed neutrally and bind accumu-
lates in its index.)

First of all, let’s check kinds.

IxMonad (m :: state -> state -> * -> *)

That is, the type of a “computation” (or “action”, if you prefer, but I’ll stick with “computa-
tion”), looks like

m before after value
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where before, after :: state and value :: *. The idea is to capture the means to
interact safely with an external system that has some predictable notion of state. A computation’s
type tells you what the state must be before it runs, what the state will be after it runs and
(like with regular monads over *) what type of values the computation produces.

The usual bits and pieces are *-wise like a monad and state-wise like playing dominoes.

ireturn :: a -> m i i a -- returning a pure value preserves state
ibind :: m i j a -> -- we can go from i to j and get an a, thence

(a -> m j k b) -- we can go from j to k and get a b, therefore
-> m i k b -- we can indeed go from i to k and get a b

The notion of “Kleisli arrow” (function which yields computation) thus generated is

a -> m i j b -- values a in, b out; state transition i to j

and we get a composition

icomp :: IxMonad m => (b -> m j k c) -> (a -> m i j b) -> a -> m i k c
icomp f g = \ a -> ibind (g a) f

and, as ever, the laws exactly ensure that ireturn and icomp give us a category

ireturn ‘icomp‘ g = g
f ‘icomp‘ ireturn = f

(f ‘icomp‘ g) ‘icomp‘ h = f ‘icomp‘ (g ‘icomp‘ h)

or, in comedy fake C/Java/whatever,

g(); skip = g()
skip; f() = f()

{h(); g()}; f() = h(); {g(); f()}

Why bother? To model “rules” of interaction. For example, you can’t eject a dvd if there isn’t
one in the drive, and you can’t put a dvd into the drive if there’s one already in it. So

data DVDDrive :: Bool -> Bool -> * -> * where -- Bool is "drive full?"
DReturn :: a -> DVDDrive i i a
DInsert :: DVD -> -- you have a DVD

DVDDrive True k a -> -- you know how to continue full
DVDDrive False k a -- so you can insert from empty

DEject :: (DVD -> -- once you receive a DVD
DVDDrive False k a) -> -- you know how to continue empty
DVDDrive True k a -- so you can eject when full

instance IxMonad DVDDrive where -- put these methods where they need to go
ireturn = DReturn -- so this goes somewhere else
ibind (DReturn a) k = k a
ibind (DInsert dvd j) k = DInsert dvd (ibind j k)
ibind (DEject j) k = DEject j $ \ dvd -> ibind (j dvd) k

With this in place, we can define the “primitive” commands

dInsert :: DVD -> DVDDrive False True ()
dInsert dvd = DInsert dvd $ DReturn ()

dEject :: DVDrive True False DVD
dEject = DEject $ \ dvd -> DReturn dvd
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from which others are assembled with ireturn and ibind. Now, I can write (borrowing
do-notation)

discSwap :: DVD -> DVDDrive True True DVD
discSwap dvd = do dvd’ <- dEject; dInsert dvd ; ireturn dvd’

but not the physically impossible

discSwap :: DVD -> DVDDrive True True DVD
discSwap dvd = do dInsert dvd; dEject -- ouch!

Alternatively, one can define one’s primitive commands directly

data DVDCommand :: Bool -> Bool -> * -> * where
InsertC :: DVD -> DVDCommand False True ()
EjectC :: DVDCommand True False DVD

and then instantiate the generic template

data CommandIxMonad :: (state -> state -> * -> *) ->
state -> state -> * -> * where

CReturn :: a -> CommandIxMonad c i i a
(:?) :: c i j a -> (a -> CommandIxMonad c j k b) ->

CommandIxMonad c i k b

instance IxMonad (CommandIxMonad c) where
ireturn = CReturn
ibind (CReturn a) k = k a
ibind (c :? j) k = c :? \ a -> ibind (j a) k

In effect, we’ve said what the primitive Kleisli arrows are (what one “domino” is), then built
a suitable notion of “computation sequence” over them.

Note that for every indexed monad m, the “no change diagonal” m i i is a monad, but in
general, m i j is not. Moreover, values are not indexed but computations are indexed, so an
indexed monad is not just the usual idea of monad instantiated for some other category.

Now, look again at the type of a Kleisli arrow

a -> m i j b

We know we must be in state i to start, and we predict that any continuation will start from
state j. We know a lot about this system! This isn’t a risky operation! When we put the dvd in
the drive, it goes in! The dvd drive doesn’t get any say in what the state is after each command.

But that’s not true in general, when interacting with the world. Sometimes you might need to
give away some control and let the world do what it likes. For example, if you are a server, you
might offer your client a choice, and your session state will depend on what they choose. The
server’s “offer choice” operation does not determine the resulting state, but the server should be
able to carry on anyway. It’s not a “primitive command” in the above sense, so indexed monads
are not such a good tool to model the unpredictable scenario.

What’s a better tool?

type f :-> g = forall state. f state -> g state

class MonadIx (m :: (state -> *) -> (state -> *)) where
returnIx :: x :-> m x
flipBindIx :: (a :-> m b) -> (m a :-> m b) -- tidier than bindIx
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Scary biscuits? Not really, for two reasons. One, it looks rather more like what a monad is,
because it is a monad, but over (state -> *) rather than *. Two, if you look at the type of a
Kleisli arrow,

a :-> m b = forall state. a state -> m b state

you get the type of computations with a precondition a and postcondition b, just like in Good
Old Hoare Logic. Assertions in program logics have taken under half a century to cross the
Curry-Howard correspondence and become Haskell types. The type of returnIx says “you can
achieve any postcondition which holds, just by doing nothing”, which is the Hoare Logic rule for
“skip”. The corresponding composition is the Hoare Logic rule for “;”.

Let’s finish by looking at the type of bindIx, putting all the quantifiers in.

bindIx :: forall i. m a i -> (forall j. a j -> m b j) -> m b i

These foralls have opposite polarity. We choose initial state i, and a computation which
can start at i, with postcondition a. The world chooses any intermediate state j it likes, but it
must give us the evidence that postcondition b holds, and from any such state, we can carry on
to make b hold. So, in sequence, we can achieve condition b from state i. By releasing our grip
on the “after” states, we can model unpredictable computations.

Both IxMonad and MonadIx are useful. Both model validity of interactive computations with
respect to changing state, predictable and unpredictable, respectively. Predictability is valuable
when you can get it, but unpredictability is sometimes a fact of life. Hopefully, then, this answer
gives some indication of what indexed monads are, predicting both when they start to be useful
and when they stop.

7.7 Fixpoints of functors on indexed sets

Quite right to construct a recursive functor by taking the fixpoint of a bifunctor, because 1 + 1
= 2. The list node structure is given as a container with 2 sorts of substructure: “elements” and
“sublists”.

It can be troubling that we need a whole other notion of Functor (which captures a rather
specific variety of functor, despite its rather general name), to construct a Functor as a fixpoint.
We can, however (as a bit of a stunt), shift to a slightly more general notion of functor which is
closed under fixpoints.

type p -:> q = forall i. p i -> q i

class FunctorIx (f :: (i -> *) -> (o -> *)) where
mapIx :: (p -:> q) -> f p -:> f q

These are the functors on indexed sets, so the names are not just gratuitous homages to Goscinny
and Uderzo. You can think of o as “sorts of structure” and i as “sorts of substructure”. Here’s an
example, based on the fact that 1 + 1 = 2.

data ListF :: (Either () () -> *) -> (() -> *) where
Nil :: ListF p ’()
Cons :: p (Left ’()) -> p (Right ’()) -> ListF p ’()

instance FunctorIx ListF where
mapIx f Nil = Nil
mapIx f (Cons a b) = Cons (f a) (f b)

To exploit the choice of substructure sort, we’ll need a kind of type-level case analysis. We
can’t get away with a type function, as
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1. we need it to be partially applied, and that’s not allowed;
2. we need a bit at run time to tell us which sort is present.

data Case :: (i -> *) -> (j -> *) -> (Either i j -> *) where
CaseL :: p i -> Case p q (Left i)
CaseR :: q j -> Case p q (Right j)

caseMap :: (p -:> p’) -> (q -:> q’) -> Case p q -:> Case p’ q’
caseMap f g (CaseL p) = CaseL (f p)
caseMap f g (CaseR q) = CaseR (g q)

And now we can take the fixpoint:

data Mu :: ((Either i j -> *) -> (j -> *)) ->
((i -> *) -> (j -> *)) where

In :: f (Case p (Mu f p)) j -> Mu f p j

In each substructure position, we do a case split to see whether we should have a p-element
or a Mu f p substructure. And we get its functoriality.

instance FunctorIx f => FunctorIx (Mu f) where
mapIx f (In fpr) = In (mapIx (caseMap f (mapIx f)) fpr)

To build lists from these things, we need to juggle between * and () -> *.

newtype K a i = K {unK :: a}

type List a = Mu ListF (K a) ’()
pattern NilP :: List a
pattern NilP = In Nil
pattern ConsP :: a -> List a -> List a
pattern ConsP a as = In (Cons (CaseL (K a)) (CaseR as))

Now, for lists, we get

map’ :: (a -> b) -> List a -> List b
map’ f = mapIx (K . f . unK)

7.8 Why is the type system refusing my seemingly valid pro-
gram?

If your program really seemed valid to you, then you would be able to write the type of get that
does the job you want in Haskell, not in handwave. Let me help you improve your handwave
and uncover the reason you are asking for the moon on a stick.

What I want to express is: get :: (Convert a contained by D b) => D ->
b, which seems impossible.

As stated, that’s not quite as precise as you would need. Indeed, it’s what Haskell gives you
now, in that

get :: (Convert A b, Convert B b, Convert C b) => D -> b
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any a which can be contained by D is required, one at a time, to be convertible to that b. And
that’s why you’re getting classic sysadmin logic: no D is allowed to be gotten unless they all can
b.

The problem is that you need to know the status not of the type which might be contained in
any old D, but rather the type contained in the particular D that you receive as the input. Right?
You want

print (get (DB B) :: A) -- this to work
print (get (DC C) :: A) -- this to fail

but DB B and DC C are just two different elements of D, and as far as the Haskell type system
is concerned, within each type everything different is the same. If you want to discriminate
between elements of D, then you need a D-pendent type. Here’s how I’d write it in handwave.

DInner :: D -> *
DInner (DA a) = A
DInner (DB b) = B
DInner (DC c) = C

get :: forall x. pi (d :: D) -> (Convert (DInner d) x) => x
get (DA x) = convert x
get (DB x) = convert x
get (DC x) = convert x

where pi is the binding form for data which are passed at run time (unlike forall) but on
which types may depend (unlike ->). Now the constraint is talking not about arbitrary Ds but the
very d :: D in your hand, and the constraint can compute exactly what is needed by inspecting
its DInner.

There is nothing you can say that will make it go away but my pi.
Sadly, whilst pi is rapidly descending from the sky, it has not yet landed. None the less,

unlike the moon, it can be reached with a stick. No doubt you will complain that I am changing
the setup, but really I am just translating your program from Haskell in approximately 2017 to
Haskell in 2015. You’ll get it back, one day, with the very type I handwaved.

There is nothing you can say, but you can sing.
Step 1. Switch on DataKinds and KindSignatures and build the singletons for your types

(or get Richard Eisenberg to do it for you).

data A = A deriving Show
data Aey :: A -> * where -- think of "-ey" as an adjectival suffix

Aey :: Aey ’A -- as in "tomatoey"

data B = B deriving Show
data Bey :: B -> * where

Bey :: Bey ’B

data C = C deriving Show
data Cey :: C -> * where

Cey :: Cey ’C

data D = DA A | DB B | DC C deriving Show
data Dey :: D -> * where

DAey :: Aey a -> Dey (DA a)
DBey :: Bey b -> Dey (DB b)
DCey :: Cey c -> Dey (DC c)
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The idea is (i) that datatypes become kinds, and (ii) that singletons characterize the type-level
data which have a run time presentation. So type level DA a exists at run time provided a does,
etc.

Step 2. Guess who’s coming to DInner. Switch on TypeFamilies.

type family DInner (d :: D) :: * where
DInner (DA a) = A
DInner (DB b) = B
DInner (DC c) = C

Step 3. Get you some RankNTypes, and now you can write

get :: forall x. forall d. Dey d -> (Convert (DInner d) x) => x
-- ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
-- this is a plausible fake of pi (d :: D) ->

Step 4. Try to write get and screw up. We have to match on the run time evidence that the
type level d is representable. We need that to get the type level d specialised in the computation
of DInner. If we had proper pi, we could match on a D value that serves double duty, but for
now, match on Dey d instead.

get (DAey x) = convert x -- have x :: Aey a, need x :: A
get (DBey x) = convert x -- and so on
get (DCey x) = convert x -- and so forth

Maddeningly, our xes are now singletons, where, to convert, we need the underlying data.
We need more of the singleton apparatus.

Step 5. Introduce and instantiate the singleton class, to “demote” type level values (as long
as we know their run time representatives). Again, Richard Eisenberg’s singletons library can
Template-Haskell the boilerplate out of this, but let’s see what’s going on

class Sing (s :: k -> *) where -- s is the singleton family for some k
type Sung s :: * -- Sung s is the type-level version of k
sung :: s x -> Sung s -- sung is the demotion function

instance Sing Aey where
type Sung Aey = A
sung Aey = A

instance Sing Bey where
type Sung Bey = B
sung Bey = B

instance Sing Cey where
type Sung Cey = C
sung Cey = C

instance Sing Dey where
type Sung Dey = D
sung (DAey aey) = DA (sung aey)
sung (DBey bey) = DB (sung bey)
sung (DCey cey) = DC (sung cey)

Step 6. Do it.
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get :: forall x. forall d. Dey d -> (Convert (DInner d) x) => x
get (DAey x) = convert (sung x)
get (DBey x) = convert (sung x)
get (DCey x) = convert (sung x)

Be assured, when we have proper pi, those DAeys will be actual DAs and those xs will no
longer need to be sung. My handwave type for get will be Haskell, and your code for get will
be fine. But in the meantime

main = do
print (get (DCey Cey) :: B)
print (get (DBey Bey) :: A)

typechecks just fine. That’s to say, your program (plus DInner and the correct type for get)
seems like valid Dependent Haskell, and we’re nearly there.

7.9 Is it possible to program and check invarants in Haskell?

The following is a stunt, but it’s quite a safe stunt so do try it at home. It uses some of the
entertaining new toys to bake order invariants into mergeSort.

{-# LANGUAGE GADTs, PolyKinds, KindSignatures, MultiParamTypeClasses,
FlexibleInstances, RankNTypes, FlexibleContexts #-}

I’ll have natural numbers, just to keep things simple.

data Nat = Z | S Nat deriving (Show, Eq, Ord)

But I’ll define<= in type class Prolog, so the typechecker can try to figure order out implicitly.

class LeN (m :: Nat) (n :: Nat) where
instance LeN Z n where
instance LeN m n => LeN (S m) (S n) where

In order to sort numbers, I need to know that any two numbers can be ordered one way or the
other. Let’s say what it means for two numbers to be so orderable.

data OWOTO :: Nat -> Nat -> * where
LE :: LeN x y => OWOTO x y
GE :: LeN y x => OWOTO x y

We’d like to know that every two numbers are indeed orderable, provided we have a runtime
representation of them. These days, we get that by building the singleton family for Nat. Natty
n is the type of runtime copies of n.

data Natty :: Nat -> * where
Zy :: Natty Z
Sy :: Natty n -> Natty (S n)

Testing which way around the numbers are is quite a lot like the usual Boolean version, ex-
cept with evidence. The step case requires unpacking and repacking because the types change.
Instance inference is good for the logic involved.

owoto :: forall m n. Natty m -> Natty n -> OWOTO m n
owoto Zy n = LE
owoto (Sy m) Zy = GE
owoto (Sy m) (Sy n) = case owoto m n of

LE -> LE
GE -> GE
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Now we know how to put numbers in order, let’s see how to make ordered lists. The plan is
to describe what it is to be in order between loose bounds. Of course, we don’t want to exclude any
elements from being sortable, so the type of bounds extends the element type with bottom and
top elements.

data Bound x = Bot | Val x | Top deriving (Show, Eq, Ord)

I extend the notion of <= accordingly, so the typechecker can do bound checking.

class LeB (a :: Bound Nat)(b :: Bound Nat) where
instance LeB Bot b where
instance LeN x y => LeB (Val x) (Val y) where
instance LeB (Val x) Top where
instance LeB Top Top where

And here are ordered lists of numbers: an OList l u is a sequence x1 :< x2 :< ...
:< xn :< ONil such that l <= x1 <= x2 <= ... <= xn <= u. The x :< checks that
x is above the lower bound, then imposes x as the lower bound on the tail.

data OList :: Bound Nat -> Bound Nat -> * where
ONil :: LeB l u => OList l u
(:<) :: forall l x u. LeB l (Val x) =>

Natty x -> OList (Val x) u -> OList l u

We can write merge for ordered lists just the same way we would if they were ordinary. The
key invariant is that if both lists share the same bounds, so does their merge.

merge :: OList l u -> OList l u -> OList l u
merge ONil lu = lu
merge lu ONil = lu
merge (x :< xu) (y :< yu) = case owoto x y of

LE -> x :< merge xu (y :< yu)
GE -> y :< merge (x :< xu) yu

The branches of the case analysis extend what is already known from the inputs with just
enough ordering information to satisfy the requirements for the results. Instance inference acts
as a basic theorem prover: fortunately (or rather, with a bit of practice) the proof obligations are
easy enough.

Let’s seal the deal. We need to construct runtime witnesses for numbers in order to sort them
this way.

data NATTY :: * where
Nat :: Natty n -> NATTY

natty :: Nat -> NATTY
natty Z = Nat Zy
natty (S n) = case natty n of Nat n -> Nat (Sy n)

We need to trust that this translation gives us the NATTY that corresponds to the Nat we want
to sort. This interplay between Nat, Natty and NATTY is a bit frustrating, but that’s what it takes
in Haskell just now. Once we’ve got that, we can build sort in the usual divide-and-conquer
way.

deal :: [x] -> ([x], [x])
deal [] = ([], [])
deal (x : xs) = (x : zs, ys) where (ys, zs) = deal xs
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sort :: [Nat] -> OList Bot Top
sort [] = ONil
sort [n] = case natty n of Nat n -> n :< ONil
sort xs = merge (sort ys) (sort zs) where (ys, zs) = deal xs

I’m often surprised by how many programs that make sense to us can make just as much
sense to a typechecker.

[Here’s some spare kit I built to see what was happening.

instance Show (Natty n) where
show Zy = "Zy"
show (Sy n) = "(Sy " ++ show n ++ ")"

instance Show (OList l u) where
show ONil = "ONil"
show (x :< xs) = show x ++ " :< " ++ show xs

ni :: Int -> Nat
ni 0 = Z
ni x = S (ni (x - 1))

And nothing was hidden.]

7.10 Why is typecase a bad thing?

It’s really odd that people think pattern matching on types is bad. We get a lot of mileage out
of pattern matching on data which encode types, whenever we do a universe construction. If
you take the approach that Thorsten Altenkirch and I pioneered (and which my comrades and
I began to engineer), the types do form a closed universe, so you don’t even need to solve the
(frankly worth solving) problem of computing with open datatypes to treat types as data. If we
could pattern match on types directly, we wouldn’t need a decoding function to map type codes
to their meanings, which at worst reduces clutter, and at best reduces the need to prove and
coerce by equational laws about the behaviour of the decoding function. I have every intention
of building a no-middleman closed type theory this way. Of course, you need that level 0 types
inhabit a level 1 datatype. That happens as a matter of course when you build an inductive-
recursive universe hierarchy.

But what about parametricity, I hear you ask?
Firstly, I don’t want parametricity when I’m trying to write type-generic code. Don’t force

parametricity on me.
Secondly, why should types be the only things we’re parametric in? Why shouldn’t we some-

times be parametric in other stuff, e.g., perfectly ordinary type indices which inhabit datatypes
but which we’d prefer not to have at run time? It’s a real nuisance that quantities which play a
part only in specification are, just because of their type, forced to be present.

The type of a domain has nothing whatsoever to do with whether quantification over it
should be parametric.

Let’s have (e.g. as proposed by Bernardy and friends) a discipline where both parametric/erasable
and non-parametric/matchable quantification are distinct and both available. Then types can be
data and we can still say what we mean.

7.11 Why can’t I pattern match on a type family?

When you declare

leftthing :: a -> Leftthing a
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you are saying that the caller of leftthing gets to choose what a is.
When you then write

leftthing (Twothings a b) = leftthing a

you are presuming that they have chosen a Twothings type, and as that is not necessarily the
case, your program is rejected.

You may have thought that you were testing whether they had chosen a Twothings type, but
no! Type information is erased before run time, so there is no way to make such a test.

You can try to restore the necessary run time information. First let me fix the inconsistency
between your Leftthing and leftthing.

type family Leftthing a where
Leftthing (Twothings a b) = Leftthing{-you forgot the recursion!-} a
Leftthing a = a

Now we can define the GADT of witnesses to Twothingness.

data IsItTwothings :: * -> * where
YesItIs :: IsItTwothings a -> IsItTwothings (Twothings a b)
NoItIsn’t :: Leftthing a ˜ a => IsItTwothings a

-- ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ this constraint will hold for any type
-- which is *definitely not* a Twothings type

And then we can pass the witness as an argument:

leftthing :: IsItTwothings a -> a -> Leftthing a
leftthing (YesItIs r) (Twothings a b) = leftthing r a
leftthing NoItIsn’t b = b

In effect, the witness is the unary encoding of the number of left-nested Twothingses at the
root of your type. That’s enough information to determine at run time the correct amount of
unpacking to do.

> leftthing (YesItIs (YesItIs NoItIsn’t)) (Twothings (Twothings True 11) (Twothings "strange" [42]))
True

To sum up, you can’t find out a type by pattern matching on a value. Rather, you need to
know the type to do pattern matching (because the type determines the memory layout, and
there are no run time type tags). You can’t pattern match on types directly (because they’re just
not there to be matched on). You can construct data types which act as run time evidence of type
structure and match on those instead.

Perhaps, one day, your program will work if you give it the type

leftthing :: pi a. a -> Leftthing a

where pi is the dependent quantifier, indicating that the hidden type argument is not erased,
but rather passed and matched on at run time. That day has not yet come, but I think it will.

7.12 Positive integer type

I would be failing in my duty as his supervisor if I failed to plug Adam Gundry’s Inch prepro-
cessor, which manages integer constraints for Haskell.

Smart constructors and abstraction barriers are all very well, but they push too much testing
to run time and don’t allow for the possibility that you might actually know what you’re doing in
a way that checks out statically, with no need for Maybe padding. (A pedant writes. The author

https://github.com/adamgundry/inch/
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of another answer appears to suggest that 0 is positive, which some might consider contentious.
Of course, the truth is that we have uses for a variety of lower bounds, 0 and 1 both occurring
often. We also have some use for upper bounds.)

In the tradition of Xi’s DML, Adam’s preprocessor adds an extra layer of precision on top of
what Haskell natively offers but the resulting code erases to Haskell as is. It would be great if
what he’s done could be better integrated with GHC, in coordination with the work on type level
natural numbers that Iavor Diatchki has been doing. We’re keen to figure out what’s possible.

To return to the general point, Haskell is currently not sufficiently dependently typed to al-
low the construction of subtypes by comprehension (e.g., elements of Integer greater than 0), but
you can often refactor the types to a more indexed version which admits static constraint. Cur-
rently, the singleton type construction is the cleanest of the available unpleasant ways to achieve
this. You’d need a kind of “static” integers, then inhabitants of kind Integer -> * capture
properties of particular integers such as “having a dynamic representation” (that’s the singleton
construction, giving each static thing a unique dynamic counterpart) but also more specific things
like “being positive”.

Inch represents an imagining of what it would be like if you didn’t need to bother with the sin-
gleton construction in order to work with some reasonably well behaved subsets of the integers.
Dependently typed programming is often possible in Haskell, but is currently more complicated
than necessary. The appropriate sentiment toward this situation is embarrassment, and I for one
feel it most keenly.

7.13 Test if a value matches a constructor

Tags of tagged unions ought to be first-class values, and with a wee bit of effort, they are.
Jiggery-pokery alert:

{-# LANGUAGE GADTs, DataKinds, KindSignatures,
TypeFamilies, PolyKinds, FlexibleInstances,
PatternSynonyms

#-}

Step one: define type-level versions of the tags.

data TagType = EmptyTag | SingleTag | PairTag | LotsTag

Step two: define value-level witnesses for the representability of the type-level tags. Richard
Eisenberg’s Singletons library will do this for you. I mean something like this:

data Tag :: TagType -> * where
EmptyT :: Tag EmptyTag
SingleT :: Tag SingleTag
PairT :: Tag PairTag
LotsT :: Tag LotsTag

And now we can say what stuff we expect to find associated with a given tag.

type family Stuff (t :: TagType) :: * where
Stuff EmptyTag = ()
Stuff SingleTag = Int
Stuff PairTag = (Int, Int)
Stuff LotsTag = [Int]

So we can refactor the type you first thought of

data NumCol :: * where
(:&) :: Tag t -> Stuff t -> NumCol
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and use PatternSynonyms to recover the behaviour you had in mind:

pattern Empty = EmptyT :& ()
pattern Single i = SingleT :& i
pattern Pair i j = PairT :& (i, j)
pattern Lots is = LotsT :& is

So what’s happened is that each constructor for NumCol has turned into a tag indexed by
the kind of tag it’s for. That is, constructor tags now live separately from the rest of the data,
synchronized by a common index which ensures that the stuff associated with a tag matches the
tag itself.

But we can talk about tags alone.

data Ex :: (k -> *) -> * where -- wish I could say newtype here
Witness :: p x -> Ex p

Now, Ex Tag, is the type of “runtime tags with a type level counterpart”. It has an Eq in-
stance

instance Eq (Ex Tag) where
Witness EmptyT == Witness EmptyT = True
Witness SingleT == Witness SingleT = True
Witness PairT == Witness PairT = True
Witness LotsT == Witness LotsT = True
_ == _ = False

Moreover, we can easily extract the tag of a NumCol.

numColTag :: NumCol -> Ex Tag
numColTag (n :& _) = Witness n

And that allows us to match your specification.

filter ((Witness PairT ==) . numColTag) :: [NumCol] -> [NumCol]

Which raises the question of whether your specification is actually what you need. The point
is that detecting a tag entitles you an expectation of that tag’s stuff. The output type [NumCol]
doesn’t do justice to the fact that you know you have just the pairs.

How might you tighten the type of your function and still deliver it?

7.14 Difference between Haskell and Idris: Reflection of Run-
time/Compiletime in the type universes

Yes, you’re right to observe that the types versus values distinction in Idris does not align with
the compiletime-only versus runtime-and-compiletime distinction. That’s a good thing. It is
useful to have values which exist only at compiletime, just as in program logics we have “ghost
variables” used only in specifications. It is useful also to have type representations at runtime,
allowing datatype generic programming.

In Haskell, DataKinds (and PolyKinds) let us write

type family Cond (b :: Bool)(t :: k)(e :: k) :: k where
Cond ’True t e = t
Cond ’False t e = e

and in the not too distant future, we shall be able to write
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item :: pi (b :: Bool) -> Cond b Int [Int]
item True = 42
item False = [1,2,3]

but until that technology is implemented, we have to make do with singleton forgeries of
dependent function types, like this:

data Booly :: Bool -> * where
Truey :: Booly ’True
Falsey :: Booly ’False

item :: forall b. Booly b -> Cond b Int [Int]
item Truey = 42
item Falsey = [1,2,3]

You can get quite far with such fakery, but it would all get a lot easier if we just had the real
thing.

Crucially, the plan for Haskell is to maintain and separate forall and pi, supporting para-
metric and ad hoc polymorphism, respectively. The lambdas and applications that go with
forall can still be erased in runtime code generation, just as now, but those for pi are retained.
It would also make sense to have runtime type abstractions pi x :: * -> ... and throw the
rats’ nest of complexity that is Data.Typeable into the dustbin.

7.15 Why GADT/existential data constructors cannot be used in
lazy patterns?

Consider

data EQ a b where
Refl :: EQ a a

If we could define

transport :: Eq a b -> a -> b
transport ˜Refl a = a

then we could have

transport undefined :: a -> b

and thus acquire

transport undefined True = True :: Int -> Int

and then a crash, rather than the more graceful failure you get when trying to head-normalise
the undefined.

GADT data represent evidence about types, so bogus GADT data threaten type safety. It is
necessary to be strict with them to validate that evidence: you can’t trust unevaluated computa-
tions in the presence of bottom.
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7.16 Can GADTs be used to prove type inequalities in GHC?

Here’s a shorter version of Philip JF’s solution, which is the way dependent type theorists have
been refuting equations for years.

type family Discriminate x
type instance Discriminate Int = ()
type instance Discriminate Char = Void

transport :: Equal a b -> Discriminate a -> Discriminate b
transport Refl d = d

refute :: Equal Int Char -> Void
refute q = transport q ()

In order to show that things are different, you have to catch them behaving differently by pro-
viding a computational context which results in distinct observations. Discriminate provides
exactly such a context: a type-level program which treats the two types differently.

It is not necessary to resort to undefined to solve this problem. Total programming some-
times involves rejecting impossible inputs. Even where undefined is available, I would rec-
ommend not using it where a total method suffices: the total method explains why something is
impossible and the typechecker confirms; undefined merely documents your promise. Indeed,
this method of refutation is how Epigram dispenses with “impossible cases” whilst ensuring that
a case analysis covers its domain.

As for computational behaviour, note that refute, via transport is necessarily strict in q
and that q cannot compute to head normal form in the empty context, simply because no such
head normal form exists (and because computation preserves type, of course). In a total setting,
we’d be sure that refute would never be invoked at run time. In Haskell, we’re at least certain
that its argument will diverge or throw an exception before we’re obliged to respond to it. A lazy
version, such as

absurdEquality e = error "you have a type error likely to cause big problems"

will ignore the toxicity of e and tell you that you have a type error when you don’t. I prefer

absurdEquality e = e ‘seq‘ error "sue me if this happens"

if the honest refutation is too much like hard work.

7.17 Implementing a zipper for length-indexed lists

###Alignment###
Dependently typed programming is like doing two jigsaws which some rogue has glued to-

gether. Less metaphorically, we express simultaneous computations at the value level and at the
type level, and we must ensure their compatibility. Of course, we are each our own rogue, so if
we can arrange for the jigsaws to be glued in alignment, we shall have an easier time of it. When
you see proof obligations for type repair, you might be tempted to ask

Do I need to add some sort of proof objects (data Refl a b where Refl ::
Refl a a et al.) or is there some way to make this work with just adding more
explicit type signatures?

But you might first consider in what way the value- and type-level computations are out of
alignment, and whether there is any hope to bring them closer.

###A Solution###
The question here is how to compute the vector (length-indexed list) of selections from a

vector. So we’d like something with type
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List (Succ n) a -> List (Succ n) (a, List n a)

where the element in each input position gets decorated with the one-shorter vector of its
siblings. The proposed method is to scan left-to-right, accumulating the elder siblings in a list
which grows on the right, then concatenate with the younger siblings at each position. Growing
lists on the right is always a worry, especially when the Succ for the length is aligned to the
Cons on the left. The need for concatenation necessitates type-level addition, but the arithmetic
resulting from right-ended activity is out of alignment with the computation rules for addition.
I’ll get back to this style in a bit, but let’s try thinking it out again.

Before we get into any accumulator-based solution, let’s just try bog standard structural re-
cursion. We have the “one” case and the “more” case.

picks (Cons x xs@Nil) = Cons (x, xs) Nil
picks (Cons x xs@(Cons _ _)) = Cons (x, xs) (undefined (picks xs))

In both cases, we put the first decomposition at the front. In the second case, we have checked
that the tail is nonempty, so we can ask for its selections. We have

x :: a
xs :: List (Succ n) a
picks xs :: List (Succ n) (a, List n a)

and we want

Cons (x, xs) (undefined (picks xs)) :: List (Succ (Succ n)) (a, List (Succ n) a)
undefined (picks xs) :: List (Succ n) (a, List (Succ n) a)

so the undefined needs to be a function which grows all the sibling lists by reattaching x at
the left end (and left-endedness is good). So, I define the Functor instance for List n

instance Functor (List n) where
fmap f Nil = Nil
fmap f (Cons x xs) = Cons (f x) (fmap f xs)

and I curse the Prelude and

import Control.Arrow((***))

so that I can write

picks (Cons x xs@Nil) = Cons (x, xs) Nil
picks (Cons x xs@(Cons _ _)) = Cons (x, xs) (fmap (id *** Cons x) (picks xs))

which does the job with not a hint of addition, let alone a proof about it.
###Variations###
I got annoyed about doing the same thing in both lines, so I tried to wriggle out of it:

picks :: m ˜ Succ n => List m a -> List m (a, List n a) -- DOESN’T TYPECHECK
picks Nil = Nil
picks (Cons x xs) = Cons (x, xs) (fmap (id *** (Cons x)) (picks xs))

But GHC solves the constraint aggressively and refuses to allow Nil as a pattern. And it’s
correct to do so: we really shouldn’t be computing in a situation where we know statically that
Zero ˜ Succ n, as we can easily construct some segfaulting thing. The trouble is just that I put
my constraint in a place with too global a scope.

Instead, I can declare a wrapper for the result type.
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data Pick :: Nat -> * -> * where
Pick :: {unpick :: (a, List n a)} -> Pick (Succ n) a

The Succ n return index means the nonemptiness constraint is local to a Pick. A helper
function does the left-end extension,

pCons :: a -> Pick n a -> Pick (Succ n) a
pCons b (Pick (a, as)) = Pick (a, Cons b as)

leaving us with

picks’ :: List m a -> List m (Pick m a)
picks’ Nil = Nil
picks’ (Cons x xs) = Cons (Pick (x, xs)) (fmap (pCons x) (picks’ xs))

and if we want

picks = fmap unpick . picks’

That’s perhaps overkill, but it might be worth it if we want to separate older and younger
siblings, splitting lists in three, like this:

data Pick3 :: Nat -> * -> * where
Pick3 :: List m a -> a -> List n a -> Pick3 (Succ (m + n)) a

pCons3 :: a -> Pick3 n a -> Pick3 (Succ n) a
pCons3 b (Pick3 bs x as) = Pick3 (Cons b bs) x as

picks3 :: List m a -> List m (Pick3 m a)
picks3 Nil = Nil
picks3 (Cons x xs) = Cons (Pick3 Nil x xs) (fmap (pCons3 x) (picks3 xs))

Again, all the action is left-ended, so we’re fitting nicely with the computational behaviour of
+.

###Accumulating###
If we want to keep the style of the original attempt, accumulating the elder siblings as we

go, we could do worse than to keep them zipper-style, storing the closest element in the most
accessible place. That is, we can store the elder siblings in reverse order, so that at each step we
need only Cons, rather than concatenating. When we want to build the full sibling list in each
place, we need to use reverse-concatenation (really, plugging a sublist into a list zipper). You can
type revCat easily for vectors if you deploy the abacus-style addition:

type family (+/) (a :: Nat) (b :: Nat) :: Nat
type instance (+/) Zero n = n
type instance (+/) (Succ m) n = m +/ Succ n

That’s the addition which is in alignment with the value-level computation in revCat, de-
fined thus:

revCat :: List m a -> List n a -> List (m +/ n) a
revCat Nil ys = ys
revCat (Cons x xs) ys = revCat xs (Cons x ys)

We acquire a zipperized go version
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picksr :: List (Succ n) a -> List (Succ n) (a, List n a)
picksr = go Nil where

go :: List p a -> List (Succ q) a -> List (Succ q) (a, List (p +/ q) a)
go p (Cons x xs@Nil) = Cons (x, revCat p xs) Nil
go p (Cons x xs@(Cons _ _)) = Cons (x, revCat p xs) (go (Cons x p) xs)

and nobody proved anything.
###Conclusion###
Leopold Kronecker should have said

God made the natural numbers to perplex us: all the rest is the work of man.

One Succ looks very like another, so it is very easy to write down expressions which give
the size of things in a way which is out of alignment with their structure. Of course, we can
and should (and are about to) equip GHC’s constraint solver with improved kit for type-level
numerical reasoning. But before that kicks in, it’s worth just conspiring to align the Conses with
the Succs.

7.18 Monoid for integers modulo

Expanding on my comment, here’s a first crack. The modulus is enforced by type, but not the
canonical choice of representative: that’s just done by computation, so would necessitate an ab-
straction barrier. Types of bounded numbers are also available, but they take a bit more work.

Enter, {-# LANGUAGE KitchenSink #-}. I mean (actually the not too bad)

{-# LANGUAGE DataKinds, GADTs, KindSignatures, FlexibleInstances #-}

and let’s get cracking.
Firstly, just by reflex, I introduce the Hasochistic natural numbers:

data Nat = Z | S Nat -- type-level numbers
data Natty :: Nat -> * where -- value-level representation of Nat

Zy :: Natty Z
Sy :: Natty n -> Natty (S n)

class NATTY n where -- value-level representability
natty :: Natty n

instance NATTY Z where
natty = Zy

instance NATTY n => NATTY (S n) where
natty = Sy natty

To my mind, that’s just what you do when you want to declare a datatype and then allow
other types to depend on its values. Richard Eisenberg’s “singletons” library automates the con-
struction.

(If the example goes on to use numbers to index vectors, some people point out that vectors
of () can also serve as singletons for Nat. They’re technically correct, of course, but misguided.
When we think of Natty and NATTY as systematically generated from Nat, they’re an entitle-
ment we can exploit or not as we see fit, not an extra to justify. This example does not involve
vectors, and it would be perverse to introduce vectors just to have singletons for Nat.)

I hand-roll a bunch of conversion functions and Show instances, so we can see what we’re
doing, apart from anything else.

int :: Nat -> Integer
int Z = 0
int (S n) = 1 + int n
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instance Show Nat where
show = show . int

nat :: Natty n -> Nat
nat Zy = Z
nat (Sy n) = S (nat n)

instance Show (Natty n) where
show = show . nat

Now we’re ready to declare Mod.

data Mod :: Nat -> * where
(:%) :: Integer -> Natty n -> Mod (S n)

The type carries the modulus. The values carry an unnormalized representative of the equiv-
alence class, but we had better figure out how to normalize it. Division for unary numbers is a
peculiar sport which I learned as a child.

remainder :: Natty n -- predecessor of modulus
-> Integer -- any representative
-> Integer -- canonical representative

-- if candidate negative, add the modulus
remainder n x | x < 0 = remainder n (int (nat (Sy n)) + x)

-- otherwise get dividing
remainder n x = go (Sy n) x x where

go :: Natty m -- divisor countdown (initially the modulus)
-> Integer -- our current guess at the representative
-> Integer -- dividend countdown
-> Integer -- the canonical representative

-- when we run out of dividend the guessed representative is canonical
go _ c 0 = c

-- when we run out of divisor but not dividend,
-- the current dividend countdown is a better guess at the rep,
-- but perhaps still too big, so start again, counting down
-- from the modulus (conveniently still in scope)

go Zy _ y = go (Sy n) y y
-- otherwise, decrement both countdowns

go (Sy m) c y = go m c (y - 1)

Now we can make a smart constructor.

rep :: NATTY n -- we pluck the modulus rep from thin air
=> Integer -> Mod (S n) -- when we see the modulus we want

rep x = remainder n x :% n where n = natty

And then the Monoid instance is easy:

instance NATTY n => Monoid (Mod (S n)) where
mempty = rep 0
mappend (x :% _) (y :% _) = rep (x + y)

I chucked in some other things, too:
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instance Show (Mod n) where
show (x :% n) = concat ["(", show (remainder n x), " :% ", show (Sy n), ")"]

instance Eq (Mod n) where
(x :% n) == (y :% _) = remainder n x == remainder n y

With a little convenience. . .

type Four = S (S (S (S Z)))

we get

> foldMap rep [1..5] :: Mod Four
(3 :% 4)

So yes, you do need dependent types, but Haskell is dependently typed enough.

7.19 Are there non-trivial Foldable or Traversable instances that
don’t look like containers?

Every valid Traversable f is isomorphic to Normal s for some s :: Nat -> * where

data Normal (s :: Nat -> *) (x :: *) where -- Normal is Girard’s terminology
(:-) :: s n -> Vec n x -> Normal s x

data Nat = Zero | Suc Nat

data Vec (n :: Nat) (x :: *) where
Nil :: Vec Zero n
(:::) :: x -> Vec n x -> Vec (Suc n) x

but it’s not at all trivial to implement the iso in Haskell (but it’s worth a go with full dependent
types). Morally, the s you pick is

data {- not really -} ShapeSize (f :: * -> *) (n :: Nat) where
Sized :: pi (xs :: f ()) -> ShapeSize f (length xs)

and the two directions of the iso separate and recombine shape and contents. The shape of a
thing is given just by fmap (const ()), and the key point is that the length of the shape of an
f x is the length of the f x itself.

Vectors are traversable in the visit-each-once-left-to-right sense. Normals are traversable ex-
actly in by preserving the shape (hence the size) and traversing the vector of elements. To be
traversable is to have finitely many element positions arranged in a linear order: isomorphism
to a normal functor exactly exposes the elements in their linear order. Correspondingly, every
Traversable structure is a (finitary) container: they have a set of shapes-with-size and a corre-
sponding notion of position given by the initial segment of the natural numbers strictly less than
the size.

The Foldable things are also finitary and they keep things in an order (there is a sensible
toList), but they are not guaranteed to be Functors, so they don’t have such a crisp notion
of shape. In that sense (the sense of “container” defined by my colleagues Abbott, Altenkirch
and Ghani), they do not necessarily admit a shapes-and-positions characterization and are thus
not containers. If you’re lucky, some of them may be containers upto some quotient. Indeed
Foldable exists to allow processing of structures like Set whose internal structure is intended
to be a secret, and certainly depends on ordering information about the elements which is not nec-
essarily respected by traversing operations. Exactly what constitutes a well behaved Foldable
is rather a moot point, however: I won’t quibble with the pragmatic benefits of that library design
choice, but I could wish for a clearer specification.
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7.20 Are GHC’s Type Famlies An Example of System F-omega?

System F-omega allows universal quantification, abstraction and application at higher kinds, so
not only over types (at kind *), but also at kinds k1 -> k2, where k1 and k2 are themselves
kinds generated from * and ->. Hence, the type level itself becomes a simply typed lambda-
calculus.

Haskell delivers slightly less than F-omega, in that the type system allows quantification and
application at higher kinds, but not abstraction. Quantification at higher kinds is how we have
types like

fmap :: forall f, s, t. Functor f => (s -> t) -> f s -> f t

with f :: * -> *. Correspondingly, variables like f can be instantiated with higher-kinded
type expressions, such as Either String. The lack of abstraction makes it possible to solve
unification problems in type expressions by the standard first-order techniques which underpin
the Hindley-Milner type system.

However, type families are not really another means to introduce higher-kinded types, nor a
replacement for the missing type-level lambda. Crucially, they must be fully applied. So your
example,

type family Foo a
type instance Foo Int = Int
type instance Foo Float = ...
....

should not be considered as introducing some

Foo :: * -> * -- this is not what’s happening

because Foo on its own is not a meaningful type expression. We have only the weaker rule
that Foo t :: * whenever t :: *.

Type families do, however, act as a distinct type-level computation mechanism beyond F-
omega, in that they introduce equations between type expressions. The extension of System F with
equations is what gives us the “System Fc” which GHC uses today. Equations s ˜ t between
type expressions of kind * induce coercions transporting values from s to t. Computation is
done by deducing equations from the rules you give when you define type families.

Moreover, you can give type families a higher-kinded return type, as in

type family Hoo a
type instance Hoo Int = Maybe
type instance Hoo Float = IO
...

so that Hoo t :: * -> * whenever t :: *, but still we cannot let Hoo stand alone.
The trick we sometimes use to get around this restriction is newtype wrapping:

newtype Noo i = TheNoo {theNoo :: Foo i}

which does indeed give us

Noo :: * -> *

but means that we have to apply the projection to make computation happen, so Noo Int
and Int are provably distinct types, but

theNoo :: Noo Int -> Int

So it’s a bit clunky, but we can kind of compensate for the fact that type families do not directly
correspond to type operators in the F-omega sense.
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7.21 How to derive Eq for a GADT with a non-* kinded phan-
tom type parameter

As others have identified, the key to the problem is the existentially quantified tag in the type of
Con3. When you’re trying to define

Con3 s == Con3 t = ???

there’s no reason why s and t should be expressions with the same tag.
But perhaps you don’t care? You can perfectly well define the heterogeneous equality test which

is happy to compare Exprs structurally, regardless of tags.

instance Eq (Expr tag) where
(==) = heq where

heq :: Expr a -> Expr b -> Bool
heq (Con1 i) (Con1 j) = i == j
heq (Con2 s) (Con2 t) = heq s t
heq (Con3 s) (Con3 t) = heq s t

If you do care, then you might be well advised to equip Con3 with a run-time witness to the
existentially quantified tag. The standard way to do this is with the singleton construction.

data SingExprTag (tag :: ExprTag) where
SingTag1 :: SingExprTag Tag1
SingTag2 :: SingExprTag Tag2

Case analysis on a value in SingExprTag tag will exactly determine what tag is. We can
slip this extra piece of information into Con3 as follows:

data Expr’ (tag :: ExprTag) where
Con1’ :: Int -> Expr’ tag
Con2’ :: Expr’ tag -> Expr’ tag
Con3’ :: SingExprTag tag -> Expr’ tag -> Expr’ Tag2

Now we can check whether the tags match. We could write a heterogeneous equality for tag
singletons like this. . .

heqTagBoo :: SingExprTag a -> SingExprTag b -> Bool
heqTagBoo SingTag1 SingTag1 = True
heqTagBoo SingTag2 SingTag2 = True
heqTagBoo _ _ = False

. . . but to do so would be perfectly useless, as it only gives us a value of type Bool, with no
idea what that value means nor to what its truth might entitle us. Knowing that heqTagBoo a
b = True does not tell the typechecker anything useful about the tags which a and b witness.
A Boolean is a bit uninformative.

We can write essentially the same test, but delivering in the positive case some evidence that
the tags are equal.

data x :=: y where
Refl :: x :=: x

singExprTagEq :: SingExprTag a -> SingExprTag b -> Maybe (a :=: b)
singExprTagEq SingTag1 SingTag1 = Just Refl
singExprTagEq SingTag2 SingTag2 = Just Refl
singExprTagEq _ _ = Nothing
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Now we’re cooking with gas! We can implement an instance of Eq for Expr' which uses
ExprTag comparison to justify a recursive call on two Con3' children when the tags have been
shown to match.

instance Eq (Expr’ tag) where
Con1’ i == Con1’ j = i == j
Con2’ s == Con2’ t = s == t
Con3’ a s == Con3’ b t = case singExprTagEq a b of

Just Refl -> s == t
Nothing -> False

The general situation is that promoted types need their associated singleton types (at least
until we get proper Π-types), and we need evidence-producing heterogeneous equality tests for
those singleton families, so that we can compare two singletons and gain type-level knowledge
when they witness the same type-level values. Then as long as your GADTs carry singleton
witnesses for any existentials, you can test equality homogeneously, ensuring that positive results
from singleton tests give the bonus of unifying types for the other tests.

7.22 Do all Type Classes in Haskell Have a Category Theoretic
Analogue?

When interpreted sufficiently pedantically, the answer to all of these questions is “yes”, but for
uninformatively trivial reasons.

Every category C restricts to a discrete subcategory |C| with the same objects as C but only
identity morphisms (and hence no interesting structure). At the very least, operations on Haskell
types can be boringly interpreted as operations on the discrete category |*|. The recent “roles”
story amounts to (but is not spun as) an attempt to acknowledge that the morphisms matter, not
just the objects. The “nominal” role for types amounts to working in |*| rather than *.

(Note, I dislike the use of “Hask” as the name of the “category of Haskell types and func-
tions”: I fear that labelling one category as the Haskell category has the unfortunate side-effect of
blinding us to the wealth of other categorical structure in Haskell programming. It’s a trap.)

Being differently pedantic, I’d note that you can make up any old crap as a typeclass over
any old kind, with no interesting structure whatsoever (but with trivial structure that can still
be talked about categorically, if one must). However, the classes you find in the library are very
often structure-rich. Classes over * -> * are often, by design, subclasses of Functor, requiring
the existence of certain natural transformations in addition to fmap.

For question 2. Yes, of course a class over * gives a subcategory of *. It’s no problem to chuck
objects out of a category, because the categorical requirement that identities and composites exist
require morphisms to exist, given objects, but make no demands about which objects exist. The fact
that it’s boringly possible makes it a boring fact. However, many Haskell typeclasses over * give
rise to much more interesting categories than those arising just as subcategories of *. E.g., the
Monoid class gives us a category where the objects are instances of Monoid and the arrows are
monoid homomorphisms: not just any old function f from one Monoid to another, but one which
preserves the structure: f mempty = mempty and f (mappend x y) = mappend (f x)
(f y).

For question 3, well, in that there’s a ton of categorical structure lurking everywhere, there’s
certainly a ton of categorical structure available (possibly but not necessarily) at higher kinds.
I’m particularly fond of functors between indexed families of sets.

type (s :: k -> *) :-> (t :: k -> *) = forall x. s x -> t x

class FunctorIx (f :: (i -> *) -> (j -> *)) where
mapIx :: (s :-> t) -> (f s :-> f t)
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When i and j coincide, it becomes sensible to ask when such an f is a monad. The usual
categorical definition suffices, even though we’ve left * -> * behind.

The message is this: nothing about being a typeclass inherently induces interesting categorical
structure; there is plenty of interesting categorical structure which can usefully be presented via
type classes over all manner of kinds. There are most certainly interesting functors from * (sets
and functions) to * -> * (functors and natural transformations). Don’t be blinded by careless
talk about “Hask” to the richness of categorical structure in Haskell.

7.23 Haskell type resolution in Type Classes (Generator, Comonad)

Reid’s right in his comment. When you write

class Generator g where
next :: State g a

you’re really saying

class Generator g where
next :: forall a. State g a

so that from a given state in g, your clients can generate an element of whatever type a they
wish for, rather than whatever type is being supplied by the state in g.

There are three sensible ways to fix this problem. I’ll sketch them in the order I’d prefer them.
Plan A is to recognize that any generator of things is in some sense a container of them, so

presentable as a type constructor rather than a type. It should certainly be a Functor and with
high probability a Comonad. So

class Comonad f => Generator f where
move :: forall x. f x -> f x
next :: forall x. State (f x) x
next = state $ \ g -> (extract g, move g)
-- laws
-- move . duplicate = duplicate . move

instance Generator [] where
move = tail

If that’s all Greek to you, maybe now is your opportunity to learn some new structure on a
need-to-know basis!

Plan B is to ignore the comonadic structure and add an associated type.

class Generator g where
type From g
next :: State g (From g)

instance Generator [a] where
type From [a] = a
next = state $ \ (a : as) -> (a, as)

Plan C is the “functional dependencies” version, which is rather like MonadSupply, as sug-
gested by Cirdec.

class Generator g a | g -> a where
next :: State g a

instance Generator [a] a where
next = state $ \ (a : as) -> (a, as)
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What all of these plans have in common is that the functional relationship between g and a is
somehow acknowledged. Without that, there’s nothing doing.

7.24 Prove idempotency of type-level disjunction

The thing that you ask for is not possible, but something quite like it might do instead. It’s not
possible because the proof requires a case analysis on type level Booleans, but you have no data
which enables you to make such an event occur. The fix is to include just such information via a
singleton.

First up, let me note that your type for idemp is a little obfuscated. The constraint a ˜ b just
names the same thing twice. The following typechecks:

idemq :: p (Or b b) -> p b
idemq = undefined
idemp :: a ˜ b => p (Or a b) -> p a
idemp = idemq

(If you have a constraint a ˜ t where t does not contain a, it’s usually good to substitute t
for a. The exception is in instance declarations: an a in an instance head will match anything,
hence the instance will fire even if that thing has not yet obviously become t. But I digress.)

I claim idemq is undefinable because we have no useful information about b. The only data
available inhabit p-of-something, and we don’t know what p is.

We need to reason by cases on b. Bear in mind that with general recursive type families, we
can define type level Booleans which are neither True nor False. If I switch on UndecidableInstances,
I can define

type family Loop (b :: Bool) :: Bool
type instance Loop True = Loop False
type instance Loop False = Loop True

so Loop True cannot be reduced to True or False, and locally worse, there is no way to
show that

Or (Loop True) (Loop True) ˜ Loop True -- this ain’t so

There’s no way out of it. We need run time evidence that our b is one of the well behaved
Booleans that computes somehow to a value. Let us therefore sing

data Booly :: Bool -> * where
Truey :: Booly True
Falsey :: Booly False

If we know Booly b, we can do a case analysis which will tell us what b is. Each case will
then go through nicely. Here’s how I’d play it, using an equality type defined with PolyKinds
to pack up the facts, rather than abstracting over uses p b.

data (:=:) a b where
Refl :: a :=: a

Our key fact is now plainly stated and proven:

orIdem :: Booly b -> Or b b :=: b
orIdem Truey = Refl
orIdem Falsey = Refl

And we can deploy this fact by strict case analysis:
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idemp :: Booly b -> p (Or b b) -> p b
idemp b p = case orIdem b of Refl -> p

The case analysis must be strict, to check that the evidence is not some loopy lie, but rather an
honest to goodness Refl silently packing up just the proof of Or b b ˜ b that’s needed to fix
up the types.

If you don’t want to sling all these singleton values around explicitly, you can, as kosmikus
suggests, hide them in a dictionary and extract them just when you need them.

Richard Eisenberg and Stephanie Weirich have a Template Haskell library which mills these
families and classes for you. SHE can build them too and lets you write

orIdem pi b :: Bool. Or b b :=: b
orIdem {True} = Refl
orIdem {False} = Refl

where pi b :: Bool. expands to forall b :: Bool. Booly b ->.
But it’s such a palaver. That’s why my gang are working on adding an actual pi to Haskell,

being a non-parametric quantifier (distinct from forall and ->) which can be instantiated by
stuff in the now nontrivial intersection between Haskell’s type and term languages. This pi
could also have an “implicit” variant, where the argument is by default kept hidden. The two
respectively correspond to using singleton families and classes, but there’s no need to define
datatypes three times over to get the additional kit.

It might be worth mentioning that in a total type theory, it is not needed to pass the extra copy
of the Boolean b at run time. The thing is, b is used only to make the proof that data may be
transported from p (Or b b) to p b, not necessarily to make the data being transported. We
don’t compute under binders at run time, so there’s no way to cook up a dishonest proof of the
equation, hence we can erase the proof component and the copy of b that delivers it. As Randy
Pollack says, the best thing about working in a strongly normalizing calculus is not having to normalize
things.

7.25 Recursively defined instances and constraints

The definition of pure is indeed at the heart of the problem. What should its type be, fully
quantified and qualified?

pure :: forall (n :: Nat) (x :: *). x -> Vector n x -- (X)

won’t do, as there is no information available at run-time to determine whether pure should
emit VNil or VCons. Correspondingly, as things stand, you can’t just have

instance Applicative (Vector n) -- (X)

What can you do? Well, working with the Strathclyde Haskell Enhancement, in the Vec.lhs
example file, I define a precursor to pure

vec :: forall x. pi (n :: Nat). x -> Vector {n} x
vec {Zero} x = VNil
vec {Succ n} x = VCons x (vec n x)

with a pi type, requiring that a copy of n be passed at runtime. This pi (n :: Nat).
desugars as

forall n. Natty n ->

where Natty, with a more prosaic name in real life, is the singleton GADT given by

http://personal.cis.strath.ac.uk/~conor/pub/she
https://personal.cis.strath.ac.uk/~conor/pub/she/examples/Vec.lhs
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data Natty n where
Zeroy :: Natty Zero
Succy :: Natty n -> Natty (Succ n)

and the curly braces in the equations for vec just translate Nat constructors to Natty con-
structors. I then define the following diabolical instance (switching off the default Functor in-
stance)

instance {:n :: Nat:} => Applicative (Vec {n}) where
hiding instance Functor
pure = vec {:n :: Nat:} where
(<*>) = vapp where

vapp :: Vec {m} (s -> t) -> Vec {m} s -> Vec {m} t
vapp VNil VNil = VNil
vapp (VCons f fs) (VCons s ss) = VCons (f s) vapp fs ss

which demands further technology, still. The constraint {:n :: Nat:} desugars to some-
thing which requires that a Natty n witness exists, and by the power of scoped type variables,
the same {:n :: Nat:} subpoenas that witness explicitly. Longhand, that’s

class HasNatty n where
natty :: Natty n

instance HasNatty Zero where
natty = Zeroy

instance HasNatty n => HasNatty (Succ n) where
natty = Succy natty

and we replace the constraint {:n :: Nat:}with HasNatty n and the corresponding term
with (natty :: Natty n). Doing this construction systematically amounts to writing a frag-
ment of a Haskell typechecker in type class Prolog, which is not my idea of joy so I use a com-
puter.

Note that the Traversable instance (pardon my idiom brackets and my silent default Func-
tor and Foldable instances) requires no such jiggery pokery

instance Traversable (Vector n) where
traverse f VNil = (|VNil|)
traverse f (VCons x xs) = (|VCons (f x) (traverse f xs)|)

That’s all the structure you need to get matrix multiplication without further explicit recur-
sion.

TL;DR Use the singleton construction and its associated type class to collapse all of the
recursively defined instances into the existence of a runtime witness for the type-level data,
from which you can compute by explicit recursion.

What are the design implications?
GHC 7.4 has the type promotion technology but SHE still has the singleton construction pi-

types to offer. One clearly important thing about promoted datatypes is that they’re closed, but
that isn’t really showing up cleanly yet: the constructability of singleton witnesses is the man-
ifestation of that closedness. Somehow, if you have forall (n :: Nat). then it’s always
reasonable to demand a singleton as well, but to do so makes a difference to the generated code:
whether it’s explicit as in my pi construct, or implicit as in the dictionary for {:n :: Nat:},
there is extra runtime information to sling around, and a correspondingly weaker free theorem.

An open design question for future versions of GHC is how to manage this distinction be-
tween the presence and absence of runtime witnesses to type-level data. On the one hand, we
need them in constraints. On the other hand, we need to pattern-match on them. E.g., should pi
(n :: Nat). mean the explicit
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forall (n :: Nat). Natty n ->

or the implicit

forall (n :: Nat). {:n :: Nat:} =>

? Of course, languages like Agda and Coq have both forms, so maybe Haskell should follow
suit. There is certainly room to make progress, and we’re working on it!

7.26 How can I get the length of dependently typed interval?

Here’s my version of your program. I’m using

{-# LANGUAGE GADTs, DataKinds, KindSignatures, TypeFamilies #-}

and I’ve got Nat and its singleton

data Nat = Z | S Nat

data SNat :: Nat -> * where
ZZ :: SNat Z
SS :: SNat n -> SNat (S n)

Your Interval type is more familiar to me as the “suffix” definition of “less-than-or-equal”:
“suffix” because if you upgraded from numbers to lists and labelled each S with an element,
you’d have the definition of a list suffix.

data Le :: Nat -> Nat -> * where
Len :: SNat n -> Le n n
Les :: Le m n -> Le m (S n)

Here’s addition.

type family Plus (x :: Nat) (y :: Nat) :: Nat
type instance Plus Z y = y
type instance Plus (S x) y = S (Plus x y)

Now, your puzzle is to count the Les constructors in some Le-value, extracting the singleton
for the difference between its indices. Rather than assuming that we’re working with some Le n
(Plus m n) and trying to compute a SNat m, I’m going to write a function which computes
the difference between arbitrary Le m o-indices and establishes the connection with Plus.

Here’s the additive definition of Le, with singletons supplied.

data AddOn :: Nat -> Nat -> * where
AddOn :: SNat n -> SNat m -> AddOn n (Plus m n)

We can easily establish that Le implies AddOn. Pattern matching on some AddOn n o reveals
o to be Plus m n for some m and hands us the singletons we wanted.

leAddOn :: Le m o -> AddOn m o
leAddOn (Len n) = AddOn n ZZ
leAddOn (Les p) = case leAddOn p of AddOn n m -> AddOn n (SS m)
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More generally, I’d advise formulating dependently typed programming problems minimiz-
ing the presence of defined functions in the indices of types over which you plan to match. This
avoids complicated unification. (Epigram used to colour such functions green, hence the advice
“Don’t touch the green slime!”.) Le n o, it turns out (for that is the point of leAddOn), is no
less informative a type than Le n (Plus m n), but it is rather easier to match on.

Yet more generally, it is quite a normal experience to set up a dependent datatype which
captures the logic of your problem but is absolutely ghastly to work with. This does not mean
that all datatypes which capture the correct logic will be absolutely ghastly to work with, just that
you need think harder about the ergonomics of your definition. Getting these definitions neat is
not a skill that very many people pick up in their ordinary Functional Programming learning
experience, so expect to climb a new learning curve.

7.27 How to make catamorphisms work with parameterized/indexed
types?

I wrote a talk on this topic called “Slicing It” in 2009. It certainly points to the work by my Strath-
clyde colleagues, Johann and Ghani, on initial algebra semantics for GADTs. I used the notation
which SHE provides for writing data-indexed types, but that has pleasingly been superseded by
the “promotion” story.

The key point of the talk is, as per my comment, to be systematic about using exactly one
index, but to exploit the fact that its kind can vary.

So indeed, we have (using my current preferred “Goscinny and Uderzo” names)

type s :-> t = forall i. s i -> t i

class FunctorIx f where
mapIx :: (s :-> t) -> (f s :-> f t)

Now you can show FunctorIx is closed under fixpoints. The key is to combine two indexed
sets into a one that offers a choice of index.

data Case (f :: i -> *) (g :: j -> *) (b :: Either i j) :: * where
L :: f i -> Case f g (Left i)
R :: g j -> Case f g (Right j)

(<?>) :: (f :-> f’) -> (g :-> g’) -> Case f g :-> Case f’ g’
(f <?> g) (L x) = L (f x)
(f <?> g) (R x) = R (g x)

Now we can now take fixpoints of functors whose “contained elements” stand for either “pay-
load” or “recursive substructures”.

data MuIx (f :: (Either i j -> *) -> j -> *) :: (i -> *) -> j -> * where
InIx :: f (Case x (MuIx f x)) j -> MuIx f x j

As a result, we can mapIx over “payload”. . .

instance FunctorIx f => FunctorIx (MuIx f) where
mapIx f (InIx xs) = InIx (mapIx (f <?> mapIx f) xs)

. . . or write a catamorphism over the “recursive substructures”. . .

foldIx :: FunctorIx f => (f (Case x t) :-> t) -> MuIx f x :-> t
foldIx f (InIx xs) = f (mapIx (id <?> foldIx f) xs)

http://strictlypositive.org/slicing-jpgs/
https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/
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. . . or both at once.

mapFoldIx :: FunctorIx f => (x :-> y) -> (f (Case y t) :-> t) -> MuIx f x :-> t
mapFoldIx e f (InIx xs) = f (mapIx (e <?> mapFoldIx e f) xs)

The joy of FunctorIx is that it has such splendid closure properties, thanks to the ability to
vary the indexing kinds. MuIx allows for notions of payload, and can be iterated. There is thus
an incentive to work with structured indices rather than multiple indices.

7.28 Constraining Constructors in a Signature

You can do this sort of thing with GADTs. Far be it from me to judge whether what results is a
rabbit hole, but let me at least show the recipe. I’m using the new PolyKinds extension, but you
can manage with less.

First, decide what sorts of stuff you will need, and define a datatype of those sorts.

data Sort = Base | Compound

Next, define your data indexed by their sorts. It’s like building a little typed language.

data WeaponPart :: Sort -> * where
WInt :: Int -> WeaponPart Base
WHash :: Map.Map String Int -> WeaponPart Base
WNull :: WeaponPart Base
WTrans :: (Some WeaponPart -> Some WeaponPart) -> WeaponPart Compound

You can represent ‘data of any sort’ via existential quantification, as follows:

data Some p where
Wit :: p x -> Some p

Note that the x does not escape, but we can still inspect the ‘evidence’ that x ‘satisfies’ p. Note
that Some must be a datatype, not a newtype as GHC objects to existential newtypes.

You are now free to write Sort-generic operations. If you have generic inputs, you can just
use polymorphism, effectively currying Some p -> ... as forall x. p x -> ....

instance Show (WeaponPart x) where
show (WInt x) = "WInt " ++ (show x)
show (WHash x) = "WHash " ++ (show x)
show (WTrans _) = "WTrans"
show WNull = "WNull"

The existential is needed for Sort-generic outputs: here I use it for input and output.

cold :: Some WeaponPart -> Some WeaponPart
cold (Wit (WInt x)) = Wit (WHash (Map.singleton "frost" x))
cold (Wit (WHash x)) = Wit (WHash $ Map.insertWith (+) "frost" 5 x)
cold (Wit (WTrans x)) = cold $ x (Wit (WInt 5))
cold (Wit WNull) = cold $ Wit (WInt 5)

I had to add the occasional touch of Wit about the place, but it’s the same program.
Meanwhile, we can now write

ofTheAbyss :: WeaponPart Compound -> Some WeaponPart
ofTheAbyss (WTrans x) = x (Wit (WTrans x))

So it’s not horrendous to work with embedded type systems. Sometimes there is a cost: if
you want your embedded language to have subsorting, you may find you do extra computation
just to change the index of some data’s type, making no difference to the data themselves. If you
don’t need subsorting, the extra discipline can often be a real friend.
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7.29 Standard name of a sum type like Either but for 3 cases?

In recent Haskell, I’d switch on a bit of kitchen sink.

{-# LANGUAGE PolyKinds, DataKinds, GADTs, KindSignatures,
TypeOperators, PatternSynonyms #-}

Then I’d define type-level list membership

data (:>) :: [x] -> x -> * where
Ze :: (x ’: xs) :> x
Su :: xs :> x -> (y ’: xs) :> x

and now I have all the finite sums, without cranking out a whole raft of OneOfN type defini-
tions:

data Sum :: [*] -> * where
(:-) :: xs :> x -> x -> Sum xs

But, to address Tomas’s issue about readability, I’d make use of pattern synonyms. Indeed,
this sort of thing is the reason I’ve been banging on about pattern synonyms for years.

You can have a funny version of Maybe:

type MAYBE x = Sum ’[(), x]

pattern NOTHING :: MAYBE x
pattern NOTHING = Ze :- ()

pattern JUST :: x -> MAYBE x
pattern JUST x = Su Ze :- x

and you can even use newtype to build recursive sums.

newtype Tm x = Tm (Sum ’[x, (Tm x, Tm x), Tm (Maybe x)])

pattern VAR :: x -> Tm x
pattern VAR x = Tm (Ze :- x)

pattern APP :: Tm x -> Tm x -> Tm x
pattern APP f s = Tm (Su Ze :- (f, s))

pattern LAM :: Tm (Maybe x) -> Tm x
pattern LAM b = Tm (Su (Su Ze) :- b)

The newtype wrapper also lets you make instance declaration for types built that way.
You can, of course, also use pattern synonyms to hide an iterated Either nicely.
This technique is not exclusive to sums: you can do it for products, too, and that’s pretty

much what happens in de Vries and Löh’s Generics-SOP library.
The big win from such an encoding is that the description of data is itself (type-level) data,

allowing you to cook up lots of deriving-style functionality without hacking the compiler.
In the future (if I have my way), all datatypes will be defined, not declared, with datatype

descriptions made of data specifiying both the algebraic structure (allowing generic equipment
to be computed) of the data and its appearance (so you can see what you’re doing when working
with a specific type).

But the future is sort of here already.

https://hackage.haskell.org/package/generics-sop
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7.30 How to specify the type for a heterogenous collection in a
GADT formulated AST?

One way to approach this problem is to tag values with run-time type representatives. I’m chan-
nelling Stephanie Weirich, here. Let’s have a small example. First, give a representation to some
types. That’s typically done with a singleton construction.

data Type :: * -> * where
Int :: Type Int
Char :: Type Char
List :: Type x -> Type [x]

So Type Int contains one value, which I’ve also called Int, because it acts as the run-time
representative of the type Int. If you can see colour even in monochrome things, the Int left of
the :: is red, and the Int after Type is blue.

Now we can do existential packaging, preserving utility.

data Cell :: * where
(:::) :: x -> Type x -> Cell

A Cell is a value tagged with a run-time representative of its type. You can recover the utility
of the value by reading its type tag. Indeed, as types are first-order structures, we can check them
for equality in a useful way.

data EQ :: k -> k -> * where
Refl :: EQ x x

typeEQ :: Type x -> Type y -> Maybe (EQ x y)
typeEQ Int Int = Just Refl
typeEQ Char Char = Just Refl
typeEQ (List s) (List t) = case typeEQ s t of

Just Refl -> Just Refl
Nothing -> Nothing

typeEQ _ _ = Nothing

A Boolean equality on type representatives is no use: we need the equality test to construct
the evidence that the represented types can be unified. With the evidence-producing test, we can
write

gimme :: Type x -> Cell -> Maybe x
gimme t (x ::: s) = case typeEQ s t of

Just Refl -> Just x
Nothing -> Nothing

Of course, writing the type tags is a nuisance. But why keep a dog and bark yourself?

class TypeMe x where
myType :: Type x

instance TypeMe Int where
myType = Int

instance TypeMe Char where
myType = Char
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instance TypeMe x => TypeMe [x] where
myType = List myType

cell :: TypeMe x => x -> Cell
cell x = x ::: myType

And now we can do things like

myCells :: [Cell]
myCells = [cell (length "foo"), cell "foo"]

and then get

> gimme Int (head myCells)
Just 3

Of course, it would all be so much tidier if we didn’t have to do the singleton construction
and could just pattern-match on such types as we might choose to retain at run-time. I expect
we’ll get there when the mythical pi quantifier becomes less mythical.

7.31 Type-threaded heterogenous lists and defaulting(?) with
type families?

Is there some particular reason why the Kleene star GADT won’t do this job?

data Star r a b where
Nil :: Star r a a
Cons :: r a b -> Star r b c -> Star r a c

compose :: Star (->) a b -> a -> b
compose Nil = id
compose (Cons f fs) = compose fs . f

But if you need a type class approach, I wouldn’t interfere.

7.32 Constructor that lifts (via DataKinds) to ∗ → A

At the moment, I’m afraid not. I haven’t spotted an obvious workaround, either.
This ticket documents the prospects for the declaration of data kinds, born kind, rather than

being data types with kindness thrust upon them. It would be entirely reasonable for the con-
structors of such things to pack up types as you propose. We’re not there yet, but it doesn’t look
all that problematic.

My eyes are on a greater prize. I would like * to be perfectly sensible type of runtime values,
so that the kind you want could exist by promotion as we have it today. Combine that with the
mooted notion of pi-type (non-parametric abstraction over the portion of the language that’s
effectively shared by types and values) and we might get a more direct way to make ad hoc type
abstractions than we have with Data.Typeable. The usual forall would remain parametric.

7.33 How should the general type of a “lemma” function be un-
derstood?

We’ve had some excellent answers, but as the perpetrator, I thought I’d offer some remarks.

https://ghc.haskell.org/trac/ghc/ticket/6024
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Yes, there are multiple equivalent presentations of these lemmas. The presentation I use is
one of them, and the choice is largely a pragmatic one. These days (in a more recent codebase), I
go as far as to define

-- Holds :: Constraint -> *
type Holds c = forall t . (c => t) -> t

This is an example of an eliminator type: it abstracts over what it delivers (the motive of the
elimination) and it requires you to construct zero or more methods (one, here) of achieving the
motive under more specific circumstances. The way to read it is backwards. It says

If you have a problem (to inhabit any motive type t), and nobody else can help, maybe
you can make progress by assuming constraint c in your method.

Given that the language of constraints admits conjunction (aka tupling), we acquire the means
to write lemmas of the form

lemma :: forall x1 .. xn. (p1[x1 .. xn],.. pm[x1 .. xn]) -- premises
=> t1[x1 .. xn] -> .. tl[x1 .. xn] -- targets
-> Holds (c1[x1 .. xn],.. ck[x1 .. xn]) -- conclusions

and it might even be that some constraint, a premise p or a conclusion c, has the form of an
equation

l[x1 .. xn] ˜ r[x1 .. cn]

Now, to deploy such a lemma, consider the problem of filling a hole

_ :: Problem

Refine this by the elimination lemma, specifying the targets. The motive comes from the
problem at hand. The method (singular in the case of Holds) remains open.

lemma target1 .. targetl $ _

and the method hole will not have changed type

_ :: Problem

but GHC will know a bunch more stuff and thus be more likely to believe your solution.
Sometimes, there’s a constraint-versus-data choice to make for what’s a (constraint) premise

and what’s a (data) target. I tend to pick these to avoid ambiguity (Simon likes to guess the x1
.. xn, but sometimes needs a hint) and to facilitate proof by induction, which is much easier on
targets (often the singletons for type level data) than on premises.

As to deployment, for equations, you can certainly switch to a datatype presentation and
break out a case analysis

case dataLemma target1 .. targetl of Refl -> method

and indeed, if you equip yourself with the Dict existential

data Dict (c :: Constraint) :: * where
Dict :: c => Dict c

you can do a bunch at once

case multiLemma blah blah blah of (Refl, Dict, Dict, Refl) -> method
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but the eliminator form is more compact and readable when there is at most one method. Indeed,
we can chain multiple lemmas without sliding ever rightward

lemma1 .. $
...
lemmaj .. $
method

If you have such an eliminator with two or more cases, I think it’s often better to wrap it up
as a GADT, so that usage sites helpfully tag each case with a constructor label.

Anyhow, yes, the point is to choose the presentation of the facts which most compactly en-
ables us to extend the reach of GHC’s constraint solving machinery so that more stuff just type-
checks. If you’re in a scrap with Simon, it’s often a good strategy to explain yourself to Dimitrios
next door.
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Chapter 8

Type Theory

8.1 What is the combinatory logic equivalent of intuitionistic
type theory?

So I thought about it a bit more and made some progress. Here’s a first stab at encoding Martin-
Löf’s delightfully simple (but inconsistent) Set : Set system in a combinatory style. It’s not a
good way to finish, but it’s the easiest place to get started. The syntax of this type theory is just
lambda-calculus with type annotations, Pi-types, and a universe Set.

The Target Type Theory

For completeness’ sake, I’ll present the rules. Context validity just says you can build contexts
from empty by adjoining fresh variables inhabiting Sets.

G |- valid G |- S : Set
-------------- ----------------------------- x fresh for G

. |- valid G, x:S |- valid

And now we can say how to synthesize types for terms in any given context, and how to
change the type of something up to the computational behaviour of the terms it contains.

G |- valid G |- S : Set G |- T : Pi S \ x:S -> Set
------------------ ---------------------------------------------

G |- Set : Set G |- Pi S T : Set

G |- S : Set G, x:S |- t : T x G |- f : Pi S T G |- s : S
------------------------------------ --------------------------------

G |- \ x:S -> t : Pi S T G |- f s : T s

G |- valid G |- s : S G |- T : Set
-------------- x:S in G ----------------------------- S ={beta} T

G |- x : S G |- s : T

In a small variation from the original, I’ve made lambda the only binding operator, so the
second argument of Pi should be a function computing the way the return type depends on the
input. By convention (e.g. in Agda, but sadly not in Haskell), scope of lambda extends rightwards
as far as possible, so you can often leave abstractions unbracketed when they’re the last argument
of a higher-order operator: you can see I did that with Pi. Your Agda type (x : S) -> T
becomes Pi S \ x:S -> T.

193
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(Digression. Type annotations on lambda are necessary if you want to be able to synthesize
the type of abstractions. If you switch to type checking as your modus operandi, you still need
annotations to check a beta-redex like (\ x -> t) s, as you have no way to guess the types
of the parts from that of the whole. I advise modern designers to check types and exclude beta-
redexes from the very syntax.)

(Digression. This system is inconsistent as Set:Set allows the encoding of a variety of “liar
paradoxes”. When Martin-Löf proposed this theory, Girard sent him an encoding of it in his own
inconsistent System U. The subsequent paradox due to Hurkens is the neatest toxic construction
we know.)

Combinator Syntax and Normalization

Anyhow, we have two extra symbols, Pi and Set, so we might perhaps manage a combinatory
translation with S, K and two extra symbols: I chose U for the universe and P for the product.

Now we can define the untyped combinatory syntax (with free variables):

data SKUP = S | K | U | P deriving (Show, Eq)

data Unty a
= C SKUP
| Unty a :. Unty a
| V a
deriving (Functor, Eq)

infixl 4 :.

Note that I’ve included the means to include free variables represented by type a in this
syntax. Apart from being a reflex on my part (every syntax worthy of the name is a free monad
with return embedding variables and >>= perfoming substitution), it’ll be handy to represent
intermediate stages in the process of converting terms with binding to their combinatory form.

Here’s normalization:

norm :: Unty a -> Unty a
norm (f :. a) = norm f $. a
norm c = c

($.) :: Unty a -> Unty a -> Unty a -- requires first arg in normal form
C S :. f :. a $. g = f $. g $. (a :. g) -- S f a g = f g (a g) share environment
C K :. a $. g = a -- K a g = a drop environment
n $. g = n :. norm g -- guarantees output in normal form
infixl 4 $.

(An exercise for the reader is to define a type for exactly the normal forms and sharpen the
types of these operations.)

Representing Type Theory

We can now define a syntax for our type theory.

data Tm a
= Var a
| Lam (Tm a) (Tm (Su a)) -- Lam is the only place where binding happens
| Tm a :$ Tm a
| Pi (Tm a) (Tm a) -- the second arg of Pi is a function computing a Set
| Set
deriving (Show, Functor)
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infixl 4 :$

data Ze
magic :: Ze -> a
magic x = x ‘seq‘ error "Tragic!"

data Su a = Ze | Su a deriving (Show, Functor, Eq)

I use a de Bruijn index representation in the Bellegarde and Hook manner (as popularised by
Bird and Paterson). The type Su a has one more element than a, and we use it as the type of
free variables under a binder, with Ze as the newly bound variable and Su x being the shifted
representation of the old free variable x.

Translating Terms to Combinators

And with that done, we acquire the usual translation, based on bracket abstraction.

tm :: Tm a -> Unty a
tm (Var a) = V a
tm (Lam _ b) = bra (tm b)
tm (f :$ a) = tm f :. tm a
tm (Pi a b) = C P :. tm a :. tm b
tm Set = C U

bra :: Unty (Su a) -> Unty a -- binds a variable, building a function
bra (V Ze) = C S :. C K :. C K -- the variable itself yields the identity
bra (V (Su x)) = C K :. V x -- free variables become constants
bra (C c) = C K :. C c -- combinators become constant
bra (f :. a) = C S :. bra f :. bra a -- S is exactly lifted application

Typing the Combinators

The translation shows the way we use the combinators, which gives us quite a clue about what
their types should be. U and P are just set constructors, so, writing untranslated types and allow-
ing “Agda notation” for Pi, we should have

U : Set
P : (A : Set) -> (B : (a : A) -> Set) -> Set

The K combinator is used to lift a value of some type A to a constant function over some other
type G.

G : Set A : Set
-------------------------------

K : (a : A) -> (g : G) -> A

The S combinator is used to lift applications over a type, upon which all of the parts may
depend.

G : Set
A : (g : G) -> Set
B : (g : G) -> (a : A g) -> Set

----------------------------------------------------
S : (f : (g : G) -> (a : A g) -> B g a ) ->

(a : (g : G) -> A g ) ->
(g : G) -> B g (a g)
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If you look at the type of S, you’ll see that it exactly states the contextualised application rule
of the type theory, so that’s what makes it suitable to reflect the application construct. That’s its
job!

We then have application only for closed things

f : Pi A B
a : A

--------------
f a : B a

But there’s a snag. I’ve written the types of the combinators in ordinary type theory, not
combinatory type theory. Fortunately, I have a machine that will make the translation.

A Combinatory Type System

---------
U : U

---------------------------------------------------------
P : PU(S(S(KP)(S(S(KP)(SKK))(S(KK)(KU))))(S(KK)(KU)))

G : U
A : U

-----------------------------------------
K : P[A](S(S(KP)(K[G]))(S(KK)(K[A])))

G : U
A : P[G](KU)
B : P[G](S(S(KP)(S(K[A])(SKK)))(S(KK)(KU)))

--------------------------------------------------------------------------------------
S : P(P[G](S(S(KP)(S(K[A])(SKK)))(S(S(KS)(S(S(KS)(S(KK)(K[B])))(S(KK)(SKK))))

(S(S(KS)(KK))(KK)))))(S(S(KP)(S(S(KP)(K[G]))(S(S(KS)(S(KK)(K[A])))
(S(S(KS)(KK))(KK)))))(S(S(KS)(S(S(KS)(S(KK)(KP)))(S(KK)(K[G]))))
(S(S(KS)(S(S(KS)(S(KK)(KS)))(S(S(KS)(S(S(KS)(S(KK)(KS)))
(S(S(KS)(S(KK)(KK)))(S(KK)(K[B])))))(S(S(KS)(S(S(KS)(S(KK)(KS)))(S(KK)(KK))))
(S(KK)(KK))))))(S(S(KS)(S(S(KS)(S(KK)(KS)))(S(S(KS)(S(KK)(KK)))
(S(S(KS)(KK))(KK)))))(S(S(KS)(S(S(KS)(S(KK)(KS)))(S(KK)(KK))))(S(KK)(KK)))))))

M : A B : U
----------------- A ={norm} B

M : B

So there you have it, in all its unreadable glory: a combinatory presentation of Set:Set!
There’s still a bit of a problem. The syntax of the system gives you no way to guess the G, A

and B parameters for S and similarly for K, just from the terms. Correspondingly, we can verify
typing derivations algorithmically, but we can’t just typecheck combinator terms as we could with
the original system. What might work is to require the input to the typechecker to bear type
annotations on uses of S and K, effectively recording the derivation. But that’s another can of
worms. . .

This is a good place to stop, if you’ve been keen enough to start. The rest is “behind the
scenes” stuff.

Generating the Types of the Combinators

I generated those combinatory types using the bracket abstraction translation from the relevant
type theory terms. To show how I did it, and make this post not entirely pointless, let me offer
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my equipment.
I can write the types of the combinators, fully abstracted over their parameters, as follows.

I make use of my handy pil function, which combines Pi and lambda to avoid repeating the
domain type, and rather helpfully allows me to use Haskell’s function space to bind variables.
Perhaps you can almost read the following!

pTy :: Tm a
pTy = fmap magic $

pil Set $ \ _A -> pil (pil _A $ \ _ -> Set) $ \ _B -> Set

kTy :: Tm a
kTy = fmap magic $

pil Set $ \ _G -> pil Set $ \ _A -> pil _A $ \ a -> pil _G $ \ g -> _A

sTy :: Tm a
sTy = fmap magic $

pil Set $ \ _G ->
pil (pil _G $ \ g -> Set) $ \ _A ->
pil (pil _G $ \ g -> pil (_A :$ g) $ \ _ -> Set) $ \ _B ->
pil (pil _G $ \ g -> pil (_A :$ g) $ \ a -> _B :$ g :$ a) $ \ f ->
pil (pil _G $ \ g -> _A :$ g) $ \ a ->
pil _G $ \ g -> _B :$ g :$ (a :$ g)

With these defined, I extracted the relevant open subterms and ran them through the transla-
tion.

A de Bruijn Encoding Toolkit

Here’s how to build pil. Firstly, I define a class of Finite sets, used for variables. Every such
set has a constructor-preserving embedding into the set above, plus a new top element, and you
can tell them apart: the embd function tells you if a value is in the image of emb.

class Fin x where
top :: Su x
emb :: x -> Su x
embd :: Su x -> Maybe x

We can, of course, instantiate Fin for Ze and Suc

instance Fin Ze where
top = Ze -- Ze is the only, so the highest
emb = magic
embd _ = Nothing -- there was nothing to embed

instance Fin x => Fin (Su x) where
top = Su top -- the highest is one higher
emb Ze = Ze -- emb preserves Ze
emb (Su x) = Su (emb x) -- and Su
embd Ze = Just Ze -- Ze is definitely embedded
embd (Su x) = fmap Su (embd x) -- otherwise, wait and see

Now I can define less-or-equals, with a weakening operation.

class (Fin x, Fin y) => Le x y where
wk :: x -> y
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The wk function should embed the elements of x as the largest elements of y, so that the extra
things in y are smaller, and thus in de Bruijn index terms, bound more locally.

instance Fin y => Le Ze y where
wk = magic -- nothing to embed

instance Le x y => Le (Su x) (Su y) where
wk x = case embd x of

Nothing -> top -- top maps to top
Just y -> emb (wk y) -- embedded gets weakened and embedded

And once you’ve got that sorted out, a bit of rank-n skullduggery does the rest.

lam :: forall x. Tm x -> ((forall y. Le (Su x) y => Tm y) -> Tm (Su x)) -> Tm x
lam s f = Lam s (f (Var (wk (Ze :: Su x))))
pil :: forall x. Tm x -> ((forall y . Le (Su x) y => Tm y) -> Tm (Su x)) -> Tm x
pil s f = Pi s (lam s f)

The higher-order function doesn’t just give you a term representing the variable, it gives you
an overloaded thing which becomes the correct representation of the variable in any scope where
the variable is visible. That is, the fact that I go to the trouble of distinguishing the different scopes
by type gives the Haskell typechecker enough information to compute the shifting required for
the translation to de Bruijn representation. Why keep a dog and bark yourself?

8.2 Do Hask or Agda have equalisers?

tl;dr the proposed candidate is not quite an equaliser, but its irrelevant counterpart is
The candidate for an equaliser in Agda looks good. So let’s just try it. We’ll need some basic

kit. Here are my refusenik ASCII dependent pair type and homogeneous intensional equality.

record Sg (S : Set)(T : S -> Set) : Set where
constructor _,_
field

fst : S
snd : T fst

open Sg

data _==_ {X : Set}(x : X) : X -> Set where
refl : x == x

Here’s your candidate for an equaliser for two functions

Q : {S T : Set}(f g : S -> T) -> Set
Q {S}{T} f g = Sg S \ s -> f s == g s

with the fst projection sending Q f g into S.
What it says: an element of Q f g is an element s of the source type, together with a proof

that f s == g s. But is this an equaliser? Let’s try to make it so.
To say what an equaliser is, I should define function composition.

_o_ : {R S T : Set} -> (S -> T) -> (R -> S) -> R -> T
(f o g) x = f (g x)
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FIXME: http://i.stack.imgur.com/odrtv.jpg

Figure 8.1: equaliser diagram

So now I need to show that any h : R -> S which identifies f o h and g o h must factor
through the candidate fst : Q f g -> S. I need to deliver both the other component, u :
R -> Q f g and the proof that indeed h factors as fst o u. Here’s the picture: (Q f g ,
fst) is an equalizer if whenever the diagram commutes without u, there is a unique way to add
u with the diagram still commuting.

Here goes existence of the mediating u.

mediator : {R S T : Set}(f g : S -> T)(h : R -> S) ->
(q : (f o h) == (g o h)) ->
Sg (R -> Q f g) \ u -> h == (fst o u)

Clearly, I should pick the same element of S that h picks.

mediator f g h q = (\ r -> (h r , ?0)) , ?1

leaving me with two proof obligations

?0 : f (h r) == g (h r)
?1 : h == (\ r -> h r)

Now, ?1 can just be refl as Agda’s definitional equality has the eta-law for functions. For
?0, we are blessed by q. Equal functions respect application

funq : {S T : Set}{f g : S -> T} -> f == g -> (s : S) -> f s == g s
funq refl s = refl

so we may take ?0 = funq q r.
But let us not celebrate prematurely, for the existence of a mediating morphism is not suffi-

cient. We require also its uniqueness. And here the wheel is likely to go wonky, because == is
intensional, so uniqueness means there’s only ever one way to implement the mediating map. But
then, our assumptions are also intensional. . .

Here’s our proof obligation. We must show that any other mediating morphism is equal to
the one chosen by mediator.

mediatorUnique :
{R S T : Set}(f g : S -> T)(h : R -> S) ->
(qh : (f o h) == (g o h)) ->
(m : R -> Q f g) ->
(qm : h == (fst o m)) ->
m == fst (mediator f g h qh)

We can immediately substitute via qm and get

mediatorUnique f g .(fst o m) qh m refl = ?

? : m == (\ r -> (fst (m r) , funq qh r))

which looks good, because Agda has eta laws for records, so we know that

m == (\ r -> (fst (m r) , snd (m r)))

but when we try to make ? = refl, we get the complaint

http://i.stack.imgur.com/odrtv.jpg
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snd (m _) != funq qh _ of type f (fst (m _)) == g (fst (m _))

which is annoying, because identity proofs are unique (in the standard configuration). Now,
you can get out of this by postulating extensionality and using a few other facts about equality

postulate ext : {S T : Set}{f g : S -> T} -> ((s : S) -> f s == g s) -> f == g

sndq : {S : Set}{T : S -> Set}{s : S}{t t’ : T s} ->
t == t’ -> _==_ {Sg S T} (s , t) (s , t’)

sndq refl = refl

uip : {X : Set}{x y : X}{q q’ : x == y} -> q == q’
uip {q = refl}{q’ = refl} = refl

? = ext (\ s -> sndq uip)

but that’s overkill, because the only problem is the annoying equality proof mismatch: the
computable parts of the implementations match on the nose. So the fix is to work with irrelevance.
I replace Sg by the Existential quantifier, whose second component is marked as irrelevant with
a dot. Now it matters not which proof we use that the witness is good.

record Ex (S : Set)(T : S -> Set) : Set where
constructor _,_
field

fst : S
.snd : T fst

open Ex

and the new candidate equaliser is

Q : {S T : Set}(f g : S -> T) -> Set
Q {S}{T} f g = Ex S \ s -> f s == g s

The entire construction goes through as before, except that in the last obligation

? = refl

is accepted!
So yes, even in the intensional setting, eta laws and the ability to mark fields as irrelevant give

us equalisers.
No undecidable typechecking was involved in this construction.

8.3 Why do we need containers?

To my mind, the value of containers (as in container theory) is their uniformity. That uniformity
gives considerable scope to use container representations as the basis for executable specifica-
tions, and perhaps even machine-assisted program derivation.

Containers: a theoretical tool, not a good run-time data representation strategy
I would not recommend fixpoints of (normalized) containers as a good general purpose way

to implement recursive data structures. That is, it is helpful to know that a given functor has
(up to iso) a presentation as a container, because it tells you that generic container functional-
ity (which is easily implemented, once for all, thanks to the uniformity) can be instantiated to
your particular functor, and what behaviour you should expect. But that’s not to say that a con-
tainer implementation will be efficient in any practical way. Indeed, I generally prefer first-order
encodings (tags and tuples, rather than functions) of first-order data.

To fix terminology, let us say that the type Cont of containers (on Set, but other categories
are available) is given by a constructor <| packing two fields, shapes and positions
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S : Set
P : S -> Set

(This is the same signature of data which is used to determine a Sigma type, or a Pi type, or a
W type, but that does not mean that containers are the same as any of these things, or that these
things are the same as each other.)

The interpretation of such a thing as a functor is given by

[_]C : Cont -> Set -> Set
[ S <| P ]C X = Sg S \ s -> P s -> X -- I’d prefer (s : S) * (P s -> X)
mapC : (C : Cont){X Y : Set} -> (X -> Y) -> [ C ]C X -> [ C ]C Y
mapC (S <| P) f (s , k) = (s , f o k) -- o is composition

And we’re already winning. That’s map implemented once for all. What’s more, the functor
laws hold by computation alone. There is no need for recursion on the structure of types to
construct the operation, or to prove the laws.

Descriptions are denormalized containers
Nobody is attempting to claim that, operationally, Nat <| Fin gives an efficient implementa-

tion of lists, just that by making that identification we learn something useful about the structure
of lists.

Let me say something about descriptions. For the benefit of lazy readers, let me reconstruct
them.

data Desc : Set1 where
var : Desc
sg pi : (A : Set)(D : A -> Desc) -> Desc
one : Desc -- could be Pi with A = Zero
_*_ : Desc -> Desc -> Desc -- could be Pi with A = Bool

con : Set -> Desc -- constant descriptions as singleton tuples
con A = sg A \ _ -> one

_+_ : Desc -> Desc -> Desc -- disjoint sums by pairing with a tag
S + T = sg Two \ { true -> S ; false -> T }

Values in Desc describe functors whose fixpoints give datatypes. Which functors do they
describe?

[_]D : Desc -> Set -> Set
[ var ]D X = X
[ sg A D ]D X = Sg A \ a -> [ D a ]D X
[ pi A D ]D X = (a : A) -> [ D a ]D X
[ one ]D X = One
[ D * D’ ]D X = Sg ([ D ]D X) \ _ -> [ D’ ]D X

mapD : (D : Desc){X Y : Set} -> (X -> Y) -> [ D ]D X -> [ D ]D Y
mapD var f x = f x
mapD (sg A D) f (a , d) = (a , mapD (D a) f d)
mapD (pi A D) f g = \ a -> mapD (D a) f (g a)
mapD one f <> = <>
mapD (D * D’) f (d , d’) = (mapD D f d , mapD D’ f d’)

We inevitably have to work by recursion over descriptions, so it’s harder work. The functor
laws, too, do not come for free. We get a better representation of the data, operationally, because
we don’t need to resort to functional encodings when concrete tuples will do. But we have to
work harder to write programs.

Note that every container has a description:
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sg S \ s -> pi (P s) \ _ -> var

But it’s also true that every description has a presentation as an isomorphic container.

ShD : Desc -> Set
ShD D = [ D ]D One

PosD : (D : Desc) -> ShD D -> Set
PosD var <> = One
PosD (sg A D) (a , d) = PosD (D a) d
PosD (pi A D) f = Sg A \ a -> PosD (D a) (f a)
PosD one <> = Zero
PosD (D * D’) (d , d’) = PosD D d + PosD D’ d’

ContD : Desc -> Cont
ContD D = ShD D <| PosD D

That’s to say, containers are a normal form for descriptions. It’s an exercise to show that [ D
]D X is naturally isomorphic to [ ContD D ]C X. That makes life easier, because to say what to
do for descriptions, it’s enough in principle to say what to do for their normal forms, containers.
The above mapD operation could, in principle, be obtained by fusing the isomorphisms to the
uniform definition of mapC.

Differential structure: containers show the way
Similarly, if we have a notion of equality, we can say what one-hole contexts are for containers

uniformly

_-[_] : (X : Set) -> X -> Set
X -[ x ] = Sg X \ x’ -> (x == x’) -> Zero

dC : Cont -> Cont
dC (S <| P) = (Sg S P) <| (\ { (s , p) -> P s -[ p ] })

That is, the shape of a one-hole context in a container is the pair of the shape of the original
container and the position of the hole; the positions are the original positions apart from that of
the hole. That’s the proof-relevant version of “multiply by the index, decrement the index” when
differentiating power series.

This uniform treatment gives us the specification from which we can derive the centuries-old
program to compute the derivative of a polynomial.

dD : Desc -> Desc
dD var = one
dD (sg A D) = sg A \ a -> dD (D a)
dD (pi A D) = sg A \ a -> (pi (A -[ a ]) \ { (a’ , _) -> D a’ }) * dD (D a)
dD one = con Zero
dD (D * D’) = (dD D * D’) + (D * dD D’)

How can I check that my derivative operator for descriptions is correct? By checking it against
the derivative of containers!

Don’t fall into the trap of thinking that just because a presentation of some idea is not opera-
tionally helpful that it cannot be conceptually helpful.

On “Freer” monads
One last thing. The Freer trick amounts to rearranging an arbitrary functor in a particular

way (switching to Haskell)

data Obfuncscate f x where
(:<) :: forall p. f p -> (p -> x) -> Obfuncscate f x
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but this is not an alternative to containers. This is a slight currying of a container presentation.
If we had strong existentials and dependent types, we could write

data Obfuncscate f x where
(:<) :: pi (s :: exists p. f p) -> (fst s -> x) -> Obfuncscate f x

so that (exists p. f p) represents shapes (where you can choose your representation
of positions, then mark each place with its position), and fst picks out the existential witness
from a shape (the position representation you chose). It has the merit of being obviously strictly
positive exactly because it’s a container presentation.

In Haskell, of course, you have to curry out the existential, which fortunately leaves a de-
pendency only on the type projection. It’s the weakness of the existential which justifies the
equivalence of Obfuncscate f and f. If you try the same trick in a dependent type theory
with strong existentials, the encoding loses its uniqueness because you can project and tell apart
different choices of representation for positions. That is, I can represent Just 3 by

Just () :< const 3

or by

Just True :< \ b -> if b then 3 else 5

and in Coq, say, these are provably distinct.
Challenge: characterizing polymorphic functions
Every polymorphic function between container types is given in a particular way. There’s

that uniformity working to clarify our understanding again.
If you have some

f : {X : Set} -> [ S <| T ]C X -> [ S’ <| T’ ]C X

it is (extensionally) given by the following data, which make no mention of elements whatso-
ever:

toS : S -> S’
fromP : (s : S) -> P’ (toS s) -> P s

f (s , k) = (toS s , k o fromP s)

That is, the only way to define a polymorphic function between containers is to say how to
translate input shapes to output shapes, then say how to fill output positions from input posi-
tions.

For your preferred representation of strictly positive functors, give a similarly tight charac-
terisation of the polymorphic functions which eliminates abstraction over the element type. (For
descriptions, I would use exactly their reducability to containers.)

Challenge: capturing “transposability”
Given two functors, f and g, it is easy to say what their composition f o g is: (f o g)

x wraps up things in f (g x), giving us “f-structures of g-structures”. But can you readily
impose the extra condition that all of the g structures stored in the f structure have the same
shape?

Let’s say that f >< g captures the transposable fragment of f o g, where all the g shapes
are the same, so that we can just as well turn the thing into a g-structure of f-structures. E.g.,
while [] o [] gives ragged lists of lists, [] >< [] gives rectangular matrices; [] >< Maybe
gives lists which are either all Nothing or all Just.

Give >< for your preferred representation of strictly positive functors. For containers, it’s
this easy.
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(S <| P) >< (S’ <| P’) = (S * S’) <| \ { (s , s’) -> P s * P’ s’ }

Conclusion
Containers, in their normalized Sigma-then-Pi form, are not intended to be an efficient ma-

chine representation of data. But the knowledge that a given functor, implemented however,
has a presentation as a container helps us understand its structure and give it useful equipment.
Many useful constructions can be given abstractly for containers, once for all, when they must be
given case-by-case for other presentations. So, yes, it is a good idea to learn about containers, if
only to grasp the rationale behind the more specific constructions you actually implement.

8.4 To what extent are Applicative/Monad instances uniquely
determined?

Given that every Applicative has a Backwards counterpart,

newtype Backwards f x = Backwards {backwards :: f x}
instance Applicative f => Applicative (Backwards f) where

pure x = Backwards (pure x)
Backwards ff <*> Backwards fs = Backwards (flip ($) <$> fs <*> ff)

it’s unusual for Applicative to be uniquely determined, just as (and this is very far from
unrelated) many sets extend to monoids in multiple ways.

In this answer, I set the exercise of finding at least four distinct valid Applicative instances
for nonempty lists: I won’t spoil it here, but I will give a big hint on how to hunt.

Meanwhile, in some wonderful recent work (which I saw at a summer school a few months
ago), Tarmo Uustalu showed a rather neat way to get a handle on this problem, at least when the
underlying functor is a container, in the sense of Abbott, Altenkirch and Ghani.

Warning: Dependent types ahead!
What is a container? If you have dependent types to hand, you can present container-like

functors F uniformly, as being determined by two components

1. a set of shapes, S : Set
2. an S-indexed set of positions, P : S -> Set

Up to isomorphism, container data structures in F X are given by the dependent pair of some
shape s : S, and some function e : P s -> X, which tells you the element located at each position.
That is, we define the extension of a container

(S <| P) X = (s : S) * (P s -> X)

(which, by the way, looks a lot like a generalized power series if you read -> as reversed
exponentiation). The triangle is supposed to remind you of a tree node sideways, with an element
s : S labelling the apex, and the baseline representing the position set P s. We say that some
functor is a container if it is isomorphic to some S <| P.

In Haskell, you can easily take S = F (), but constructing P can take quite a bit of type-
hackery. But that is something you can try at home. You’ll find that containers are closed under
all the usual polynomial type-forming operations, as well as identity,

Id ˜= () <| \ _ -> ()

composition, where a whole shape is made from just one outer shape and an inner shape for
each outer position,

(S0 <| P0) . (S1 <| P1) ˜= ((S0 <| P0) S1) <| \ (s0, e0) -> (p0 : P0, P1 (e0 p0))

https://stackoverflow.com/a/32825891/828361
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and some other things, notably the tensor, where there is one outer and one inner shape (so
“outer” and “inner” are interchangeable)

(S0 <| P0) (X) (S1 <| P1) = ((S0, S1) <| \ (s0, s1) -> (P0 s0, P1 s1))

so that F (X) G means “F-structures of G-structures-all-the-same-shape”, e.g., [] (X) []
means rectangular lists-of-lists. But I digress

Polymorphic functions between containers Every polymorphic function

m : forall X. (S0 <| P0) X -> (S1 <| P1) X

can be implemented by a container morphism, constructed from two components in a very
particular way.

1. a function f : S0 -> S1 mapping input shapes to output shapes;
2. a function g : (s0 : S0) -> P1 (f s0) -> P0 s0 mapping output positions to

input positions.

Our polymorphic function is then

\ (s0, e0) -> (f s0, e0 . g s0)

where the output shape is computed from the input shape, then the output positions are filled
up by picking elements from input positions.

(If you’re Peter Hancock, you have a whole other metaphor for what’s going on. Shapes are
Commands; Positions are Responses; a container morphism is a device driver, translating com-
mands one way, then responses the other.)

Every container morphism gives you a polymorphic function, but the reverse is also true.
Given such an m, we may take

(f s, g s) = m (s, id)

That is, we have a representation theorem, saying that every polymorphic function between two
containers is given by such an f, g-pair.

What about Applicative? We kind of got a bit lost along the way, building all this ma-
chinery. But it has been worth it. When the underlying functors for monads and applicatives are
containers, the polymorphic functions pure and <*>, return and join must be representable
by the relevant notion of container morphism.

Let’s take applicatives first, using their monoidal presentation. We need

unit : () -> (S <| P) ()
mult : forall X, Y. ((S <| P) X, (S <| P) Y) -> (S <| P) (X, Y)

The left-to-right maps for shapes require us to deliver

unitS : () -> S
multS : (S, S) -> S

so it looks like we might need a monoid. And when you check that the applicative laws,
you find we need exactly a monoid. Equipping a container with applicative structure is exactly
refining the monoid structures on its shapes with suitable position-respecting operations. There’s
nothing to do for unit (because there is no chocie of source position), but for mult, we need that
whenenver

multS (s0, s1) = s

we have
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multP (s0, s1) : P s -> (P s0, P s1)

satisfying appropriate identity and associativity conditions. If we switch to Hancock’s in-
terpretation, we’re defining a monoid (skip, semicolon) for commands, where there is no way
to look at the response to the first command before choosing the second, like commands are a
deck of punch cards. We have to be able to chop up responses to combined commands into the
individual responses to the individual commands.

So, every monoid on the shapes gives us a potential applicative structure. For lists, shapes
are numbers (lengths), and there are a great many monoids from which to choose. Even if shapes
live in Bool, we have quite a bit of choice.

What about Monad? Meanwhile, for monads M with M ˜= S <| P. We need

return : Id -> M
join : M . M -> M

Looking at shapes first, that means we need a sort-of lopsided monoid.

return_f : () -> S
join_f : (S <| P) S -> S -- (s : S, P s -> S) -> S

It’s lopsided because we get a bunch of shapes on the right, not just one. If we switch to
Hancock’s interpretation, we’re defining a kind of sequential composition for commands, where
we do let the second command be chosen on the basis of the first response, like we’re interacting
at a teletype. More geometrically, we’re explaining how to glom two layers of a tree into one. It
would be very surprising if such compositions were unique.

Again, for the positions, we have to map single output positions to pairs in a coherent way.
This is trickier for monads: we first choose an outer position (response), then we have to choose
an inner position(response) appropriate to the shape (command) found at the first position (cho-
sen after the first response).

I’d love to link to Tarmo’s work for the details, but it doesn’t seem to have hit the streets yet.
He has actually used this analysis to enumerate all possible monad structures for several choices
of underlying container. I’m looking forward to the paper!

Edit. By way of doing honour to the other answer, I should observe that when everywhere P
s = (), then (S <| P) X ˜= (S, X) and the monad/applicative structures coincide exactly
with each other and with the monoid structures on S. That is, for writer monads, we need only
choose the shape-level operations, because there is exactly one position for a value in every case.

8.5 Pattern matching in Observational Type Theory

I guess I’ll field this one. I find it a strange question, but that’s because of my own particular
journey. The short answer is: don’t do pattern matching in OTT, or in any kernel type theory.
Which is not the same thing as to not do pattern matching ever.

The long answer is basically my PhD thesis.
In my PhD thesis, I show how to elaborate high-level programs written in a pattern matching

style into a kernel type theory which has only the induction principles for inductive datatypes
and a suitable treatment of propositional equality. The elaboration of pattern matching intro-
duces propositional equations on datatype indices, then solves them by unification. Back then, I
was using an intensional equality, but observational equality gives you at least the same power.
That is: my technology for elaborating pattern matching (and thus keeping it out of the kernel
theory), hiding all the equational piggery-jokery, predates the upgrade to observational equality.
The ghastly vlookup you’ve used to illustrate your point might correspond to the output of the
elaboration process, but the input need not be that bad. The nice definition
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vlookup : Fin n -> Vec X n -> X
vlookup fz (vcons x xs) = x
vlookup (fs i) (vcons x xs) = vlookup i xs

elaborates just fine. The equation-solving that happens along the way is just the same equation-
solving that Agda does at the meta-level when checking a definition by pattern matching, or that
Haskell does. Don’t be fooled by programs like

f :: a ˜ b => a -> b
f x = x

In kernel Haskell, that elaborates to some sort of

f {q} x = coerce q x

but it’s not in your face. And it’s not in compiled code, either. OTT equality proofs, like
Haskell equality proofs, can be erased before computing with closed terms.

Digression. To be clear about the status of equality data in Haskell, the GADT

data Eq :: k -> k -> * where
Refl :: Eq x x

really gives you

Refl :: x ˜ y -> Eq x y

but because the type system is not logically sound, type safety relies on strict pattern matching
on that type: you can’t erase Refl and you really must compute it and match it at run time,
but you can erase the data corresponding to the proof of x˜y. In OTT, the entire propositional
fragment is proof-irrelevant for open terms and erasable for closed computation. End of digression.

The decidability of equality on this or that datatype is not especially relevant (at least, not if
you have uniqueness of identity proofs; if you don’t always have UIP, decidability is one way to
get it sometimes). The equational problems which show up in pattern matching are on arbitrary
open expressions. That’s a lot of rope. But a machine can certainly decide the fragment which
consists of first-order expressions built from variables and fully applied constructors (and that’s
what Agda does when you split cases: if the constraints are too weird, the thing just barfs). OTT
should allow us to push a bit further into the decidable fragments of higher-order unification.
If you know (forall x. f x = t[x]) for unknown f, that’s equivalent to f = \ x ->
t[x].

So, “no pattern matching in OTT” has always been a deliberate design choice, as we always
intended it to be an elaboration target for a translation we already knew how to do. Rather, it’s a
strict upgrade in kernel theory power.

8.6 Provable coherence in OTT

Firstly, thanks for asking about Observational Type Theory. Secondly, what you’ve done here
does seem to hang together, even though it has things in different places from where Thorsten
Altenkirch, Wouter Swierstra and I put them in our version of the story. Thirdly, it’s no surprise
(at least not to me) that coherence is derivable, leaving reflexivity the only postulate. That’s true
of our OTT as well, and Wouter did the proofs in Agda 1, back when we wrote that paper. Proof
irrelevance and the shortness of life meant I didn’t port his proofs to Agda 2.

If you’ve missed anything, it’s lurking in your remark

We still need to postulate something to define subst and other stuff.
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If you have some P : X -> Set, some a, b : X and some q : a = b, you expect to get
a function in P a -> P b. The “equal functions take equal inputs to equal outputs” formula-
tion gives you that, as refl P : P = P, so from q, we can deduce P a = P b. Your “equal
functions take a given input to equal outputs” formulation does not allow you to let q bridge the
gap from a to b.

In the presence of refl and subst, “two equal inputs” amounts to the same thing as “one
input used in two places”. It seems to me that you’ve moved the work into whatever else you
need to get subst. Depending on how lazy your definition of coerce is (and that’s how you get
proof irrelevance), you will need only a postulate.

With your particular formulation, you might even get away with a homogeneous value equality.
If you’re fixing type gaps with coercions rather than equations, you might save yourself some
trouble (and maybe get rid of that equation on the domain type in function equality). Of course,
in that case, you’d need to think about how to replace the statement of coherence.

We tried quite hard to keep coercion out of the definition of equality, to retain some sort of
symmetry, and to keep type equations out of value equations, mostly to have less to think about
at one go. It’s interesting to see that at least some parts of the construction might get easier with
“a thing and its coercion” replacing “two equal things”.

8.7 How to solve goals with invalid type equalities in Coq?

tl;dr Cardinality arguments are the only way to show types unequal. You can certainly automate
cardinality arguments more effectively with a bit of reflection. If you want to go further, give
your types a syntactic representation by constructing a universe, ensuring your proof obligations
are framed as syntactic inequality of representations rather than semantic inequality of types.

Isomorphism as Equality

It’s widely believed (and there may even be a proof of it somewhere) that Coq’s logic is consistent
with the axiom that isomorphic sets are propositionally equal. Indeed, this is a consequence of the
Univalence Axiom from Vladimir Voevodsky, which people are having so much fun with at the
moment. I must say, it seems very plausible that it is consistent (in the absence of typecase),
and that a computational interpretation can be constructed which somehow transports values
between equal types by inserting whichever component of the isomorphism is needed at any
given moment.

If we assume that such an axiom is consistent, we discover that type inequality in the logic
as it stands can hold by only refuting the existence of type isomorphism. As a result, your par-
tial solution is, at least in principle, where it’s at. Enumerability is rather key to showing non-
isomorphism. I’m not sure what the status of nat = (nat -> nat) might be, but it is clear
from outside the system that every inhabitant of nat -> nat has a normal form, and that there are
countably many normal forms: it’s at least plausible that there are consistent axioms or reflection
principles which make the logic more intensional and which validate that hypothesis.

Automating Cardinality Arguments

I can see two steps you might take to improve on the present situation. The less radical step
is to improve your generic technology for making these cardinality arguments by better use of
reflection. You’re ideally placed to do so, because in general, you’re looking to show that a finite
set is distinct from some larger set. Suppose we have some notion of DList A, a list of distinct
elements of A. If you can construct an exhaustive DList A and a longer DList B, then you can
disprove A = B.

There’s a lovely definition of DList by induction-recursion, but Coq doesn’t have induction-
recursion. Fortunately, it’s one of those definitions we can simulate by careful use of indexing.
Forgive my informal syntax, but let’s have
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Parameters
A : Set
d : A -> A -> bool
dok : forall x y, d x y = true -> x = y -> False

That’s d for “distinct”. If a set already has decidable equality, you can equip it with d very
easily. A large set can be equipped with an adequate d for our purposes with not much work.
And actually, that’s the crucial step: following the wisdom of the SSReflect team, we take ad-
vantage of the smallness of our domain by working with bool rather than Prop, and make the
computer do the heavy lifting.

Now, let us have

DListBody : (A -> bool) -> Set

where the index is the freshness test for the list

dnil : DListBody (const true) (* any element is fresh for the empty list *)
dsnoc : forall f, (xs : DListBody f) -> (x : A) -> is_true (f x) ->

DListBody (fun y => f y /\ d x y)

And if you like, you can define DList wrapping DListBody existentially. Perhaps that’s
actually hiding information we want, though, because to show such a thing exhaustive goes like
this:

Exhaustive (f : A -> bool)(mylist : DListBody f) = forall x : A, is_false (f x)

So if you can write down a DListBody for a finite enumeration, you can prove it exhaustive
just by a case analysis with trivial subgoals.

You then need only make the pigeonholing argument once. When you want to disprove an
equality between types (assuming you already have suitable candidates for d), you exhaustively
enumerate the smaller and exhibit a longer list from the larger, and that’s it.

Working in a Universe

The more radical alternative is to question why you are getting these goals in the first place, and
whether they really mean what you want them to. What are types supposed to be, really? There
are multiple possible answers to that question, but it is at least open that they are in some sense
“cardinalities”. If you want to think of types as being more concrete and syntactic, distinct if
they are built by distinct constructions, then you may need to equip types with a more concrete
representation by working in a universe. You define an inductive datatype of “names” for types,
together with the means to decode names as types, then you reframe your development in terms
of names. You should find that inequality of names follows by ordinary constructor discrimina-
tion.

The snag is that universe constructions can be a bit tricky in Coq, again because induction-
recursion is unsupported. It depends heavily on what types you need to consider. Maybe you can
define inductively some U : Set then implement a recursive decoder T : U -> Set. That’s
certainly plausible for universes of simple types. If you want a universe of dependent types,
things get a bit sweatier. You can at least do this much

U : Type (* note that we’ve gone up a size *)
NAT : U
PI : forall (A : Set), (A -> U) -> U

T : U -> Set
T NAT = nat
T (PI A B) = forall (a : A), T (B a)
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but note that the domain of PI is unencoded in Set, not in U. The inductive-recursive Agdans
can get over this, defining U and T simultaneously

U : Set (* nice and small *)
NAT : U
PI : forall (A : U), (T A -> U) -> U (* note the use of T *)

T : U -> Set
T NAT = nat
T (PI A B) = forall (a : T A), T (B a)

but Coq won’t have that. Again, the workaround is to use indexing. Here the cost is that U is
inevitably large.

U : Set -> Type
NAT : U nat
PI : forall (A : Set)(B : A -> Set),

U A -> (forall a, U (B a)) -> U (forall a, B a)

But you can still get a lot of stuff done with a universe built that way. For example, one can
equip such a universe with a computationally effective extensional equality.

8.8 Is it possible to express the type of balanced untagged bi-
nary trees on the calculus of constructions?

I don’t know the details of Morte, but I have some clues about what’s possible in typed lambda-
calculi more broadly.

If Nat is defined impredicatively, it might be possible to define these trees by iteration.

Nat : *
Nat = (x : *) -> (x -> x) -> x -> x
Pair : * -> * -> *
Pair x y = (z : *) -> (x -> y -> z) -> z
Tree : * -> Nat -> *
Tree a n = n * (\ t -> Pair t t) a

Of course, to get away with that, I need a large elimination. Here, I’ve casually just taken * :

*, but that’s not safe in general. Inductive definitions admit large eliminations unproblematically:
impredicatively encoded datatypes, not so.

But, above, I exploit the fact that the indexing structure of the trees happens to be compatible
with that of the Nats which index them, and there is no reason why that should be the case in
general. Indices vary in all sorts of wacky ways: it’s only those that characterize some sort of
“size” that get smaller as we go inward.

Indexed structures do admit a Church encoded presentation. It’s just that instead of iterating
over a set, we iterate over an indexed set. Here’s one way to express it.

Tree : * -> Nat -> *
Tree a n = (x : Nat -> *) ->

(a -> x Z) ->
((n : Nat) -> x n -> x n -> x (S n)) ->
x n

It’s easy to write some things like

https://personal.cis.strath.ac.uk/conor.mcbride/pub/JOTT/coq/ott.v
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leftmost : (a : *) -> (n : Nat) -> Tree a n -> a
leftmost a n t = t (\ _ -> a) (\ a -> a) (\ _ l _ -> l)

but

leftChild : (a : *) -> (n : Nat) -> Tree a (S n) -> Tree a n

is a taller order, requiring some way to inspect or constrain numbers. That’s why GHC
Haskell has all this stuff about equality, ˜.

8.9 Agda-like programming in Coq/Proof General?

Let me teach you one weird trick. It may not be the answer to all your concerns, but it might
help, at least conceptually.

Let’s implement addition for natural numbers, the latter being given by

Inductive nat : Set :=
| zero : nat
| suc : nat -> nat.

You can try to write addition by tactics, but this happens.

Theorem plus’ : nat -> nat -> nat.
Proof.

induction 1.

plus’ < 2 subgoals

============================
nat -> nat

subgoal 2 is:
nat -> nat

you can’t see what you’re doing.
The trick is to look more closely at what you’re doing. We can introduce a gratuitously de-

pendent type, cloning nat.

Inductive PLUS (x y : nat) : Set :=
| defPLUS : nat -> PLUS x y.

The idea is that PLUS x y is the type of “the way to compute plus x y”. We’ll need a
projection, allowing us to extract the result of such a computation.

Theorem usePLUS : forall x y, PLUS x y -> nat.
Proof.

induction 1.
exact n.

Defined.

Now we’re ready to program by proving.

Theorem mkPLUS : forall x y, PLUS x y.
Proof.

mkPLUS < 1 subgoal

============================
forall x y : nat, PLUS x y
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The conclusion of the goal shows us our current left-hand side and context. The analogue of
C-c C-c in Agda is. . .

induction x.

mkPLUS < 2 subgoals

============================
forall y : nat, PLUS zero y

subgoal 2 is:
forall y : nat, PLUS (suc x) y

And you can see it has done a case split! Let’s knock off the base case.

intros y.
exact (defPLUS zero y y).

Invoking the constructor of PLUS is like writing an equation. Imagine an = sign before its
third argument. For the step case, we need to make a recursive call.

intros y.
eapply (fun h => (defPLUS (suc x) y (suc (usePLUS x y h)))).

To make the recursive call, we invoke usePLUS with the arguments we want, here x and y,
but we abstract over the third argument, which is the explanation of how actually to compute it.
We are left with just that subgoal, effectively the termination check.

mkPLUS < 1 subgoal

x : nat
IHx : forall y : nat, PLUS x y
y : nat
============================
PLUS x y

And now, rather than using Coq’s guardedness check, you use. . .

auto.

. . . which checks that the inductive hypotheses cover the recursive call. We’re

Defined.

We have a worker, but we need a wrapper.

Theorem plus : nat -> nat -> nat.
Proof.

intros x y.
exact (usePLUS x y (mkPLUS x y)).

Defined.

And we’re ready to go.

Eval compute in (plus (suc (suc zero)) (suc (suc zero))).

Coq < = suc (suc (suc (suc zero)))
: nat
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You have an interactive construction tool. You can game it to show you the pertinent details of
the problem you’re solving by making types more informative. The resulting proof script. . .

Theorem mkPLUS : forall x y, PLUS x y.
Proof.

induction x.
intros y.

exact (defPLUS zero y y).
intros y.

eapply (fun h => (defPLUS (suc x) y (suc (usePLUS x y h)))).
auto.

Defined.

. . . is explicit about the program it constructs. You can see that’s defining addition.
If you automate this setup for program construction, then layer on an interface showing you

the program you’re building and the key problem-simplifying tactics, you get a funny little pro-
gramming language called Epigram 1.
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