
Discretization Based Learning Approach to Information
Retrieval

Dmitri Roussinov
Department of Information

Systems
Arizona State University, Tempe,

AZ, 85287
1-480-965-8488

dmitri.roussinov@asu.edu

Weiguo Fan
Department of Information
Systems, Virginia Tech

3007 Pamplin Hall, Blacksburg,
VA 24061

1-540-231-6588

wfan@vt.edu

Fernando A. Das Neves
Department of Computer Science

Virginia Tech
3007 Pamplin Hall, Blacksburg,

VA 24061
1-540-231-6588

fdasneve@vt.edu

ABSTRACT
We have designed a representation scheme, which is based on the
discrete representation of a document ranking function, which is
capable of reproducing and enhancing the properties of such
popular ranking functions as tf.idf, BM25 or those based on
language models. Our tests have demonstrated the capability of our
approach to achieve the performance of the best known scoring
functions solely through training, without using any known
heuristic or analytic formulas.

Categories & Subject Descriptors: H.3.3
[Information Storage And Retrieval]: Information Search and
Retrieval – query formulation, search process.

General Terms: Algorithms, Experimentation.
1. INTRODUCTION
Our work is motivated by the objective to bring closer numerous
achievements in the domains of machine learning and classification
to the classical task of ad-hoc information retrieval (IR), which is
ordering documents by the estimated degree of relevance to a given
query. Although used with striking success for text categorization,
classification-based approaches have been relatively abandoned
when trying to improve ad hoc retrieval in favor of empirical (e.g.
vector space, bm25) or generative (e.g. language models). An
important advantage of a discriminative approach is its ability to
explicitly utilize the relevance judgments existing with standard test
collections in order to train the IR algorithms and possibly enhance
retrieval accuracy for the new (unseen) queries.
The review of the earlier (unsuccessful) attempts to involve
discrimination based apporaches and more promising recent ones
with larger (TREC) collections can be found in an extended version
of this paper [3]. The major difference of our work from the prior
is that we did not try to combine several known ranking functions
(or their separate terms) into one, but rather we learn the ranking
functions directly through discretization. The next section
formalizes our Discretization Based Learning (DBL) approach to
Information Retrieval, followed by empirical results and
conclusions.

2. FORMALIZATION OF OUR APPROACH
We limit our ranking functions to the so called lw.gw class:

∑
⊂

=
q t

)()),,((d)R(q, tGddttfL ,

where d - document, q - query, L, local weighting, is the function of
the number of occurrences of the term in the document tf, possibly
combined with the other document statistics, e.g. word length. G(t),
global weighting, can be any collection level statistic of the term.
We discretized the shape of the G(t) function by assigning each
term to its global weighting bin g, which is an integer number in the

[1, |B|] range, |B| is the total number of global weighting bins. The
assignment of the term t to its global weighting bin g(t) is
performed on the log linear scale according to the document
frequency df of the term:

)}
log(N)

 (df(t)) log
 - (1|B{| g(t) = (1)

where N is the total number of documents, {.} stands for rounding
down to the nearest integer.
Similarly to the global weighting, we assigned each occurrence of a
term to its local weighting bin l, but this time by simply capping tf
at the total number of local weighting bins |L|:
 l (tf(t, d), d) = min(tf (t, d), |L|)) (1a)
Each occurrence of a query term in a document corresponds to a
local/global bin combination (g, l). Each (g,l) combination
determines a feature in a vector representing a document-query pair
f(d, q) and is denoted below as f(d, q) [g , l] . The dimensionality
of the feature space is |L| x |B|. A feature vector f(d, q) represents
each document d with respect to query q. The value of each feature
in the vector is just the number of the term occurrences assigned to
the pair of bins (g, l):

f (d, q) [g , l] = ∑
==⊂ ldtlgtg),(,)(q,t

1 (2)

Since our features capture local (tf) and global (df) term occurrence
information, in order to represent a ranking function, we can
simply use the dot product between the feature vector and the
vector of learned optimal weights w:
R(q, d) = w * f (d, q).
Ideally, the learning mechanism should assign higher weights to the
more important bin combinations (e.g. multiple occurrence of a rare
term) and low weights to the less important combinations (e.g.
single occurrence of a common term). The exact learned values
determine the optimal shape of global and local weighting.
We still can make the representation more powerful by considering
the learned weights w[g, l] not the replacements but rather the
adjustments to some other chosen global G (t) and local L (t, d)
weighting functions:

f (d, q) [g , l] = ∑
==⊂ lddttflgtg

tGdtL
)),,((,)(q,t

)(),((2a)

We define the specific choice of global G() and local L() weighting
functions as starting ranking function (SRF). When all the bin
weights w[g, l] are set to 1, our ranking function is the same as its
SRF. The learning process finds the optimal values for w[g, l] for
the collection of training queries and their relevance judgments, thus
adjusting the important shapes of the global and local weighting to
achieve better accuracy. SRF can be chosen from one of the known
to perform well ranking functions (e.g. tf.idf or BM25 or based on
language models) to take advantage of the fact that those formulas
and their optimal parameters on the standard test collections are

known for the researchers. Alternatively, we can set SRF to the
constant value (e.g. 1 in formula 2), thus not taking advantage of
any of the prior empirical investigations and to see if our
framework is able to learn reasonable (or even top-notch)
performance purely from labeled examples. Below, we describe our
experiments with each approach.
Since the score is linear with respect to the feature values, we can
train the weights w as a linear classifier that predicts the preference
relation between pairs of documents with respect to the given
query. Document d1 is more likely to be relevant (has a higher
score) than document d2 iff f(d1, q) * w > f(d1, q) * w.
We chose support vector machines (SVM) for training the classifier
weights w[g, l] since they are known to work well with large
numbers of features, ranging in our experiments from 8 to 512,
depending on the number of bins. For our empirical tests, we used
the SVMLight package freely available for academic research from
Joachims [1]. For each selected (sampled) pair of documents (dr, di
), such that dr is a relevant document and di is irrelevant, the
classifier was presented with a positive example created from the
vector of differences of features fp = f(q, dr) – f(q, di), and also
with the negative example as the inverse of it: fn= f(q, di) – f(q,
dr). This approach also balances positive and negative examples.
Since presenting all pairs to the training mechanism would be
overwhelming, we performed pseudo-random sampling of
documents by the following intuitive consideration. Since it is more
efficient to present the classifier with the pairs from the documents
that are likely to more strongly affect the performance metric
(average precision), we first pre-ordered the retrieved documents
by any of the reasonably well-performing scoring function (e.g.
tf.idf) and limited the sample of documents to the top 1000. Then,
for each query, each known relevant document dr from that subset
was selected and “paired” with a certain number of randomly
selected irrelevant documents. This number was linearly decreasing
with the position of the relevant document in the pre-order. Thus,
the higher the document was positioned in the pre-order, the more
times it was selected for pairing (training). This placed more
emphasis at correctly classifying the more important document
pairs in the average precision computation. Without the correct
emphasis during sampling the obtained results were much weaker.

3. Empirical Evaluation
3.1 Empirical setup
We used the TREC, Disks 1 and 2, collections to test our
framework. We used topics 101-150 for training and 151-200 for
testing and vice-versa. For indexing, we used the Lemur package
[2], with the default set of parameters, and no stop word removal
or stemming. We used only topic titles for queries, and the most
popular average (non-interpolated) precision as our performance
metric, computed by the script included with the Lemur toolkit
(later verified by trec_eval). We used the implementation of BM25,
available in Lemur as the baseline. The optimal parameter values
were close to the default K = 1.0 and b = .5.
First, we set our starting ranking function (SRF) to a constant

value, thus using only the minimum out of the empirical knowledge
and theoretical models developed by information retrieval
researchers during several decades: specifically only the fact that
relevance can be predicted by tf and df. Table 1 shows performance
for the 16 x 8 combination of bins. It can be seen that our
approach has reached 90-100% of the top performance (baseline)
solely through the learning process. The original performance is
the one obtained by assigning all the classifier weights to 1. In order
to evaluate if more training data can help, we also ran tests using 90
topics for training and the remaining 10 for testing. We ran 10 tests
each time using 10 different sequential topics for testing and
averaged our results. In this case, the averaged performance was
completely restored to the baseline level with the mean difference in
precision across test queries +0.5% and 1% standard deviation of
the mean.
In order to test whether our approach can exceed the baseline
performance we set BM25 to be our starting ranking function
(SRF). Table 2 shows performance for the 8 by 8 bin design.
Although the improvement is relatively small (2-3%) it is still
statistically significant at the level of alpha < 0.1, when the paired
t-test was performed. The value in “% change” column shows the
mean % improvement across all the queries and its standard
deviation.

4. CONCLUSIONS, LIMITATION AND
FUTURE RESEARCH
We explored learning how to rank documents with respect to a
given query using linear Support Vector Machines and
discretization-based representation. Our approach represents a
family of discriminative approaches, currently studied much less
than heuristic (tf.idf, bm25) or generative approaches (language
models). Our experiments indicate that learning from relevant
judgments available with the standard test collections and
generalizing to new queries is not only feasible but can be a source
of improvement. Using only one set of topics sets is a limitation of
this current study, which we are going to address in our future
research.

5. ACKNOWLEDGEMENT
Weiguo Fan's work is supported by NSF under the grant number
ITR0325579. Roussinov’s work is supported by Dean’s Award of
Excellence, W.P. Carey School of Business, summer 2005.

References
[1] Joachims, T. (2001). A Statistical Learning Model of Text

Classification with Support Vector Machines. Proceedings of
the Conference on Research and Development in Information
Retrieval (SIGIR), 2001.

[2] Kraaij, W., Westerveld T. and Hiemstra, D. (2003). The
Lemur Toolkit for Language Modeling and Information
Retrieval, http://www-2.cs.cmu.edu/~lemur

[3] Roussinov, D., and Fan, W., Discretization Based Learning
Approach to Information Retrieval. In proceedings of 2005
Conference on Human Language Technologies (to appear).

Testing:

101-150

151-200

Training: Original Learned Baseline Original Learned Baseline
101-150 .119 .165 .174 .135 .180 .204
151-200 .119 .175 .174 .135 .206 .204

 Table 1. Learning without any knowledge of ranking functions. 16 x 8 bin design.

Testing:

101-150

151-200

Training: Learned Baseline % change Learned Baseline
101-150 .180 .174 +2.3 (+/- 0.9) .208 .204 +2.3 (+/- 1.0)
151-200 .179 .174 +1.8 (+/- 1.0) .210 .204 +3.2 (+/- 1.3)

Table 2. Surpassing the baseline performance. 8 x 8 bin design.

