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ABSTRACT 
We have designed a representation scheme, which is based on the  
discrete representation of a document ranking function, which is 
capable of reproducing and enhancing the properties of such 
popular ranking functions as tf.idf, BM25 or those based on 
language models. Our tests have demonstrated the capability of our 
approach to achieve the performance of the best known scoring 
functions solely through training, without using any known 
heuristic or analytic formulas. 

Categories & Subject Descriptors: H.3.3 
[Information Storage And Retrieval]: Information Search and 
Retrieval – query formulation, search process.  

General Terms: Algorithms, Experimentation.    
1. INTRODUCTION 
Our work is motivated by the objective to bring closer numerous 
achievements in the domains of machine learning and classification 
to the classical task of ad-hoc information retrieval (IR), which is 
ordering documents by the estimated degree of relevance to a given 
query. Although used with striking success for text categorization, 
classification-based approaches have been relatively abandoned 
when trying to improve ad hoc retrieval in favor of empirical (e.g. 
vector space, bm25) or generative (e.g. language models). An 
important advantage of a discriminative approach is its ability to 
explicitly utilize the relevance judgments existing with standard test 
collections in order to train the IR algorithms and possibly enhance 
retrieval accuracy for the new (unseen) queries. 
The review of the earlier (unsuccessful) attempts to involve 
discrimination based apporaches and  more promising recent ones 
with larger (TREC) collections can be found in an extended version 
of this paper [3]. The major difference of our work from the prior 
is that we did not try to combine several known ranking functions 
(or their separate terms) into one, but rather we learn the ranking 
functions directly through discretization. The next section 
formalizes our Discretization Based Learning (DBL) approach to 
Information Retrieval, followed by empirical results and 
conclusions. 

2. FORMALIZATION OF OUR APPROACH 
We limit our ranking functions to the so called lw.gw class: 
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where d - document, q - query, L, local weighting, is the function of 
the number of occurrences of the term in the document tf, possibly 
combined with the other document statistics, e.g. word length. G(t), 
global weighting, can be any collection level statistic of the term.  
We discretized the shape of the G(t) function by assigning each 
term to its global weighting bin g, which is an integer number in the 

[1, |B|] range, |B| is the total number of global weighting bins. The 
assignment of the term t to its global weighting bin g(t) is 
performed on the log linear scale according to the document 
frequency df of the term:   
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where N is the total number of documents, {.} stands for rounding 
down to the nearest integer.  
Similarly to the global weighting, we assigned each occurrence of a 
term to its local weighting bin l, but this time by simply capping tf 
at the total number of local weighting bins |L|: 
        l (tf(t, d), d) = min( tf (t, d), |L|) ) (1a) 
Each occurrence of a query term in a document corresponds to a 
local/global bin combination (g, l). Each (g,l) combination 
determines a feature in a vector representing a document-query pair 
f(d, q) and is denoted below as f( d, q) [g , l] . The dimensionality 
of the feature space is  |L| x |B|.  A feature vector f(d, q) represents 
each document d with respect to query q. The value of each feature 
in the vector is just the number of the term occurrences assigned to 
the pair of bins (g, l): 
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Since our features capture local (tf) and global (df) term occurrence 
information, in order to represent a ranking function, we can 
simply use the dot product between the feature vector and the 
vector of learned optimal weights w:  
R(q, d) = w * f ( d, q). 
Ideally, the learning mechanism should assign higher weights to the 
more important bin combinations (e.g. multiple occurrence of a rare 
term) and low weights to the less important combinations (e.g. 
single occurrence of a common term). The exact learned values 
determine the optimal shape of global and local weighting.   
We still can make the representation more powerful by considering 
the learned weights w[g, l] not the replacements but rather the 
adjustments to some other chosen global G (t) and local L (t, d) 
weighting functions: 
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We define the specific choice of global G() and local L() weighting 
functions as starting ranking function (SRF). When all the bin 
weights w[g, l] are set to 1, our ranking function is the same as its 
SRF. The learning process finds the optimal values for w[g, l]  for 
the collection of training queries and their relevance judgments, thus 
adjusting the important shapes of the global and local weighting to 
achieve better accuracy. SRF can be chosen from one of the known 
to perform well ranking functions (e.g. tf.idf or BM25 or based on 
language models) to take advantage of the fact that those formulas 
and their optimal parameters on the standard test collections are 

 



known for the researchers. Alternatively, we can set SRF to the 
constant value (e.g. 1 in formula 2), thus not taking advantage of 
any of the prior empirical investigations and to see if our 
framework is able to learn reasonable (or even top-notch) 
performance purely from labeled examples. Below, we describe our 
experiments with each approach. 
Since the score is linear with respect to the feature values, we can 
train the weights w as a linear classifier that predicts the preference 
relation between pairs of documents with respect to the given 
query. Document d1 is more likely to be relevant (has a higher 
score) than document d2 iff  f(d1, q) * w > f(d1, q) * w.  
We chose support vector machines (SVM) for training the classifier 
weights w[g, l] since they are known to work well with large 
numbers of features, ranging in our experiments from 8 to 512, 
depending on the number of bins. For our empirical tests, we used 
the SVMLight package freely available for academic research from 
Joachims [1]. For each selected (sampled) pair of documents (dr, di 
), such that dr is a relevant document and di is irrelevant, the 
classifier was presented with a positive example created from the 
vector of differences of features fp = f(q, dr) –  f(q, di), and also 
with the negative example as the inverse of it:   fn= f(q, di) – f(q, 
dr). This approach also balances positive and negative examples.  
Since presenting all pairs to the training mechanism would be 
overwhelming, we performed pseudo-random sampling of 
documents by the following intuitive consideration. Since it is more 
efficient to present the classifier with the pairs from the documents 
that are likely to more strongly affect the performance metric 
(average precision), we first pre-ordered the retrieved documents 
by any of the reasonably well-performing scoring function (e.g. 
tf.idf) and limited the sample of documents to the top 1000. Then, 
for each query, each known relevant document dr from that subset 
was selected and “paired” with a certain number of randomly 
selected irrelevant documents. This number was linearly decreasing 
with the position of the relevant document in the pre-order. Thus, 
the higher the document was positioned in the pre-order, the more 
times it was selected for pairing (training). This placed more 
emphasis at correctly classifying the more important document 
pairs in the average precision computation. Without the correct 
emphasis during sampling the obtained results were much weaker. 

3. Empirical Evaluation 
3.1 Empirical setup 
We used the TREC, Disks 1 and 2, collections to test our 
framework. We used topics 101-150 for training and 151-200 for 
testing and vice-versa. For indexing, we used the Lemur package 
[2], with the default set of parameters, and no stop word removal 
or stemming. We used only topic titles for queries, and the most 
popular average (non-interpolated) precision as our performance 
metric, computed by the script included with the Lemur toolkit 
(later verified by trec_eval). We used the implementation of BM25, 
available in Lemur as the baseline. The optimal parameter values 
were close to the default K = 1.0 and b = .5. 
First, we set our starting ranking function (SRF) to a constant 

value, thus using only the minimum out of the empirical knowledge 
and theoretical models developed by information retrieval 
researchers during several decades: specifically only the fact that 
relevance can be predicted by tf and df. Table 1 shows performance 
for the 16 x 8 combination of bins. It can be  seen that our 
approach has reached 90-100% of the top performance (baseline) 
solely through the learning process. The original performance is 
the one obtained by assigning all the classifier weights to 1. In order 
to evaluate if more training data can help, we also ran tests using 90 
topics for training and the remaining 10 for testing. We ran 10 tests 
each time using 10 different sequential topics for testing and 
averaged our results. In this case, the averaged performance was 
completely restored to the baseline level with the mean difference in 
precision across test queries +0.5% and 1% standard deviation of 
the mean.  
In order to test whether our approach can exceed the baseline 
performance we set BM25 to be our starting ranking function 
(SRF). Table 2 shows performance for the 8 by 8 bin design. 
Although the improvement is relatively small (2-3%) it is still 
statistically significant at the level of alpha < 0.1, when the paired 
t-test was performed. The value in “% change”  column shows the 
mean % improvement across all the queries and its standard 
deviation.   

4. CONCLUSIONS, LIMITATION AND 
FUTURE RESEARCH 
We explored learning how to rank documents with respect to a 
given query using linear Support Vector Machines and 
discretization-based representation. Our approach represents a 
family of discriminative approaches, currently studied much less 
than heuristic (tf.idf, bm25) or generative approaches (language 
models). Our experiments indicate that learning from relevant 
judgments available with the standard test collections and 
generalizing to new queries is not only feasible but can be a source 
of improvement. Using only one set of topics sets is a limitation of 
this current study, which we are going to address in our future 
research.  
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Testing: 

 
101-150 

 
151-200 

Training: Original Learned Baseline Original Learned Baseline 
101-150 .119  .165 .174 .135 .180 .204 
151-200 .119 .175 .174 .135 .206 .204 

      Table 1. Learning without any knowledge of ranking functions. 16 x 8 bin design.  
                        
Testing: 

 
101-150 

 
151-200 

Training: Learned Baseline % change Learned Baseline  
101-150 .180 .174 +2.3 (+/- 0.9) .208 .204 +2.3 (+/- 1.0) 
151-200 .179 .174 +1.8 (+/- 1.0) .210 .204 +3.2 (+/- 1.3) 

Table 2. Surpassing the baseline performance. 8 x 8 bin design. 
 


