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Course plan

I Today: Type theory from a homotopy theory perspective

I Tomorrow: Equivalences, the Univalence Axiom

I Saturday: Propositional truncation, Univalent logic

I Sunday: Higher inductive types, synthethic homotopy theory
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Main source material

I

I Homotopy Type Theory blog

I Homotopy Type Theory Google group

I Slides and exercises: https://tinyurl.com/hott-ohrid
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https://homotopytypetheory.org/blog/
https://groups.google.com/forum/#!forum/homotopytypetheory
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Univalent Foundations and Homotopy Type Theory
Two separate origins:
I UF: Voevodsky [2010–].

I HoTT: Hofmann-Streicher [1995], Awodey-Warren [2009],
Garner-van den Berg [2011], Lumsdaine [2010].

Vladimir Voevodsky (1966–2017)
Martin Hofmann (1965–2018) Thomas Streicher

Steve Awodey

Michael Warren Richard Garner Benno van den Berg
Peter Lumsdaine
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Univalent Foundations

A higher-dimensional foundation of mathematics: basic objects are
not discrete sets, but ∞-groupoids.

Main motivation: everything we write down should be invariant
under equivalence.

Miracle: Martin-Löf Type Theory essentially already is such a
foundation.

Side remark: “univalent” derives from Russian word for “faithful”
[Voevodsky IHP talk 2014].
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https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2014_04_22_slides.pdf
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Homotopy Type Theory

Started as investigations into models of Martin-Löf Type Theory
into abstract homotopy theory.

Consequence: can prove results in homotopy theory synthetically
using Type Theory, extended by axioms suggested by the models.

Miracle: these axioms imply most of the “missing features” of plain
Type Theory, such as function extensionality, and quotient types.

We now also know that these axioms are computationally
well-behaved thanks to Cubical Type Theory [Cohen, Coquand,
Huber, Mörtberg 2017].
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Intuition

Type Theory Interpretation

A type space A
a : A point a in space A
A ≡ B spaces A and B are equal (on the nose)
a ≡ a′ : A points a and a′ in space A are equal (on the nose)

x : A ` B(x) type fibration B → A

(Σa : A)B(x) total space of the fibration B → A
(Πa : A)B(x) space of sections of fibration B → A
0 empty space
1 trivial space
2 discrete two-point space
universe U space of small spaces
a =A a′ space of paths connecting a and a′ in A
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Remarks

A fibration is a “parameterised space with a homotopy lifting
property” — the notion needed if identity is weakened to paths.

The total space of a fibration is the disjoint union of all the fibres.

A section is in particular a continuous function — worth keeping in
mind when translating concepts.
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Thinking of identities as paths

a

bp

p−1 c

reflb

I Inverse paths p−1 (symmetry)

I Path concatenation p � q (transitivity)

I Constant paths reflb (reflexivity)
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Identity Proofs are not Unique

There can be more than one path that connects two points, so we
should not expect identity proofs to be unique.

However, not because of this:

•
a

• b

since there is a path (homotopy) between the paths.
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More problematic

•
a

• b

Stuck!
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Formal rules for identity types



Identity type rules

Formation If a : A and a′ : A then a =A a′ type.

Introduction If a : A then refla : a =A a.

Elimination If

I x : A, y : A, p : x =A y ` C (x , y , p) type,

I x : A ` d(x) : C (x , x , reflx), and

I a : A, a′ : A and p : a =A a′

then ind=A
(C , d , a, a′, p) : C (a, a′, p).

Computation ind=A
(C , d , a, a, refla) = d(a).

Elimination, informally

In order to do something with an arbitrary p : a =A a′, it suffices to
consider the case refla : a =A a.
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Equality is symmetric

In practice: if you can write it down, it is trivial to prove it.

Theorem
If p : a =A b then there is p−1 : b =A a.

Proof.
Consider elimination motive C (x , y , q) ≡ y =A x . We can give
d(x) :≡ reflx : C (x , x , refl), hence by the elimination principle we
can take p−1 :≡ ind=A

(C , d , a, b, p) : b =A a.

Second proof.

By the elimination principle, we can assume p is refl, in which case
we need to give refl−1

a : a = a. Obviously refl−1
a :≡ refla works.
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Equality is transitive

Theorem
If p : a = b and q : b = c then there is p � q : a = c.

Proof.
We may assume b is a and p is refla, in which case q : a = c has
the right type, so refl � q :≡ q works.

Second proof.

Elimination with motive C (x , y , r) ≡ (Πs : y =A c)(x =A c)
applied to p (for r) and q (for s).
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Equality is unique?

Claim?
If p, q : a =A b, then p =a=Ab q?

Proof?
We may assume p and q are refl; if so, reflrefla obviously works.

Second proof?

Let’s do this formally: we want to prove

(Πx , y : A)(Πr : x = y)(Πs : x = y)(r = s)

so our motive should be C (x , y , r) ≡ (Πs : x = y)(r = s). We
need to give d(x) : C (x , x , refl)

, i.e.

d(x) : (Πs : x = x)(refl =x=x s)

but we are stuck: the elimination rule does not apply!

We could try to generalise the inner motive, but then refl does not
type check anymore. We cannot write it down.
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Groupoid structure of paths

Theorem

I p � reflb = p

I refla
� p = p

I p � p−1 = refla

I p−1 � p = reflb

I (p−1)−1 = p

I p � (q � r) = (p � q) � r

These equalities are not strict; they only hold up to paths, which in
turn are coherent, but only up to higher paths, . . .

Theorem (Lumsdaine [2010], van den Berg-Garner [2011])

For every type A, (A,=A,==A
, . . .) form an ∞-groupoid.
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Transporting along paths

Theorem
Let x : A ` B(x) type. If p : a =A a′ then there is

transportB(p,−) : B(a)→ B(a′)

with transportB(refla,−) = idB(a).
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Functions act on paths

•
a

• b f

Theorem
Let f : A→ B. There is

apf : (Πx , y : A)
(
x =A y → f (x) =B f (y)

)
with apf (x , x , reflx) :≡ reflf (x).

Theorem
Let f : (Πx : A)B(x). There is

apdf : (Πx , y : A)(Πp : x =A y)
(
f (x) =

p
f (y)

)
with apdf (x , x , reflx) :≡ reflf (x).
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Paths over paths (dependent paths)

Formation If a, a′ : A and p : a =A a′, and b : B(a), b′ : B(a′)
then b =

p
b′ type.

Introduction If b : B(a) then reflb : b =
refla

b.

Elimination . . .

Computation . . .

Can by implemented by e.g.

(b =
p
b′) :≡ (transportB(p, b) =B(a′) b

′)

or
(b =

refla

b′) :≡ (b =B(a) b
′) (using path induction)
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Characterising path spaces



Transporting in Cartesian products

Theorem

transportz 7→A(z)×B(z)(p, x) =

(transportA(p, fst(x)), transportB(p, snd(x)))

Proof.
It is enough to consider p ≡ reflx , in which case the problem
reduces to x = (fst(x), snd(x)).

True by the η-rule (or an induction
on x).
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Paths in Cartesian products
Given p : (a, b) =A×B (a′, b′), we have

(apfst(p), apsnd(p)) : (a =A a′)× (b =B b′)

Conversely:

Theorem
There is a function

pair= : (a =A a′)× (b =B b′)→ (a, b) =A×B (a′, b′)

These two maps are inverse to each other in a precise sense; more
tomorrow, but for now, this can be summarised by:

Theorem(
(a, b) =A×B (a′, b′)

)
'

(
(a =A a′)× (b =B b′)

)
In particular, we have isEquiv((apfst(−), apsnd(−))).
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Paths in sigma types

Suppose a, a′ : A and b : B(a) and b′ : B(a′). A path

(a, b) =(Σx :A)B(x) (a′, b′)

should consist of:

I a path p : a =A a′

I a path q : b =B(a) b
′

I a path q : b =
p
b′

Theorem(
(a, b) =(Σx :A)B(x) (a′, b′)

)
' (Σp : a =A a′)(b =

p
b′)

In particular, we have isEquiv((apfst(−), apdsnd(−))).

22



Paths in sigma types

Suppose a, a′ : A and b : B(a) and b′ : B(a′). A path

(a, b) =(Σx :A)B(x) (a′, b′)

should consist of:

I a path p : a =A a′

I a path q : b =B(a) b
′

I a path q : b =
p
b′

Theorem(
(a, b) =(Σx :A)B(x) (a′, b′)

)
' (Σp : a =A a′)(b =

p
b′)

In particular, we have isEquiv((apfst(−), apdsnd(−))).

22



Paths in sigma types

Suppose a, a′ : A and b : B(a) and b′ : B(a′). A path

(a, b) =(Σx :A)B(x) (a′, b′)

should consist of:

I a path p : a =A a′

I a path q : b =B(a) b
′

I a path q : b =
p
b′

Theorem(
(a, b) =(Σx :A)B(x) (a′, b′)

)
' (Σp : a =A a′)(b =

p
b′)

In particular, we have isEquiv((apfst(−), apdsnd(−))).

22



Paths in sigma types

Suppose a, a′ : A and b : B(a) and b′ : B(a′). A path

(a, b) =(Σx :A)B(x) (a′, b′)

should consist of:

I a path p : a =A a′

I a path q : b =B(a) b
′ not well-typed!

I a path q : b =
p
b′

Theorem(
(a, b) =(Σx :A)B(x) (a′, b′)

)
' (Σp : a =A a′)(b =

p
b′)

In particular, we have isEquiv((apfst(−), apdsnd(−))).

22



Paths in sigma types

Suppose a, a′ : A and b : B(a) and b′ : B(a′). A path

(a, b) =(Σx :A)B(x) (a′, b′)

should consist of:

I a path p : a =A a′

I a path q : b =B(a) b
′ not well-typed!

I a path q : b =
p
b′

Theorem(
(a, b) =(Σx :A)B(x) (a′, b′)

)
' (Σp : a =A a′)(b =

p
b′)

In particular, we have isEquiv((apfst(−), apdsnd(−))).

22



Paths in sigma types

Suppose a, a′ : A and b : B(a) and b′ : B(a′). A path

(a, b) =(Σx :A)B(x) (a′, b′)

should consist of:

I a path p : a =A a′

I a path q : b =B(a) b
′ not well-typed!

I a path q : b =
p
b′

Theorem(
(a, b) =(Σx :A)B(x) (a′, b′)

)
' (Σp : a =A a′)(b =

p
b′)

In particular, we have isEquiv((apfst(−), apdsnd(−))).

22



Transporting in path types

A prime example of “if you can write it down, it will be trivial to
prove it”.

Lemma
Let a : A and p : x =A x ′.

Let f , g : A→ B.

I transportz 7→a=z(p, q) = q � p

I transportz 7→z=a(p, q) = p−1 � q

I transportz 7→z=z(p, q) =

p−1 � q � p

I transportz 7→f (z)=g(z)(p, q) =

apf (p−1) � q � apg (p)

We don’t expect a general characterisation of paths in =A — this
will depend on A.
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Paths in pi types

Suppose f , g : (Πx : A)B(x). What should a path

f =(Πx :A)B(x) g

consist of?

Theorem (using the Univalence Axiom)

(
f =(Πx :A)B(x) g

)
' (Πx : A)(f (x) =B(x) g(x))

In particular, we have isEquiv(happly), where

happly :
(
f = g

)
→ (Πx : A)(f (x) =B(x) g(x))

is defined by happly(p, x) = aph 7→h(x)(p).
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Strong function extensionality from weak

Before HoTT, it was common to assume as an axiom a term

funext : (Πx : A)(f (x) =B(x) g(x))→
(
f = g

)
(the non-trivial direction of

(
f = g

)
' (Πx : A)(f (x) =B(x) g(x))).

Surprisingly, this weaker statement implies the stronger one:

Theorem (Voevodsky [Lumsdaine, HoTT blog])

If there is a term funext as above, then isEquiv(happly), i.e.(
f =(Πx :A)B(x) g

)
' (Πx : A)(f (x) =B(x) g(x))

In cubical type theory, funext is trivial to define.
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Paths in the universe
Suppose A,B : U . What should a path

A =U B

consist of?

Only sensible notion(?): (A =U B) ' (A ' B).

Again we can be more precise: we can define

idtoeqv : (A =U B)→ (A ' B)

by path induction: if p : A = B is reflA, we let

idtoeqv(reflA) :≡ idA ≡ (idA, idA, . . .)

Univalence Axiom

(A =U B) ' (A ' B)

in particular, we have isEquiv(idtoeqv).

In cubical type theory, Univalence is a theorem, not an axiom.
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Consequences of Univalence

I “Isomorphic structures are equal”

I Propositional extensionality: (P ↔ Q) ' (P = Q) for
propositions P, Q.

I Function extensionality

I Large quotients exists

I Homotopy theory is non-trivial (there are two paths 2 =U 2)

I Enough slack for large elimination of higher inductive types
(Sunday)

I . . .
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Summary

New perspective on identity types based on intuitions from
homotopical models.

Lack of uniqueness of identity proofs leads to path algebra: “if you
can write it down, it is trivial to prove it”.

Important characterisations/axioms: function extensionality and
Univalence (more tomorrow).
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Exercises

1. How does transportB interact with the groupoid structure of
paths? What about apf ? Prove your claims.

2. State and prove lemmas for decomposing a transport in
function types and sigma types (the latter is messier).

3. Use paths over paths to state and prove that the empty vector
is a unit for vector concatenation, and that vector
concatenation is associative. (Hint: you will need to
generalise apf to paths over paths.)
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Cubical Type Theory: a constructive interpretation of the univalence axiom
To appear in the post-proceedings of TYPES 2016

P. Lumsdaine

Weak ω-Categories from Intensional Type Theory
Logical Methods in Computer Science, Vol. 6, issue 23, paper 24, 2010

B. van den Berg and R. Garner

Types are weak ω-groupoids
Proceedings of the London Mathematical Society (3) 102, pp. 370–394, 2011

P. Lumsdaine

Strong functional extensionality from weak
Homotopy Type Theory blog,
https://homotopytypetheory.org/2011/12/19/strong-funext-from-weak

V. Voevodsky

The equivalence axiom and univalent models of type theory
Talk at CMU on February 4, 2010

30

https://homotopytypetheory.org/2011/12/19/strong-funext-from-weak

	Course information
	Introduction
	Origins
	Intuition
	Identities as paths

	Identity types, formally
	Rules for identity types
	Consequences of the rules
	Transport and action on paths
	Paths over paths

	Characterising path spaces
	In Cartesian products
	In sigma types
	Transporting in path types
	In pi types
	In the universe

	End
	Summary
	Exercises
	References


