P
s P

Fredrik Nordvall Forsberg

University of Strathclyde, Glasgow
: EUTypes Summer school, Ohrld 9 August 2018

https://tinyurl.com/hott-ohrid

Recap of yesterday

Martin-Lof Type Theory: type theory with dependent pair types
(X), dependent function types (1), a universe of small types, and

identity types (x =4 y).

Homotopy Type Theory: new perspective on identity types based
on intuitions from homotopical models.

Paths between paths: Proving properties of identity types using
path induction.

New axioms: function extensionality and the Univalence Axiom.

The Univalence Axiom

Univalence Axiom
The canonical function idtoeqv : (A =y B) — (A~ B) is an
equivalence.

Today's goal is to make sense of this axiom, and the notion of
equivalence in particular.

Outline

1. Homotopy levels

2. Definition and properties of equivalences

Homotopy n-types

> A is contractible if we can prove
isContr(A) := (Xx: A)(My : A)(x =4 y)
» A is a proposition (subsingleton) if we can prove
isProp(A) := (MNx,y : A)(x =a y)
> Ais a set if every type x =4 y is a proposition:

isSet(A) := (Mx, y : A)(isProp(x =4 y))

Examples

» The type 0 is

» The type 1 is

» The type 2 is

Examples
» The type 0 is a proposition: vacuously all its elements are
equal.

» The type 1 is

» The type 2 is

Examples
» The type 0 is a proposition: vacuously all its elements are
equal.

» The type 1 is contractible: there is a path from the only
element to every element.

» The type 2 is

Examples
» The type 0 is a proposition: vacuously all its elements are
equal.

» The type 1 is contractible: there is a path from the only
element to every element.

> The type 2 is a set: there are no non-trivial paths between
elements.

Examples
» The type 0 is a proposition: vacuously all its elements are
equal.

» The type 1 is contractible: there is a path from the only
element to every element.

> The type 2 is a set: there are no non-trivial paths between
elements.

Theorem (exercise)

isContr(A) — (A — isContr(A)) < isProp(A) — isSet(A)

Proving that types are sets

Proving that types are sets
Definition
A type A is decidable if there is a term decy : A+ —A.

Note: “A:=A — 0.

By normalising decy, we find out if A holds or not.

Proving that types are sets

Definition
A type A is decidable if there is a term decy : A+ —A.

Note: “A:=A — 0.

By normalising decy, we find out if A holds or not.
Definition
A type A is has decidable equality if all path spaces x =4 y are

decidable, i.e. there is a term

decEq, : (Mx,y : A)((x =a y) + ~(x =4 y))

Hedberg's Theorem

Theorem ([Hedberg 1998])
If a type A has decidable equality, then it is a set.

Examples
> isSet(2)
» isSet(N
> isSet(A
> ...

)
) — isSet(List A)

Properties of contractible types

Theorem (“Vacuum cord principle”)
Singletons are contractible: for a : A, isContr((Xx : A)(x = a)).

Properties of contractible types

Theorem (“Vacuum cord principle”)

Singletons are contractible: for a : A, isContr((Xx : A)(x = a)).

Theorem
» A is contractible if and only if A~ 1.

> If A is contractible then ((Xx : A)B(x)) ~ B(xo), where xo is
the centre of contraction.

> If B(x) is contractible for all x : A then ((£x : A)B(x)) ~ A.

quij-i“

A A

What is an equivalence?

Naive first guess:
Definition
f: A— B is a quasi-equivalence if we can prove
ginv(f) :=
(Xg : B — A)((Mx : A)(g(f x) =a x)x(My : B)(f(gy) =& ¥))

What is an equivalence?

Naive first guess:

Definition
f: A— B is a quasi-equivalence if we can prove

ginv(f) :=
(Zg: B— A)((Nx : A)(g(f x) =a x)x(MNy : B)(f(gy) =B ¥))

Problem: qinv(f) is not always a proposition.

What is an equivalence?

Naive first guess:

Definition
f: A— B is a quasi-equivalence if we can prove

ginv(f) :=
(Zg: B— A)((Nx : A)(g(f x) =a x)x(MNy : B)(f(gy) =B ¥))

Problem: qinv(f) is not always a proposition.

Surprisingly(?), this could have disastrous consequences.

Quasi-equivalences with coherence

Definition
f : A— B is an equivalence if we can prove

isEquiv(f) := (Xg: B — A)

(Zn: (Nx: A)(g(f x) =a x))
(Ze: (Ny: B)(f(gy) =8 Y))
(Mx = A)(apr(n x) = €(f x))

Quasi-equivalence proofs (g, 7, €) with a coherence condition.

We define A~ B := (Xf : A — B)(isEquiv(f)).

10

Quasi-equivalences with coherence

Definition
f : A— B is an equivalence if we can prove

isEquiv(f) := (Xg: B — A)

(Zn: (Nx: A)(g(f x) =a x))
(Ze: (Ny: B)(f(gy) =8 Y))
(Mx = A)(apr(n x) = €(f x))

Quasi-equivalence proofs (g, 7, €) with a coherence condition.
We define A~ B := (Xf : A — B)(isEquiv(f)).

Good news: qinv(f) — isEquiv(f).

Quasi-equivalences with coherence

Definition
f : A— B is an equivalence if we can prove

isEquiv(f) := (Xg: B — A)

(Zn: (Nx: A)(g(f x) =a x))
(Ze: (Ny: B)(f(gy) =8 Y))
(Mx = A)(apr(n x) = €(f x))

Quasi-equivalence proofs (g, 7, €) with a coherence condition.
We define A~ B := (Xf : A — B)(isEquiv(f)).

Good news: qinv(f) <> isEquiv(f).

Quasi-equivalences with coherence

Definition
f : A— B is an equivalence if we can prove

isEquiv(f) := (Xg: B — A)

(Zn: (Mx - A)(g(f x) =a X))
(Xe: (My: B)(f(gy) =8 y))
(NMx : A)(aps(nx) = €(f x))

Quasi-equivalence proofs (g, 7, €) with a coherence condition.

We define A~ B := (Xf : A — B)(isEquiv(f)).
Good news: qinv(f) <> isEquiv(f).

Better news: isEquiv(f) is always a proposition.

10

Proof of better news

Theorem
For any f : A — B, we have isProp(isEquiv(f)).

11

Proof of better news
Theorem
For any f : A — B, we have isProp(isEquiv(f)).
Proof.
It suffices to show isContr(isEquiv(f)) assuming e : isEquiv(f).

11

Proof of better news

Theorem
For any f : A — B, we have isProp(isEquiv(f)).

Proof.
It suffices to show isContr(isEquiv(f)) assuming e : isEquiv(f).

Trick: By Univalence, (f,e) : A~ B is of the form idtoeqv(p) for
some p : A= B. By path induction, p is refl4, and f is id4.

11

Proof of better news

Theorem
For any f : A — B, we have isProp(isEquiv(f)).

Proof.
It suffices to show isContr(isEquiv(f)) assuming e : isEquiv(f).

Trick: By Univalence, (f,e) : A~ B is of the form idtoeqv(p) for
some p : A= B. By path induction, p is refl4, and f is id4.

Our goal reduces to isContr(isEquiv(ida)), or isEquiv(ida) ~ 1.

11

Proof of better news

Theorem
For any f : A — B, we have isProp(isEquiv(f)).

Proof.
It suffices to show isContr(isEquiv(f)) assuming e : isEquiv(f).

Trick: By Univalence, (f,e) : A~ B is of the form idtoeqv(p) for
some p : A= B. By path induction, p is refl4, and f is id4.

Our goal reduces to isContr(isEquiv(ida)), or isEquiv(ida) ~ 1.

isEquiv(ida) = (Xg: A— A)(Zn: (Mx: A)(gx =4 x))
(Ze: (Ny : A)gy =a y))(Mx : A)(apia(nx) = €x)

11

Proof of better news

Theorem
For any f : A — B, we have isProp(isEquiv(f)).

Proof.
It suffices to show isContr(isEquiv(f)) assuming e : isEquiv(f).

Trick: By Univalence, (f,e) : A~ B is of the form idtoeqv(p) for
some p : A= B. By path induction, p is refl4, and f is id4.

Our goal reduces to isContr(isEquiv(ida)), or isEquiv(ida) ~ 1.
isEquiv(ida) = (Xg: A— A)(Zn: (Mx: A)(gx =4 x))

(e (Ny : A)(gy =4))(Nx : A) (apia(x) = €x)
~(Xg:A— A)(En:g=ida)(Tec:g=ida)(n=¢)

11

Proof of better news

Theorem
For any f : A — B, we have isProp(isEquiv(f)).

Proof.
It suffices to show isContr(isEquiv(f)) assuming e : isEquiv(f).

Trick: By Univalence, (f,e) : A~ B is of the form idtoeqv(p) for
some p : A= B. By path induction, p is refl4, and f is id4.

Our goal reduces to isContr(isEquiv(ida)), or isEquiv(ida) ~ 1.

isEquiv(ida) = (Xg: A— A)(Xn: (rlx A)(g x =a x))
(Te: (My s Algy =a))(Mx : A)(apa(nx) = €x)
~(Xg: A= A)(Xn:g=ida)(Xe: g = |dA)(77 = 6)
~ (Xe:ida = |dA)(ref| =€)

11

Proof of better news

Theorem
For any f : A — B, we have isProp(isEquiv(f)).

Proof.
It suffices to show isContr(isEquiv(f)) assuming e : isEquiv(f).

Trick: By Univalence, (f,e) : A~ B is of the form idtoeqv(p) for
some p : A= B. By path induction, p is refl4, and f is id4.

Our goal reduces to isContr(isEquiv(ida)), or isEquiv(ida) ~ 1.

isEquiv(ida) = (Xg: A— A)(Xn: (rlx A)(g x =a x))
(Te: (My s Algy =a))(Mx : A)(apa(nx) = €x)
~ (Lg: A= A)(In:g=ida)(Xe: g =ida)(n=c¢)
~ (Xe:ida = |dA)(ref| =€)

~1

11

Univalence formulated with quasi-equivalences is false

12

Univalence formulated with quasi-equivalences is false

Theorem
Univalence formulated with quasi-inverses is false, i.e. the function

idtoginv : A=y B — (Xf : A— B)(qinv(f))

is not a quasi-equivalence.

12

Univalence formulated with quasi-equivalences is false

Theorem
Univalence formulated with quasi-inverses is false, i.e. the function

idtoginv : A=y B — (Xf : A— B)(qinv(f))

is not a quasi-equivalence.

Proof.

If idtoginv is a quasi-equivalence, then every quasi-equivalence
f: A— B is coherent:

12

Univalence formulated with quasi-equivalences is false

Theorem
Univalence formulated with quasi-inverses is false, i.e. the function

idtoginv : A=y B — (Xf : A— B)(qinv(f))

is not a quasi-equivalence.

Proof.

If idtoginv is a quasi-equivalence, then every quasi-equivalence
f: A— B is coherent:

By ginv-univalence, we may assume f is ida, which is coherent.

In particular, every (ida,ida, 7, €) for any n,e: (MNx : A)(x =4 x) is
coherent, i.e. n = €.

12

Univalence formulated with quasi-equivalences is false

Theorem
Univalence formulated with quasi-inverses is false, i.e. the function

idtoginv : A=y B — (Xf : A— B)(qinv(f))

is not a quasi-equivalence.

Proof.

If idtoginv is a quasi-equivalence, then every quasi-equivalence
f: A— B is coherent:

By ginv-univalence, we may assume f is ida, which is coherent.

In particular, every (ida,ida, 7, €) for any n,e: (MNx : A)(x =4 x) is
coherent, i.e. n = €.

But there are A such that (MNx : A)(x =4 x) is not a proposition
(Sunday); a contradiction. O

12

Morals of the story

» Univalence states that we may treat every equivalence as the
identity equivalence.

» This is consistent because there are no properties to
distinguish the identity equivalence from any other — not true

for quasi-equivalences.

13

Morals of the story

» Univalence states that we may treat every equivalence as the
identity equivalence.

» This is consistent because there are no properties to
distinguish the identity equivalence from any other — not true
for quasi-equivalences.

» Shows the importance of constructing a model to ensure
consistency. . .

13

Special cases

» If isProp(P) and isProp(Q) and P «+» @, then P ~ @ (hence
P =y Q by Univalence).

> If isSet(A) and isSet(B) and there is a quasi-equivalence
A — B, then A~ B.

14

Equivalent formulations of equivalences

That f : A — B is an equivalence can be defined in different ways:

» Voevodsky: (My : B)(isContr((Xx : A)(f x =g y)))
The preimage of each y is a singleton

> Joyal: (£g,h:B— A)((gof =id) x (foh=id))
The function f has both a left inverse g and a right inverse h

» Lumsdaine: (A ~ B) is equivalent to the type

(XER:A— B —U)((Ma: A)(isContr((Xb: B)Rab))x
(Nb: B)(isContr((Xa: A)Rab)))

There exists a “bi-functional” relation R

15

Exercises

See lec2-exercises.agda.

16

https://personal.cis.strath.ac.uk/fredrik.nordvall-forsberg/ohrid-school-hott2018/agda/lec2-exercises.html

Summary

» Hierarchy of homotopy levels:
isContr(A) — isProp(A) — isSet(A) — ...
» Coherent notion of equivalence
A~ B :=(Xf : A— B)(isEquiv(f))

Properties:
> qinv(f) — isEquiv(f)
> isEquiv(f) — qinv(f)
» isProp(isEquiv(f))

» Proving equivalences by chaining together basic ones.

Coming up on Saturday:

» Logic in HoTT: Propositions-as-some-types

17

References

[d M. Hedberg
A coherence theorem for Martin-L&f's type theory
Journal of Functional Programming, 413—-436, 1998

[N. Kraus, M. Escardé, T. Coquand and T. Altenkirch
Generalizations of Hedberg's Theorem
Typed Lambda Calculi and Applications, pp. 173-188, 2013

18

	Introduction
	Recap
	Outline

	Homotopy levels
	Homotopy n-types
	Hedberg's Theorem

	Equivalences
	Quasi-equivalences
	Equivalences
	Inconsistency of qinv-univalence
	Special cases
	Equivalent formulations of equivalences

	End
	Exercises
	Summary
	References

