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Recap of yesterday

Martin-Löf Type Theory: type theory with dependent pair types
(Σ), dependent function types (Π), a universe of small types, and
identity types (x =A y).

Homotopy Type Theory: new perspective on identity types based
on intuitions from homotopical models.

Paths between paths: Proving properties of identity types using
path induction.

New axioms: function extensionality and the Univalence Axiom.
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The Univalence Axiom

Univalence Axiom
The canonical function idtoeqv : (A =U B)→ (A ' B) is an
equivalence.

Today’s goal is to make sense of this axiom, and the notion of
equivalence in particular.
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Outline

1. Homotopy levels

2. Definition and properties of equivalences
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Homotopy n-types

I A is contractible if we can prove

isContr(A) :≡ (Σx : A)(Πy : A)(x =A y)

I A is a proposition (subsingleton) if we can prove

isProp(A) :≡ (Πx , y : A)(x =A y)

I A is a set if every type x =A y is a proposition:

isSet(A) :≡ (Πx , y : A)(isProp(x =A y))
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Examples

I The type 0 is

a proposition: vacuously all its elements are
equal.

I The type 1 is

contractible: there is a path from the only
element to every element.

I The type 2 is

a set: there are no non-trivial paths between
elements.

Theorem (exercise)

isContr(A)→ (A→ isContr(A))↔ isProp(A)→ isSet(A)
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Proving that types are sets

Definition
A type A is decidable if there is a term decA : A + ¬A.

Note: ¬A :≡ A→ 0.

By normalising decA, we find out if A holds or not.

Definition
A type A is has decidable equality if all path spaces x =A y are
decidable, i.e. there is a term

decEqA : (Πx , y : A)
(
(x =A y) + ¬(x =A y)

)
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Hedberg’s Theorem

Theorem ([Hedberg 1998])

If a type A has decidable equality, then it is a set.

Examples

I isSet(2)

I isSet(N)

I isSet(A)→ isSet(ListA)

I . . .
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Properties of contractible types

Theorem (“Vacuum cord principle”)

Singletons are contractible: for a : A, isContr((Σx : A)(x = a)).

Theorem

I A is contractible if and only if A ' 1.

I If A is contractible then
(
(Σx : A)B(x)

)
' B(x0), where x0 is

the centre of contraction.

I If B(x) is contractible for all x : A then
(
(Σx : A)B(x)

)
' A.
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Equivalences



What is an equivalence?

Naive first guess:

Definition
f : A→ B is a quasi-equivalence if we can prove

qinv(f ) :≡
(Σg : B → A)

(
(Πx : A)(g(f x) =A x)×(Πy : B)(f (g y) =B y)

)

Problem: qinv(f ) is not always a proposition.

Surprisingly(?), this could have disastrous consequences.
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Quasi-equivalences with coherence

Definition
f : A→ B is an equivalence if we can prove

isEquiv(f ) :≡ (Σg : B → A)

(Ση : (Πx : A)(g(f x) =A x))

(Σε : (Πy : B)(f (g y) =B y))

(Πx : A)
(
apf (η x) = ε(f x)

)
Quasi-equivalence proofs (g , η, ε) with a coherence condition.

We define A ' B :≡ (Σf : A→ B)(isEquiv(f )).

Good news: qinv(f )isEquiv(f ).

Better news: isEquiv(f ) is always a proposition.
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Proof of better news

Theorem
For any f : A→ B, we have isProp(isEquiv(f )).

Proof.

It suffices to show isContr(isEquiv(f )) assuming e : isEquiv(f ).

Trick: By Univalence, (f , e) : A ' B is of the form idtoeqv(p) for
some p : A = B. By path induction, p is reflA, and f is idA.

Our goal reduces to isContr(isEquiv(idA)), or isEquiv(idA) ' 1.

isEquiv(idA) ≡ (Σg : A→ A)(Ση : (Πx : A)(g x =A x))

(Σε : (Πy : A)(g y =A y))(Πx : A)
(
apid(η x) = ε x

)

' (Σg : A→ A)(Ση : g = idA)(Σε : g = idA)
(
η = ε

)
' (Σε : idA = idA)

(
refl = ε

)
' 1
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Univalence formulated with quasi-equivalences is false

Theorem
Univalence formulated with quasi-inverses is false, i.e. the function

idtoqinv : A =U B → (Σf : A→ B)(qinv(f ))

is not a quasi-equivalence.

Proof.
If idtoqinv is a quasi-equivalence, then every quasi-equivalence
f : A→ B is coherent:

By qinv-univalence, we may assume f is idA, which is coherent.

In particular, every (idA, idA, η, ε) for any η, ε : (Πx : A)(x =A x) is
coherent, i.e. η = ε.

But there are A such that (Πx : A)(x =A x) is not a proposition
(Sunday); a contradiction.
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Morals of the story

I Univalence states that we may treat every equivalence as the
identity equivalence.

I This is consistent because there are no properties to
distinguish the identity equivalence from any other — not true
for quasi-equivalences.

I Shows the importance of constructing a model to ensure
consistency. . .

13



Morals of the story

I Univalence states that we may treat every equivalence as the
identity equivalence.

I This is consistent because there are no properties to
distinguish the identity equivalence from any other — not true
for quasi-equivalences.

I Shows the importance of constructing a model to ensure
consistency. . .

13



Special cases

I If isProp(P) and isProp(Q) and P ↔ Q, then P ' Q (hence
P =U Q by Univalence).

I If isSet(A) and isSet(B) and there is a quasi-equivalence
A→ B, then A ' B.
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Equivalent formulations of equivalences

That f : A→ B is an equivalence can be defined in different ways:

I Voevodsky: (Πy : B)(isContr((Σx : A)(f x =B y)))
The preimage of each y is a singleton

I Joyal: (Σg , h : B → A)
(
(g ◦ f = id)× (f ◦ h = id)

)
The function f has both a left inverse g and a right inverse h

I Lumsdaine: (A ' B) is equivalent to the type

(ΣR : A→ B → U)((Πa : A)(isContr((Σb : B)R a b))×
(Πb : B)(isContr((Σa : A)R a b)))

There exists a “bi-functional” relation R
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Exercises

See lec2-exercises.agda.
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Summary

I Hierarchy of homotopy levels:

isContr(A)→ isProp(A)→ isSet(A)→ . . .

I Coherent notion of equivalence

A ' B :≡ (Σf : A→ B)(isEquiv(f ))

Properties:

I qinv(f )→ isEquiv(f )

I isEquiv(f )→ qinv(f )

I isProp(isEquiv(f ))

I Proving equivalences by chaining together basic ones.

Coming up on Saturday:

I Logic in HoTT: Propositions-as-some-types
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