
Introduction to Homotopy Type Theory

Lecture 2: Homotopy levels and equivalences

Fredrik Nordvall Forsberg
University of Strathclyde, Glasgow

EUTypes Summer school, Ohrid, 9 August 2018

https://tinyurl.com/hott-ohrid

https://tinyurl.com/hott-ohrid


Recap of yesterday

Martin-Löf Type Theory: type theory with dependent pair types
(Σ), dependent function types (Π), a universe of small types, and
identity types (x =A y).

Homotopy Type Theory: new perspective on identity types based
on intuitions from homotopical models.

Paths between paths: Proving properties of identity types using
path induction.

New axioms: function extensionality and the Univalence Axiom.

1



The Univalence Axiom

Univalence Axiom
The canonical function idtoeqv : (A =U B)→ (A ' B) is an
equivalence.

Today’s goal is to make sense of this axiom, and the notion of
equivalence in particular.

2



Outline

1. Homotopy levels

2. Definition and properties of equivalences

3



Homotopy n-types

I A is contractible if we can prove

isContr(A) :≡ (Σx : A)(Πy : A)(x =A y)

I A is a proposition (subsingleton) if we can prove

isProp(A) :≡ (Πx , y : A)(x =A y)

I A is a set if every type x =A y is a proposition:

isSet(A) :≡ (Πx , y : A)(isProp(x =A y))

4



Examples

I The type 0 is

a proposition: vacuously all its elements are
equal.

I The type 1 is

contractible: there is a path from the only
element to every element.

I The type 2 is

a set: there are no non-trivial paths between
elements.

Theorem (exercise)

isContr(A)→ (A→ isContr(A))↔ isProp(A)→ isSet(A)

5



Examples

I The type 0 is a proposition: vacuously all its elements are
equal.

I The type 1 is

contractible: there is a path from the only
element to every element.

I The type 2 is

a set: there are no non-trivial paths between
elements.

Theorem (exercise)

isContr(A)→ (A→ isContr(A))↔ isProp(A)→ isSet(A)

5



Examples

I The type 0 is a proposition: vacuously all its elements are
equal.

I The type 1 is contractible: there is a path from the only
element to every element.

I The type 2 is

a set: there are no non-trivial paths between
elements.

Theorem (exercise)

isContr(A)→ (A→ isContr(A))↔ isProp(A)→ isSet(A)

5



Examples

I The type 0 is a proposition: vacuously all its elements are
equal.

I The type 1 is contractible: there is a path from the only
element to every element.

I The type 2 is a set: there are no non-trivial paths between
elements.

Theorem (exercise)

isContr(A)→ (A→ isContr(A))↔ isProp(A)→ isSet(A)

5



Examples

I The type 0 is a proposition: vacuously all its elements are
equal.

I The type 1 is contractible: there is a path from the only
element to every element.

I The type 2 is a set: there are no non-trivial paths between
elements.

Theorem (exercise)

isContr(A)→ (A→ isContr(A))↔ isProp(A)→ isSet(A)

5



Proving that types are sets

Definition
A type A is decidable if there is a term decA : A + ¬A.

Note: ¬A :≡ A→ 0.

By normalising decA, we find out if A holds or not.

Definition
A type A is has decidable equality if all path spaces x =A y are
decidable, i.e. there is a term

decEqA : (Πx , y : A)
(
(x =A y) + ¬(x =A y)

)

6



Proving that types are sets

Definition
A type A is decidable if there is a term decA : A + ¬A.

Note: ¬A :≡ A→ 0.

By normalising decA, we find out if A holds or not.

Definition
A type A is has decidable equality if all path spaces x =A y are
decidable, i.e. there is a term

decEqA : (Πx , y : A)
(
(x =A y) + ¬(x =A y)

)

6



Proving that types are sets

Definition
A type A is decidable if there is a term decA : A + ¬A.

Note: ¬A :≡ A→ 0.

By normalising decA, we find out if A holds or not.

Definition
A type A is has decidable equality if all path spaces x =A y are
decidable, i.e. there is a term

decEqA : (Πx , y : A)
(
(x =A y) + ¬(x =A y)

)

6



Hedberg’s Theorem

Theorem ([Hedberg 1998])

If a type A has decidable equality, then it is a set.

Examples

I isSet(2)

I isSet(N)

I isSet(A)→ isSet(ListA)

I . . .

7



Properties of contractible types

Theorem (“Vacuum cord principle”)

Singletons are contractible: for a : A, isContr((Σx : A)(x = a)).

Theorem

I A is contractible if and only if A ' 1.

I If A is contractible then
(
(Σx : A)B(x)

)
' B(x0), where x0 is

the centre of contraction.

I If B(x) is contractible for all x : A then
(
(Σx : A)B(x)

)
' A.

8



Properties of contractible types

Theorem (“Vacuum cord principle”)

Singletons are contractible: for a : A, isContr((Σx : A)(x = a)).

Theorem

I A is contractible if and only if A ' 1.

I If A is contractible then
(
(Σx : A)B(x)

)
' B(x0), where x0 is

the centre of contraction.

I If B(x) is contractible for all x : A then
(
(Σx : A)B(x)

)
' A.

8



Equivalences



What is an equivalence?

Naive first guess:

Definition
f : A→ B is a quasi-equivalence if we can prove

qinv(f ) :≡
(Σg : B → A)

(
(Πx : A)(g(f x) =A x)×(Πy : B)(f (g y) =B y)

)

Problem: qinv(f ) is not always a proposition.

Surprisingly(?), this could have disastrous consequences.

9



What is an equivalence?

Naive first guess:

Definition
f : A→ B is a quasi-equivalence if we can prove

qinv(f ) :≡
(Σg : B → A)

(
(Πx : A)(g(f x) =A x)×(Πy : B)(f (g y) =B y)

)

Problem: qinv(f ) is not always a proposition.

Surprisingly(?), this could have disastrous consequences.

9



What is an equivalence?

Naive first guess:

Definition
f : A→ B is a quasi-equivalence if we can prove

qinv(f ) :≡
(Σg : B → A)

(
(Πx : A)(g(f x) =A x)×(Πy : B)(f (g y) =B y)

)

Problem: qinv(f ) is not always a proposition.

Surprisingly(?), this could have disastrous consequences.

9



Quasi-equivalences with coherence

Definition
f : A→ B is an equivalence if we can prove

isEquiv(f ) :≡ (Σg : B → A)

(Ση : (Πx : A)(g(f x) =A x))

(Σε : (Πy : B)(f (g y) =B y))

(Πx : A)
(
apf (η x) = ε(f x)

)
Quasi-equivalence proofs (g , η, ε) with a coherence condition.

We define A ' B :≡ (Σf : A→ B)(isEquiv(f )).

Good news: qinv(f )isEquiv(f ).

Better news: isEquiv(f ) is always a proposition.

10



Quasi-equivalences with coherence

Definition
f : A→ B is an equivalence if we can prove

isEquiv(f ) :≡ (Σg : B → A)

(Ση : (Πx : A)(g(f x) =A x))

(Σε : (Πy : B)(f (g y) =B y))

(Πx : A)
(
apf (η x) = ε(f x)

)
Quasi-equivalence proofs (g , η, ε) with a coherence condition.

We define A ' B :≡ (Σf : A→ B)(isEquiv(f )).

Good news: qinv(f )→ isEquiv(f ).

Better news: isEquiv(f ) is always a proposition.

10



Quasi-equivalences with coherence

Definition
f : A→ B is an equivalence if we can prove

isEquiv(f ) :≡ (Σg : B → A)

(Ση : (Πx : A)(g(f x) =A x))

(Σε : (Πy : B)(f (g y) =B y))

(Πx : A)
(
apf (η x) = ε(f x)

)
Quasi-equivalence proofs (g , η, ε) with a coherence condition.

We define A ' B :≡ (Σf : A→ B)(isEquiv(f )).

Good news: qinv(f )↔ isEquiv(f ).

Better news: isEquiv(f ) is always a proposition.

10



Quasi-equivalences with coherence

Definition
f : A→ B is an equivalence if we can prove

isEquiv(f ) :≡ (Σg : B → A)

(Ση : (Πx : A)(g(f x) =A x))

(Σε : (Πy : B)(f (g y) =B y))

(Πx : A)
(
apf (η x) = ε(f x)

)
Quasi-equivalence proofs (g , η, ε) with a coherence condition.

We define A ' B :≡ (Σf : A→ B)(isEquiv(f )).

Good news: qinv(f )↔ isEquiv(f ).

Better news: isEquiv(f ) is always a proposition.

10



Proof of better news

Theorem
For any f : A→ B, we have isProp(isEquiv(f )).

Proof.

It suffices to show isContr(isEquiv(f )) assuming e : isEquiv(f ).

Trick: By Univalence, (f , e) : A ' B is of the form idtoeqv(p) for
some p : A = B. By path induction, p is reflA, and f is idA.

Our goal reduces to isContr(isEquiv(idA)), or isEquiv(idA) ' 1.

isEquiv(idA) ≡ (Σg : A→ A)(Ση : (Πx : A)(g x =A x))

(Σε : (Πy : A)(g y =A y))(Πx : A)
(
apid(η x) = ε x

)

' (Σg : A→ A)(Ση : g = idA)(Σε : g = idA)
(
η = ε

)
' (Σε : idA = idA)

(
refl = ε

)
' 1

11



Proof of better news

Theorem
For any f : A→ B, we have isProp(isEquiv(f )).

Proof.
It suffices to show isContr(isEquiv(f )) assuming e : isEquiv(f ).

Trick: By Univalence, (f , e) : A ' B is of the form idtoeqv(p) for
some p : A = B. By path induction, p is reflA, and f is idA.

Our goal reduces to isContr(isEquiv(idA)), or isEquiv(idA) ' 1.

isEquiv(idA) ≡ (Σg : A→ A)(Ση : (Πx : A)(g x =A x))

(Σε : (Πy : A)(g y =A y))(Πx : A)
(
apid(η x) = ε x

)

' (Σg : A→ A)(Ση : g = idA)(Σε : g = idA)
(
η = ε

)
' (Σε : idA = idA)

(
refl = ε

)
' 1

11



Proof of better news

Theorem
For any f : A→ B, we have isProp(isEquiv(f )).

Proof.
It suffices to show isContr(isEquiv(f )) assuming e : isEquiv(f ).

Trick: By Univalence, (f , e) : A ' B is of the form idtoeqv(p) for
some p : A = B. By path induction, p is reflA, and f is idA.

Our goal reduces to isContr(isEquiv(idA)), or isEquiv(idA) ' 1.

isEquiv(idA) ≡ (Σg : A→ A)(Ση : (Πx : A)(g x =A x))

(Σε : (Πy : A)(g y =A y))(Πx : A)
(
apid(η x) = ε x

)

' (Σg : A→ A)(Ση : g = idA)(Σε : g = idA)
(
η = ε

)
' (Σε : idA = idA)

(
refl = ε

)
' 1

11



Proof of better news

Theorem
For any f : A→ B, we have isProp(isEquiv(f )).

Proof.
It suffices to show isContr(isEquiv(f )) assuming e : isEquiv(f ).

Trick: By Univalence, (f , e) : A ' B is of the form idtoeqv(p) for
some p : A = B. By path induction, p is reflA, and f is idA.

Our goal reduces to isContr(isEquiv(idA)), or isEquiv(idA) ' 1.

isEquiv(idA) ≡ (Σg : A→ A)(Ση : (Πx : A)(g x =A x))

(Σε : (Πy : A)(g y =A y))(Πx : A)
(
apid(η x) = ε x

)

' (Σg : A→ A)(Ση : g = idA)(Σε : g = idA)
(
η = ε

)
' (Σε : idA = idA)

(
refl = ε

)
' 1

11



Proof of better news

Theorem
For any f : A→ B, we have isProp(isEquiv(f )).

Proof.
It suffices to show isContr(isEquiv(f )) assuming e : isEquiv(f ).

Trick: By Univalence, (f , e) : A ' B is of the form idtoeqv(p) for
some p : A = B. By path induction, p is reflA, and f is idA.

Our goal reduces to isContr(isEquiv(idA)), or isEquiv(idA) ' 1.

isEquiv(idA) ≡ (Σg : A→ A)(Ση : (Πx : A)(g x =A x))

(Σε : (Πy : A)(g y =A y))(Πx : A)
(
apid(η x) = ε x

)

' (Σg : A→ A)(Ση : g = idA)(Σε : g = idA)
(
η = ε

)
' (Σε : idA = idA)

(
refl = ε

)
' 1

11



Proof of better news

Theorem
For any f : A→ B, we have isProp(isEquiv(f )).

Proof.
It suffices to show isContr(isEquiv(f )) assuming e : isEquiv(f ).

Trick: By Univalence, (f , e) : A ' B is of the form idtoeqv(p) for
some p : A = B. By path induction, p is reflA, and f is idA.

Our goal reduces to isContr(isEquiv(idA)), or isEquiv(idA) ' 1.

isEquiv(idA) ≡ (Σg : A→ A)(Ση : (Πx : A)(g x =A x))

(Σε : (Πy : A)(g y =A y))(Πx : A)
(
apid(η x) = ε x

)
' (Σg : A→ A)(Ση : g = idA)(Σε : g = idA)

(
η = ε

)

' (Σε : idA = idA)
(
refl = ε

)
' 1

11



Proof of better news

Theorem
For any f : A→ B, we have isProp(isEquiv(f )).

Proof.
It suffices to show isContr(isEquiv(f )) assuming e : isEquiv(f ).

Trick: By Univalence, (f , e) : A ' B is of the form idtoeqv(p) for
some p : A = B. By path induction, p is reflA, and f is idA.

Our goal reduces to isContr(isEquiv(idA)), or isEquiv(idA) ' 1.

isEquiv(idA) ≡ (Σg : A→ A)(Ση : (Πx : A)(g x =A x))

(Σε : (Πy : A)(g y =A y))(Πx : A)
(
apid(η x) = ε x

)
' (Σg : A→ A)(Ση : g = idA)(Σε : g = idA)

(
η = ε

)
' (Σε : idA = idA)

(
refl = ε

)

' 1

11



Proof of better news

Theorem
For any f : A→ B, we have isProp(isEquiv(f )).

Proof.
It suffices to show isContr(isEquiv(f )) assuming e : isEquiv(f ).

Trick: By Univalence, (f , e) : A ' B is of the form idtoeqv(p) for
some p : A = B. By path induction, p is reflA, and f is idA.

Our goal reduces to isContr(isEquiv(idA)), or isEquiv(idA) ' 1.

isEquiv(idA) ≡ (Σg : A→ A)(Ση : (Πx : A)(g x =A x))

(Σε : (Πy : A)(g y =A y))(Πx : A)
(
apid(η x) = ε x

)
' (Σg : A→ A)(Ση : g = idA)(Σε : g = idA)

(
η = ε

)
' (Σε : idA = idA)

(
refl = ε

)
' 1

11



Univalence formulated with quasi-equivalences is false

Theorem
Univalence formulated with quasi-inverses is false, i.e. the function

idtoqinv : A =U B → (Σf : A→ B)(qinv(f ))

is not a quasi-equivalence.

Proof.
If idtoqinv is a quasi-equivalence, then every quasi-equivalence
f : A→ B is coherent:

By qinv-univalence, we may assume f is idA, which is coherent.

In particular, every (idA, idA, η, ε) for any η, ε : (Πx : A)(x =A x) is
coherent, i.e. η = ε.

But there are A such that (Πx : A)(x =A x) is not a proposition
(Sunday); a contradiction.

12



Univalence formulated with quasi-equivalences is false

Theorem
Univalence formulated with quasi-inverses is false, i.e. the function

idtoqinv : A =U B → (Σf : A→ B)(qinv(f ))

is not a quasi-equivalence.

Proof.
If idtoqinv is a quasi-equivalence, then every quasi-equivalence
f : A→ B is coherent:

By qinv-univalence, we may assume f is idA, which is coherent.

In particular, every (idA, idA, η, ε) for any η, ε : (Πx : A)(x =A x) is
coherent, i.e. η = ε.

But there are A such that (Πx : A)(x =A x) is not a proposition
(Sunday); a contradiction.

12



Univalence formulated with quasi-equivalences is false

Theorem
Univalence formulated with quasi-inverses is false, i.e. the function

idtoqinv : A =U B → (Σf : A→ B)(qinv(f ))

is not a quasi-equivalence.

Proof.
If idtoqinv is a quasi-equivalence, then every quasi-equivalence
f : A→ B is coherent:

By qinv-univalence, we may assume f is idA, which is coherent.

In particular, every (idA, idA, η, ε) for any η, ε : (Πx : A)(x =A x) is
coherent, i.e. η = ε.

But there are A such that (Πx : A)(x =A x) is not a proposition
(Sunday); a contradiction.

12



Univalence formulated with quasi-equivalences is false

Theorem
Univalence formulated with quasi-inverses is false, i.e. the function

idtoqinv : A =U B → (Σf : A→ B)(qinv(f ))

is not a quasi-equivalence.

Proof.
If idtoqinv is a quasi-equivalence, then every quasi-equivalence
f : A→ B is coherent:

By qinv-univalence, we may assume f is idA, which is coherent.

In particular, every (idA, idA, η, ε) for any η, ε : (Πx : A)(x =A x) is
coherent, i.e. η = ε.

But there are A such that (Πx : A)(x =A x) is not a proposition
(Sunday); a contradiction.

12



Univalence formulated with quasi-equivalences is false

Theorem
Univalence formulated with quasi-inverses is false, i.e. the function

idtoqinv : A =U B → (Σf : A→ B)(qinv(f ))

is not a quasi-equivalence.

Proof.
If idtoqinv is a quasi-equivalence, then every quasi-equivalence
f : A→ B is coherent:

By qinv-univalence, we may assume f is idA, which is coherent.

In particular, every (idA, idA, η, ε) for any η, ε : (Πx : A)(x =A x) is
coherent, i.e. η = ε.

But there are A such that (Πx : A)(x =A x) is not a proposition
(Sunday); a contradiction.

12



Morals of the story

I Univalence states that we may treat every equivalence as the
identity equivalence.

I This is consistent because there are no properties to
distinguish the identity equivalence from any other — not true
for quasi-equivalences.

I Shows the importance of constructing a model to ensure
consistency. . .

13



Morals of the story

I Univalence states that we may treat every equivalence as the
identity equivalence.

I This is consistent because there are no properties to
distinguish the identity equivalence from any other — not true
for quasi-equivalences.

I Shows the importance of constructing a model to ensure
consistency. . .

13



Special cases

I If isProp(P) and isProp(Q) and P ↔ Q, then P ' Q (hence
P =U Q by Univalence).

I If isSet(A) and isSet(B) and there is a quasi-equivalence
A→ B, then A ' B.

14



Equivalent formulations of equivalences

That f : A→ B is an equivalence can be defined in different ways:

I Voevodsky: (Πy : B)(isContr((Σx : A)(f x =B y)))
The preimage of each y is a singleton

I Joyal: (Σg , h : B → A)
(
(g ◦ f = id)× (f ◦ h = id)

)
The function f has both a left inverse g and a right inverse h

I Lumsdaine: (A ' B) is equivalent to the type

(ΣR : A→ B → U)((Πa : A)(isContr((Σb : B)R a b))×
(Πb : B)(isContr((Σa : A)R a b)))

There exists a “bi-functional” relation R

15



Exercises

See lec2-exercises.agda.

16

https://personal.cis.strath.ac.uk/fredrik.nordvall-forsberg/ohrid-school-hott2018/agda/lec2-exercises.html


Summary

I Hierarchy of homotopy levels:

isContr(A)→ isProp(A)→ isSet(A)→ . . .

I Coherent notion of equivalence

A ' B :≡ (Σf : A→ B)(isEquiv(f ))

Properties:

I qinv(f )→ isEquiv(f )

I isEquiv(f )→ qinv(f )

I isProp(isEquiv(f ))

I Proving equivalences by chaining together basic ones.

Coming up on Saturday:

I Logic in HoTT: Propositions-as-some-types

17



References

M. Hedberg
A coherence theorem for Martin-Löf’s type theory
Journal of Functional Programming, 413–436, 1998

N. Kraus, M. Escardó, T. Coquand and T. Altenkirch
Generalizations of Hedberg’s Theorem
Typed Lambda Calculi and Applications, pp. 173–188, 2013

18


	Introduction
	Recap
	Outline

	Homotopy levels
	Homotopy n-types
	Hedberg's Theorem

	Equivalences
	Quasi-equivalences
	Equivalences
	Inconsistency of qinv-univalence
	Special cases
	Equivalent formulations of equivalences

	End
	Exercises
	Summary
	References


