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Recap so far: paths

Operations on paths:

I −−1 : a =A b → b =A a

I � : a =A b → b =A c → a =A c

Operations induced by paths:

I transportB : a =A a′ → B(a)→ B(a′)

I For f : A→ B, apf : a =A a′ → f (a) =B f (a′)

I For f : (Πx : A)B(x), apdf : (Πp : a =A a′)(f (a) =
p
f (a′))

E.g. b =
p
b′ ' transportB(p, b) =B(a′) b

′
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Recap so far: the Univalence Axiom and hlevels

Univalence Axiom
The canonical function idtoeqv : (A =U B)→ (A ' B) is an
equivalence.

In particular, gives an inverse ua : (A ' B)→ (A =U B).

Homotopy levels: Hierarchy of “complexity” of the type A:

isContr(A)→ isProp(A)→ isSet(A)→ . . .
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Encoding logic in type theory



Encoding logic in type theory

Curry-Howard logic:

I Propositions are types

I Proofs are terms

Univalent logic:

I Propositions are. . . propositions (subsingleton types)

I Proofs are terms

Note: Univalent propositions are not the same as Coq’s
propositions!

Both constructive by default, but allows the “axiomatic freedom”
to assume additional classical (or anti-classical) principles.
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Curry-Howard logic
Conjunction A ∧ B ≡ A× B
A proof of A ∧ B is a proof of A and a proof of B.

Disjunction A ∨ B ≡ A + B
A proof of A ∧ B is a proof of A or a proof of B.

Implication A⇒ B ≡ A→ B
A proof of A⇒ B is a method for transforming proofs of A into
proofs of B.

Negation ¬A ≡ A→ 0
A proof of ¬A is a proof that there are no proofs of A.

Existential quantification (∃x : A)B(x) ≡ (Σx : A)B(x)
A proof of (∃x : A)B(x) is a witness a : A and a proof of B(a).

Universal quantification (∀x : A)B(x) ≡ (Πx : A)B(x)
A proof of (∀x : A)B(x) is a method for proving B(a) for any given
a : A.
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Example

What does the following type express?

(Πn : N)(Σp : N)
(
isPrime(p)× (p > n)

)

For every n, there is a prime greater than n — the infinitude of
primes.

A proof of this is a function, which given n produces a natural
number p, together with proofs that p is prime, and that p > n.
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Assuming classical logic in Curry-Howard

The Law of Excluded Middle becomes (ΠA : U)(A + ¬A).

Of course, this is not provable, but we could assume it as an axiom.

Double Negation Elimination becomes (ΠA : U)(¬¬A→ A).

Lemma (exercise)

(ΠA : U)(A + ¬A)↔ (ΠA : U)(¬¬A→ A).

I MLTT+LEM is consistent (by a model using classical logic).

I MLTT+UA is consistent (by the simplicial sets model).

But adding axioms is not modular. . .
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MLTT+UA+LEM is inconsistent

Theorem
MLTT+UA+LEM proves 0.

Proof.
Let f : (ΠA : U)(¬¬A→ A) be given by LEM. We derive a
contradiction from the fact that f must respect equivalences, by
UA.

Consider the non-identity equivalence swap : 2→ 2. We have
ua(swap) : 2 = 2, and hence

apdf (ua(swap)) : f (2) =
ua(swap)

f (2)

' transportz 7→¬¬z→z(ua(swap), f (2)) =¬¬2→2 f (2)
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Proof. (cont.)

transportz 7→¬¬z→z(ua(swap), f (2)) =¬¬2→2 f (2)

Need to know three facts:

1. How transportz 7→B(z)→C(z)(p,−) works.

2. How transportz 7→¬¬z(p,−) works.

3. How transportz 7→z(p,−) works.
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Transport in function spaces

Lemma
Let p : x = y and g : B(x)→ C (x).

transportz 7→B(z)→C(z)(p, g) =

{? : B(y)→ C (y)}

Proof.
By path induction.
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Proof. (cont.)
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Transport in A 7→ ¬¬A

Lemma
¬¬A is a proposition. In particular, transportz 7→¬¬z(p, u) = u.

Proof.
Let u, v : ¬¬A ≡ (A→ 0)→ 0. We prove u(x) =0 v(x) for every
x : ¬A.

This is easy: given x , we have u(x) : 0, so anything
follows.
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Transport in A 7→ A (coercion)
Let p : A =U B.

First attempt:

transportz 7→z(p, a) =B {? : B}

Not much we can say. . . In particular

transportz 7→z(p, a) =B aa

is ill-typed.

However, we only need to know

transportz 7→z(ua(e), a) =B {? : B}

for an equivalence e : A→ B.

This is one of the roundtrips of the Univalence Axiom!
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Finishing the proof

Proof. (cont.)

From the assumption that f : (ΠA : U)(¬¬A→ A), we derived

λu. swap(f (2)(u)) =¬¬2→2 f (2)

In other words, swap(f (2)(t)) =2 f (2)(t) for any t : ¬¬2.

But swap(x) 6=2 x for every x : 2 by definition. This gives a
contradiction.
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Propositions to the rescue

Conclusion: we cannot use Curry-Howard logic in HoTT if we want
to have the freedom to assume classical logic.

To be clear: Curry-Howard logic is consistent with HoTT. But our
options to extend it to classical logic are limited.

Instead we will encode logic not using arbitrary types, but using
propositions only.

Recall:

Definition
A type A is a proposition (subsingleton) if we can prove

isProp(A) :≡ (Πx , y : A)(x =A y)
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A proposition

(Σn : N)
(
isOdd(n)× (Πa, b : N)(n! 6=N a2 − b2)

)

Propositions are not “proof-irrelevant”; they contain
computational content.

From any proof of the above proposition, the number 3 can be
extracted.

Another example: The type isEquiv(f ) is always a proposition for
any f : A→ B. From any proof of it, a function g : B → A can be
extracted.
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Closure of propositions under logical connectives

Theorem

I isProp(1).

I isProp(0).

I If isProp(P) and isProp(Q) then isProp(P × Q).

I If isProp(Q) then isProp(P → Q).

I If isProp(P(x)) for every x : A, then isProp((Πx : A)P(x)).
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The two missing cases

Propositions are not closed under +:

1 is a proposition, but 1 + 1 is not.

Propositions are not closed under Σ:

1 is a proposition, but (Σx : 2)1 is not.

We need a “best possible way” to map these types to propositions.
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Propositional truncation

A propositional truncation ‖A‖ of a type A is a universal solution
to mapping A into a proposition, in the following sense:

arbitrary type A //

  

‖A‖

��

proposition

P proposition

‖A‖ is the smallest proposition A maps into.

Some types can be shown to be propositional truncations of other
types.

But usually the theory is extended to get propositional truncations
for all types.
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Example

not always proposition qinv(f ) //

&&

isEquiv(f )

��

proposition

P proposition

isEquiv(f ) is a canonical way of making qinv(f ) into a proposition.
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Propositional truncation in rule form

Formation If A is a type then ‖A‖ is a type.

Introduction If a : A then |a| : ‖A‖.
Gives map | − | : A→ ‖A‖.
If x , y : ‖A‖ then x =‖A‖ y .
Makes ‖A‖ a proposition.

Elimination If P is a proposition and g : A→ P, then there is
ḡ : ‖A‖ → P.

Computation If a : A then ḡ(|a|) ≡ g(a) : P.

Exercise: State and show that a more traditional dependent
elimination rule is equivalent to the given rule.

Tomorrow: can be defined as a higher inductive type.
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ḡ : ‖A‖ → P.

Computation If a : A then ḡ(|a|) ≡ g(a) : P.
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Intuitive meaning of the elimination rule

Elimination If P is a proposition and g : A→ P, then there is
ḡ : ‖A‖ → P.

“If we are mapping from ‖A‖ into a proposition, we can forget
about the ‖ − ‖.”

Note: From ‖A‖ we can still construct maps into non-propositions,
using cleverness to factor through a proposition. Two examples:

1. If we can describe the codomain precisely, we can factor

‖A‖ → (Σx : B)(x =B b0)→ B

2. If there is a canonical choice, e.g. for a decidable family
P : N→ Prop, we can factor

‖A‖ → (Σx : N)(P(n)× ”x is least sat. P”)→ (Σx : N)P(n)
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Univalent logic

Curry-Howard logic, except:

Disjunction A ∨ B ≡ ‖A + B‖

Existential quantification (∃x : A)B(x) ≡ ‖(Σx : A)B(x)‖

Consequence: All formulas are interpreted as propositions.
Since atomic formulas are propositions, and all connectives now
preserve propositions.
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Σ vs ∃: Unexpected Curry-Howard images
Image for a function f : A→ B translated into Curry-Howard:

imageCH f :≡ (Σy : B)(Σx : A)(f x =B y)

Unexpected: imageCH f ' A (by vacuum cord principle).
E.g. would expect the image of the unique function N→ 1 to be
1, not N.

Instead we should define

image f :≡ (Σy : B)‖(Σx : A)(f x =B y)‖

Similarly, the right notion of surjectivity is

isSurjective(f ) :≡ (Πb : B)‖(Σx : A)(f x =B y)‖

— with untruncated Σ, every “surjection” would come with a
choice of an inverse.
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Classical principles in univalent logic

The right formulation of the Law of Excluded Middle in univalent
logic is now (ΠP : U)(isProp(P)→ P + ¬P).

Exercise: Show that if isProp(A) and isProp(B) and ¬(A× B),
then isProp(A + B). In particular, no truncation is needed around
P + ¬P.

And the right notion of Double Negation Elimination is
(ΠP : U)(isProp(P)→ ¬¬P → P).

These axioms are not provable, but they are consistent with UA
(since they are true in the simplicial sets model).
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The Axiom of Choice

The type-theoretic Axiom of Choice(
(Πx : A)(Σy : B)R x y

)
→ (Σf : A→ B)(Πx : A)(R x (f x))

is provable.

Exercise: Prove this.

This is strange, because the Axiom of Choice is usually considered
highly non-constructive.

Indeed, in univalent logic things are different:(
(Πx : A)‖(Σy : B)R x y

)
‖ → ‖(Σf : A→ B)(Πx : A)(R x (f x))‖

Here A and B are sets, and R : A→ B → Prop.

This axiom is consistent with UA (simplicial sets model again).
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The univalent Axiom of Choice is non-constructive

Theorem (after Diaconescu [1975])

The univalent Axiom of Choice(
(Πx : A)‖(Σy : B)R x y

)
‖ → ‖(Σf : A→ B)(Πx : A)(R x (f x))‖

implies the univalent Law of Excluded Middle.

Proof.
We assume AC and instantiate

A :≡ (ΣQ : 2→ Prop)‖(Σb : 2)Q(b)‖
B :≡ 2

R (Q, q) b :≡ Q(b)

The premise of AC says “every inhabited predicate is inhabited”,
which is clearly true (proof term λ(Q, q). q).
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Proof. (cont.)

Hence we get

‖(Σf : A→ B)(Πx : A)(R x (f x))‖

From this, we are trying to prove the proposition P + ¬P, so we
can forget about the truncation:

(Σf : A→ B)(Πx : A)(R x (f x))

Consider the inhabited predicates T ,F : 2→ Prop

T b :≡ ‖(b =2 true) + P‖
F b :≡ ‖(b =2 false) + P‖

There is f : A→ 2 such that T (f T ) and F (f F ).
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Proof. (cont.)

2 has decidable equality, so there are four possibilities:

f T f F

false false T (f T ) ≡ ‖false = true + P‖ ' ‖0 + P‖ ' P
false true F (f F ) ≡ ‖true = false + P‖ ' ‖0 + P‖ ' P
true false T (f T ) ' 1 ' F (f F )
true true F (f F ) ≡ ‖true = false + P‖ ' ‖0 + P‖ ' P

In three cases we clearly have P. If f T ≡ true and f F ≡ false, we
prove ¬P:

Assume P. Then T b ' F b for every b : 2, hence T = F by
univalence.

But if T = F then f T = f F , i.e. true = false, a contradiction.
Hence we have proven ¬P.

Hence in each case we have proven P + ¬P.
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Exercises

1. Prove (ΠA : U)(A + ¬A)↔ (ΠA : U)(¬¬A→ A).

2. State and show that a more traditional dependent elimination
rule is equivalent to the given elimination rule for
propositional truncation on slide 22.

3. Show that if isProp(A) and isProp(B) and ¬(A× B), then
isProp(A + B). In particular, no truncation is needed around
P + ¬P in the statement of univalent LEM.

4. Prove(
(Πx : A)(Σy : B)R x y

)
' (Σf : A→ B)(Πx : A)(R x (f x))

5. Show that
(Σx : N)(f (x) = 0× ((Πy : N)(f (y) = 0→ x ≤ y)) is the
propositional truncation of (Σx : N)f (x) = 0.
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Summary

Univalent logic: propositions as subsingleton types.

Propositional truncation: used to interpret ∨ and ∃.

Makes it possible to assume non-constructive principles such as the
Law of Excluded Middle and the Axiom of Choice without giving
up the Univalence Axiom.

Σ used for structure, ∃ for properties. In general an art to decide
which one to use.

Coming up tomorrow:

I Higher Inductive Types

I Synthetic homotopy theory
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