
Models for Polymorphism over Physical
Dimensions
Robert Atkey1, Neil Ghani1, Fredrik Nordvall Forsberg1, Timothy
Revell1, and Sam Staton2

1 University of Strathclyde
2 University of Oxford

Abstract
We provide a categorical framework for models of a type theory that has special types for physical
quantities. The types are indexed by the physical dimensions that they involve. Fibrations are
used to organize this index structure in the models of the type theory. We develop some informat-
ive models of this type theory: firstly, a model based on group actions, which captures invariance
under scaling, and secondly, a way of constructing new models using relational parametricity.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages.

Keywords and phrases Category Theory, Units of Measure, Dimension Types, Type Theory.

Digital Object Identifier 10.4230/LIPIcs.TLCA.2015.999

1 Introduction

This paper is about semantic models of programs that manipulate physical quantities.
Physical quantities are organized into dimensions, such as Length or Time. A fundamental
principle is that it is not meaningful to add or compare quantities of different dimensions,
but they can be multiplied. To measure a physical quantity we use units, such as metres for
length and seconds for time. We understand these units as chosen constant quantities of
given dimensions.

Here is a simple polymorphic program that is defined for all dimensions; it takes a
quantity x of a given dimension X, and returns its double, which has the same dimension.

f := (ΛX.λx : Quantity(X). x+ x) : ∀X.Quantity(X)→ Quantity(X) (1)

To illustrate, we can use the polymorphic function f to double a length of 5 metres.

fLength (5m) = 10m : Quantity(Length) (2)

There are a few key points that are worth emphasising about examples (1) and (2) above:
There are two kinds of variable, X and x. The first variable X stands for a dimension
whereas x stands for an inhabitant of a type. To emphasise this distinction, we use
different abstraction symbols (λ and Λ) for the two kinds of variable.
The type Quantity(X) depends on a dimension X, and it is inhabited by quantities of
that dimension. For example, the standard unit of measurement for length, the metre, is
a quantity of that dimension, i.e. a constant m : Quantity(Length).

Several authors have developed programming languages with type systems that support
physical quantities [6, 8, 10,12, 17]. The type systems are often motivated as static analyses
that help to prevent disasters by accommodating dimensions. For example, the Mars Climate
Orbiter was lost as a result of a unit mismatch in the software [13].

© Robert Atkey and Neil Ghani and Fredrik Nordvall Forsberg and Timothy Revell and Sam Staton;
licensed under Creative Commons License CC-BY

13th International Conference on Typed Lambda Calculi and Applications (TLCA’15).
Editor: Thorsten Altenkirch; pp. 999–1013

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TLCA.2015.999
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1000 Models for Polymorphism over Physical Dimensions

Our starting point in this paper is the work of Kennedy [10] who developed techniques
for reasoning about these kinds of programs. However, we take a different approach by
developing a general categorical notion of model for a programming language of this form,
and by developing ways of building models. The main contributions of this paper are:

1. We provide a general notion of a model for a programming language with physical
dimension types by introducing the concept of a λD-model (Section 3). The basic idea
is that for each context of dimension variables, there is a model of the simply typed
λ-calculus extended with types of quantities of the dimensions definable in the context
(Quantity(D) etc.). Moreover these models of the simply typed λ-calculus are related
by substituting for dimension variables, and this also defines a universal property for
polymorphic quantification over dimension variables.

2. An important example of a λD-model is built from group actions (Example 9). A
difficulty with set-theoretic models of dimension polymorphism is as follows: how does
one understand Quantity(X) as a set, if the dimension X is not specified and we have
no fixed units of measure for X? We resolve this by interpreting Quantity(X) as the set
of magnitudes, i.e. positive real numbers, thought of as quantities of some unspecified
unit of measure, but then by equipping Quantity(X) with an action of the scaling group,
to explain how to change the units of measure. We can then ask that any function
Quantity(X)→ Quantity(X) is invariant under changing that unspecified unit of measure,
more precisely, invariant under scaling.

3. We show how the λD-model built from group actions supports a diverse range of
parametricity-like theorems, without the need to define a separate relational semantics
(Section 4). This results in simple proofs of theorems that would otherwise require more
heavy machinery.

4. We explore the relationship between the parametricity-like theorems of the λD-model
built from group actions, and a natural notion of a relational model (Section 5). Formally,
we show that when interpreting the syntax these two notions coincide.

2 Types with Physical Dimensions

We begin by recalling a simple type theory, which we call λD, indexed by dimensions based
on Kennedy’s work [10]. Within this type theory we can express programs such as (1) and
(2). Since there are two kinds of variable, we have two kinds of context.

Dimensions and Dimension Contexts A dimension context ∆ is a finite list of distinct
dimension variables. A dimension-expression-in-context ∆ ` D dim is a monomial D in the
variables ∆. More precisely, if ∆ = X1, . . . , Xn and ki ∈ Z then ∆ ` Xk1

1 . . . Xkn
n dim. We

can make the set {D | ∆ ` D dim} an Abelian group under addition of exponents, and indeed
this is the free Abelian group on ∆. This universal property gives a notion of substitution
on dimension expressions. For example, X,Z ` (X2Y 3)[(XZ2)/Y] = X5Z6 dim.

Types Well-formed types are given by judgements of the form ∆ ` T type where ∆ is a
dimension context. The judgements are generated by the following rules.

∆ ` D dim
∆ ` Quantity(D) type

∆, X ` T type
∆ ` ∀X.T type

∆ ` T type ∆ ` U type
∆ ` T → U type

Atkey, Ghani, Nordvall Forsberg, Revell, and Staton 1001

∆ ` 1 type
∆ ` T type ∆ ` U type

∆ ` T × U type ∆ ` 0 type
∆ ` T type ∆ ` U type

∆ ` T + U type

Notice that we do not have System-F-style polymorphism, but instead dimension poly-
morphism: types can be parameterised by dimensions, but they cannot be parameterised
by types, since we do no have type variables. From the Curry-Howard perspective this is a
first-order-logic where the domain of discourse is the theory of Abelian groups and where
there is a single atomic predicate, Quantity.

Terms and Typing Contexts Well-formed typing contexts are given by judgements ∆ `
Γ ctx where ∆ is a dimension context, Γ is of the form x1 : T1, . . . , xn : Tn and there is
a well-formed typing judgement ∆ ` Ti type for every i. Well-formed terms are given by
judgements ∆; Γ ` t : T where there is a well-formed typing context ∆ ` Γ ctx and a
well-formed type ∆ ` T type. The rules for the type formers 1, × , 0, + and →
are the usual ones from simply typed λ-calculus.

∆ ` Γ,Γ′ ctx ∆ ` T type
∆; Γ, x : T,Γ′ ` x : T

∆ ` Γ ctx (op : T) ∈ Ops
∆; Γ ` op : T

∆; Γ, x : T ` t : U
∆; Γ ` λx.t : T → U

∆; Γ ` t : T → U ∆; Γ ` u : T
∆; Γ ` t u : U

∆ ` Γ ctx
∆; Γ ` () : 1

∆; Γ ` t1 : T1 ∆; Γ ` t2 : T2

∆; Γ ` (t1, t2) : T1 × T2

∆; Γ ` t : T1 × T2

∆; Γ ` pri(t) : Ti
∆; Γ ` t : 0 ∆ ` T type

∆; Γ ` case t of {} : T
∆; Γ ` t : Ti

∆; Γ ` inji t : T1 + T2

∆; Γ ` t : T1 + T2
(
∆; Γ, xi : Ti ` ui : U

)
i∈{1,2}

∆; Γ ` case t of {inj1 x1 7→ u1; inj2 x2 7→ u2} : U

In addition, we have the introduction and elimination rules for quantification over a dimension
variable.

∆, X; Γ ` t : T
∆; Γ ` ΛX.t : ∀X.T

∆ ` D dim ∆; Γ ` t : ∀X.T
∆; Γ ` tD : T [D/X]

We use Bool as an abbreviation for 1 + 1. Our calculus is parameterised by a collection
Ops of primitive operation typings (op : Top) where for each primitive operation op : Top,
its type Top is closed (i.e., ` Top type). An example set of primitive operations includes
dimension-polymorphic arithmetic and test operations on quantities:

Ops = (+ : ∀X.Quantity(X)× Quantity(X)→ Quantity(X),
× : ∀X1.∀X2.Quantity(X1)× Quantity(X2)→ Quantity(X1 ·X2), 1 : Quantity(1),
inv : ∀X.Quantity(X)→ Quantity(X−1),
< : ∀X.Quantity(X)× Quantity(X)→ Bool).

One could also define a type of signed/zero quantities Real(X) := Quantity(X) + 1 +
Quantity(X), and then extend the language with further arithmetic term constants such as
signed addition + : ∀X.Real(X)× Real(X)→ Real(X).

To write terms that make use of common sets of dimensions and units, we judge terms
in a context (∆dim,Γunits). For example, ∆dim = (Length,Time) and Γunits = (m :
Quantity(Length), ft : Quantity(Length), s : Quantity(Time)).

TLCA’15

1002 Models for Polymorphism over Physical Dimensions

3 Categorical Semantics of Dimension Types

Next up we give a general categorical semantics for the λD type theory. Central to this is
the notion of a λ∀-fibration.

I Definition 1. A λ∀-fibration is a bicartesian closed fibration with simple products.

It is well-known that λ∀-fibrations give a categorical model of the fragment of first-order
logic without existential quantifiers. Nevertheless, we briefly introduce the basic notions now,
since they are central to our development. We refer to Jacobs [9] for the full details.

A fibration p : E → B is a functor between categories satisfying certain conditions. These
conditions (along with the structure in Definition 2) allow us to model the λD type theory.
The basic idea is that dimension contexts will be interpreted as objects in a category B. For
each B ∈ B, we consider the fibre EB , i.e. the subcategory of E with objects E ∈ E for which
p(E) = B. The objects of EB will be used to interpret types in dimension context B, and the
morphisms in EB will be used to interpret terms. We can substitute dimension expressions
for dimension variables, and this substitution will be interpreted using morphisms in B.
Since p is a fibration, one can form a reindexing functor f∗ : EB′ → EB for each morphism
f : B → B′ in B, which describes substitution for dimension variables in types and terms.

A fibration is said to be bicartesian closed if EB is a Cartesian closed category with
coproducts for all B, and each reindexing functor f∗ : EB′ → EB preserves products,
exponentials and coproducts. This bicartesian closed structure is needed to interpret the
product, function and coproduct types.

Concatenation of dimension contexts will be interpreted using products in the category B.
The reindexing functors π∗ : EB → EB×B′ for the product projections π : B × B′ → B

correspond to context-weakening. A fibration p : E → B is said to have simple products if
B has products and the reindexing functors for the product projections have right adjoints
∀ : EB×B′ → EB that are compatible with reindexing (‘Beck-Chevalley’). A fibration is said
to have products if this condition holds for all morphisms in the base, not just projections.
These right adjoints are needed to interpret universal quantification of dimension variables
in types.

I Definition 2. A λD-model (p,G,Q) is a λ∀-fibration p : E → B, an Abelian group object
G in B, and an object Q in the fibre EG.

Recall that an Abelian group object in a category B with products is given by an object
G together with maps e : 1 → G, m : G × G → G and i : G → G satisfying the laws of
Abelian groups. This group structure is needed to interpret dimension expressions: for each
vector of n integers we have a morphism Gn → G.

An equivalent way to define Abelian group objects if B has chosen products is as follows.
Recall that the Lawvere theory for Abelian groups is the category LAb whose objects are
natural numbers, and where a morphism m→ n is an m×n matrix of integers. Composition
of morphisms is given by matrix multiplication, and categorical products are given by
arithmetic addition of natural numbers. An Abelian group object in B is an object G of B
together with a strictly-product-preserving functor F : LAb → B such that F (1) = G.

We remark that the object Q in a λD-model is analogous to the generic object in a model
of System F.

In order to ascertain the value of Definition 2, we now do three things: i) we show that a
λD-model in fact does provide categorical models of dimension types, ii) we give examples of
λD-models, and iii) we prove theorems that show the viability of reasoning at this level of
abstraction.

Atkey, Ghani, Nordvall Forsberg, Revell, and Staton 1003

3.1 Modelling Dimension Types
To show that λD-models provide a categorical semantics for dimension types, we must
show how to interpret the syntax given in Section 2 in any given λD-model. We will use
the λ∀-fibration to separate the indexing information (the dimensions) from the indexed
information (the types and terms). This means that the base category of the fibration will be
used to interpret dimension contexts, and types and terms will be interpreted as objects and
morphisms in the fibres above the dimension contexts in which they are defined. Bicartesian
closure of the fibres will allow us to inductively interpret types built from 1, ×, 0, + and
→, and we will take the standard approach in categorical logic to interpret quantification
of dimensions by using right adjoints. Finally, since dimension expressions for a dimension
context are defined as elements of the free Abelian group on that dimension context, we will
use the Abelian group object structure to interpret such expressions. Formally, we interpret
the syntax as follows.

Dimension contexts ∆ = X1, . . . , Xn are interpreted as the product of the Abelian group
object J∆K = Gn in B.
Dimension expressions ∆ ` D dim are interpreted as morphisms Gn → G in the base B,
by using the structure of the Abelian group object G. For example, JX,Y ` X · Y −1K =
G×G idG×i−−−−→ G×G m−→ G.
Well-formed types ∆ ` T type are interpreted as objects JT K in the fibre above J∆K, defined
by induction on the structure of T . We interpret 1, ×, + and → using the bicartesian
closed structure of the fibres, and quantification of a dimension variable J∆ ` ∀X.T K is
defined by right adjoint to reindexing along the projection π : J∆ ` Γ, XK → J∆ ` ΓK.
Quantities Quantity(D) are interpreted by reindexing the object Q along the interpretation
of D, i.e. J∆ ` Quantity(D)K = J∆ ` D dimK∗(Q).
Well-formed typing contexts ∆ ` Γ ctx are interpreted as products in the fibre above J∆K,
i.e. J∆ ` x1 : T1, . . . , xn : TnK = J∆ ` T1K× . . .× J∆ ` TnK.
Well-formed terms ∆; Γ ` t : T are interpreted as morphisms JtK : JΓK→ JT K in the fibre
above J∆K. We assume that there is an interpretation JopK : 1→ JT K for each primitive
operation (op : T) ∈ Ops.

In this paper we have only considered universal quantification of units but existential
quantification can be given just as easily. Existential quantification is interpreted as the
left adjoint to reindexing along a projection. Properties of existential quantification can be
proven by dualising the relevant proofs of properties about universal quantification.

Care is needed to ensure that the denotational semantics properly respects substitution.
This can be done either by requiring that the fibrations are split, or by adding explicit
coercions to the language [5]. All the examples of fibrations in this paper are split.

3.2 First Examples of λD-Models
We now give some examples of λD-models. We begin by noting that in Kennedy’s paper [10],
a simpler approach is taken to the semantics of dimensions: the dimensions are simply thrown
away in a dimension-erasure semantics. From the categorical perspective, this means that
the calculus is stripped of its fibred structure leaving only a simply typed λ-calculus which
Kennedy models, as is to be expected, within a Cartesian closed category. In particular, he
chooses the Cartesian closed category of complete partial orders which he needs for recursion.
Nevertheless, Kennedy’s model can be viewed as a λD-model.

TLCA’15

1004 Models for Polymorphism over Physical Dimensions

I Example 3. (Dimension-Erasure Models) Let C be a bicartesian closed category. Then
the functor C → 1 is a λ∀-fibration. The unique object of 1 is a trivial Abelian group object.
By taking C to be the category of complete partial orders and continuous functions, and by
choosing the flat pointed cpo Q⊥ to interpret Quantity we obtain a model corresponding to
Kennedy’s dimension-erasure model. This model supports a plethora of primitive operations,
including all the standard arithmetical ones. However, the model also contains many functions
which are not dimensionally invariant, i.e. they do not scale appropriately under change of
units — Kennedy uses relational parametricity [15] to remove these unwanted elements; we
will come back to his relational model in Section 5.

I Example 4. (Syntactical Models) We can construct a λ∀-fibration C`(λD) from the syntax
in a standard way. The base category B is the Lawvere theory of Abelian groups LAb. The
fibre C`(λD)n over n is the category whose objects are types with n dimension variables,
and whose morphisms are terms in context, modulo a standard notion of conversion. The
object 1 in LAb is an Abelian group object, and (C`(λD)→ LAb, 1, (X ` Quantity(X) type))
is a λD-model.

I Example 5. (The Dimension-Indexed Families Model) Let Fam(Set) be the category whose
objects are pairs (I, {Xi}i∈I) of a set I and an I-indexed family of sets {Xi}i∈I . A morphism
(I, {Xi}i∈I) → (J, {Yj}j∈J) is a pair (f, {φi}i∈I) where f is a function f : I → J and φi
is a function φi : Xi → Yf(i) for all i ∈ I. It is well known that the forgetful functor
(I, {Xi}i∈I) 7→ I : Fam(Set) → Set, taking a family to its index set, is a λ∀-fibration (see
e.g. Jacobs [9, Lemma 1.9.5]). For any given set B of fundamental dimensions (e.g. Length,
Time, Mass etc.), let G be the free Abelian group on B. Suppose that we also have a set Qd
of quantities for each dimension d ∈ G (for instance, we can choose Qd = R+ × {d} where d
is a unit of measure for the dimension d, e.g. Length = m, Time = s, d · d′ = d · d′ etc). We
then have a λD-model with Quantity interpreted as (G, {Qd}d∈G).

In this model, a dimension expression X1, . . . , Xn ` D dim is interpreted as a function
Gn → G using the free Abelian group structure on G: for each valuation of the dimension
variables as physical dimensions, we have an interpretation of the expression as a physical
dimension. A type with a free dimension variable X ` T type is interpreted as a family of
sets, indexed by the dimensions in G. Similarly a term with a free dimension variable is
interpreted as a family of functions, one for each dimension in G. This model does support
many primitive operations, but it does not support dimension invariant polymorphism. For
instance, the model supports adding a term eq : ∀X1.∀X2.Bool which tests whether two
dimensions are the same, which is clearly not invariant under change of representation.

Related examples include the relations fibration Rel→ Set and the subobject fibration
Sub(Set)→ Set. This example can also be generalised to the fibration Fam(C)→ Set, which
is a λ∀-fibration if C is bicartesian closed.

A Source of Fibrations with Simple Products

We next look at a particular class of λD models, where the fibres in the λ∀-fibration are
functors. We prove a general theorem for such fibrations, and instantiate it to construct
several examples. We first introduce some notation. Let S be a category (typically S = Set),
and consider the category Cat//S. The objects are pairs (C, P : C → S), where C is a small
category and P : C → S a functor. Morphisms (F, φ) : (C, P)→ (D, Q) are pairs of a functor
F : C → D and a natural transformation φ : P → Q ◦ F . The obvious projection functor
(C, P) 7→ C : Cat//S → Cat is a fibration. The fibre over a small category C is the category

Atkey, Ghani, Nordvall Forsberg, Revell, and Staton 1005

SC of functors [C → S] and natural transformations between them. Reindexing is given by
precomposition of functors.

I Theorem 6. If S has all small limits then the fibration Cat//S → Cat has simple products.

This result appears to be fairly well-known folklore (see e.g. Lawvere [11, end of §3],
Melliès and Zeilberger [14]), but since it is important in what follows we sketch a proof.

Proof Sketch. For any functor F : C → D, the reindexing functor F ∗ : SD → SC has a
right adjoint F∗ : SC → SD, known as the ‘right Kan extension along F ’, which always
exists when S has limits. For simple products, we are only interested in a right adjoint to
weakening, i.e. in the functor ∀C : SC×D → SC which is the right Kan extension along along
the projection functor πC : C ×D → C. Expanding the definitions, we see that ∀C(P) : C → S
is a point-wise limit:

(∀C P)(c) = lim
d∈D

P (c, d) . (3)

The Beck-Chevalley condition requires that the canonical map F ∗∀C′ → ∀C(F × idD)∗ is a
natural isomorphism for all functors F : C → C′. Indeed, for any P : C × D → S, c ∈ C:

(F ∗(∀C′ P))(c) = (∀C P)(F (c)) ∼= lim
d∈D

(F (c), d) = lim
d∈D

(((F × idD)∗(P))(c, d))

∼= (∀C((F × idD)∗(P))(c) . J

A Source of Models by Change of Base

In general, a useful way of building fibrations is by changing the base. If p : E → B is
a fibration, and F : A → B is a functor, then the pullback of p along F in Cat, denoted
F ∗p : F ∗E → A, is again a fibration. The same is true of λD-models.

I Theorem 7. Let p : E → B be a fibration, and let F : A → B be a functor.

(i) If p has simple products and F preserves products, then F ∗p : F ∗E → A has simple
products.

(ii) If p is bicartesian closed then F ∗p : F ∗E → A is bicartesian closed.
(iii) If G is an Abelian group object in A and (p, F (G), Q) is a λD-model, then also

(F ∗p,G, (G,Q)) is a λD-model.

Proof. For item (i): for any A ∈ A, reindexing along a projection π
A

: A×A′ → A in A is
by construction reindexing along F (π

A
) in B, which (as F preserves finite products) is the

same as reindexing along a projection π
FA

: FA× FA′ → FA, which has a right adjoint and
satisfies the Beck-Chevalley condition, since p has simple products.

For item (ii): F ∗p is a bicartesian closed fibration since each fibre (F ∗E)
A
is by construction

of the form EFA and hence bicartesian closed, and reindexing by f in A is by construction
defined to be reindexing by Ff in B, which preserves the structure.

Item (iii) is an immediate corollary. J

For a simple illustration of the change of base result, notice that the dimension-erasure
fibration C → 1 arises from pulling back the families fibration Fam(C)→ Set along the unique
product-preserving functor 1→ Set.

I Example 8. (Models over the Lawvere theory LAb) Let (p : E → B, G,Q) be a λD-model.
Recall that the Abelian group object G in B gives rise to a unique product-preserving functor
F : LAb → B such that F (1) = G. By Theorem 7, we have a λD-model (F ∗p, 1, (1, Q)).

TLCA’15

1006 Models for Polymorphism over Physical Dimensions

I Example 9. (A Model Built from Group Actions) Let G be a group. Recall that a G-set
consists of a set A together with a group action, i.e. a function ·A : G× A→ A such that
e·Aa = a and (gh)·Aa = g ·A (h·Aa). The category Grp//Set has as objects pairs (G,A) where
G is a group and A is a G-set. A morphism (G,A)→ (H,B) in Grp//Set is given by a group
homomorphism φ : G→ H and a function f : A→ B such that for any g ∈ G and a ∈ A we
have f(g ·A a) = (φg) ·B (fa). Let Grp be the category of groups and homomorphisms. We
call the forgetful functor p : Grp//Set→ Grp the Grp//Set fibration.

I Proposition 10. Let G be an Abelian group, and let Q be a G-set. Then (p : Grp//Set→
Grp, G,Q) is a λD-model.

Proof. For any groupH, the fibre aboveH is the category ofH-sets and equivariant functions.
This is isomorphic to the the functor category SetH , where we consider the group H as
a category with one object ? and a morphism for each element of H. Indeed, there is a
product-preserving, full and faithful functor Grp→ Cat, taking a group to the corresponding
one-object category. The fibration Grp//Set → Grp is thus the pullback of the fibration
Cat//Set→ Cat along this embedding Grp→ Cat. Thus, by Theorem 6 and Theorem 7(i),
Grp//Set→ Grp has simple products.

Each fibre is bicartesian closed. Products and coproducts are inherited from Set. For the
function space, let A and B be G-sets; then the set of functions (A → B) is also a G-set,
with action given by (g ·(A→B) f)(x) := g ·B (f(g−1 ·A x)). It follows that reindexing preserves
the bicartesian closed structure. (This is not the case more generally for Cat//Set→ Cat, so
Theorem 7(ii) does not apply.) Finally, an Abelian group object in Grp is the same thing as
an Abelian group. Hence (p,G,Q) is a λD-model. J

In the Grp//Set fibration, the Abelian group G can be thought of as a group of scaling
factors, and the G-set Q is a set of quantities together with a scaling action. For instance,
let Q = G = (R+,×, 1), the positive reals. We model a type with a free dimension variable
X ` T type as a G-set. A term with a free dimension variable is interpreted as a function
that is invariant under G. We explore this model in more detail in Section 4.

The Grp//Set model supports several primitive operations, which we discuss after The-
orem 13.

More generally, instead of having sets and group actions, we also have λD-models built
from actions of groupoids.

I Example 11. (A Model Built from Groupoid Actions) Recall that a groupoid is a small
category C where every morphism is an isomorphism, and that a functor C → Set is called
a groupoid action (or presheaf). The category Gpd//Set has as objects pairs (A, φ) where
A is a groupoid and φ : A → Set is a functor. A morphism (A, φ)→ (B, ψ) in Gpd//Set is
given by a functor F : A → B and a natural transformation η : φ→ ψ ◦ F between functors
A → Set. Let Gpd be the category of groupoids and functors. Then the forgetful functor
Gpd//Set → Gpd, which we call the Gpd//Set fibration, is a λ∀-fibration, and the proof of
this is very similar to the proof in Example 9.

On theme with this subsection, the Gpd//Set fibration is related to the other fibrations
by change of base:

The families fibration Fam(Set) → Set from Example 5 arises from pulling back the
groupoid action fibration Gpd//Set→ Gpd along the discrete-groupoid-functor Set→ Gpd.
The group action fibration Grp//Set→ Grp from Example 9 arises from pulling back the
groupoid action fibration Gpd//Set → Gpd along the functor Grp → Gpd that regards
each group as a groupoid with one object.

Atkey, Ghani, Nordvall Forsberg, Revell, and Staton 1007

We now discuss λD-models in Gpd//Set. Let f : G→ H be a homomorphism of Abelian
groups. This induces a groupoid whose objects are the elements of H, and where the hom-sets
are mor(h, h′) = {g ∈ G | f(g) ·H h = h′}. The group operation in G provides composition
of morphisms. This groupoid can be given the structure of an Abelian group object in Gpd,
and, moreover, every Abelian group in Gpd arises in this way [3].

We have already seen that the Gpd//Set fibration subsumes the families and group actions
fibrations. It also subsumes them as λD-models. To recover group actions (Example 9), let
G be an Abelian group of scale factors. The Abelian group object induced by the unique
homomorphism G→ 1 is a one-object groupoid, and hence we build the λD-models of group
actions. To recover the families example (Example 5), fix a set of dimension constants and
let H be the free Abelian group on that set. The unique homomorphism 1→ H induces the
discrete groupoid whose objects are H, and hence we build the λD-models of families of sets.

4 Group Actions and Dimension Types

In this section we will look in greater detail at the λD-model given by the Grp//Set fibration.
It turns out that many interesting theorems can be proven in this model, and so to aid us in
this task we first concretely spell out the reindexing and simple product structure.

Given a group G, we write G (with a different font) for the corresponding one-element
category, which has morphisms given by elements of G and composition given by group
multiplication. Suppose that φ : G → Set is a G-set (considered as a functor). We write
|φ| := φ(?) for the underlying carrier set of φ. Reindexing along π : G ×H → G yields the
G × H-set given by φ ◦ π. In other words, π∗φ is a G × H-set with the same underlying
carrier |π∗φ| = |φ| as the G-set φ, and action given by (g, h) ·

π∗φ x = g ·
φ
x.

Now suppose that ψ : G×H → Set is a G×H-set. According to Theorem 6 (equation (3)),
the underlying set of ∀πψ is given by |∀πψ| = limy∈H ψ(?, y). By the universal property of
limits,

lim
y∈H

ψ(?, y) ∼= Set
(
1, lim
y∈H

ψ(?, y)
) ∼= [H,Set]

(
K1, ψ(?,)

)
,

hence |∀πψ| = {y ∈ |ψ| | ∀h ∈ H . (eA, h) ·ψ y = y}, and the action is given by g ·∀πψ x =
(g, eH) ·ψ x. Notice that to give the group action of ∀πψ, we had to make a particular choice
of an element in H, namely the identity element eH . However, any element of H would have
given the same result, since for all y ∈ |∀πψ|,

(g, h) ·ψ y = ((g, eH)(eG, h)) ·ψ y = (g, eH) ·ψ ((eG, h) ·ψ y) = (g, eH) ·ψ y.

Many of the properties of dimension types that Kennedy proves using parametricity can
be shown to hold in the Grp//Set-fibration, without having to define a separate relational
semantics and this is the content of Theorems 13–18. Before we formally state and prove
these we introduce a substitution lemma, which holds in any model.

I Lemma 12. (Substitution Lemma) Suppose that ∆, X ` T type and that ∆ ` D dim
denotes a dimension expression. Then JT [D/X]K ∼= (idJ∆K, JDK)∗JT K.

Proof. By induction on the structure of T . J

Explicitly, Lemma 12 says that the semantics of substituting a dimension expression for
a dimension variable is given by reindexing along the identity paired with the dimension
expression. Since reindexing is given by precomposition we have that

(idJ∆K, JDK)∗JT K ∼= JT K(idJ∆K, JDK) ,

TLCA’15

1008 Models for Polymorphism over Physical Dimensions

i.e., substitution of the nth dimension variable is given by precomposition at the nth com-
ponent.

For the rest of this section, we will use semantic brackets J K to refer only to the Grp//Set
interpretation.

I Theorem 13. Suppose that X1, . . . , Xn, X ` S, T type. Then

|J∀X.S → T K| ∼= [G,Set](JSK(?, . . . , ?︸ ︷︷ ︸
n times

,), JT K(?, . . . , ?︸ ︷︷ ︸
n times

,))

Proof. By the Kan extension formula and Yoneda. J

This theorem says that in the Grp//Set model a universally quantified variable over an
arrow type can be considered as a natural transformation between the domain and codomain
of the arrow type, with the first n components fixed. In other words, it is interpreted as the
set of functions that are equivariant in the last argument.

In particular, if X1 . . . Xn ` S, T type then the type (∀ ~X. S → T) is interpreted as the
set of all homomorphisms [Gn,Set](JSK, JT K). We use this fact to conclude that the group
actions model supports several primitive operations. For any q ∈ Q, we can accommodate a
term constant q : Quantity(1), which is interpreted by JqK = q. When Q = G, we can also
accommodate a term constant for multiplication

× : ∀X.∀Y.Quantity(X)× Quantity(Y)→ Quantity(X · Y)

which is interpreted as the group operation. When Q = G = (R+,×, 1), the positive reals, we
also have addition, + : ∀X.Quantity(X)×Quantity(X)→ Quantity(X) , which is equivariant
since q(r + s) = qr + qs.

I Theorem 14. Suppose that ∆, X ` T type. Then |J∀X.Quantity(X)→ T K| ∼= |JT [1/X]K|.

Proof. By Theorem 13, Lemma 12 and Yoneda. J

We now prove some theorems about the Grp//Set fibration that are parametricity results in
Kennedy’s original paper. The proofs here involve applications of Lemma 12, Theorem 13 and
Theorem 14. First, we take a look at the interplay between scaling factors and polymorphic
functions.

I Theorem 15. (Scaling Factors) Suppose ∆dim; Γunits ` t : ∀X.Quantity(X)→ Quantity(Xn),
where n ∈ N. Then for all g ∈ G and x ∈ |JQuantity(X)K|, we have JtK(g · x) = gn · JtKx.

Proof. We know from Theorem 13 that JtK ∈ [G,Set](JQuantity(X)K, JQuantity(Xn)K). In
other words, JtK(g · x) = gn · JtKx for all x ∈ |JQuantity(X)K|, as required. J

This theorem tells us that polymorphic functions are invariant under scaling. Intuitively we
see that scaling factors must be changed in an appropriately polymorphic way. If we apply
Theorem 14 to the type ∀X.Quantity(X)→ Quantity(Xn), we see that

|J∀X.Quantity(X)→ Quantity(Xn)K| ∼= |JQuantity(1n)K| ∼= |JQuantity(1)K| ∼= Q,

Putting Q = G, we conclude that all the terms of type ∀X.Quantity(X)→ Quantity(Xn) are
of the form ΛX.λq : Quantity(X). r × qn for r ∈ G.

I Theorem 16. There is no ground term ` t : ∀X.Quantity(X2) → Quantity(X)., i.e., we
cannot write a polymorphic square root function.

Atkey, Ghani, Nordvall Forsberg, Revell, and Staton 1009

Proof. To see this we exhibit a model where the existence of such a term is impossible. Con-
sider the λD-model (p : Grp//Set→ Grp,Z2,Z2) where the Abelian group Z2 = ({−1, 1}, ·, 1)
is used to interpret both dimensions and units. Theorem 13 says that the interpretation of
the type ∀X.Quantity(X2)→ Quantity(X) is given by

|J∀X.Quantity(X2)→ Quantity(X)K| ∼= [Z2,Set](JQuantity(X2)K, JQuantity(X)K)

i.e. any element f of |J∀X.Quantity(X2)→ Quantity(X)K|, satisfies for all g, x ∈ Z2

f(g2 · x) = g · (fx) (∗)

If f exists, then either f(−1) = −1 or f(−1) = 1, but both lead to contradictions. To this
end suppose that f(−1) = −1, then by (∗) we have f((−1)2 · −1) = (−1) · f(−1), which is a
contradiction since the left-hand side is equal to −1 and the right-hand side is equal to 1.
A similar argument shows that f(−1) = 1 is also not possible, and hence there exists no
such f . J

This result can be extended to also include terms t using primitive operations Ops, as
long as these operations can be interpreted in the model in question. For example, the result
holds in the presence of multiplication

× : ∀X.∀Y.Quantity(X)× Quantity(Y)→ Quantity(X · Y).

However, this model does not support a polymorphic zero constant 0 : ∀X.Quantity(X), as
such a primitive would of course gives rise to a trivial counterexample to the theorem.

Next, we can prove a theorem that relates a dimensionally invariant function to a
dimensionless one. This is a simplified version of the Buckingham Pi Theorem of dimensional
analysis [4] (for a more modern introduction, see Sonin [16]).

I Theorem 17. We have a bijection

|J∀X.Quantity(X)× Quantity(X)→ Quantity(1)K| ∼= |JQuantity(1)→ Quantity(1)K|

Proof. This is a consequence of Theorem 14, after currying. J

We finish this section with another uninhabitedness result, this time about a higher order
type.

I Theorem 18. There is no term

` t : ∀X1.∀X2.(Quantity(X1)→ Quantity(X2))→ Quantity(X1 ·X2) .

Proof. Choose G and Q to be Z2. Interpreting the type of t, we have

J∀X1.∀X2.(Quantity(X1)→ Quantity(X2))→ Quantity(X1 ·X2)K
= {t ∈ (Z2→Z2)→Z2 |

∀g1, g2 ∈ Z2, f : Z2→Z2. (g1g2) · (t(f)) = t(λq ∈ Z2. g2 · (f(g−1
1 · q)))}

Hence for any t ∈ J∀X1.∀X2.(Quantity(X1)→ Quantity(X2))→ Quantity(X1 ·X2)K, instanti-
ating f = idQ we get that (g1g2) · (t(idQ)) = t(λq ∈ Z2. g2 · (g−1

1 · q)) for all g1 and g2, but
this is not possible. If g1 = 1 and g2 = −1, then the equation reduces to −1 · t(idQ) = t(idQ),
which is a contradiction since t(idQ) ∈ Z2 = {−1, 1}. J

Again, the result can be extended to terms that use a set of primitive operations Ops, as
long as all primitive operations in Ops can be interpreted in the model used in the proof.

TLCA’15

1010 Models for Polymorphism over Physical Dimensions

5 Relational Models

In Section 4 we pointed out that many of the results that we proved in the Grp//Set λD-model
are results that Kennedy [10] proves using parametricity. It is curious how the parametricity-
style proofs in the Grp//Set λD-model are simple and slick and do not require a separate
relational semantics. One cannot help but wonder, is the Grp//Set λD-model really as good
as having full-blown parametricity at one’s finger tips?

To answer this question we look at a general method of attaching a (fibrational) logic
to a λD-model to give a notion of a relational λD-model. This allows us to reconstruct
Kennedy’s relational parametricity in our setting (Example 21), as well as to talk about a
relational version of the Grp//Set λD-model (Example 22).

To begin this section, we first recall a theorem about the composition of fibred structure.

I Theorem 19. Suppose that p : A → B and q : B → C are fibrations
and let u : A → C denote the composite q ◦ p (hence u is also a
fibration). Suppose further that q has simple products. For any
projection map πq(B) : q(B)× Y → q(B) in C, denote the Cartesian
morphism in B above it by π§q(B) : π∗B → B. Then u has simple
products that are preserved by p if and only if for any projection map
π : q(B) × Y → q(B) in C, the functor (π§q(B))

∗ : AB → Aπ∗B has
right adjoints for all B ∈ B, satisfying the Beck-Chevalley condition.

A
p - B

C

q

?

u
-

Proof. This theorem is proven by using the factorisation and lifting properties of the 2-
category Fib as outlined by Hermida [7]. Though the proof is not too difficult, it does require
2-categorical technology, which we do not introduce here. Hence, we leave the proof as an
exercise for the 2-category-savvy reader. J

We now put this theorem to use. Given a λD-model q : A → L and
a logic p : E → B, there is a natural way to glue them together to
provide a relational semantics.

I Theorem 20. Let (q : A → L, G, Q0) be a λD-model, F : A → B a
product preserving functor and p : E → B a bicartesian closed fibration
with products. Consider the pullback of p along F , and let QR denote
an object in the fibre EF (Q0). Then (q ◦ F ∗p : F ∗E → L, G, (Q0, QR))
is a λD-model.

F ∗(E) - E

A

F ∗p

?

F
- B

p

?

L

q

?

Proof. Clearly G is an Abelian group object in L, and (Q0, QR) is in the fibre (F ∗E)
G
. To

check that q ◦ F ∗p is a bicartesian closed fibration is a simple exercise. Finally, since p has
all products, so does F ∗p. Hence, q ◦ F ∗p has simple products by Theorem 19. J

Next, we look at an example that uses Theorem 20 to generate Kennedy’s original
relationally parametric model of dimension types [10] from essentially the dimension-erasure
model back in Example 3.

I Example 21. Let G be an Abelian group. Then using the notation from Theorem 20, let
L be the Lawvere theory of Abelian groups LAb, A be the category LAb× Set, q : LAb× Set→
LAb be the fibration given by the first projection, and p : Sub(Set) → Set be the subset
fibration. Define F : LAb× Set→ Set to be the product preserving functor defined on objects

Atkey, Ghani, Nordvall Forsberg, Revell, and Staton 1011

(n,X) ∈ LAb × Set by F (n,X) = Gn ×X ×X, and on morphisms (f, g) : (n,X)→ (m,Y)
by F (f, g) = (Gf , g, g). Finally, let Q0 = G, and QR = {(g, g1, g2) | gg1 = g2} ⊆ G×G×G.

In this model, each type ∆ ` T is interpreted as a triple (|∆|, JT Ko, JT Kr) ∈ LAb × Set×
Sub(Set), where JT Kr ⊆ Gn × JT Ko × JT Ko. Spelling this out explicitly, we have the following
interpretations, which are equivalent to Kennedy’s original relationally parametric model for
dimension types:

J∆ ` Quantity(D)K = (|∆|, G, {(g, g1, g2) | (JDKg)g1 = g2})
J∆ ` T × UK = (|∆|, JT Ko × JUKo,

{(g, (t1, u1), (t2, u2)) | (g, t1, t2) ∈ JT Kr, (g, u1, u2) ∈ JUKr})
J∆ ` T + UK = (|∆|, JT Ko + JUKo,

{(g, inj1 t, inj1 t′) | (g, t, t′) ∈ JT Kr}
∪ {(g, inj2 u, inj2 u′) | (g, u, u′) ∈ JUKr})

J∆ ` T → UK = (|∆|, JT Ko → JUKo,
{(g, f1, f2) | ∀t1, t2. (g, t1, t2) ∈ JT Kr =⇒ (g, f1t1, f2t2) ∈ JUKr})

J∆ ` ∀X. T K = (|∆|, JT Ko, {(g, t1, t2) | ∀g′ ∈ G. ((g, g′), t1, t2) ∈ JT Kr})

Note that in the interpretation of ∀X. T , the “carrier” (i.e., the second component) is exactly
the carrier of the interpretation of T .

We can also apply Theorem 20 to obtain a natural relational model for the Grp//Set
λD-model (Example 9).

I Example 22. As before, let G be an Abelian group and L be the Lawvere theory of
Abelian groups LAb. Let q : A → LAb be the pullback of the fibration Grp//Set→ Grp along
the unique product-preserving functor M : LAb → Grp with M(1) = G, as in Example 8, so
that the objects of A are triples (n,X, φ) with (X,φ) a Gn-set. Let p : Sub(Set)→ Set be
the subset fibration. Define F : A → Set to be the product preserving functor defined on
objects by F (n,X, φ) = Gn × X × X and on morphisms (f, α) : (n,X, φ) → (m,Y, ψ) by
F (f, α) = (α, f, f). Finally, we let Q0 = (G,φ), where φ denotes group multiplication, and
QR = {(g, g1, g2) | gg1 = g2} ⊆ G×G×G.

Then each type ∆ ` T is again interpreted as a triple (|∆|, JT Ko, JT Kr) ∈ LAb × Sub(Set),
with JT Kr ⊆ Gn × JT Ko × JT Ko. The only difference between the interpretation of types in
this example and Example 21 is the second component of the interpretation of dimension
quantification:

J∆ ` ∀X. T Kr = (|∆|, {t ∈ |JT Kr| | ∀g ∈ G. ((eG|∆| , g), t, t) ∈ JT Kr},
{(g, t1, t2) | ∀g′ ∈ G. ((g, g′), t1, t2) ∈ JT Kr})

This interpretation, in contrast to the interpretation in Example 21, has “cut-down” the
carrier of the interpretation of ∀-types to only include the “parametric” elements. As a
consequence, this interpretation satisfies an analogue of the Identity Extension lemma from
relationally parametric models of System F [15].

I Proposition 23. For all type interpretations (|∆|, JT Ko, JT Kr), we have:

∀x1, x2 ∈ JT Ko. (e, x1, x2) ∈ JT Kr ⇔ x1 = x2

Compare this to the identity extension property for System F models, which states that if we
instantiate the relational interpretation of a type with the equality relation for all of its free
variables, then the resulting relation is the equality relation. In the current setting, equality
relations for the free variables are replaced by the unit element of the groups G|∆|. Indeed,
this model is equivalent to the restriction to one-dimensional scalings of the reflexive graph
model for System Fω with geometric symmetries presented by Atkey [1].

TLCA’15

1012 Models for Polymorphism over Physical Dimensions

We end this discussion of relational models by showing the relationships between the
models in Examples 21 and 22 and the Grp//Set model we considered in detail in Section 4.
By construction, the carriers of the interpretations of each type in the model in Example 22
and the Grp//Set model are identical. Moreover, the relational interpretation in Example 22
and the group action in the Grp//Set model are related as follows.

I Theorem 24. For all types ∆ ` T type, if the interpretation of T in the model of Example
22 is (|∆|, A, P ⊆ G|∆| ×A×A) and the Grp//Set model interpretation is (Gn, A, ψ), then
(g, a1, a2) ∈ P ⇔ g ·ψ a1 = a2.

Proof. By induction on the derivation of ∆ ` T type. J

Using Theorem 24, we can see that we could have used the relationally parametric model
to derive the results in Section 4. There is literally no difference between the two models for
the purposes of interpreting the types of our calculus.

We can also relate the relationally parametric model from Example 22 to the dimension-
erasure semantics in Example 3. By constructing a logical relation between the two models,
we can show:

I Theorem 25. For any closed term ` t : Bool, the interpretation of t in the dimension-
erasure model of Example 3 is equal to the interpretation of t in the relationally parametric
model of Example 22.

By the compositionality of both interpretations, this theorem means that if we can show
that two open terms s and t are equal in the model of Example 22 (and equivalently, the
Grp//Set model), then they will be contextually equivalent for the dimension erasure model.

It remains to discuss the relationship between Kennedy’s original relational model (Ex-
ample 21), and the relational model in Example 22 that satisfies the identity extension
property. As noted above, the difference between these interpretations lies in the semantics
of the ∀-type. Kennedy’s model does not restrict the carrier of the interpretation to just
the “parametric” elements, i.e., the elements that preserve all relations. Therefore, the
interpretations of types that contain nested ∀s are not directly comparable. We might expect
that we could observe a difference between the two models when proving statements about
terms whose types contain negatively nested ∀-types. However, Kennedy’s original work
does not present any results involving terms with such types, and we have not found any
natural examples. This is in contrast with the situation with relationally parametric models
of System F, where the proof that final coalgebras can be represented crucially relies on the
restriction of the interpretation of quantified types to the parametric elements [2].

Therefore, our Grp//Set model and the equivalent relational model in Example 22 prac-
tically coincides with Kennedy’s original model, but offer the advantage of not requiring a
separate relational semantics to prove important theorems. This in many cases makes proofs
of these theorems clearer. Additionally, the Grp//Set model offers an interpretation that
directly links the semantics to symmetry.

6 Concluding Remarks

To conclude, we have studied a typed λ-calculus with polymorphism over physical dimensions,
which we called λD (Section 2) and we have developed a model theory for the calculus. Under
the Curry-Howard correspondence, the λD-calculus is a fragment of first-order logic where the
domain of discourse is an unspecified Abelian group, and so our notion of model (Definition 2)
is based on the standard fibrational techniques in categorical logic.

Atkey, Ghani, Nordvall Forsberg, Revell, and Staton 1013

One particular model turned out to be particularly straightforward and yet informative
— the model based on group actions (Example 9). Of course, automorphisms and group
actions play a key role in the classical model theory of first order logic, but in this paper
we have shown that these techniques are also useful on the other side of the Curry-Howard
correspondence. Many arguments about the λD-calculus, including type isomorphisms and
definability arguments, can be made in this model (Section 4).

Parametricity is most often studied using relational techniques, and in this paper we have
developed a method for building relational λD-models (Theorem 20). Using this method we
were able to reconstruct two particular relational models: a relational model due to Kennedy
(Example 21, [10]) and a restriction of a relational model due to Atkey (Example 22, [1]).
Although the group-actions model is different in style, we showed (formally) that it is actually
closely related to the two relational models (Theorems 24 and 25).

Acknowledgements

We are grateful to participants in a discussion on the categories mailing list about the
Grp//Set fibration. Research supported by the EPSRC Grant EP/K023837/1 (NG, FNF)
and ERC Grant QCLS and a Royal Society Fellowship (SS).

References
1 Robert Atkey. From parametricity to conservation laws, via Noether’s theorem. In

Proc. POPL 2014, pages 491–502, 2014.
2 Lars Birkedal and Rasmus E Møgelberg. Categorical models for Abadi and Plotkin’s logic

for parametricity. Mathematical Structures in Computer Science, 15(04):709–772, 2005.
3 Ronald Brown and Christopher B Spencer. G-groupoids, crossed modules and the funda-

mental groupoid of a topological group. Proc. Indag. Math., 79(4):296–302, 1976.
4 Edgar Buckingham. On physically similar systems; illustrations of the use of dimensional

equations. Physical Review, 4(4):345–376, 1914.
5 P-L Curien, Richard Garner, and Martin Hofmann. Revisiting the categorical interpretation

of dependent type theory. Theoret. Comput. Sci., 546:99–119, 2014.
6 Martin Erwig and Margaret Burnett. Adding apples and oranges. In Practical Aspects of

Declarative Languages, pages 173–191. Springer, 2002.
7 Claudio Hermida. Some properties of Fib as a fibred 2-category. Journal of Pure and

Applied Algebra, 134(1):83–109, 1999.
8 Ronald T. House. A proposal for an extended form of type checking of expressions. The

Computer Journal, 26(4):366–374, 1983.
9 Bart Jacobs. Categorical logic and type theory, volume 141. Elsevier, 1999.

10 Andrew J. Kennedy. Relational parametricity and units of measure. In POPL’97, 1997.
11 F. William Lawvere. Adjointness in foundations. Dialectica, 23(3-4):281–296, 1969.
12 R Männer. Strong typing and physical units. ACM Sigplan Notices, 21(3):11–20, 1986.
13 Mars Climate Orbiter Mishap Investigation Board. Phase I report. NASA, 1999.
14 Paul-André Melliès and Noam Zeilberger. Functors are type refinement systems. In

Proc. POPL 2015, pages 3–16, 2015.
15 John Reynolds. Types, abstraction and parametric polymorphism. In Information Pro-

cessing, 1983.
16 Ain A Sonin. The physical basis of dimensional analysis. Department of Mechanical

Engineering, MIT, 2001.
17 Mitchell Wand and Patrick O’Keefe. Automatic dimensional inference. In Computational

Logic – Essays in Honor of Alan Robinson, pages 479–483, 1991.

TLCA’15

	Introduction
	Types with Physical Dimensions
	Categorical Semantics of Dimension Types
	Modelling Dimension Types
	First Examples of lambdaD-Models

	Group Actions and Dimension Types
	Relational Models
	Concluding Remarks

