
Fibred Data Types
Neil Ghani, Lorenzo Malatesta

The MSP Group,
University of Strathclyde.

Email: {ng, lorenzo.malatesta}@cis.strath.ac.uk

Fredrik Nordvall Forsberg, Anton Setzer
Dept. of Computer Science,

Swansea University.
Email: {csfnf, a.g.setzer}@swansea.ac.uk

Abstract—Data types are undergoing a major leap forward
in their sophistication driven by a conjunction of i) theoretical
advances in the foundations of data types; and ii) requirements
of programmers for ever more control of the data structures
they work with. In this paper we develop a theory of indexed
data types where, crucially, the indices are generated inductively
at the same time as the data. In order to avoid commitment to
any specific notion of indexing we take an axiomatic approach
to such data types using fibrations – thus giving us a theory of
what we call fibred data types.

The genesis of these fibred data types can be traced within
the literature, most notably to Dybjer and Setzer’s introduction
of the concept of induction-recursion. This paper, while drawing
heavily on their seminal work for inspiration, gives a categorical
reformulation of Dybjer and Setzer’s original work which leads to
a large number of extensions of induction-recursion. Concretely,
the paper provides i) conceptual clarity as to what induction-
recursion fundamentally is about; ii) greater expressiveness in
allowing not just the inductive-recursive definition of families of
sets, or even indexed families of sets, but rather the inductive-
recursive definition of a whole host of other structures; iii) a
semantics for induction-recursion based not on the specific model
of families, but rather an axiomatic model based upon fibra-
tions which therefore encompasses diverse structures (domain
theoretic, realisability, games etc) arising in the semantics of
programming languages; and iv) technical justification as to why
these fibred data types exist using large cardinals from set theory.

I. INTRODUCTION

An inductive type is, informally, the least set closed under
certain operations. These operations can be thought of as
building elements of the data type and hence are called
constructors. The fact that an inductive type is the least
set closed under such operations means that the data type
possesses a recursor, or elimination rule, which embeds the
data type within any other set with enough structure to model
the constructors. This intuition can be seen in, for example,
the following Agda data type of lists storing data of type A

data List (A : Set) : Set where
nil : List A
cons : A → List A → List A

fold : {A B : Set} → B → (A → B → B)
→ List A → B

fold n c nil = n
fold n c (cons x xs) = c x (fold n c xs)

which has two constructors nil and cons which construct,
respectively, the empty list and a list made from adding an

element to the front of a list. The arguments for the recursor
fold can be thought of as replacement operations n and c for
nil and cons – thus list built from nil is mapped by fold n c
to n while a list built from cons is mapped by fold n c to the
result of applying c to the head of the list and the result of the
recursive call.

The trouble with informal intuitions such as given above is
that they are not robust enough to cleanly scale to more complex
situations. Such situations arise, for example, if our data types
i) are required to support more programming language structure
such as induction principles, impredicative encodings, short
cut fusion rules etc; ii) are not to be interpreted as sets but
other mathematical objects such as domains, PERs, games
etc; and iii) are more than simple tree like structures defined
in a sums-and-products fashion. A more formal and robust
approach to understanding data types is given by initial algebra
semantics where inductive types are thought of as arising as
the initial algebra of a functor F : C → C where C is the
ambient category containing our intended interpretation of
types. We revisit the basics of initial algebra semantics in
Section II, but recall for now that the data type List A arises as
the initial algebra of the functor FX = 1+ A×X . Other data
types such as the natural numbers, trees etc. arise in a similar
fashion. Typically, not all functors have initial algebras and so
an important part of any successful theory of data types are
grammars for generating functors which do indeed have initial
algebras under mild assumptions. Examples of grammars for
generating simple data types such as natural numbers, lists and
trees etc., include the polynomial data types, strictly positive
types and containers [2].

Unfortunately, inductive types such as lists and trees are too
simple to capture important data types. As a result, one of
the key aims of current research in functional programming
is to reduce the semantic gap between what programmers
know about computational entities and what the types of those
entities can express about them. One particularly promising
approach to this problem is to consider data types indexed by
extra information that can be used to express properties of data
having those types. Canonical examples of such data types are
typed and untyped λ-terms, red-black trees and balanced binary
trees. The crucial point about these data types is that one cannot
inductively define the data with a given index independently of
data with another index. To illustrate this point, notice how the
type List A above can be defined independently of any type
List B for B distinct from A. Thus, the type constructor List

defines a family of inductive types. Compare the declaration
for List A with the declaration

data Lam (n : N) : Set where
var : Fin n → Lam n
app : Lam n → Lam n → Lam n
abs : Lam (suc n) → Lam n

defining the data type Lam n of untyped λ-terms over n free
variables up to α-equivalence. Here Fin n is a type with n-
elements. By contrast with List A, the type Lam n cannot be
defined in terms of only those elements of Lam n that have
already been constructed. Indeed, elements of the type Lam
(suc n) are needed to build elements of Lam n so that, in
effect, the entire family of types determined by Lam has to
be constructed simultaneously. Thus, rather than defining a
family of individual inductive types as List does, Lam defines
an inductive family of types indexed by the natural numbers.

Fortunately, initial algebra semantics is robust enough to
explain these inductive families. That is, one can simply apply
the standard theory of initial algebra semantics in a more
sophisticated category so as to derive recursion operators,
induction principles, Church encodings and short cut fusion
rules etc. for such inductive families. In the example of untyped
λ-terms, one could choose the category [N,Sets] of N-indexed
sets. The data type Lam then arises as the initial algebra of
the functor FLam : (N→ Sets)→ N→ Sets defined by

FLam X n = Fin n + (X n)×(X n) + X(n+ 1)

As in the unindexed setting, grammars have been proposed for
defining well behaved functors on such indexed sets. Examples
are the syntactic formats for inductive families of Dybjer [12],
dependent polynomials of Gambino and Hyland [16] and the
indexed containers of Altenkirch and Morris [5].

The example of the inductive family Lam is typical of the
state-of-the art in data type design in that the indexes – N in
this case – are defined in advance of the data type declaration
– in this case Lam. But what if they are not? What if, as we
build up the data, we also build up the indexes? Very important
data types arise in this manner, for example the construction of
universes/meta-languages for dependent types. To understand
this, first recall that a universe is a pair (U, T) where we think
of the indexing set U :Sets as consisting of the names for types
and the decoding function T : U → Sets as assigning to each
name u : U the type Tu of elements of the type named by u.
Now say that we want to define a data type representing the
smallest universe containing a name for the natural numbers
and closed under Σ-types/dependent sums. Such a universe
will be the least solution of the equations

U = 1 + Σu :U. Tu→ U
T (inl ∗) = N
T (inr (u, f)) = Σx :Tu. T (fx)

where the Σ on the right hand side of the above equations is
the usual dependent sum. To understand the above equations,
note that the dependent sum ΣAB consists of a type A and

a function B mapping each element of A to a type. Thus the
name of a Σ-type in a universe (U, T) will consist of a name
in U for the type A, i.e. an element u : U , and a function
f : Tu→ U assigning to every element of the type denoted
by u, i.e. every element of Tu, the name of a type, i.e. an
element of U . An element of the type denoted by a name
(u, f) consists of an element of the type denoted by u, i.e. an
element x : Tu, and an element of the type whose name is fx,
i.e. an element of T (fx). This example demonstrates a key
point – the set U cannot be defined in advance of the function
T : U → Sets. Such a definition is therefore not an example
of an inductive family. As we shall see, it is a simple example
of a fibred data type.

Our central ambition in this paper is to put such fibred data
types on as sound a footing as are the simpler inductive types
and inductive families. Our paper builds on the seminal work
of Dybjer and Setzer’s theory of induction-recursion [14] and
we extend their work in a number of ways:
• We believe induction-recursion has not caught on as

it should have and part of the problem is that its
conceptual foundations need clarification. We demonstrate
how greater conceptual clarity can be achieved by viewing
induction-recursion from a fibrational perspective.

• Dybjer and Setzer’s work allows the inductive-recursive
definition of families and indexed families. We show
how our fibrational perspective extends this to allow the
inductive-recursive definition of a whole host of other
structures.

• Dybjer and Setzer gave a semantics for induction-recursion
based upon a specific model based upon the families
fibration. We provide an axiomatic semantics based not
on families, but rather on fibrations with certain structure.

• We generalise Dybjer and Setzer’s soundness proof to
show that fibred data types really do exist, i.e. that we
can build initial algebras of the functors we consider.

This paper is structured as follows: In Section II we recap
initial algebra semantics of data types. In Section III, we first
present Dybjer and Setzer’s induction-recursion, then show how
it can be generalised to the fibrational setting, and finally show
that all of the data types definable by our approach really do
exist, that is, all of the functors we define have initial algebras.
We conclude in Section IV with ideas for future work. Our
methodology in this paper is inherently semantic – we look
for mathematical constructions which we can then reflect back
into the syntax of programming languages. Nevertheless, we
sometimes take the perspective that syntax comes first and we
then, subsequently, look for semantics for the syntax. Both
perspectives have value and hence we do not feel the need to
stick to only one.

II. INITIAL ALGEBRA SEMANTICS

Initial algebra semantics is one of the cornerstones of the theory
of modern functional programming languages. Therefore, and
in order to both fix our notion and to provide a backdrop for this
paper, we give a brief summary of how initial algebra semantics
can be used on the one hand to provide a semantics to data

types and, on the other hand, to offer a mathematical theory
of computation which can be reflected back into programming
language constructs.

Within the paradigm of initial algebra semantics, each data
type is regarded as the carrier of the initial algebra of a functor
F . In more detail, if B is a category and F is a functor on B,
then an F -algebra is a pair (X,h) where X is an object of B
and h : FX → X . We call X the carrier of the algebra.

For any functor F , the collection of F -algebras itself forms
a category AlgF which we call the category of F -algebras. In
AlgF , an F -algebra homomorphism from (X,h) to (Y, g) is a
map f : X → Y such that the following diagram commutes

FX
h //

Ff

��

X

f

��
FY

g
// Y

The initial F -algebra (µF, inF) is the initial object in this
category. When it exists it is unique up to isomorphism. The
object µF is the interpretation of the data type described
by F , while the morphism inF : F (µF) → µF interprets
its constructors. Initiality ensures that, given any F -algebra
h : FX → X , there is a unique F -algebra homomorphism,
denoted fold h from the initial algebra (µF, inF) to that
algebra. For each functor F , this defines a recursion operator
fold : (FX → X) → µF → X which is the semantic
counterpart of the elimination rule for the data type µF .
The fact that fold h is actually an algebra homomorphism
corresponds to β-equality for the data type µF , while the fact
that fold h is unique models η-equality.

Of course, in most categories, not all functors have initial
algebras and so this leads us to augment initial algebra
semantics with specific grammars for defining functors which
have initial algebras. For example, inductive types like N and
List A can be described by containers [2].

Example 1. A container is a pair (S, P) consisting of a set
S : Sets of shapes and a function P : S → Sets assigning
to each shape s : S, a set of positions Ps. Intuitively, one
may think of S as a set of operators and P as assigning to
each operator its arity. Every container (S, P) defines a functor
[[S, P]] : Sets→ Sets as follows

[[S, P]]X = Σs :S. Ps→ X

For example, the inductive type N arises as the initial algebra
of the container with two shapes S = {z, s} and positions
P (z) = ∅, P (s) = {?}, since it has two operations 0 : N and
suc : N→N respectively of arity zero and one.

In fact the theory of containers can be developed in any
locally Cartesian closed category. The shapes and positions
metaphor underlying containers means that they possess a very
rich algebraic structure [1].

At the next level of sophistication, we want to capture indexed
data types within the initial algebra paradigm. A common
example of indexed data types are the inductive families where

one first fixes a set U and then defines a U -indexed family of
types T : U → Sets. Crucially, U here is a fixed set defined
independently and in advance of the inductive family T . An
example of such a data type is the type Lam given in the
introduction where U is the set of natural numbers.

Many different grammars for functors whose initial algebras
are inductive families can be found in the literature [12] [16]
[9]. We mention here the indexed containers of Altenkirch and
Morris [5].

Example 2. An (I,O)-indexed container is a pair (S, P) con-
sisting of an indexed set S :O → Sets of shapes and a function
P : (o : O)→ S o→ I → Sets assigning to each shape s : S o,
an I-indexed set of positions. Every (I,O)-indexed container
(S, P) defines a functor [[S, P]] : (I → Sets)→ O → Sets as
follows

[[S, P]]X o = Σs :S o. Πi : I. P o s i→ X i

Note how the input and output index sets I and O are fixed
in advance.

To summarise, initial algebra semantics provides a well-
developed theory of data types which is i) principled, and
so helps to ensure that programs have precise mathematical
foundations that can be used to ascertain/predict their meaning
and correctness; ii) expressive, and so is applicable to all data
types, rather than just syntactically defined classes of data
types such as polynomial data types etc; and iii) axiomatic,
and so is valid in any model – set-theoretic, domain-theoretic,
game-theoretic, realisability, etc. – in which data types are
interpreted as carriers of initial algebras. Its success can be
further measured by the fact that it is used as a framework both
by researchers in the mathematical foundations of programming
language semantics, by programming language designers and
even by programmers themselves (under the guise of the
Algebra of Programming School [7]).

III. FIBRED INDUCTION-RECURSION

We have seen that indexing is an essential feature of data
type design allowing us to define data types which match our
intuition about the properties we want our data types to capture.
However, most current theories enable us to only define indexed
data types whose indexes are defined in advance of the actual
data. For example, in an inductive family, one has to first say
what U is and, only then, does one define T : U → Sets. A
slight variant on the example given in the introduction is the
following: if we wish to define a universe of types containing
the natural numbers and closed under Π-types, then we are
naturally lead to consider solutions of equations of the form

U = 1 + Σu :U. Tu→ U
T (inl ∗) = N
T (inr (u, f)) = Πx :Tu. T (fx)

where U : Sets and T : U → Sets. Notice in this example
how the name for a Π-type in this universe is still a choice of
a name for the type we quantify over and an assignment of
another name to each element of that type – hence we still use

Σ when defining U . However, the decoding of such a name
via T uses Π so that we do indeed decode such a name to a
Π-type. We introduce this universe now as we shall soon see
the subtle difference mathematically between universes closed
under Σ-types and Π-types. But for now, note that once more
U cannot be defined in advance of T . So, the question is, can
we give a predictive foundation for such data types?

Actually, Dybjer and Setzer did this 10 years ago in their
theory of induction-recursion [13]. Their key observation is
this – if U is a collection of indexes not fixed in advance then
the semantic category we work in must contain all functions
T : U → Sets for all sets U . Dybjer and Setzer do this by
using the standard families construction from category theory:

Definition 1. Let C be a category. The category Fam(C) is
defined as follows.

• The objects of Fam(C) are pairs (U : Sets, T : U → |C|).
Here, |C| refers to the collection of objects of the category
C. Note here that U is a set. We call U the index set of
the family and T the decoding function of the family.

• The morphisms of Fam(C) between (U, T) and (U ′, T ′)
consist of pairs (f, g) where f : U → U ′ is a function
between the index sets of the respective families and
g is a function assigning to each u : U a morphism
gu : Tu → T ′(fu) in C. Equivalently, g is a natural
transformation between T and T ′ ◦ f regarded as functors
U → C.

The object part of an endofunctor F : Fam(C)→ Fam(C) can
be given in two parts: i) a function F 0 : Fam(C)→ Sets such
that for any family X : Fam(C), F 0X is the index of the family
FX; and ii) a function F 1 : ΠX :Fam(C) . F 0X → |C| which
assigns to each object X of Fam(C) a function F 0X → |C|
which is the decoding function of the family FX .

One may hope that we can construct indexed data types
where the index is generated at the same time as the data itself
by taking initial algebras of such endofunctors on Fam(C). But
there is a slight snag. While the equations defining the functor
generating a universe closed under Σ-types do indeed define
such a functor, the equations defining a universe closed under
Π-types do not! The problem is that, in the case of a universe
closed under Π-types, we cannot define the action of the functor
on the morphisms of Fam(Sets). Perhaps, on reflection, this is
not surprising – Π-types generalise function spaces and there
is an inherent contravariance in function spaces.

Dybjer and Setzer solve this problem by working not with
categories of the form Fam(C), but rather with categories of
the form Fam(|C|), which has the same objects as Fam(C),
but whose morphisms from T : U → |C| to T ′ : U ′ → |C|
are simply functions f : U → U ′ such that T = T ′ ◦ f .
More precisely, they consider categories of the form Fam(|D|),
where |D| is the discrete category induced by a type D: the
objects of |D| are the elements of D, and the only morphisms
are identity morphisms.

Putting all this together, Dybjer and Setzer defined a system
of codes for defining functors as follows:

Definition 2 (Dybjer and Setzer’s IR-Codes). Let D be a
potentially large set. The large set IR D of IR-codes has the
following constructors

d : D
ι d : IR D

A : Sets f : A→ IR D

σAf : IR D

A : Sets F : (A→ D)→ IR D

δAF : IR D

Each IR-code in IR(D) can be interpreted as an endofunctor
on Fam(|D|) as follows:

Definition 3 (Dybjer and Setzer’s semantics). Let D be a
large set and c : IR D. Define the object part of the functor
[[c]] : Fam(|D|)→ Fam(|D|) as follows:
• When c = ιd,

[[ι d]]0 (U, T) = 1

[[ι d]]1 (U, T) _ = d

• When c = σAf ,

[[σAf]]0 (U, T) = Σa :A. [[fa]]0 (U, T)

[[σAf]]1 (U, T) (a, i) = [[fa]]1 (U, T) i

• When c = δAF ,

[[δAF]]0 (U, T) = Σg :A→ U. [[F (T ◦ g)]]0 (U, T)

[[δAF]]1 (U, T) (g, i) = [[F (T ◦ g)]]1 (U, T) i

Dybjer and Setzer also define the morphism part of [[c]], which
we omit here. It will be an instance of our construction in
Lemma 4. In the definition of decoding notice that various
coproducts in Sets are used. Crucially, these coproducts are
small and hence exist. For example, the definition of [[σAf]]
is a coproduct over elements of the small set A, while in the
definition of [[δAF]](U, T), the coproduct is over elements of
A → U . Since A and U are small sets, such elements also
form a set.

So the main question is . . . what does the above mean? It
looks like fairly technical type theory and many researchers
have tried, and found it hard, to understand IR-codes and
their semantics in the form of their decoding function. This
is clearly a problem since induction-recursion has enough
potential that it deserves study from a variety of researchers
with varying perspectives and backgrounds. We hope our
algebraic perspective on induction-recursion, and in particular
its presentation via familiar and known categorical concepts
will help to rectify this situation. A more concrete motivation
for this paper arises when we ask what happens if we wish to
define some other form of indexed structure where the indexes
are generated at the same time as the data so indexed. For
example, we may wish to define any of the following which are
not families and hence are not covered by Dybjer and Setzer’s
work.
• A set-valued relation T : U × U → Sets.

• An extensional family T : U → Setoid where U is a
setoid and T preserves the setoid structure of U .

• A presheaf T : C → Sets where C is a category and T is
a functor.

• A category with families which is a functor T : Cop →
Fam(Sets) where C is a category thought of as a category
of contexts.

• An indexed category/split fibration T : Cop → Cat.
To provide more conceptual clarity about what induction-
recursion is, and to extend induction-recursion to cover the
above examples we need to generalise Dybjer and Setzer’s
theory of induction-recursion. Rather than choosing different
forms of indexing on an ad-hoc basis covering each of the above
examples in turn, we prefer to use an axiomatic approach to
indexing which can be instantiated to any of the above examples
and more. To do so, we turn to the algebraic axiomatisation
of indexing as given by fibrations.

A. Fibrations in a Nutshell

We give a unifying axiomatic approach to induction-recursion
based on fibrations motivated by the facts that i) we are
interested in using induction-recursion to define a whole host
of structures beyond simply universes T : U → Sets; ii)
the semantics of data types in languages involving recursion
and other effects usually involves categories other than Sets;
iii) in such circumstances, decoding functions can no longer
be taken to be just a function with codomain Sets; iv) even
when using essentially set-theoretic reasoning we may wish
to use the proof relevant notion of a setoid rather than a
mere set; and v) when using induction-recursion for more
sophisticated structures, we will not want to have to develop
an individual theory of induction-recursion specifically for
each such type of structure. Instead, we will want to obtain
inductive-recursive definitions by appropriately instantiating a
single, generic theory of induction-recursion. That is, we will
want to instantiate a uniform, axiomatic approach to induction-
recursion that is widely applicable, and that abstracts over the
specific choices of index and the codomain of the decoding
function. Fibrations [18] support precisely such an axiomatic
approach and so we turn to them.

Definition 4. Let K : E → B be a functor. A morphism
g : Q → P in E is Cartesian over a morphism f : X → Y
in B if K(g) = f , and for every g′ : Q′ → P in E for which
K(g′) = f ◦ v for some v : KQ′ → X there exists a unique
h : Q′ → Q in E such that K(h) = v and g ◦ h = g′.

It is not hard to see that a Cartesian morphism f§P over a
morphism f with codomain K P is unique up to isomorphism.
If P is an object of E , then we write f∗P for the domain of
f§P . Cartesian morphisms are the essence of fibrations, as the
following definition shows.

Definition 5. Let K : E → B be a functor. Then K is a
fibration if for every object P of E and every morphism f :
X → KP in B there is a Cartesian morphism f§P : Q→ P in
E such that K(f§P) = f .

If K : E → B is a fibration, we call B the base category of
K and E the total category of K. In the rest of the paper we
assume the base category is locally small – this will enable us
later to take coproducts indexed by the morphisms of specific
homsets. Objects of the total category E can be thought of as
indexed entities while objects of the base category B can be
thought of as indexes, and K can be thought of as mapping
each indexed structure P in E to the index KP of P . We say
that an object P in E is above its image KP under K, and
similarly for morphisms. For any object X of B, we write EX
for the fibre above X , i.e., for the subcategory of E consisting
of objects above X and morphisms above idX . If f : X → Y
is a morphism in B, then the function mapping each object P
of E to f∗P extends to a functor f∗ : EY → EX . If we think
of f as an index-level substitution, then f∗ can be thought of
as lifting f to act on indexed structures. We call the functor
f∗ the reindexing functor induced by f .

A fibration is called cloven if it comes with a choice of
Cartesian liftings, and split if this choice is further done
functorially, i.e. id∗ = id and (v ◦ u)∗ = u∗ v∗. As is common
when modelling type theories, we will only be concerned with
split fibrations. This is not a restriction, since every fibration is
equivalent to a split one (Jacobs [18] Corollary 5.2.5). When
K is split, we can consider the subcategory E sp of E consisting
of Cartesian morphisms arising from the splitting only. Such
morphisms are called splitting morphisms.

Example 3. In Definition 1, we defined the category Fam(C)
for any category C. The functor Fam(C) → Sets mapping
(U, T) to U is a split fibration called the families fibration.
Given a family T : U → |C| above U and a morphism f :
U ′ → U in Sets, the reindexing of T by f is the family
T ◦ f : U ′ → |C| with the chosen Cartesian arrow from T ◦ f
to T having as first component f and as second component
the U ′-indexed collection of identity morphisms.

That Fam(|C|) – the model proposed for induction-recursion by
Dybjer and Setzer – is fibred over Sets is the crucial observation
which allowed us to realise that induction-recursion can be
recast in a fibred setting. But before we get to that, we give
some other examples of fibrations.

Example 4. Let B be a category. The arrow category of
B, denoted B→, has the morphisms of B as its objects. A
morphism in B→ from f : X → Y to f ′ : X ′ → Y ′ is a pair
(α1, α2) of morphisms in B such that f ′ ◦ α1 = α2 ◦ f . The
domain functor dom maps an object f : X → Y of B→ to
the object X of B. This functor is always a fibration – called
(unsurprisingly) the domain fibration – with the reindexing of
an object f : X → Y over X by a morphism g : X ′ → X
in B being simply the composite f ◦ g : X ′ → Y . For each
object A of B there is a corresponding domain fibration domA :
B/A→ B which maps f : X → A to its domain X .

Example 5. The category Rel of set-valued relations has as
objects pairs (U, T : U × U → Sets) where U is a set. A
morphism from (U, T) to (U ′, T ′) is a pair (f, g) where f
is function f : U → U ′ and, for each pair u, u′ : U , we

have a function gu,u′ : T (u, u′) → T ′(fu, fu′). Note how
as expected, this category of relations is nothing more than
a binary version of the category of families. As a result, the
functor sending a relation T : U×U → Sets to U is a fibration
for much the same reasons that hold for the families fibration.
In particular, the reindexing of a relation T : U × U → Sets
over U , by a morphism h : U ′ → U is the relation T ◦(h×h) :
U ′ × U ′ → Sets.

B. Fibred Induction-Recursion

We introduce fibrations as they offer a conceptual cleaner
treatment of induction-recursion which, simultaneously, signifi-
cantly broadens the class of data types which can be defined by
induction-recursion. These properties arise because fibrations
form an axiomatic notion of model for induction-recursion
rather than being a specific model. To understand this we
look once more at Dybjer and Setzer’s three constructors for
IR-codes and contemplate how we can generalise them to an
arbitrary fibration.
• ι-codes: The first of Dybjer and Setzer’s three constructors

of inductive recursive definitions is ι whose effect is to
define a constant functor returning a given family. Because
families are objects of the total category of the families
fibration, we can generalise the ι constructor to an arbitrary
fibration K : E → B by the following rule

P : E
ι P : IR K

whose intent is that ιP is a code for the constantly P
valued functor on the total category of the fibration K.

• σ-codes: The second of Dybjer and Setzer’s three construc-
tors of inductive recursive definitions is σ whose effect is
to take set-indexed coproducts of functors given by codes.
Such an A-indexed collection of codes can be given by
a function f : A→ IR K. Hence we can generalise the
σ constructor to an arbitrary fibration K : E → B by the
following rule

A : Sets f : A→ IR K

σAf : IR K

• δ-codes: The third of Dybjer and Setzer’s three construc-
tors of inductive recursive definitions is δ. The premise
of this constructor is a function (A→ D)→ IRD for a
fixed index A. Notice that A→ D is just an object in the
families fibration Fam(D) in the fibre above A. Notice
also that it is key to Dybjer and Setzer’s δ constructor
that F is in fact a function. Thus we may abstract δ to
an arbitrary fibration K : E → B as follows:

A : B F : |EA| → IR K

δAF : IR K

Of course we still have to show that these abstractions make
sense and in particular that they do indeed define appropriate
functors. Nevertheless, we think that, already, we see the
fibrational framework as paying dividends in terms of cleaning
up the syntax of IR-codes.

Now we turn to the semantic content of our fibred IR-codes.
The natural first guess is that if K : E → B is a fibration and
c : IR K is a fibred IR-code, then there should be a functor
[[c]] on E , the total category of the fibration K. This seems in
accordance with our motivating example of Dybjer and Setzer’s
codes which, from our perspective, arise from the families
fibration. Of course, σ constructs set-indexed coproducts of
functors and so E needs to have set-indexed coproducts:

Lemma 1. Let K : E → B be a split fibration with set-indexed
coproducts. Every fibred IR-code c : IR K induces a mapping
[[c]] on the objects of E .

Proof: We go through each of the constructors in turn.
Let Q : E be an object of the total category E .
• If P is an object of E , then the code ι P defines the

constantly P valued map on objects of E . Formally,

[[ι P]] Q = P

• Let A be a set and f : A→ IR K assign to each element
a : A an IR-code fa : IR K. For each a : A, we have by
the induction hypothesis an object [[fa]] Q of E . Since E
has set-indexed coproducts, we can take the coproduct of
these objects to define [[σAf]] Q. Formally,

[[σAf]] Q = Σa :A. [[fa]] Q

• Let A : B and F : |EA| → IR K assign to each object P
in the fibre above A an IR-code FP . We can consider the
maps g : A→ KQ in B. For each such g, we can reindex
Q by the reindexing functor g∗ to get an object g∗Q in
the fibre above A. We can then apply F to this object to
get an IR-code and inductively compute the action of this
IR-code on Q. Notice that since B is locally small, there
is a set of such maps and so we can take the set-indexed
coproduct over the choice of g and thus obtain the action
of [[δAF]] on Q. Formally,

[[δAF]] Q = Σg :A→ KQ. [[F (g∗Q)]] Q

So our generalisation of IR-codes to fibrations also extends to
showing how these fibred IR-codes define a map on the objects
of the total category of the fibration. We may hope that in fact
every fibred IR-code defines a functor on the total category
of the fibration. Unfortunately, this is not true in general. Just
as with Dybjer and Setzer’s codes, we too have to be careful
with the inherent contravariance in some universes such as the
universe closed under Π-types we described before.

From our fibrational perspective, Dybjer and Setzer solved
this problem by not working with arbitrary morphisms in
Fam(Sets), but only those whose second component was the
identity – that is they worked with morphisms between families
T : U → Sets and T ′ : U → Sets which are functions
f : U → U ′ such that T = T ′ ◦ f . The same problem they
faced arises here – its simply not the case that if K : E → B
is a fibration then every fibrational IR code c : IR K defines a
functor [[c]] : E → E . In fact, the morphisms which Dybjer and
Setzer’s IR-codes act on are exactly the splitting morphisms of

the families fibration. So, the natural generalisation of Dybjer
and Setzer’s condition on morphisms between families that
works in an arbitrary fibration is simply that [[c]] acts only on
the splitting morphisms of the fibration K. Formally, given a
fibration K : E → B we can obtain a new fibration Kc : Ec ↪→
E → B– called the discrete fibration associated to K [18].
We collect two immediate but useful facts about E sp in the
following lemma:

Lemma 2. Let K : E → B be a split fibration.
(i) If f is a splitting morphism, then (Kf)§ = f .

(ii) Each fibre E spA is discrete.

Our goal is to show that for a split fibration K : E → B, each
fibred IR-code c : IRK gives rise to a functor [[c]] : E sp → E sp.
Since coproducts play an important role in the construction,
we need that they interact nicely with the splitting morphisms.
Recall that (chosen) coproducts in a category C give rise to
a functor Σ : Fam(C) → C which sends a family of objects
to their set-indexed coproduct, and a family morphism (f, g)
where f : A→ A′ and gx : B(x)→ B′(f(x)) to the cotuple
Σ(f, g) = [inf(x) ◦ gx]x:A : Σ(A,B) → Σ(A′, B′). We call
Σ(f, g) the generalised sum of g over f . If f = id, we simply
write Σa :A. ga for the sum.

Lemma 3. Let K : E → B be a split fibration. If E has
set-indexed coproducts, and if a generalised sum of splitting
morphisms is splitting, then every IR-code c : IR K induces a
functor [[c]] : E sp → E sp.

Proof: In Lemma 1, we saw how [[c]] maps objects of E
to objects of E . As the objects of E and E sp are the same, this
defines the action of [[c]] on the objects of E sp. So now let us
define the action of [[c]] on a splitting morphism h : Q→ Q′

by looking at the three constructors for fibred IR-codes in turn.
• If c = ι P , then [[ι P]] was defined to be the constantly
P valued map on objects of E . Therefore we can define

[[ι P]] h = idP

• If c = σAf , then

[[σAf]] Q = Σa :A. [[fa]] Q

We have for every a : A a splitting morphism [[fa]] h :
[[fa]] Q→ [[fa]] Q′. by assumption, the sum of all these
morphisms is splitting and hence we can define

[[σAf]] h = Σa :A. [[fa]] h

• If c = δAF , then

[[δAF]] Q = Σg :A→ KQ. [[F (g∗Q)]] Q

Composition with K(h) gives a map K(h) ◦ − : (A →
KQ) → (A → KQ′), and by the induction hypothesis,
we have a family of splitting morphisms [[F (g∗Q)]] h :
[[F (g∗Q)]] Q → [[F (g∗Q)]] Q′. But by Lemma 3, Q =
K(h)∗Q′, hence

g∗Q = g∗ (K(h)∗Q′) = (K(h) ◦ g)∗Q′

Thus, the codomain of the morphism [[F (g∗Q)]] h is in
fact [[F ((K(h) ◦ g)∗Q′)]] Q′, which is exactly what we
need to form the generalised sum over K(h) ◦ −. Thus
we can define

[[δAF]] h = Σ(K(h) ◦ −, [[F (−∗Q)]] h)

Remark 1. Inspecting the proof, we see that it would go through
with any functor S : Fam(E sp) → E sp instead of Σ, but we
expect coproducts to most closely model the data types we are
interested in. Note that if the subcategory E sp is closed under
coproducts, then the condition is automatically true.
We can also offer the following alternative proof, based on
an “impredicative” decoding of a δ code. We make use of the
following lemma, used to switch between global structure in
the total category and local structure in the fibre.

Lemma 4 ([18] 1.4.10). Let K : E → B be a cloven fibration.
There is a natural isomorphism

E(X,Y) ∼= Σg : KX → K Y. EKX(X, g∗(Y))

If the fibration K is split, by Lemma 3 all fibres of Ksp are
discrete and we can rephrase the isomorphism from Lemma 5
for Ksp : E sp → B as

E sp(X,Y) ∼= {g : KX → K Y |X = g∗Y } (1)

Using (1), we can reformulate the decoding of a δ code:

[[δAF]]Q = Σg : A→ KQ. [[F (g∗Q)]]Q
∼= ΣX : |EA|.Σg : KX → KQ.[[F (X)]]Q× (X = g∗Q)
∼= ΣX : |EA|. E sp(X,Q)× [[F (X)]]Q

Here we use a constraint in the style of Henry Ford: choose
‘any X you like as long as it is g∗Q’. It is now easy to see
the action of [[δAF]] on a splitting morphism h : Q → Q′

after applying the isomorphism: It is a sum of pairs of actions,
where we can go from E sp(X,Q) to E sp(X,Q′) by composing
with h, and from [[F (X)]]Q to [[F (X)]]Q′ by the induction
hypothesis. If h was an arbitrary morphism, there would be
no guarantee that the composite would still be splitting.

The data type described by the fibred IR code c is the initial
algebra of [[c]]. We will show in Section III-D that this exists,
under certain conditions on the fibration K : E → B. But
first, let us look at some examples of fibred inductive-recursive
definitions.

C. Examples of Fibrational Induction-Recursion

We have shown that IR-codes c in IR K represent functors
[[c]] : E sp → E sp and hence data types using initial algebra
semantics. Here are some examples. Of course all fibrations
involved satisfy the conditions of Lemma 4.

Example 6. The families Fibration: We start with the
families fibration Fam(|D|)→ Sets from Example 3 because,
when we specialise fibred induction-recursion to this fibration,
we get a system of codes with exactly the same expressive
power as Dybjer and Setzer’s induction-recursion, i.e. they
define exactly the same class of functors.

Firstly, let us look at the IR-codes themselves. There is
a slight difference in the ι-codes as Dybjer and Setzer’s ι-
codes produce families with exactly one index. Our fibred
IR-codes a priori are more general as they produce families
with arbitrary index. However a family T : U → Sets is
actually the coproduct of the U -indexed set of families whose
u’th family has index 1 which decodes to Tu, that is (U, T) ∼=
Σu :U. (1, λ_.Tu). Hence our ι-codes can be simulated by
a Dybjer-Setzer σ-code built on top of ι-codes. Our σ-codes
are exactly the same as Dybjer and Setzer’s as are our δ-codes
when we realise that a function F : |EA| → IR K is exactly,
in the families fibration, a function F : (A→ D)→ IR K.

Next, when we look at the semantics of IR-codes, its clear
that both sets of codes interpret ι as constant functors and
σ as coproducts. As for the δ-constructor, these are seen to
define the same functors once we realise that, in the families
fibration, if we reindex a family T : U → Sets by a function
g : U ′ → U , we have g∗(U, T) = (U ′, T ◦ g).

Before leaving the families fibration, we would like to make a
final remark about the fibred presentation of induction-recursion.
The presentation of the fibred IR-codes and their semantics
seems conceptually cleaner and less notationally cumbersome –
for example, the use of coproducts in the total category to give
a uniform definition of [[−]], instead of a two phase definition
using [[−]]0 and [[−]]1, highlights mathematical structure one
might have missed. While the fibrational overhead is a price
to pay, we think there is merit in an algebraic presentation of
induction recursion to complement Dybjer and Setzer’s type
theoretic one. For most people however, we expect the merit
of fibrational induction recursion to be its power to define
new inductive-recursive structures by simply choosing new
fibrations. We see an example of this now when constructing
a universe of setoids.

Example 7. A Universe of Setoids: A setoid (|A| ,') in
type theory is a type |A| together with an equivalence relation
' on |A| (that is, a relation ' together with proofs of
reflexivity, transitivity and symmetry). Setoids are often used
when developing mathematics in type theory [6], as they
can simulate both quotient types and function extensionality.
Naturally, we would like to consider universes also in this
setting. By instantiating fibred induction-recursion in a fibration
of families of setoids, we can get such universes without any
more effort than if we were working with mere sets.

Following Palmgren [22], a family of setoids B : A →
Setoid consists of an index setoid A = (|A| ,') together with
an |A|-indexed family of setoids Ba : Setoid for a : |A| such
that if p is a proof that x ' y, then Bx and By are “the
same”, i.e. there is a “reindexing” bijection φp : Bx → By
(in a coherent way). Setoids naturally form a category Setoid,
with a morphism f : (|A| ,'A)→ (|B| ,'B) being a function
|f | : |A| → |B| which respects the equivalence relations.
Families of setoids form a category FamSetoid which is fibred
over Setoid in the same way Fam(Sets) is fibred over Sets. In
particular, the objects in the fibre EA are families of setoids
B : A→ Setoid with index setoid A.

Using fibred induction-recursion instantiated to this fibration,
we can now write down a code for a universe of setoids closed
under Σ-setoids:

cN,Σ = ι(1, λ_.N)+IRδ1(λA.δA?(λB.ι(1, λ_.ΣSetoid (A?)B)))

where c +IR d := σ2(λx.if x then c else d) encodes a binary
coproduct of IR-codes. Here 1 and N are the unit setoid
and setoid of natural numbers with the obvious equivalence
relations respectively. For A : Setoid and B : A → Setoid,
the sigma setoid is defined by ΣSetoidAB = (Σ |A| |B| ,'Σ)
where (x, y) 'Σ (x′, y′) if (∃p : x 'A x′)(φp(y) 'Bx′ y

′).
The code cN,Σ describes a universe (U, T) which contains

the natural numbers and is closed under sigma setoids; the
underlying family of sets |U | , |T | satisfies the same equations
as the universe of sets in the introduction, but all operations
now automatically preserve the equivalence relations. Note that
the code cN,Σ was obtained from the corresponding code for
sets simply by replacing sets with their setoid equivalents in
an entirely predictive way.

Example 8. The Relations Fibration: Within a relational
version of induction-recursion, we are interested in defining a
set-valued relation on a set X , that is a function R : X×X →
Sets. If from the existence of an element p : R(x1, x2), we
can construct new elements of X , then X cannot be defined
before R and we are really dealing with an induction-recursion
like structure rather than an instance of simpler indexed data
types.

One example of a such a structure is Conway’s ordered
field of surreal numbers [10]. This is a field which contains
the real numbers as a subfield and the ordinals as an ordered
substructure, and as we will see, it is defined in a relational
inductive-recursive way. Conway gave the following definition:
• A surreal number X = (XL, XR) consists of two sets XL

and XR of surreal numbers, such that every element from
XL is smaller than any element from XR. All surreal
numbers are constructed this way.

• A surreal number X = (XL, XR) is greater than another
surreal number Y = (YL, YR), Y ≤ X , if and only if

– there is no x ∈ XR such that x ≤ Y , and
– there is no y ∈ YL such that X ≤ y.

This is an induction-recursion like structure, as the
definition of the surreal numbers and the order relation on
them needs to be simultaneous. In Agda, using families
of types (with index sets from a universe U closed under
the standard type formers, to keep the definition small)
to model subsets, and bounded quantification ∀[x∈X]ψ(x)
for such subsets, we can give the following definition:

mutual
data Surreal : Set where

[[_|_]]_ : (XL : FamU Surreal) →
(XR : FamU Surreal) →
∀[xl ∈ XL](∀[xr ∈ XR] (xl ≤ xr))

→ Surreal
≤ : Surreal → Surreal → Set

[[YL | YR]] p ≤ [[XL | XR]] q
= (∀[x ∈ XR] (¬ (x ≤ [[YL | YR]] p)))
∧ (∀[y ∈ YL] (¬ ([[XL | XR]] q ≤ y)))

Example 9. The Category with Families Fibration: Cate-
gories with Families [17] were introduced by Dybjer as a syntax
free representation of type theories. A category with families
consists of a category C and a functor F : Cop → Fam(Sets)
with some extra structure. We think of C as a category of
contexts, and of F (Γ) as a family of terms, indexed by types,
all in the context Γ. The (large) category of categories with
families form a fibration with base category Cat, the category
of all small categories and the fibre above C consists of the
functors F : Cop → Fam(Sets) with their extra structure.

An interesting category with families for a given type theory
is the one formed from the syntax of the theory itself (the
“term model”). The construction thereof for dependent type
theories is famously induction-recursion like in nature; types
are indexed over contexts, but contexts can only be extended
by well-formed types. The syntax of dependent type theory
has been implemented this way in Agda. However it should
be pointed out that such constructions [8], [11] often use an
inductive instead of recursive definition of types, which leads
to the study of inductive-inductive definitions [21].

There are many similar examples: by using fibred induction-
recursion instantiated to the presheaves fibration, we can define
universes that automatically come equipped with a notion
of substitution. We could even consider inductive-recursively
defined fibrations themselves, since the category of fibrations
is again fibred over Cat.

The next example is more than just an example, but rather shows
the conceptual simplicity of fibrational induction-recursion.
After having studied containers, one needed to study indexed
containers. Dybjer and Setzer found a similar phenomenon
in that after studying induction-recursion they had to study
indexed induction-recursion [15] which allows one to define
a family of universes Ti : Ui → Di where I is an indexing
set. Thus, perhaps we need to develop an “indexed” form of
fibrational IR. This would somehow go against the grain as
fibrations are a theory of indexing and so there should not be
a need to index our fibrational induction-recursion. Fortunately
this is not the case and so we have reduced the need for
studying indexed induction-recursion by absorbing it within
the unifying framework of fibrational induction-recursion.

Example 10. Dybjer and Setzer’s Indexed IR: Let I by a
set of indices for types Di. Then Dybjer and Setzer’s indexed
induction-recursion arises as an example of fibred induction-
recursion where the base category consists of I-indexed sets,
i.e. the base category is [I, Sets], and the total category has as
objects the I-indexed product of Fam(|Di|). Note that rather
pleasingly this is just the I-indexed product of the individual
fibrations Fam(|Di|)→ Sets.

In the same vein, we observe that both simple inductive types
and inductive families in the form of containers and indexed
containers are part of the fibred inductive-recursive framework.

Example 11. Containers and Indexed Containers: Fibred IR
codes for the identity fibration Id : Sets→ Sets are exactly the
codes for inductive definitions. The class of functors definable
by these two schemes are therefore the same and they thus
coincide with the class of functors definable by containers
[20]. Indeed every code can be reduced to a “container normal
form” σS(λs. δP s ι1).

Also indexed containers coincide with a class of fibred IR
codes, this time for the domain fibration domI : Sets/I →
Sets where I is the fixed index set. Note that just as indexed
containers, and indeed induction recursion can be presented
with different input and outputs, so fibered induction recursion
generalizes smoothly to allow for codes IR K K ′ where K
and K ′ are different fibrations for input and output.

All of these examples have a similar fibrational structure,
namely we start with categories I and D and a functor F :
I→ Cat and then seek to define universes of the form (U, T)
where U is an object of I and T : FU → D is a functor. Such
universes are clearly fibered over I. We will work at this level
of abstraction in the journal version of this paper.

D. Existence of inititial algebras

We have shown that every IR code c gives rise to a functor
[[c]] : E sp → E sp. In this section, we show that these functors
indeed have initial algebras, under some conditions on the
fibration K : E → B. We do this by adapting Dybjer and
Setzer’s proof [13] to the fibrational setting. For the rest of
this section, we assume that K : E → B is a split fibration,
and that E sp has set-indexed coproducts.

Important for both their and our proof is keeping track of
the “size” of the index objects A appearing in the δ codes.
Crucially, these index objects may depend on the input object
Q we pass to the functor. To make this precise, we collect all
the index objects in a class Aux(c,Q):

Definition 6. For an IR code c and object Q in E , define the
collection Aux(c,Q) ⊆ |B| by induction over c:

Aux(ι(P), Q) = ∅ Aux(σAf,Q) =
⋃
a∈A

Aux(fa,Q)

Aux(δAF), Q) = {A} ∪
⋃

g : A→KQ
Aux(F (g∗Q), Q)

We now observe that if for certain Q, all A ∈ Aux(c,Q)
are "small" in a suitable sense then [[c]] is κ-continuous, i.e.
preserves κ-filtered colimits, for some regular κ. Hence, by
a standard argument – see e.g. Adámek et al. [?] – we can
conclude that [[c]] has an initial algebra as long as E sp has
κ-filtered colimits and an inital object.

The categorical notion of smallness we use is κ-presentability.
Recall that A is κ-presentable if B(A,−) : B → Sets preserves
κ-filtered colimits (see e.g. Adámek and Rosicky [4]). When
B is Sets, an object A is κ-presentable if and only if it
has cardinality |A| < κ, which is basically the set theoretic
definition of smallness used by Dybjer and Setzer. We also
require that every set of non-isomorphic β-presentable objects

of B has cardinality at most 2β . Note that this is always true
when B is Sets.

Lemma 5. Let
∨
iQi be a κ-filtered colimit for a diagram

Q : J → E sp with all A ∈ Aux(c,Qi) κ-presentable. If Ksp :
E sp → B preserves

∨
iQi, then so does [[c]] : E sp → E sp.

In order to ensure that the first hypothesis of the lemma holds
we need a meta theoretical assumption, namely the existence
of a Mahlo cardinal. This is not surprising, e.g. Dyber and
Setzer needed this assumption for their system which ours can
be instantiated to. Indeed within induction recursion we can
build inaccessible universes and hence our meta theory will
certainly involve large cardinals.

Recall that a cardinal M is a Mahlo cardinal if and only
if it is inaccessible and every normal (i.e. strictly monotone
and continuous at limit ordinals) function f : M → M has
an inaccessible fixed point. We also assume that all indexing
sets in the coproducts used in the decoding have cardinality at
most M. This can be achieved by considering sets from VM

only, the level M of the Von Neumann hierarchy which is a
model of ZFC since M is inaccessible – this is what Dybjer
and Setzer did. Working inside this model allows us to prove
that:

Lemma 6. Let c : IR K and (Qα) be the initial sequence of
the induced functor [[c]]. Then there exists an inaccessible κ
such that all A ∈ Aux(c,Qα) are κ-presentable for all α < κ.

By combining Lemma 6 and Lemma 7, we get:

Theorem 1. Under the assumptions of Lemma 7, if E sp has
κ-filtered colimits for κ as in Lemma 7, and Ksp preserves
them, then the functor [[c]] : E sp → E sp has an initial algebra.

Remark 2. In this section, we have assumed that E sp has
coproducts. As remarked in Section III-B, we could replace
coproducts with a functor S : Fam(E sp)→ E sp. For Theorem 1
to go through, we need S to i) preserve colimits, and have
the property that if (A,B) is a family with |A| < λ and all
B(x) are λ-presentable, then so is S(A,B); and ii) if A is
a set, then S(A,−) preserves filtered colimits. Importantly,
the relations fibration satisfies these criteria even though its
associated discrete fibration does not have coproducts. In the
journal version of this paper we will expand upon this.

IV. CONCLUSIONS AND FUTURE WORK

It is sad that induction-recursion remains a tool which few
people use and even fewer understand. We believe that part
of the problem is that induction-recursion needs an algebraic
presentation to complement the type theoretic one presented
by Dybjer and Setzer. We have presented such an algebraic
framework for induction-recursion and believe that i) the
fact that indexed induction-recursion as well as induction-
recursion can be found within fibrational induction-recursion
shows that the fibration perspective adds greater clarity to
our understanding of induction recursion; ii) structures such

as relational universes show that the fibrational framework
extends Dybjer and Setzer’s induction-recursion to a host of
other structures; and iii) the axiomatic nature of our semantics
shows that induction-recursion can be deployed in settings
where set theoretic models are deemed not to suffice. We have
shown that Dybjer and Setzer’s model construction can be
extended to construct initial algebras in many of those models.

As for the future, it is clear there is much to be done. We
have recently shown that the functors definable using small
induction-recursion, i.e. induction-recursion with the families
fibration Fam(D)→ Sets where D is a small set, are exactly
the indexed containers [20]. Is there a corresponding fibred
result, perhaps using small fibrations and the interpretation of
indexed containers in locally Cartesian closed categories? What
roles do fibred functors and algebraic set theory [19] play? Are
Dybjer and Setzer’s IR codes closed under composition as one
would expect? And finally, how do we turn induction-recursion
into standard programming languages technology?

ACKNOWLEDGMENT

This research is partially supported by EPSRC grants
EP/C0608917/1, EP/G033374/1.

REFERENCES

[1] M. Abbott, “Categories of containers,” Ph.D. dissertation, University of
Leicester, 2003.

[2] M. Abbott, T. Altenkirch, and N. Ghani, “Containers: Constructing strictly
positive types,” TCS, vol. 342, no. 1, pp. 3 – 27, 2005.

[3] J. Adámek, S. Milius, and L. Moss, “Initial algebras and terminal
coalgebras: a survey,” June 29 2010, draft.

[4] J. Adámek and J. Rosicky, Locally Presentable and Accessible Categories.
Prentice-Hall, 1994.

[5] T. Altenkirch and P. Morris, “Indexed containers,” in LICS, 2009, pp.
277 –285.

[6] G. Barthe, V. Capretta, and O. Pons, “Setoids in type theory,” Journal
of Functional Programming, vol. 13, no. 2, pp. 261–293, 2003.

[7] R. Bird and O. de Moor, Algebra of programming. Prentice-Hall, 1997.
[8] J. Chapman, “Type theory should eat itself,” Electronic Notes in

Theoretical Computer Science, vol. 228, pp. 21–36, 2009.
[9] J. Chapman, P.-É. Dagand, C. McBride, and P. Morris, “The gentle art

of levitation,” in ICFP, vol. 45, no. 9. ACM, 2010, pp. 3–14.
[10] J. Conway, On numbers and games. AK Peters, 2001.
[11] N. A. Danielsson, “A formalisation of a dependently typed language as

an inductive-recursive family,” LNCS, vol. 4502, pp. 93–109, 2007.
[12] P. Dybjer, “Inductive families,” Formal aspects of computing, vol. 6,

no. 4, pp. 440–465, 1994.
[13] P. Dybjer and A. Setzer, “A finite axiomatization of inductive-recursive

definitions,” in TLCA. Springer Verlag, 1999, pp. 129–146.
[14] ——, “Induction–recursion and initial algebras,” Annals of Pure and

Applied Logic, vol. 124, no. 1-3, pp. 1–47, 2003.
[15] ——, “Indexed induction–recursion,” Journal of logic and algebraic

programming, vol. 66, no. 1, pp. 1–49, 2006.
[16] N. Gambino and M. Hyland, “Wellfounded trees and dependent polyno-

mial functors,” in Types for Proofs and Programs, 2004, pp. 210–225.
[17] M. Hofmann, “Syntax and semantics of dependent types,” in Semantics

and Logics of Computation, 1997, pp. 79 – 130.
[18] B. Jacobs, Categorical Logic and Type Theory, ser. Studies in Logic and

the Foundations of Mathematics. North Holland, 1999, vol. 141.
[19] A. Joyal and I. Moerdijk, Algebraic Set Theory. Cambridge University

Press, 1995.
[20] L. Malatesta, T. Altenkirch, N. Ghani, P. Hancock, and C. McBride,

“Small induction-recursion,” in TLCA, 2013.
[21] F. Nordvall Forsberg and A. Setzer, “A finite axiomatisation of inductive-

inductive definitions,” in Logic, Construction, Computation, 2012, pp.
259 – 287.

[22] E. Palmgren, “Proof-relevance of families of setoids and identity in type
theory,” Archive for Mathematical Logic, vol. 51, pp. 35 – 47, 2012.

