
A Fresh Look at Commutativity: Free Algebraic
Structures via Fresh Lists

Clemens Kupke, Fredrik Nordvall Forsberg, and Sean Watters

University of Strathclyde

Abstract. We show how types of finite sets and multisets can be con-
structed in ordinary dependent type theory, without the need for quotient
types or working with setoids, and prove that these constructions realise
finite sets and multisets as free idempotent commutative monoids and
free commutative monoids, respectively. Both constructions arise as gen-
eralisations of C. Coquand’s data type of fresh lists, and we show how
many other free structures also can be realised by other instantiations.
All of our results have been formalised in Agda.

Keywords: Free algebraic structures · Dependent Type theory

1 Introduction

The type of lists is one of the most elementary inductive data types. It has been
studied and used extensively by computer scientists and programmers for decades.
Two conceptually similar structures are those of finite sets and multisets, which
can be thought of as unordered analogues to lists. However, capturing unordered
structures in a data type while maintaining desirable properties such as decidable
equality and the correct equational theory is challenging.

The usual approach to formalise unordered structures in mathematics is to
represent them as functions (with finite support): finite sets as X Ñ 2, and finite
multisets as X Ñ N, respectively. However, these representations do not enjoy
decidable equality, even if the underlying type X does.

The approach taken in most programming languages is to pretend — one
uses a list (or another ordered structure for efficiency) internally, but hides it and
any invariants behind a layer of abstraction provided by an API. However, each
set or multiset can then be represented by many different lists, meaning that
the equational theory might not be correct. This is a problem in a dependently
typed setting, where having equality as a first-class type allows us to distinguish
between different representations of the same set.

The analogous approach in dependent type theory is to encode these invariants
in an equivalence relation on lists, and define finite sets and multisets as setoids of
lists plus the appropriate equivalence relation [4]. However, this merely side-steps
the issue; we may still have two distinct lists which represent the same finite
(multi)set. Thus, we are forced to work with the equivalence relation at all times
instead of the identity type.



2 C. Kupke, F. Nordvall Forsberg, and S. Watters

In the setting of homotopy type theory [30] (HoTT), we can use higher
inductive types (HITs) to define the identities on an inductive type simultaneously
with its elements. This allows us to bridge the gap from the setoid approach to
obtain a data type which enjoys both decidable equality and the right equational
theory, as demonstrated by Choudhury and Fiore [9].

However, it may not always be possible to work in HoTT; thus, the main
question we set out to answer in this work is whether it is possible in ordinary
dependent type theory to define data types of finite sets and multisets, which:

(i) have decidable equality iff the underlying set has decidable equality; and
(ii) satisfy the equational theories of finite sets and multisets.

For the latter, we take as our success criteria the facts that the type of finite
sets is the free idempotent commutative monoid [13] and that finite multisets are
the free commutative monoid. Thus, we are really aiming to find data types for
the free idempotent commutative monoid and free commutative monoid, which
satisfy the above property (i). We accomplish this by restricting our attention to
only those sets with decidable equality that can be totally ordered. We can then
form a type of sorted lists over such a set. Provided we treat the existence of the
ordering data carefully, this type turns out to give us exactly finite sets when the
order is strict, and finite multisets when it is non-strict.

We show that our constructions satisfy universal properties, in the sense that
they are left adjoints to forgetful functors — this is the standard way to state
freeness in the language of category theory. However, note that the notion of
freeness is with respect to e.g. totally ordered monoids, rather than all monoids.
For proving the universal properties and for defining the categories involved, we
need function extensionality. Nevertheless the constructions themselves work in
ordinary dependent type theory.

Related Work Fresh lists, the key inductive data type of this work, were first
introduced by C. Coquand to represent contexts in the simply typed lambda
calculus [11], and then highlighted as an example of an inductive-recursive
definition by Dybjer [12]. The particular notion of fresh list discussed here is
a minor variation of the version found in the Agda standard library [2], which
generalises the notion of freshness to an arbitrary relation.

In Section 4 we discuss sorted lists and finite sets, both of which have been
extensively investigated in the past. Sorted lists are one of the archetypal examples
of a dependent type, with one particularly elegant treatment of them being given
by McBride [21]. Meanwhile, Appel and Leroy [3] recently introduced canonical
binary tries as an extensional representation of finite maps. These can be used to
construct finite sets with elements from the index type (positive natural numbers
for Appel and Leroy). The use of tries allows for significantly improved lookup
performance compared to lists, and with more work, it is conceivable that finite
sets with elements from an arbitrary but fixed first-order data type could be
extensionally represented this way [16]. Our representation using sorted lists is
not as efficient, but on the other hand works uniformly in the element type, as
long as it is equipped with a total order.



A Fresh Look at Commutativity 3

In the setting of HoTT, there is a significant body of existing work. Choudhury
and Fiore [9] give a treatment of finite multisets, showing how they can be
constructed using HITs. Joram and Veltri [19] continue this thread with a
treatment of the final coalgebra of the finite multiset functor. Earlier, Piceghello’s
PhD thesis [24] investigated coherence for symmetric monoidal groupoids, showing
an equivalence between free symmetric monoidal groupoids and sorted lists.
Building on this, Choudhury et al. [10] investigated the relationship between
sorting algorithms and the symmetric group Sn, as part of a study of the groupoid
semantics of reversible programming languages.

Contributions We make the following contributions:

– We show how finite sets and multisets can be constructed in ordinary depen-
dent type theory, without using quotient types or working with setoids.

– We prove that, assuming function extensionality, our finite sets construction
forms a free-forgetful adjunction between the category of sets equipped with
an order relation, and the category of idempotent, commutative monoids
equipped with an order relation. Similarly our finite multisets construction
form an adjunction between sets equipped with an order relation and the
category of commutative monoids equipped with an order relation.

– We show how the above constructions arise from instantiations of the data
type of fresh lists, and how other instantiations give free left-regular band
monoids, free reflexive partial monoids, free monoids, and free pointed sets.

All our constructions and results are formalised in the proof assistant Agda, using
the --safe and --cubical-compatible flags. The development [31] builds on
the Agda standard library, contains around 5,300 lines of code, and typechecks
in around 35 seconds on an Intel i5-1145G7 laptop with 16 GiB of RAM. An
HTML listing of the Agda code can be found at https://seanwatters.uk/agda/
fresh-lists/. Each result also has a clickable hyperlink Ó to the corresponding
formalised statement.

2 Preliminaries and setting

We work in the mathematical setting of Martin-Löf type theory, for example
as realised by Agda [23]. We write px : Aq Ñ B x for the dependent function
type, and use curly braces tx : Au Ñ B x when we wish to leave the argument x
implicit. We write a “ b for the identity type, and a :“ b for definitions.

We say that a type A is propositional if all its elements are equal, that is, if
px, y : Aq Ñ x “ y is provable. A type is a set if its identity type is propositional.
Many of the types we work with will turn out to be sets (indeed, at times we take
this as a prerequisite), but we do not assume Streicher’s Axiom K [27] at the
meta level, which states that every type is a set. On the other hand, we also do
not assume any features from homotopy type theory, but aim to stay compatible
with it. We write Type for the universe of all types, and Set and Prop for the
appropriate restrictions to sets and propositions, respectively.

https://seanwatters.uk/agda/fresh-lists/
https://seanwatters.uk/agda/fresh-lists/


4 C. Kupke, F. Nordvall Forsberg, and S. Watters

3 Fresh Lists

In this section we introduce the key notion of fresh lists. As we will see later,
depending on the notion of freshness, fresh lists can represent various data types
such as lists consisting of repetitions of one element, or lists where all elements
are distinct. For us the most important example of fresh lists will be sorted lists.
We will use these in Sections 4 and 5 as representations of the free (idempotent)
commutative monoid over a set equipped with an order relation.

In technical terms, the type of fresh lists is a parameterised data type similar
to the type of ordinary lists, with the additional requirement that in order to
adjoin a new element x to a list xs, that element x must be “fresh” with respect
to all other elements already present in the list xs. For convenience, we use an
inductive-inductive [22] simultaneous definition of the freshness predicate; the
Agda standard library instead uses an inductive-recursive definition.

Definition 1 (Ó). Given a type A and a binary relation R : A Ñ A Ñ Type,
we mutually inductively define a type FListpA,Rq, together with a relation #R :
AÑ FListpA,Rq Ñ Type, by the following constructors:

nil : FListpA,Rq

cons : px : Aq Ñ pxs : FListpA,Rqq Ñ x #R xsÑ FListpA,Rq

nil# : ta : Au Ñ a #R nil

cons# : ta : Au Ñ tx : Au Ñ txs : FListpA,Rqu Ñ tp : x #R xsu Ñ

R a xÑ a #R xsÑ a #R pcons x xs p q

For a, x : A, and xs : FListpA,Rq, we say that a is fresh for x when we have
R a x, and that a is fresh for xs when we have a #R xs.

Our presentation of fresh lists internalises the proof data in the cons construc-
tor. One alternative “externalised” approach is to define the type of fresh lists as
the type of pairs of an ordinary list, together with a single freshness proof for
the whole list. This externalised presentation is isomorphic to ours, but we do
not make further use of it in this work as we find it more convenient to enforce
our invariants at the level of the constructors.

Proposition 2 (Ó). For any R : A Ñ A Ñ Type, we have FListpA,Rq –
Σpxs : List Aq.is-freshR xs, where is-freshR : List AÑ Type is defined by

is-freshR nil :“ J

is-freshR pcons x xsq :“ pAll pR xq xsq ˆ pis-freshR xsq [\

The definition of the type of freshlists makes no explicit assumptions about
the properties of the relation R. Note in particular that R x y may or may not be
propositional. However, in practice, we would like to have that two freshlists are
equal if and only if their heads and tails are equal. For this, we need to require
x #R xs to be propositional for all x : A and xs : FListpA,Rq. This is the case
exactly when R x y is propositional for all x, y : A.

https://seanwatters.uk/agda/fresh-lists/index.html#Definition-1
https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-2


A Fresh Look at Commutativity 5

Proposition 3 (Ó). Let R : AÑ AÑ Type. The type Rxy is propositional for
all x, y : A if and only if x #R xs is propositional for all x : A and xs : FListpA,Rq.

Proof. If R is propositional, then any two p, q : x #R xs are equal by induction
over p and q. In the other direction, if p, q : Rxy, then cons# p nil#, cons# q nil# :
x #R rys, hence p “ q by assumption, and injectivity of cons#. [\

This gives us the expected characterisation of equality of fresh lists:

Corollary 4 (Ó). Assume R is propositional. We have cons x xs p “ cons y ys q
for any freshness proofs p and q if and only if x “ y and xs “ ys. In particular,
if A has decidable equality, then so does FListpA,Rq. [\

The following lemma tells us that when the freshness relation R is transitive,
then a #R xs can be established by a single proof that a is related to the head
of xs. It follows by a straightforward induction on xs.

Lemma 5 (Ó). If R is transitive, then for any a, x : A and xs : FListpA,Rq, if
Rax and x #R xs then a #R xs. [\

We next define the standard Any P predicate on fresh lists, which holds if
the predicate P is satisfied by some element of the list.

Definition 6 (Ó). Let P : A Ñ Type. The family Any P : FListpA,Rq Ñ Type
is defined inductively by the following constructors:

here : tx : Autxs : FListpA,Rqutp : x #R xsu Ñ P xÑ Any P pcons x xs pq

there : tx : Autxs : FListpA,Rqutp : x #R xsu Ñ Any P xsÑ Any P pcons x xs pq

Using this construction, we can now define the membership relation P on
fresh lists, i.e., the type of proofs x P xs that some element of xs is equal to x.

Definition 7 (Ó). For x : A and xs : FListpA,Rq, let

x P xs :“ Any pλpa : Aq. x “ aq xs .

The following lemma relates freshness and the membership relation: a is fresh
for xs if and only if a is related to every element in xs.

Lemma 8 (Ó). Let a : A and xs : FListpA,Rq. We have a #R xs if and only if
Ra b holds for every b : A such that b P xs. [\

Although the freshness proofs are essential when building a list, if we want to
do recursion on a given list, we frequently only care about the elements, not the
proofs (regardless of whether the freshness relation is propositional or not). As
such, we can define right fold in the same manner as for ordinary lists, and show
that it is the universal way to define functions which ignore freshness proofs.

https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-3
https://seanwatters.uk/agda/fresh-lists/index.html#Corollary-4
https://seanwatters.uk/agda/fresh-lists/index.html#Lemma-5
https://seanwatters.uk/agda/fresh-lists/index.html#Definition-6
https://seanwatters.uk/agda/fresh-lists/index.html#Definition-7
https://seanwatters.uk/agda/fresh-lists/index.html#Lemma-8


6 C. Kupke, F. Nordvall Forsberg, and S. Watters

Proposition 9 (Ó). For types X and Y , there is a function

foldr : pX Ñ Y Ñ Y q Ñ Y Ñ FListpX,Rq Ñ Y

satisfying foldr f e nil “ e and foldr f e pcons x xs pq “ f x pfoldr f e xsq, and
foldr is universal in the following sense: For all functions h : FListpX,Rq Ñ Y ,
if there is e : Y and f : X Ñ Y Ñ Y such that h nil “ e and h pcons x xs pq “
f x ph xsq, then h xs “ foldr f e xs for all xs : FListpX,Rq. [\

The proof is identical to the analogous one for ordinary lists [17].

4 Free Idempotent Commutative Monoids via Sorted Lists

The important mathematical concept of a (finite) set is also a useful abstract data
structure for programmers. In circumstances where we are only concerned with
whether a particular element is present or not, it is advantageous to represent
data in an unordered form. However, the details of exactly how to do this in a
programming context are not straightforward. Inductive data types such as lists
and trees, for example, are inherently ordered.

In this section, we unify the two notions of finite sets and sorted lists. We
instantiate fresh lists with a strict total order as the freshness relation, giving
a data type for sorted lists which cannot contain duplicates, and use this as
our representation of finite sets. The key idea is that instead of working with
ordinary lists quotiented by permutations (as Choudhury and Fiore [9] do), we
force every collection of elements to have exactly one permissible permutation via
our lists being sorted-by-construction. As a direct consequence, this type admits
an extensionality principle analogous to that of sets — two sorted lists are equal
if and only if they have the same elements.

4.1 Sorted Lists

We begin by defining the type SListpA,ăq of sorted duplicate-free lists over A as
an instance of FList.

Definition 10 (Ó). Let A be a type, and ă: AÑ AÑ Prop a propositional strict
total order, i.e., ă is propositional, transitive, and trichotomous: for every x, y : A,
exactly one of x ă y or x “ y or y ă x holds. Then let SListpA,ăq :“ FListpA,ăq.

We write # for #ă, for simplicity. Note that with this exclusive-disjunction
presentation of trichotomy, having a constructive witness that ă is trichotomous
immediately implies decidable equality on A. This makes intuitive sense as we
would like the question of whether an element can be appended to a list to be
decidable. By Hedberg’s theorem, having decidable equality also means that A is
a set [15].

We now define the binary operation which merges two sorted lists together,
suggestively named Y, with a view towards showing that pSListpA,ăq, Y, nilq is

https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-9
https://seanwatters.uk/agda/fresh-lists/index.html#Definition-10


A Fresh Look at Commutativity 7

an idempotent commutative monoid. We initially define the monoid multiplication
only on elements, without heed to whether any appropriate freshness proofs exist
that validate the definition. We then show that such proofs do exist for all inputs.

Proposition 11 (Ó). There is Y : SListpA,ăq Ñ SListpA,ăq Ñ SListpA,ăq
with

nil Y ys :“ ys

xs Y nil :“ xs

pcons x xs pq Y pcons y ys qq :“

$

’

&

’

%

cons x pxs Y pcons y ys qqq r if x ă y

cons x pxs Y ysq s if x “ y

cons y ppcons x xs pq Y ysq t if x ą y

for freshness proofs r, s, and t of the following types, which can be computed
mutually with the definition of Y:

r : x # pxs Y pcons y ys qqq

s : x # pxs Y ysq

t : y # ppcons x xs pq Y ysq

Proof. Mutually with the definition of Y, we prove that for all a : A and
xs, ys : SListpA,ăq, if a is fresh for both xs and ys, then a is fresh for xs Y ys.
The freshness proofs r, s, and t required can then be constructed from p and
q. The proof follows by induction on both lists. If either list is nil, then the
proof is trivial. Now consider the case where we must show that a is fresh for
pcons x xs pq Y pcons y ys qq, for some x, y : A, xs, ys : SListpA,ăq, p : x # xs,
and q : y # ys. By trichotomy, we have three cases to consider; either x ă y, x “ y,
or x ą y. If x ă y, then we must show that a # cons x pxs Y pcons y ys qqq. By
assumption, a ă x, and a # pxs Y pcons y ys qqq by the induction hypothesis.
The cases for x “ y and x ą y follow by similar arguments. [\

4.2 Sorted Lists form an Idempotent Commutative Monoid

We now prove that pSListpA,ăq, Y, nilq is an idempotent commutative monoid.
The main tool we use for this proof is an extensionality principle for sorted lists,
which is analogous to the axiom of extensionality for sets. In order to prove
the extensionality principle, we require the following lemma. Its proof follows
straightforwardly from the properties of ă.

Lemma 12 (Ó). Let a, x : A, xs : SListpA,ăq, and p : x # xs.

(i) If a ă x, then a R pcons x xs pq.
(ii) If a # xs, then a R xs. [\

We are now ready to prove the extensionality principle, which characterises
the identity type of SList.

https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-11
https://seanwatters.uk/agda/fresh-lists/index.html#Lemma-12


8 C. Kupke, F. Nordvall Forsberg, and S. Watters

Theorem 13 (Ó Extensionality Principle for SList). Given sorted lists
xs, ys : SListpA,ăq, we have pa P xsq ÐÑ pa P ysq for all a : A iff xs “ ys.

Proof. The direction from right to left is obvious. For the other direction, we
proceed by induction on both lists. The case where both are nil is trivial. The
cases where one is nil and the other is cons are trivially impossible.

We focus on the case where we must show pcons x xs pq “ pcons y ys qq,
for some x, y : A, xs, ys : SListpA,ăq, p : x # xs and q : y # ys. Assume
pa P cons x xs pq ÐÑ pa P cons y ys qq. By trichotomy, either x ă y, x ą y,
or x “ y. The former two cases are impossible by Lemma 12. Therefore, x “ y.
By Corollary 4, since ă is proof irrelevant, it now suffices to show xs “ ys. By
the induction hypothesis, this will be the case if pa P xsq ÐÑ pa P ysq. For the
forward direction, assume u : a P xs. Applying there u to our initial assumption,
we get a P pcons y ys qq. Either a “ y, or a P ys. The former case is impossible;
if a “ y, then a “ x by transitivity, so by Lemma 12, a R xs. But a P xs by
assumption. Contradiction. The other direction follows the same argument. [\

Using the extensionality principle, it is now not hard to prove that sorted
lists form an idempotent commutative monoid.

Proposition 14 (Ó). pSListpA,ăq, Y, nilq is an idempotent commutative monoid.
That is, the following equations hold for all xs, ys, zs : SListpA,ăq:

– unit: pnil Y xsq “ xs “ pxs Y nilq
– associativity: ppxs Y ysq Y zsq “ pxs Y pys Y zsqq
– commutativity: pxs Y ysq “ pys Y xsq
– idempotence: pxs Y xsq “ xs

Proof. The unit laws are trivial. For associativity, commutativity, and idempo-
tence, we first prove that a P pxs Y ysq if and only if a P xs or a P ys. The
equations then follow more or less directly using Theorem 13. [\

4.3 A Free-Forgetful Adjunction

Since singleton lists are always sorted, they clearly give an inclusion of the under-
lying type A into the type of sorted lists. We might thus hope that SListpA,ăq
can be characterised by the universal property of being the smallest idempotent
commutative monoid generated by A, i.e., that it is the free idempotent commu-
tative monoid. However, in order to form the type of sorted lists over some type
A, we must already have a strict total order on A. And we cannot assume that we
would be able to find such an order for any set; this is a weak form of the Axiom
of Choice, called the Ordering Principle (OP) (see e.g. [18, §2.3]), which implies
excluded middle, as proven by Swan [28]. As such, in our constructive setting,
the domain of the SList functor cannot be Set, as it lacks the required data to
form sorted lists. Instead of Set, we must consider a category whose objects are
linearly ordered sets (in the same sense as we have used thus far, which implies
decidable equality on the elements).

https://seanwatters.uk/agda/fresh-lists/index.html#Theorem-13
https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-14


A Fresh Look at Commutativity 9

We also require a forgetful functor from our category of idempotent commuta-
tive monoids into this category of linearly ordered sets, which intuitively needs to
retain this ordering data — we only want to forget the monoid structure. As such,
instead of the category of idempotent commutative monoids, we must consider
a category of such structures equipped with their own linear orders. There are
some design decisions to be made in defining these categories, regarding how
much structure the morphisms ought to preserve. Specifically, we must decide
whether they should be monotone with respect to the ordering data of the objects.
We argue that the correct decision here is (perhaps counter-intuitively) to not
preserve the order, a choice that we will motivate more fully in Section 4.4.

Definition 15 (Ó). Let STO denote the category whose objects are strictly totally
ordered types, and whose morphisms are (not necessarily monotone) functions on
the underlying types. That is:

– Objects are pairs pX, ăXq of a type X together with a propositional strict
total order ăX : X Ñ X Ñ Prop.

– Morphisms from pX, ăXq to pY, ăY q are functions X Ñ Y .

As previously remarked, the trichotomy property of ăX implies that X has
decidable equality, which in turn means that X is a set, by Hedberg’s theorem [15].

Definition 16 (Ó). Let OICMon denote the category whose objects are strictly
totally ordered idempotent commutative monoids (where the monoid multiplication
does not necessarily preserve ordering), and whose morphisms are (not necessarily
monotone) monoid homomorphisms. That is:

– Objects are 4-tuples pX, ăX , ¨X , ϵXq of a set X, a propositional strict total
order ăX : X Ñ X Ñ Prop, a binary operation ¨X : X Ñ X Ñ X, and an
object ϵX : X, such that pX, ¨X , ϵXq is an idempotent commutative monoid.

– Morphisms from pX, ăX , ¨X , ϵXq to pY, ăY , ¨Y , ϵY q are functions f :
X Ñ Y which preserve units and multiplication.

Since morphisms in OICMon formally carry witnesses that the underlying
functions preserve unit and multiplication, this could potentially make proofs of
equality between such morphisms troublesome. Thankfully, because the underly-
ing types are sets, these troubles do not materialise, as long as we have function
extensionality. This is recorded in the following lemma.

Lemma 17 (Ó). Assuming function extensionality, two morphisms of OICMon
are equal if and only if their underlying set functions are (pointwise) equal. [\

We must now show that as well as being idempotent commutative monoids,
our sorted lists also come equipped with strict total orders. We do this by defining
a lifting of orders on a type to orders on sorted lists over that type, using the
lexicographic order. Note that while we require the existence of an order to have
an object in OICMon, the exact choice of order does not matter; any two objects
in the category with the same underlying set will be isomorphic.

https://seanwatters.uk/agda/fresh-lists/index.html#Definition-15
https://seanwatters.uk/agda/fresh-lists/index.html#Definition-16
https://seanwatters.uk/agda/fresh-lists/index.html#Lemma-17


10 C. Kupke, F. Nordvall Forsberg, and S. Watters

Proposition 18 (Ó). Let ă be a propositional strict total order on a type A.
Then the lexicographic order ăL on SListpA,ăq, defined inductively below, is also
a propositional strict total order.

nilăL
: ty : Au tys : SListpA,ăqu tq : y # ysu

Ñ nil ăL cons y ys q

hereăL
: tx, y : Au txs, ys : SListpA,ăqu tp : x # xsu tq : y # ysu

Ñ x ă y Ñ cons x xs p ăL cons y ys q

thereăL
: tx, y : Au txs, ys : SListpA,ăqu tp : x # xsu tq : y # ysu

Ñ x “ y Ñ xs ăL ysÑ cons x xs p ăL cons y ys q [\

We can now show that SList is a functor STO Ñ OICMon, with action on
objects given by SListpA,ăAq :“ pSListpA,ăAq,ăL,Y, nilq. We define the action
on morphisms on the underlying sets, and then show that it preserves the monoid
structure, and hence is a morphism in OICMon. Our implementation of map for
sorted lists is essentially insertion sort; we take a function on the underlying set,
apply it to each element, and insert the result into the output list.

Definition 19 (Ó). Given two types A and B with strict total orders ăA: AÑ
AÑ Prop and ăB : B Ñ B Ñ Prop, let:

map : pAÑ Bq Ñ SListpA,ăAq Ñ SListpB,ăBq

map f nil :“ nil

map f pcons x xs pq :“ insert pf xq pmap f xsq

where insert x xs :“ pcons x nil nil#q Y xs.

We now show that map preserves the monoid structure, and hence is a
morphism in OICMon. The proof uses Theorem 13.

Lemma 20 (Ó). For all functions f : AÑ B and xs, ys : SListpA,ăq, we have

map f pxs Y ysq “ pmap f xsq Y pmap f ysq [\

Similarly, assuming function extensionality and using Lemma 17, we can show
that map preserves identity and composition, and hence is a functor.

Theorem 21 (Ó). Assuming function extensionality, SList : STO Ñ OICMon
forms a functor which is left adjoint to the forgetful functor U : OICMonÑ STO
defined by UpX,ă, ¨, ϵq :“ pX,ăq.

Proof. The bijection on homsets sends a monoid morphism f : SListpA,ăAq Ñ

pB,ă, ¨, ϵq to the function f̂ : AÑ B defined by f̂ :“ λpx : Aq. f pcons x nil nil#q,
and a function g : AÑ B to the monoid morphism ǧ : SListpA,ăAq Ñ pB,ă, ¨, ϵq

defined by ǧ :“ foldr pλpa : Aqpb : Bq. pg aq ¨B bq ϵB . The fact that
ˇ̂
f “ f follows

from Proposition 9. The proofs of ˆ̌g “ g and naturality follow by unfolding the
definitions and Lemma 17 — hence the assumption of function extensionality. [\

https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-18
https://seanwatters.uk/agda/fresh-lists/index.html#Definition-19
https://seanwatters.uk/agda/fresh-lists/index.html#Lemma-20
https://seanwatters.uk/agda/fresh-lists/index.html#Theorem-21


A Fresh Look at Commutativity 11

4.4 Motivating the Lack of Monotonicity

We now return to our decision to not require monotonicity for the morphisms of
STO and OICMon. That we require our objects to have ordering information at
all could be seen as an implementation detail; the ordering is needed to form the
type of sorted lists, but thereafter we would like to treat them as finite sets.

For an illustrative example, consider the different notions of map that we
obtain with and without monotonicity (recall Definition 19 for the latter). With
monotonicity, we would obtain a functorial action which applies a monotone
function to each element in place, such that map is also monotone. However, in
practice we do not find much value in respecting whichever arbitrary order was
chosen; we would rather have the freedom to lift any function to act on sorted
lists, and have the implementation of map handle the details. In practice, we
are mostly interested in finite sets over first order inductive data types anyway,
and these can always be totally ordered. More provocatively: since we work on a
computer, all of our data ought to be represented by a bit pattern in the end
anyway, and by considering not necessarily monotone functions, we ensure that
the particular choice of ordering derived from these bit patterns play no role.

In the same spirit, one could wonder if there is actually any difference between
the categories STO and Set. After all, since morphisms are not monotone, all
objects in STO with the same underlying type are actually isomorphic. The
following proposition makes clear what kind of choice principle is needed in order
to choose a canonical representative for these isomorphism classes. Recall that
the Ordering Principle states that every set can be totally ordered: for every set
X, there is a strict total order on X. This principle is weaker than the Axiom of
Choice, but not provable in ZF set theory [25]; in the context of Homotopy Type
Theory, Swan proved that the Ordering Principle implies Excluded Middle [28].

Proposition 22 (Ó). The Ordering Principle holds if and only if both forgetful
functors USTO : STOÑ Set and UOICMon : OICMonÑ ICMon are equivalences.

Proof. If the Ordering Principle holds, then each type can be equipped with an
strict total order, which gives an inverse to each forgetful functor. Conversely, an
inverse to the forgetful functors equips each set with a strict total order. [\

Thus, in the presence of the non-constructive Ordering Principle, sorted lists are
the free idempotent commutative monoid over sets. However we prefer to stay
constructive and ask for more input data in the form of an order instead.

5 Free Commutative Monoids via Sorted Lists with
Duplicates

Finite multisets have long been applied across computer science, particularly in
database theory [6]. However their unordered nature again makes representing
them in a data type challenging. We have seen that when we consider fresh lists
with a strict total order as the freshness relation, we obtain a data type for sorted

https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-22


12 C. Kupke, F. Nordvall Forsberg, and S. Watters

lists which contain no duplicate elements. If we drop the requirement that the
order is irreflexive, we obtain a type SListDpA,ďq of sorted lists where repetitions
are allowed. The corresponding notion of trichotemy in this setting is totality of
the order (i.e., for all x and y, either x ď y or y ď x), together with decidability
of both the order and the equality on the underlying type.

Definition 23 (Ó). Let A be a type with decidable equality, and ď: AÑ AÑ
Prop a propositional, decidable total order. Then let SListDpA,ďq :“ FListpA,ďq.

Again we write # for #ď. Using the decidability of the order, we can now again
define the merge operation on sorted lists.

Proposition 24 (Ó). There is Y : SListDpA,ďq Ñ SListDpA,ďq Ñ SListDpA,ďq
with

nil Y ys :“ ys

xs Y nil :“ xs

pcons x xs pq Y pcons y ys qq :“

#

cons x pxs Y pcons y ys qqq r if x ď y

cons y ppcons x xs pq Y ysq s otherwise

where freshness proofs r and s with the following types exist by the same argument
as in Proposition 11:

r : x # pxs Y pcons y ys qqq

s : y # ppcons x xs pq Y ysq [\

Just as SList corresponds to finite sets and free idempotent commutative monoids,
SListD corresponds to finite multisets and free commutative monoids. Our proof
strategy follows the same structure as for Theorem 13, with one notable exception
— the extensionality principle as stated for SList is not true for SListD, where for
example ra, as and ras have the same elements, but with different multiplicity.
Put differently: as Gylterud noted, the membership relation is prop-valued for
sets, but set-valued for multisets [14, § 3.5]. As such, the extensionality principle
for multisets uses isomorphism rather than logical equivalence: multisets xs and
ys are equal if and only if pa P xsq » pa P ysq for every element a.

However, isomorphisms can be onerous to work with formally, and we can do
better. Note that there will be a function count : SListDpA,ďq Ñ AÑ N which,
given a sorted list and some element of A, returns the number of occurrences
of that element in the list. We can also think of this function as converting a
sorted list to its multiplicity function. The extensionality principle that we will
prove is the following: two sorted list with duplicates are equal if and only if
their multiplicity functions are pointwise equal. We stress that we do not need to
assume function extensionality for this result.

We prove the non-trivial “if” direction in two stages: pointwise equality of
multiplicity functions implies isomorphism of membership relations, which in
turn implies equality of sorted lists. First, we define the count function:

https://seanwatters.uk/agda/fresh-lists/index.html#Definition-23
https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-24


A Fresh Look at Commutativity 13

Definition 25 (Ó). Let count : SListDpA,ďq Ñ AÑ N, where:

count nil x :“ 0

count pcons y ys pq x :“

#

1` pcount ys xq if x “ y

count ys x otherwise

We collect some basic properties of the count function.

Lemma 26 (Ó).

(i) For any x : A and ys : SListDpA,ďq, if x R ys then count ys x “ 0.
(ii) If for all a : A we have count pcons x xs pq a “ count pcons y ys qq a, then

for all a : A also count xs a “ count ys a.

Proof. Part (i) follows by induction on ys. For (ii), by decidable equality of A,
either x “ y, or x ‰ y, and by decidability of ď, either x ď y, or y ď x. Without
loss of generality, assume x ď y.

If x “ y, then peeling away the heads will either preserve the number of as on
both sides, or decrement each count by one; in either case, the conclusion follows.

If x ‰ y, we consider the four cases where each of x and y are either equal
to a or not. The case where x ‰ a ‰ y follows by the same argument as when
x “ y. The case where x “ a “ y is impossible since x ‰ y. Finally, also the case
where x “ a ‰ y (or the other way around) is impossible: we have a “ x ď y and
y # ys, hence a R cons y ys q, hence count pcons y ys qq a “ 0 by (i). But since
a “ x, we have that count pcons x xs pq a ě 1, contradicting the assumption. [\

We are now ready to prove the first step towards the extensionality principle.

Proposition 27 (Ó). Let xs, ys : SListDpA,ďq. If count xs a “ count ys a for
all a : A, then we have isomorphisms pa P xsq – pa P ysq for all a : A.

Proof. The proof proceeds by induction on both lists. The case where both lists
are nil holds trivially. Both cases where one is nil and the other is not are trivially
impossible. When the lists are of the form cons x xs p and cons y ys q, we can
apply Lemma 26 to obtain that count xs a “ count ys a for all a : A. Then by
the induction hypothesis, there is f : pa P xsq – pa P ysq. We now apply decidable
equality of A to make a case distinction between x “ y and x ‰ y. If x “ y,
we extend the isomorphism f by sending here p to here p and shifting the old
proofs of membership by there. The other case x ‰ y is impossible, which we
now show. By Lemma 26, we have count xs x “ count ys x for all a : A. Hence
by instantiating the hypothesis with x, we have, since x ‰ y,

count pcons x xs pq x “ count pcons y ys qq x “ count ys x “ count xs x

but also count pcons x xs pq x “ 1` count xs x, which is a contradiction. [\

We now prove the second step: sorted lists are equal if and only if they have
isomorphic membership relations. We first show that we can “peel off” the same
head and still have isomorphic membership relations for the tails of the lists.

https://seanwatters.uk/agda/fresh-lists/index.html#Definition-25
https://seanwatters.uk/agda/fresh-lists/index.html#Lemma-26
https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-27


14 C. Kupke, F. Nordvall Forsberg, and S. Watters

Lemma 28 (Ó). For all b : A, xs, ys : SListDpA,ďq, and freshness proofs p and
q, if we have an isomorphism pa P cons b xs pq – pa P cons b ys qq for every
a : A, then we also have an isomorphism pa P xsq – pa P ys) for every a : A.

Proof. Given an isomorphism f : pa P cons b xs pq Ñ pa P cons b ys qq, we
construct a function gxs,ys : a P xsÑ a P ys, and show that gys,xs is the inverse
of gxs,ys. Given u : pa P xsq, we have a P pcons b ys qq, by f pthere uq. There
are two possible cases: if f pthere uq “ there v for some v : a P ys, then we take
gpuq “ v. Otherwise if f pthere uq “ here v for some v : a “ b, then we can apply
f again. If f phere vq “ there w for some w : a P ys, then we take gpuq “ w.
If f phere vq “ here w for some w : a “ b, then we can derive a contradiction:
since equality on A is propositional, v “ w, and hence f phere vq “ f pthere uq,
and applying the inverse of f to both sides, we get here v “ there u. However,
different constructors of an inductive type are never equal. [\

Using this lemma, we can now prove the extensionality principle for sorted
lists with duplicates up to isomorphism of membership. Note that this theorem
is not true for ordinary lists — it relies on the lists being sorted.

Proposition 29 (Ó). Let xs, ys : SListDpA,ďq. If for all a : A we have isomor-
phisms pa P xsq – pa P ysq, then xs “ ys.

Proof. By induction on xs and ys; the only non-trivial case is when the lists are
of the form cons x xs p and cons y ys q, in which case they are equal if x “ y
and xs “ ys by Corollary 4. We have xs “ ys by Lemma 28 and the induction
hypothesis. To prove x “ y, note that x P cons y ys q and y P cons x xs p by the
assumed isomorphism. Thus either x “ y, or x P ys and y P xs. In the former case,
we are done, and in the latter case, since also x # xs and y # ys, we then have
both x ď y and y ď x by Lemma 8, so that indeed x “ y by antisymmetry. [\

Combining Propositions 27 and 29, we get a convenient characterisation of
the identity type for sorted lists with duplicates.

Theorem 30 (Ó Extensionality Principle for SListD). For sorted lists
xs, ys : SListDpA,ďq, if count xs a “ count ys a for all a : A, then xs “ ys. [\

We can now put this principle to use in order to prove that sorted lists with
duplicates satisfies the axioms of a commutative monoid. This is very direct, after
proving that count pxs Y ysq a “ count xs a` count ys a for all a : A.

Proposition 31 (Ó). pSListDpA,ďq, Y, nilq is a commutative monoid. [\

From here, we can define a category DTO of propositional decidable total
orders with decidable equality, whose morphisms are not necessarily monotone
functions between the underlying sets, and a category OCMon of ordered com-
mutative monoids. By using the lexicographic order ďL on sorted lists, SListD
can be extended to a functorial mapping DTOÑ OCMon, which is left adjoint
to the forgetful functor from OCMon to DTO. This exhibits SListDpA,ďq as the
free commutative monoid over A. The proofs are similar to the ones in Section 4,
so we simply state the main result:

https://seanwatters.uk/agda/fresh-lists/index.html#Lemma-28
https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-29
https://seanwatters.uk/agda/fresh-lists/index.html#Theorem-30
https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-31


A Fresh Look at Commutativity 15

Proposition 32 (Ó). Let A be a type with decidable equality and ď : AÑ AÑ
Prop a propositional decidable total order. Assuming function extensionality,
pSListDpA,ďq,ďL,Y, nilq is the free commutative monoid over A, i.e., SListD :
DTO Ñ OCMon forms a functor which is left adjoint to the forgetful functor
U : OCMonÑ DTO defined by UpX,ď, ¨, ϵq :“ pX,ďq. [\

Again we can get rid of the order relations if and only if we accept a little
non-constructivity: The Ordering Principle holds if and only if both forgetful
functors UDTO : DTOÑ Set and UOCMon : OCMonÑ CMon are equivalences.

6 Notions of Freshness for Other Free Structures

There are other notions of freshness relations that one can consider. These give
rise to many other familiar free structures, some of which we consider here.

6.1 Free monoids

It is well known that free monoids can be represented as ordinary lists, with
list concatenation as multiplication, and the empty list as the unit. A moment’s
thought gives that lists are the same thing as fresh lists with the constantly
true relation as the freshness relation, i.e., when everything is fresh. Further, the
category of sets equipped with their constantly true relation is isomorphic to the
category of sets. We thus achieve the following theorem:

Proposition 33 (Ó). Let RJ denote the complete relation on A. Then List A
is isomorphic to FListpA,RJq, and hence, assuming function extensionality,
FListpA,RJq is the free monoid over the set A, i.e., FListp´, RJq : Set Ñ Mon
forms a functor which is left adjoint to the forgetful functor U : Mon Ñ Set
defined by UpX, ¨, ϵq :“ X. [\

6.2 Free pointed sets

If we instead choose the constantly false relation, then we can only construct
lists of lengths at most 1: creating a two-element list would require a proof that
the first element is “fresh” for the second, i.e., a proof of falsity. This means that
fresh lists for this relation gives rise to free pointed sets: elements can be included
as singleton lists, and there is a new canonical point, namely the empty list. This
is nothing but the Maybe monad in disguise! The category of sets equipped with
their constantly false relation is again isomorphic to the category of sets, and
writing Set‚ for the category of pointed sets, we have:

Proposition 34 (Ó). Let RK denote the empty relation on A. Then Maybe A
is isomorphic to FListpA,RKq, and hence, assuming function extensionality,
FListpA,RKq is the free pointed set over the set A, i.e., FListp´, RKq : SetÑ Set‚

forms a functor which is left adjoint to the forgetful functor U : Set‚ Ñ Set
defined by UpX,xq :“ X. [\

https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-32
https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-33
https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-34


16 C. Kupke, F. Nordvall Forsberg, and S. Watters

6.3 Free Left-Regular Band Monoids

What kind of free structure do we get if we consider C. Coquand’s original use of
fresh lists for the inequality relation, or, more generally, for an apartness relation?
Recall that an apartness relation ff : A Ñ A Ñ Prop is a binary propositional
relation satisfying axioms dual to those of an equivalence relation:

– irreflexivity : for all x : A, we do not have x ff x;
– symmetry : for all x, y : A, if y ff x then x ff y; and
– cotransitivity : for all x, y, z : A, if x ff y, then x ff z or z ff y.

An apartness relation ff is tight, if ␣x ff y Ñ x “ y. For any type X, there is
a canonical “denial inequality” apartness relation ‰: X Ñ X Ñ Type given by
x ‰ y :“ ␣px “ yq (which is tight if X has decidable equality), but there are
often other more informative apartness relations for specific types.

In a fresh list where the notion of freshness is given by an apartness relation,
it is thus indeed the case that if x #ff xs, then x does not occur in xs due to
the irreflexivity axiom. One might think that this should give rise to idempotent
monoids, but in fact an even stronger axiom is satisfied, which allows to cancel a
second occurrence of the same element also when there is an arbitrary number of
elements between the occurrences. Such monoids are known as left regular band
monoids [7] (and also as graphic monoids [20]).

Definition 35 (Ó). A left-regular band monoid is a monoid pX, ¨, ϵq, such that
for any x, y : X, we have x ¨ y ¨ x “ x ¨ y.

Of course, a left-regular band monoid is in particular idempotent, since

x ¨ x “ x ¨ ϵ ¨ x
LR
“ x ¨ ϵ “ x

for any x : X. We will now show that fresh lists for a decidable tight apartness
relation gives rises to left-regular band monoids, again equipped with a decidable
tight apartness relation. An apartness relation ff is tight and decidable if and only
if for any x, y : A, we have either x “ y or x ff y — we will need this property
to be able to remove elements from lists. Types equipped with a decidable tight
apartness relation form a category Typedec-apart, whose morphisms are functions
between the underlying types. Note that due to the decidability of the apartness
relation, the underlying type also has decidable equality, and hence is in fact
a set. Similarly, left-regular monoids equipped with apartness relations form a
category LRMonapart, whose morphisms are monoid homomorphisms.

Proposition 36 (Ó). Let A be a type and ff: A Ñ A Ñ Prop a decidable
tight apartness relation. Assuming function extensionality, pFListpA,ffq,‰q is the
free left regular band monoid with a decidable tight apartness relation over the
apartness type pA,ffq, i.e., FList : Typedec-apart Ñ LRMonapart forms a functor
which is left adjoint to the forgetful functor U : LRMonapart Ñ Typedec-apart
defined by UpX, ¨, ϵ,ffq :“ pX,ffq.

https://seanwatters.uk/agda/fresh-lists/index.html#Definition-35
https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-36


A Fresh Look at Commutativity 17

Proof. To construct a monoid operation on FListpA,ffq, we first use tightness
and decidability of ff to define element removal ´zt´u : FListpA,ffq Ñ A Ñ

FListpA,ffq, with nilztxu “ nil, and

pcons y ys pqztxu “

#

ys if x “ y

cons y pysztxuq pz-freshppqq if x ff y

where z-fresh : y #ff ys Ñ y #ff pysztxuq is defined simultaneously. For each
zs : FListpA,ffq and y : A, we then prove z-removespzs, yq : y #ff pzsztyuq by
induction on zs. We define the monoid multiplication on FListpA,ffq as follows:

nil Y ys :“ ys

pcons x xs pq Y ys :“ cons x ppxs Y ysqztxuq pz-removespxs Y ys, xqq

Associativity and the left regular band identity xs Y ys Y zs “ xs Y ys
are proven by induction on the lists involved. Finally the adjunction is proven
similarly to the other fresh lists adjunctions. [\

6.4 Free Reflexive Partial Monoids

Next we consider fresh lists for the equality relation on a set A. After forming a
singleton list, we can only extend it by adding more copies of the already existing
element in the list. Such a fresh list is thus either the empty list, or consists of
n ą 0 copies of some element in A:

Lemma 37 (Ó). Let A be a set. Fresh lists for the equality relation FListpA,“q
are isomorphic to structures of the form 1` pAˆ Ną0q. [\

All our previous instantiations have been, at the very least, monoids. But what
is the correct notion of multiplication for FListpA,“q? In particular, how should
we define it for lists which contain different elements, for example ra, as ¨ rbs?
There is no sensible way to combine these lists to produce a fresh list — we
would like the monoid multiplication to be undefined in such cases. This leads
us to consider the notion of partial monoids [26] (also called pre-monoids [5]):
monoid-like structures that come with a “definedness” predicate which tells us
when two elements may be multiplied.

Definition 38 (Ó). A partial monoid is a set X : Set together with a proposi-
tional relation ¨ Ó: X Ñ X Ñ Prop, a dependent function op : px, y : Xq Ñ
px ¨ y Óq Ñ X, and an element ϵ : X, such that the following axioms hold, where
we write x ¨p y for op x y p.

– identity: For all x : X, we have ιx,ϵ : px ¨ ϵ Óq and ιϵ,x : pϵ ¨ x Óq, and
x ¨ιx,ϵ

ϵ “ x “ ϵ ¨ιϵ,x x;
– associativity: For all x, y, z : X,

pΣpp : py ¨ z Óqq.px ¨ py ¨p zq Óqq ÐÑ pΣpq : px ¨ y Óqq.ppx ¨q yq ¨ z Óqq

and for all p : py ¨ z Óq, p1 : px ¨ py ¨p zq Óq, q : px ¨ y Óq, q1 : ppx ¨q yq ¨ z Óq, we
have x ¨p1 py ¨p zq “ px ¨q yq ¨q1 z.

https://seanwatters.uk/agda/fresh-lists/index.html#Lemma-37
https://seanwatters.uk/agda/fresh-lists/index.html#Definition-38


18 C. Kupke, F. Nordvall Forsberg, and S. Watters

A partial monoid is reflexive if px ¨ x Óq for all x : X.

Using Lemma 37, it is now not hard to show that FListpA,“q is a reflexive
partial monoid with inl ˚ as unit, and ppinr px, nqq ¨ pinr py,mqq Óq holding exactly
when x “ y, with inr px, nq¨refl inr px,mq “ inr px, n`mq. To show that FListpA,“q
is the free reflexive partial monoid, we need to be able to construct powers xn in
arbitrary reflexive partial monoids. For example, x3 “ x ¨ px ¨xq is defined because
px ¨ xq ¨ px ¨ xq is defined by reflexivity, hence by associativity also x ¨ px ¨ px ¨ xqq
is defined, and in particular x3 “ x ¨ px ¨ xq is defined. In the general case, we
define xn by induction on n : N, and simultaneously prove that both px ¨ xk Óq

and pxm ¨ x Óq for all k,m : N, as well as that x ¨ xℓ “ xℓ ¨ x for all ℓ : N.
A morphism between partial monoids is a function between the carriers that

preserves definedness and operations. Reflexive partial monoids and their mor-
phisms form a category RPMon, and we again obtain a free-forgetful adjunction:

Proposition 39 (Ó). Let A be a set. Assuming function extensionality, the set
FListpA,“q with definedness relation and operations as described above is the free
reflexive partial monoid over A, i.e., FList : SetÑ RPMon forms a functor which
is left adjoint to the forgetful functor U : RPMonÑ Set. [\

7 Conclusions and Future Work

We have shown how finite sets and multisets can be realised as fresh lists in
plain dependent type theory, resulting in a well-behaved theory with good
computational properties such as decidable equality, and without resorting to
setoids or higher inductive types. Our only requirement is that the type we
start with can be equipped with an order relation — a strict total order for
finite sets, and a non-strict one for finite multisets. However, as suggested by a
reviewer, relative adjunctions [29] can perhaps be used to formulate a universal
property also over unordered structures. We have also shown how many other free
structures can be understood in this unifying framework, such as free monoids,
free pointed sets, and free left-regular band monoids. Measuring the efficiency of
for example deciding equality in our free structures is left as future work.

There are many more algebraic structures that could be studied from the
point of view of fresh lists, such as Abelian groups. Free algebraic structures
without associativity tend to correspond to variations on binary trees [8]; as such,
it would make sense to also investigate notions of “fresh trees”, or perhaps a
general notion of freshness for containers [1]. It would also be interesting to pin
down exactly in which sense SList realises a predicative finite power set functor
in type theory. One future use for this could be a constructive framework for
modal logics supporting verification algorithms that are correct by construction.

Acknowledgements We thank Guillaume Allais for interesting suggestions,
Ezra Schoen for the idea to consider reflexive partial monoids in Section 6.4, and
the referees for insightful comments and improvements. This work was supported
by the Engineering and Physical Sciences Research Council [EP/W52394X/1];
the National Physical Laboratory; and the Leverhulme Trust [RPG-2020-232].

https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-39


A Fresh Look at Commutativity 19

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Categories of containers. In: Gordon, A.D.
(ed.) Foundations of Software Science and Computational Structures (FoSSACS
’03). Lecture Notes in Computer Science, vol. 2620, pp. 23–38. Springer (2003).
https://doi.org/10.1007/3-540-36576-1_2

2. The Agda Community: Agda standard library (2023), https://github.com/agda/
agda-stdlib

3. Appel, A.W., Leroy, X.: Efficient extensional binary tries. Journal of Automated
Reasoning 67(1), 8 (2023). https://doi.org/10.1007/s10817-022-09655-x

4. Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. Journal of Functional Pro-
gramming 13(2), 261–293 (2003). https://doi.org/10.1017/S0956796802004501

5. Bessis, D.: The dual braid monoid. Annales scientifiques de l’Ecole normale
supérieure 36(5), 647–683 (2003). https://doi.org/10.1016/j.ansens.2003.01.
001

6. Blizard, W.D.: The development of multiset theory. Modern Logic 1(4), 319 – 352
(1991)

7. Brown, K.S.: Semigroups, rings, and Markov chains. Journal of Theoretical Proba-
bility 13(3), 871–938 (2000). https://doi.org/10.1023/a:1007822931408

8. Bunkenburg, A.: The Boom hierarchy. In: O’Donnell, J.T., Hammond, K. (eds.)
Proceedings of the 1993 Glasgow Workshop on Functional Programming. pp. 1–8.
Springer (1994). https://doi.org/10.1007/978-1-4471-3236-3_1

9. Choudhury, V., Fiore, M.: Free commutative monoids in Homotopy Type Theory.
In: Hsu, J., Tasson, C. (eds.) Mathematical Foundations of Programming Semantics
(MFPS ’22). Electronic Notes in Theoretical Informatics and Computer Science,
vol. 1 (2023). https://doi.org/10.46298/entics.10492

10. Choudhury, V., Karwowski, J., Sabry, A.: Symmetries in reversible programming:
From symmetric rig groupoids to reversible programming languages. Proceedings of
the ACM on Programming Languages 6(POPL), 1–32 (2022). https://doi.org/
10.1145/3498667

11. Coquand, C.: A formalised proof of the soundness and completeness of a simply
typed lambda-calculus with explicit substitutions. Higher Order Symbolic Compu-
tation 15(1), 57–90 (2002). https://doi.org/10.1023/A:1019964114625

12. Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions in
type theory. Journal of Symbolic Logic 65(2), 525–549 (2000). https://doi.org/
10.2307/2586554

13. Frumin, D., Geuvers, H., Gondelman, L., Weide, N.v.d.: Finite sets in homotopy
type theory. In: International Conference on Certified Programs and Proofs (CPP
’18). pp. 201–214. Association for Computing Machinery (2018). https://doi.org/
10.1145/3167085

14. Gylterud, H.R.: Multisets in type theory. Mathematical Proceedings of the Cam-
bridge Philosophical Society 169(1), 1–18 (2020). https://doi.org/10.1017/

S0305004119000045
15. Hedberg, M.: A coherence theorem for Martin-Löf’s type theory. Journal

of Functional Programming 8(4), 413–436 (1998). https://doi.org/10.1017/

s0956796898003153
16. Hinze, R.: Generalizing generalized tries. Journal of Functional Programming 10(4),

327–351 (2000). https://doi.org/10.1017/S0956796800003713
17. Hutton, G.: A tutorial on the universality and expressiveness of fold. Journal

of Functional Programming 9(4), 355–372 (1999). https://doi.org/10.1017/

s0956796899003500

https://doi.org/10.1007/3-540-36576-1\_2
https://doi.org/10.1007/3-540-36576-1_2
https://github.com/agda/agda-stdlib
https://github.com/agda/agda-stdlib
https://doi.org/10.1007/s10817-022-09655-x
https://doi.org/10.1007/s10817-022-09655-x
https://doi.org/10.1017/S0956796802004501
https://doi.org/10.1017/S0956796802004501
https://doi.org/10.1016/j.ansens.2003.01.001
https://doi.org/10.1016/j.ansens.2003.01.001
https://doi.org/10.1016/j.ansens.2003.01.001
https://doi.org/10.1016/j.ansens.2003.01.001
https://doi.org/10.1023/a:1007822931408
https://doi.org/10.1023/a:1007822931408
https://doi.org/10.1007/978-1-4471-3236-3_1
https://doi.org/10.1007/978-1-4471-3236-3_1
https://doi.org/10.46298/entics.10492
https://doi.org/10.46298/entics.10492
https://doi.org/10.1145/3498667
https://doi.org/10.1145/3498667
https://doi.org/10.1145/3498667
https://doi.org/10.1145/3498667
https://doi.org/10.1023/A:1019964114625
https://doi.org/10.1023/A:1019964114625
https://doi.org/10.2307/2586554
https://doi.org/10.2307/2586554
https://doi.org/10.2307/2586554
https://doi.org/10.2307/2586554
https://doi.org/10.1145/3167085
https://doi.org/10.1145/3167085
https://doi.org/10.1145/3167085
https://doi.org/10.1145/3167085
https://doi.org/10.1017/S0305004119000045
https://doi.org/10.1017/S0305004119000045
https://doi.org/10.1017/S0305004119000045
https://doi.org/10.1017/S0305004119000045
https://doi.org/10.1017/s0956796898003153
https://doi.org/10.1017/s0956796898003153
https://doi.org/10.1017/s0956796898003153
https://doi.org/10.1017/s0956796898003153
https://doi.org/10.1017/S0956796800003713
https://doi.org/10.1017/S0956796800003713
https://doi.org/10.1017/s0956796899003500
https://doi.org/10.1017/s0956796899003500
https://doi.org/10.1017/s0956796899003500
https://doi.org/10.1017/s0956796899003500


20 C. Kupke, F. Nordvall Forsberg, and S. Watters

18. Jech, T.: The Axiom of Choice. North-Holland (1973)
19. Joram, P., Veltri, N.: Constructive final semantics of finite bags. In: Naumowicz, A.,

Thiemann, R. (eds.) Interactive Theorem Proving (ITP ’23). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 268, pp. 20:1–20:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2023). https://doi.org/10.
4230/LIPIcs.ITP.2023.20

20. Lawvere, F.W.: Display of graphics and their applications, as exemplified by 2-
categories and the Hegelian “taco”. In: Proceedings of the first international confer-
ence on algebraic methodology and software technology. pp. 51–74 (1989)

21. McBride, C.: How to keep your neighbours in order. In: Jeuring, J., Chakravarty,
M.M.T. (eds.) International conference on Functional programming (ICFP ’14).
pp. 297–309. Association for Computing Machinery (2014). https://doi.org/10.
1145/2628136.2628163

22. Nordvall Forsberg, F.: Inductive-inductive definitions. Ph.D. thesis, Swansea Uni-
versity (2013)

23. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Chalmers University of Technology (2007)

24. Piceghello, S.: Coherence for Monoidal and Symmetric Monoidal Groupoids in
Homotopy Type Theory. Ph.D. thesis, The University of Bergen (2021)

25. Pincus, D.: The dense linear ordering principle. Journal of Symbolic Logic 62(2),
438–456 (1997). https://doi.org/10.2307/2275540

26. Poinsot, L., Duchamp, G., Tollu, C.: Partial monoids: associativity and confluence.
Journal of Pure and Applied Mathematics: Advances and Applications 3(2), 265 –
285 (2010)

27. Streicher, T.: Investigations into intensional type theory. Habilitation thesis (1993)
28. Swan, A.: If every set has some irreflexive, extensional order, then excluded middle

follows. Agda formalisation by Tom De Jong available at https://www.cs.bham.
ac.uk/~mhe/TypeTopology/Ordinals.WellOrderingTaboo.html

29. Ulmer, F.: Properties of dense and relative adjoint functors. Journal of Algebra
8(1), 77–95 (1968). https://doi.org/10.1016/0021-8693(68)90036-7

30. The Univalent Foundations Program: Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study (2013), https://

homotopytypetheory.org/book/

31. Watters, S., Nordvall Forsberg, F., Kupke, C.: Agda formalisation of “A Fresh Look
at Commutativity: Free Algebraic Structures via Fresh Lists”. https://doi.org/
10.5281/zenodo.8357335 (2023)

https://doi.org/10.4230/LIPIcs.ITP.2023.20
https://doi.org/10.4230/LIPIcs.ITP.2023.20
https://doi.org/10.4230/LIPIcs.ITP.2023.20
https://doi.org/10.4230/LIPIcs.ITP.2023.20
https://doi.org/10.1145/2628136.2628163
https://doi.org/10.1145/2628136.2628163
https://doi.org/10.1145/2628136.2628163
https://doi.org/10.1145/2628136.2628163
https://doi.org/10.2307/2275540
https://doi.org/10.2307/2275540
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.WellOrderingTaboo.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.WellOrderingTaboo.html
https://doi.org/10.1016/0021-8693(68)90036-7
https://doi.org/10.1016/0021-8693(68)90036-7
https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/
https://doi.org/10.5281/zenodo.8357335
https://doi.org/10.5281/zenodo.8357335

	A Fresh Look at Commutativity: Free Algebraic Structures via Fresh Lists
	Introduction
	Related Work
	Contributions

	Preliminaries and setting
	Fresh Lists
	Free Idempotent Commutative Monoids via Sorted Lists
	Sorted Lists
	Sorted Lists form an Idempotent Commutative Monoid
	A Free-Forgetful Adjunction
	Motivating the Lack of Monotonicity

	Free Commutative Monoids via Sorted Lists with Duplicates
	Notions of Freshness for Other Free Structures
	Free monoids
	Free pointed sets
	Free Left-Regular Band Monoids
	Free Reflexive Partial Monoids

	Conclusions and Future Work


