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Abstract

In a constructive setting, no concrete formulation of ordinal numbers can simultaneously have all the
properties one might be interested in; for example, being able to calculate limits of sequences is constructively
incompatible with deciding extensional equality. Using homotopy type theory as the foundational setting,
we develop an abstract framework for ordinal theory and establish a collection of desirable properties and
constructions. We then study and compare three concrete implementations of ordinals in homotopy type
theory: first, a notation system based on Cantor normal forms (binary trees); second, a refined version of
Brouwer trees (infinitely-branching trees); and third, extensional well-founded orders.

Each of our three formulations has the central properties expected of ordinals, such as being equipped
with an extensional and well-founded ordering as well as allowing basic arithmetic operations, but they differ
with respect to what they make possible in addition. For example, for finite collections of ordinals, Cantor
normal forms have decidable properties, but suprema of infinite collections cannot be computed. In contrast,
extensional well-founded orders work well with infinite collections, but the price to pay is that almost all
properties are undecidable. Brouwer trees, implemented as a quotient inductive-inductive type to ensure
well-foundedness and extensionality, take the sweet spot in the middle by combining a restricted form of
decidability with the ability to work with infinite increasing sequences.

Our three approaches are connected by canonical order-preserving functions from the “more decidable” to
the “less decidable” notions, i.e. from Cantor normal forms to Brouwer trees, and from there to extensional
well-founded orders. We have formalised the results on Cantor normal forms and Brouwer trees in cubical
Agda, while extensional well-founded orders have been studied and formalised thoroughly by Escardó and
his collaborators. Finally, we compare the computational efficiency of our implementations with the results
reported by Berger.
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1. Introduction1

Ordinal numbers are an important tool in modern mathematics and proof theory, employed for example2

for showing termination of processes [27, 35], the semantics of inductive definitions [1, 30], and justifying3

recursion, as used in many papers by Berger and others on realisability and program extraction in the4

presence of induction and coinduction [7, 8, 9]. In these applications of ordinals, the metatheory is typically5

based on classical logic. The applications, however, are of interest also in constructive mathematics, and so,6

it would be of great benefit to develop constructive approaches to ordinals which are strong enough to handle7

such applications. In this article, we use type theory to develop such constructive approaches, and show that8

they also cover other important aspects of ordinals, such as their arithmetic theory, generalising the one of9

the natural numbers, and the existence of suprema of potentially unbounded sequences of ordinals.10

1.1. Three Approaches to Ordinal Numbers11

In classical set theory, there are various equivalent representations of ordinals, and, whenever one12

representation is more convenient than another, one can freely switch between them. However, switching13

to a different representation often requires the law of excluded middle or other constructively unavailable14

principles. Therefore, it is unsurprising that the situation is more challenging in a constructive setting.15

Different representations of ordinals are no longer equivalent, and it is easy to see that there cannot be a single16

formulation of ordinals that makes it possible to prove all the properties and perform all the constructions17

that the various applications require. For example, consider a binary sequence s, i.e. a function from the18

natural numbers into the set {0, 1}; if we had a formulation of ordinals that allowed us to calculate the limit19

x of the sequence s and decide extensional equality of x with 0, then this would amount to checking whether20

the sequence s is constantly 0. This, however, is exactly Bishop’s weak limited principle of omniscience [11],21

an axiom that is generally not assumed in constructive mathematics.22

When using or developing ordinals in a constructive setting, one is for this reason forced to make23

compromises and give up some desirable properties, and the choice will naturally depend on the anticipated24

applications. This explains why several different constructions of ordinals have been studied in the literature.25

It is also not unusual to see tailor-made inductive definitions replace applications of ordinals and transfinite26

induction, with the consequence that basic results are established over and over again, for each inductive27

definition. Instead, in this article, we will consider the following approaches to ordinals:28

• One approach to develop ordinal theory is to use “syntactic” ordinal notation systems [17, 56, 60]. Such29

systems are popular with proof theorists, as their concrete character typically means that equality and30

the order relation on ordinals are decidable. However, truly infinitary operations such as calculating31

limits of infinite families of notations are usually not constructible.32

• Another approach to ordinals, popular in the functional programming community and based on notation33

systems by Church [20] and Kleene [45], is to consider Brouwer trees O inductively generated by zero,34

successor, and a supremum constructor35

sup : (N→ O)→ O (1)

which forms a new tree for every countable sequence of trees [15, 21, 40]. By the inductive nature of36

the definition, constructions on trees can be carried out by giving one case for zero, one for successors,37

and one for suprema, just as in the classical theorem of transfinite induction. Of course, when allowing38

infinite sequences, extensional equality cannot be checked algorithmically.39

• Yet another approach to ordinals is to consider collections of extensional well-founded orders satisfying40

transitivity, representing a variation on the classical set-theoretical axioms that is more suitable for a41

constructive treatment [61]. When pursuing a development of ordinals based on such orders without42

further conditions, one naturally gives up all non-trivial notions of decidability – it even becomes43

impossible to check whether a given order is zero, a successor, or a limit. Nevertheless, many operations44

can still be defined on the collection of all such orders, and properties such as well-foundedness can still45

be proven. This is also the notion of ordinal most closely related to the traditional notion, and thus, in46

a classical setting, the formulation which most obviously corresponds to the established literature.47
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Property Cnf Brw Ord More details
x < y ≤ z → x < z beginning of Section 4
x ≤ y < z → x < z
order is well-founded Section 4.1order is extensional
has zero and successors

Section 4.2
has finite suprema (binary joins)
has limits of strictly increasing N-sequences
has suprema of small families
can classify as zero, successor, or limit
has addition

Section 4.3
has multiplication
has (partial) exponentiation
has subtraction *

has division
x < ω is decidable

Section 4.4x < y is decidable *

x ≤ y splits as (x < y) ] (x = y) *

is trichotomous *

computational efficiency (good) (medium) (none) Section 9
* Each of these properties is equivalent to Bishop’s limited principle of omniscience (LPO), cf. Section 2.2.

Table 1: Summary of how the three notions of ordinals compare.

Is it possible to specify what a proper definition of ordinals in a constructive setting is, how the different1

approaches fulfil the specification, which properties they lack, and how they are connected to each other?2

Can constructions and ideas be transported from one setting to another — e.g., do the arithmetic operations3

constructed for one notion of ordinals obey the same rules as the arithmetic operations defined for another4

notion? In order to develop one possible precise answer to these questions, we work in homotopy type5

theory [64] and suggest an abstract framework of ordinals in which the various desirable properties and6

operations can be formulated. We also study three concrete constructions, representing the three approaches7

above, which become instances of our general abstract framework.8

The representative of the class of “syntactic” ordinal notation systems that we develop is based on Cantor9

normal forms using unlabelled binary trees. Our concrete definition ensures that we have no “junk” terms,10

i.e. each element of our type Cnf of Cantor normal forms denotes an actual ordinal. There are several11

reasonable ways in which such a type can be defined that can be shown to be equivalent to each other [53];12

the construction that we choose defines Cnf as a subset of the type of binary trees.13

When defining Brouwer trees as an inductive type with constructors for zero, successor, and a third14

constructor sup as in (1), it is a priori wishful thinking to call the last constructor a “supremum”; sup(s) does15

not faithfully represent the suprema of the sequence s, since we do not have that e.g. sup(s0, s1, s2, . . .) =16

sup(s1, s0, s2, . . .) — each sequence gives rise to a new tree, rather than identifying trees that would be17

supposed to represent the same supremum. Fortunately, this shortcoming can be fixed in homotopy type18

theory via a higher or quotient inductive-inductive type Brw, combining induction-induction with the idea of19

higher inductive types [22, 49]. While we naturally cannot derive decidable equality for the type Brw, we20

retain the possibility of classifying an ordinal as a zero, a successor or a limit.21

Finally, the idea of extensional well-founded orders was transferred to the setting of homotopy type22

theory in the “HoTT book” [64, Chp 10], and significantly extended by Escardó and his collaborators [33].23

The approach is to define Ord to be the type of pairs (X,<), where the latter is a propositionally-valued,24

transitive, extensional, and well-founded relation. While Ord lacks all forms of non-trivial decidability, it is25

better suited for constructions involving infinite families of ordinals than Cnf or Brw.26

All in all, each of the approaches above gives quite a different feel to the ordinals they represent: Cantor27
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normal forms emphasise syntactic manipulations, Brouwer trees how every ordinal can be classified as a zero,1

successor or limit, and extensional well-founded orders the set-theoretic properties of ordinals. It turns out2

that there are canonical embeddings of the “more” into the “less decidable” notions, i.e. we have functions3

from Cantor normal forms to Brouwer trees and from Brouwer trees to extensional well-founded orders. We4

study whether, or under which conditions, these functions preserve arithmetic operations, commute with5

limits, and are simulations. Inspired by Berger’s results on the computational efficiency of implementations6

of ordinals [6], we also show how Cnf and Brw perform when implemented in Cubical Agda [66]. Note that7

we cannot compute in a meaningful way with Ord. A summary of how the three notions of ordinals compare8

can be found in Table 1.9

1.2. Related Work10

The development of ordinals in constructive mathematics has a rich history [15, 20, 37, 41, 45, 51, 52].11

As mentioned above, one well-known constructive notion of ordinal is given by extensional well-founded12

relations. However, the transitivity13

x ≤ y < z → x < z (2)

fails because it implies excluded middle. Taylor [61, 62] recovers it by introducing plumpness, which essentially14

restricts to the subclass for which the property (2) holds hereditarily. We do not explicitly study plump15

ordinals in this paper, but the transitivity (2) holds for both Cantor normal forms and Brouwer trees. In16

their recent work [23], Coquand, Lombardi and Neuwirth develop another constructive theory of ordinals.17

They start with a structure of certain linear orders, called F-orders, to describe the desirable properties of18

ordinals including the transitivity (2). Then they inductively construct a set Ord of ordinals and prove that19

Ord is initial in the category of F-orders. In this way, they show that their constructive ordinals satisfy the20

desirable properties constructively. Our abstract axiomatic framework introduced in Section 4 is similar to21

their structure of F-orders. But it is more general (e.g., no assumption like (2)) because it is for relating and22

comparing our three different approaches to ordinals.23

Several formalisations of ordinals and ordinal notation systems exist in the literature. Escardó and his24

collaborators develop many results of extensional well-founded relations in homotopy type theory, and have25

formalised them in Agda [33]. The theory of ordinals below ε0 based on various representations has been26

developed in some formal systems. For the representation of Cantor normal forms with coefficients, Manolios27

and Vroon [50] work in ACL2, Castéran and Contejean [19] and Grimm [39] in Coq, and Shinkarov [58]28

in Agda. Blanchette, Fleury and Traytel [12] work with the representation of hereditary multisets in29

Isabelle/HOL. One of our approaches to ordinals is based on Cantor normal forms without coefficients. In30

this paper, we additionally prove that the arithmetic operations on Cantor normal forms are uniquely correct31

with respect to our abstract axiomatisation.32

In the work on ordinals below ε0 [19, 39, 53, 58], one derives/implements transfinite induction directly33

from the selected representation of ordinals. Berger [6] instead extracts a program from Gentzen’s proof [38] of34

transfinite induction up to ε0. Gentzen’s proof involves nesting of implications of bounded depth. Therefore,35

the extracted program contains functionals of arbitrarily high types (with respect to the finite type structure).36

Using the extracted program, one obtains higher type primitive recursive definitions of the fast growing37

hierarchy and tree ordinals of height below ε0. Berger compares the transfinite recursive implementation of38

the Hardy hierarchy and the one via the extracted higher type program, and observes that the latter is much39

faster. Inspired by Berger’s experiment, we compare the computational efficiency of our notions of ordinals40

in Section 9.41

1.3. Agda Formalisation42

As indicated above, we have formalised the material on Cantor normal forms and Brouwer trees in cubical43

Agda [66]:44

• Git repository of the Agda code: bitbucket.org/nicolaikraus/constructive-ordinals-in-hott/45

• DOI of the archived Agda code: 10.5281/zenodo.765745646
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• HTML rendering: cj-xu.github.io/agda/type-theoretic-approaches-to-ordinals/1

While the development in the Git repository listed above is ongoing and not restricted to the current paper,2

the HTML rendering and the archived version are snapshots of the repository at the time of writing. To3

complement the formalisation, we also refer to Escardó’s Agda library [33] that consists of many results on4

extensional well-founded orders in HoTT. In the paper, we have marked theorems whose proofs we have5

formalised, or partly formalised, using the symbolsl and � respectively; they are also clickable links to6

the corresponding machine-checked statement in the HTML rendering of our Agda code.7

Our formalisation builds on the agda/cubical library [63] and type checks using Agda version 2.6.3. It uses8

the {-# TERMINATING #-} pragma to work around a limitation of the termination checker of Agda: recursive9

calls hidden under a propositional truncation are not seen to be structurally smaller. While we believe that10

such recursive calls when proving a proposition are justified by Dijkstra’s eliminator presentation [29], it11

would be non-trivial to reduce our mutual definitions to eliminators.12

1.4. History of this Paper13

An earlier, short version of this paper appeared in the proceedings of the conference Mathematical14

Foundations of Computer Science [47]. New in this version is a thorough discussion of the constructive15

aspects and decidability results (Section 4.4) of the various approaches to ordinals via constructive taboos16

(cf. Section 2.2). In particular, we rigorously study the decidable and undecidable properties of Brouwer17

trees (Section 4.4) and connect the preservation of limits of the embedding Cnf → Brw with Markov’s18

principle (cf. Theorem 67 and Lemma 68). In addition to providing a complete Agda formalisation (except19

for extensional well-founded orders), we benchmark the efficiency of computing with Cantor normal forms20

and Brouwer trees (Section 9), inspired by Berger’s benchmarking of ordinal recursive versus higher type21

programs [6].22

2. Preliminaries23

In this section, we introduce concepts and notation that we are going to use in the rest of the paper.24

2.1. Concepts of Homotopy Type Theory25

We work in and assume basic familiarity with homotopy type theory (HoTT), i.e. Martin-Löf type theory26

extended with higher inductive types and the univalence axiom [64]. The central concept of HoTT is the27

Martin-Löf identity type, which we write as a = b — we write a ≡ b for definitional equality. We use Agda28

notation (x : A)→ B(x) for the type of dependent functions, and write simply A→ B if B does not depend29

on x : A. We further write A↔ B for “if and only if”, i.e. for functions in both directions A→ B and B → A.30

If the type in the domain can be inferred from context, we may simply write ∀x.B(x) for (x : A)→ B(x).31

Freely occurring variables are assumed to be ∀-quantified.32

We denote the type of dependent pairs by Σ(x : A).B(x), and its projections by fst and snd. We write33

A × B if B does not depend on x : A. We write U for a universe of types; we assume that we have a34

cumulative hierarchy Ui : Ui+1 of such universes closed under all type formers, but we will leave universe35

levels typically ambiguous.36

We call a type A a proposition, isProp(A), if all elements of A are equal, i.e. if (x : A)→ (y : A)→ x = y37

is provable. We write hProp = Σ(A : U).isProp(A) for the type of propositions, and we implicitly insert a38

first projection if necessary, e.g. for A : hProp, we may write x : A rather than x : fst(A). A type A is a set,39

isSet(A), if isProp(x = y) for every x, y : A. We write hSet = Σ(A : U).isSet(A) for the type of sets, again40

with the first projection implicit when necessary.41

We denote propositional truncation of a type A by ‖A‖, which is the smallest proposition with a function42

from A. In particular, by ∃(x : A).B(x), we mean the propositional truncation of Σ(x : A).B(x), i.e., we43

have ∃(x : A).B(x) : hProp, and if (a, b) : Σ(x : A).B(x) then |(a, b)| : ∃(x : A).B(x). The elimination rule44

of ∃(x : A).B(x) only allows to define functions into propositions. By convention, we write ∃k.P (k) for45

∃(k : N).P (k). Finally, we write A ]B for the sum type, 0 for the empty type, 1 for the type with exactly46

one element ∗, and 2 for the type with two elements ff and tt.47
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2.2. Constructive Taboos1

When we are unable to perform a certain construction or prove a theorem formulated as a type A, we2

want to understand why it is seemingly impossible to define an element of A. An obvious approach is3

attempting to derive a contradiction from the assumption that A holds, i.e. prove A→ 0, a type that we also4

denote by ¬A (“not A”). However, this will often not be possible either in a constructive setting, since many5

interesting statements A are consistent and may actually turn out to be true in a classical theory. Therefore,6

we may be forced to replace the empty type by a less ambitious goal B; something that is known from models7

to not be provable in the type theory we work in, or something that is simply generally undesirable in a8

constructive setting. We call such a type B a constructive taboo; it is also sometimes known as a Brouwerian9

counterexample [14].10

Obviously, the empty type 0 is a taboo in all interesting (non-trivial) settings, so it is technically also a11

constructive taboo. Another very prominent constructive taboo is the law of excluded middle LEM, stating12

that every proposition is either true or false:13

LEM :≡ ∀(P : hProp).P ] ¬P. (3)

Several other taboos that we consider talk about binary sequences. The first is Bishop’s limited principle14

of omniscience LPO [11], stating that every binary sequence is either constantly ff or somewhere tt:15

LPO :≡ ∀(s : N→ 2).(∀n.sn = ff) ] (∃n.sn = tt). (4)

The weakened version, known as the weak limited principle of omniscience WLPO, states that it is decidable16

whether a sequence is constantly ff:17

WLPO :≡ ∀(s : N→ 2).(∀n.sn = ff) ] ¬(∀n.sn = ff). (5)

Finally, Markov’s principle MP says that, if a sequence is not constantly ff, then it is tt somewhere:18

MP :≡ ∀(s : N→ 2).¬(∀n.sn = ff)→ (∃n.sn = tt). (6)

We always have (∀n.sn = ff) ↔ ¬(∃n.sn = tt). If we view a binary sequence s : N→ 2 as representing a19

semidecidable property (cf. [5]), then LPO says that every semidecidable property is decidable (P ] ¬P ),20

while WLPO says that every semidecidable property is weakly decidable (¬P ] ¬¬P ), and MP postulates21

that every semidecidable property is stable (¬¬P → P ). It is thus not surprising, and well known, that we22

have:23

Lemma 1 (l). The limited principle of omniscience is as strong as the weak limited principle of omniscience24

and Markov’s principle combined:25

LPO ↔ WLPO×MP. (7)

26

Note that the distinction between ∃ and Σ is inessential in the formulation of the above taboos. This is27

shown by the following lemma (see e.g. Escardó [32] and Escardó and Xu [34, §3.1]):28

Lemma 2 (l). For any sequence s : N→ 2, we have29

(∃n.sn = tt)→ Σ(n : N).sn = tt. (8)

In particular, if we assume LPO, then a given sequence is either constantly ff or we concretely get an n : N30

where it is not.31

Proof. Refining the type of n such that sn = tt to the type of minimal n with this property, we get a32

proposition and can eliminate out of the truncation. In detail, we construct a function33

∀n.sn = tt→ (Σ(n : N).(sn = tt)×Π(k < n).sk = ff) (9)

that searches the minimal index where a sequence is positive. Using that the target is a proposition, we34

precompose this function with the eliminator of the truncation. Finally, we compose with the projection35

function forgetting that n is minimal.36
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3. Three Constructions of Types of Ordinals1

We consider three concrete notions of ordinals in this paper, together with their order relations < and2

≤. The first notion is the one of Cantor normal forms, written Cnf, whose order is decidable. The second,3

written Brw, are Brouwer Trees, implemented as a higher inductive-inductive type. Finally, we consider the4

type Ord of ordinals that were studied in the HoTT book [64], whose order is undecidable, in general. In the5

current section, we briefly give the three definitions and leave the discussion of results for afterwards.6

3.1. Cantor Normal Forms as a Subset of Binary Trees7

In classical set theory, every ordinal α can be written uniquely in Cantor normal form8

α = ωβ1 + ωβ2 + · · ·+ ωβn with β1 ≥ β2 ≥ · · · ≥ βn (10)

for some natural number n and ordinals βi. If α < ε0, then βi < α, and we can represent α as a finite
binary tree (with a condition) as follows [17, 19, 39, 53]. Let T be the type of unlabeled binary trees, i.e. the
inductive type with suggestively named constructors 0 : T and ω− − : T × T → T . Let the relation < be
the hereditary lexicographical order, i.e. generated by the following clauses:

0 < ωa b (11)
a < c→ ωa b < ωc d (12)
b < d→ ωa b < ωa d. (13)

We have the map left : T → T defined by left(0) :≡ 0 and left(ωa b) :≡ a which gives us the left subtree
(if it exists) of a tree. A tree is a Cantor normal form (CNF) if, for every ωs t that the tree contains, we
have left(t) ≤ s, where s ≤ t :≡ (s < t) ] (s = t); this enforces the condition in (10). For instance, both
trees 1 :≡ ω0 0 and ω :≡ ω1 0 are CNFs. Formally, the predicate isCNF is defined inductively by the two
clauses

isCNF(0) (14)
isCNF(s)→ isCNF(t)→ left(t) ≤ s→ isCNF(ωs t). (15)

We write Cnf :≡ Σ(t : T ).isCNF(t) for the type of Cantor normal forms. We often omit the proof of isCNF(t)9

and call the tree t a CNF if no confusion is caused.10

3.2. Brouwer Trees as a Quotient Inductive-Inductive Type11

As discussed in the introduction, Brouwer trees (or Brouwer ordinal trees) in functional programming12

are often inductively generated by the usual constructors of natural numbers (zero and successor) and a13

constructor that gives a Brouwer tree for every sequence of Brouwer trees. To state a refined (correct in a14

sense that we will make precise and prove) version, we need the following notions:15

Let A be a type and ≺ : A → A → hProp be a binary relation. If f and g are two sequences N → A,16

we say that f is simulated by g, written f - g, if f - g :≡ ∀k.∃n.f(k) ≺ g(n). We say that f and g are17

bisimilar with respect to ≺, written f ≈≺ g, if we have both f - g and g - f . A sequence f : N → A is18

increasing with respect to ≺ if we have ∀k.f(k) ≺ f(k + 1). We write N ≺−→ A for the type of ≺-increasing19

sequences. Thus an increasing sequence f is a pair f ≡ (f, p) with p witnessing that f is increasing, but we20

keep the first projection implicit and write f(k) instead of f(k).21

Our type of Brouwer trees is a quotient inductive-inductive type [2], where we simultaneously construct
the type Brw : hSet together with a relation ≤ : Brw→ Brw→ hProp. The constructors for Brw are

zero : Brw (16)
succ : Brw→ Brw (17)

limit : (N <−→ Brw)→ Brw (18)

bisim: (f g : N <−→ Brw)→ f ≈≤ g → limit f = limit g, (19)
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where we write x < y for succx ≤ y in the type of limit. Simulations thus use ≤ and the increasing predicate1

uses <, as one would expect. The truncation constructor, ensuring that Brw is a set, is kept implicit in the2

paper (but is explicit in the Agda formalisation).3

The mutually defined relation ≤ is inductively defined by the following constructors, where each constructor
is implicitly quantified over the variables x, y, z : Brw and f : N <−→ Brw that it contains:

≤-zero : zero ≤ x (20)
≤-trans : x ≤ y → y ≤ z → x ≤ z (21)
≤-succ-mono: x ≤ y → succx ≤ succ y (22)
≤-cocone : (k : N)→ x ≤ f(k)→ x ≤ limit f (23)
≤-limiting : (∀k.f(k) ≤ x)→ limit f ≤ x (24)

The truncation constructor, which ensures that x ≤ y is a proposition, is again kept implicit.4

We hope that the constructors of Brw and ≤ are self-explanatory. ≤-cocone ensures that limit f is indeed5

an upper bound of f , and ≤-limiting witnesses that it is the least upper bound or, from a categorical point of6

view, the (co)limit of f .7

By restricting to limits of strictly increasing sequences, we can avoid the representation of zero or successor8

ordinals as limits (as otherwise e.g. a = limit (λi.a)). If one wishes to drop this restriction, it will be necessary9

to strengthen the bisim constructor to witness antisymmetry — however, we found that version of Brw10

significantly harder to work with; see Section 6.7 for a short discussion. Another question is whether adding11

the constructor ≤-trans explicitly is necessary since, even without including ≤-trans in the construction, it12

might be possible to derive transitivity of ≤ anyway. We do not know the answer to that question.13

3.3. Transitive, Extensional and Well-Founded Orders14

The third notion of ordinals that we consider is the one studied in the HoTT book [64]. This is the15

notion which is closest to the classical definition of an ordinal as a set with a well-founded, trichotomous, and16

transitive order, without a concrete representation. Requiring trichotomy leads to a notion that makes many17

constructions impossible in a setting where the law of excluded middle is not assumed. Therefore, when18

working constructively, it is better to replace the axiom of trichotomy by extensionality, stating that any two19

elements of X with the same predecessors are equal.20

Concretely, an ordinal in the sense of the HoTT book [64, Def 10.3.17] is a type1 X together with a21

relation ≺ : X → X → hProp which is transitive, extensional, and well-founded (every element is accessible,22

where accessibility is the least relation such that x is accessible if every predecessor of x is accessible) — we23

will recall the precise definitions in Section 4. We write Ord for the type of ordinals in this sense. Note the24

shift of universes that happens here: the type Ordi of ordinals with X : Ui is itself in Ui+1. We are mostly25

interested in Ord0, but note that Ord0 lives in U1, while Cnf and Brw both live in U0.26

We also have a relation on Ord itself. Following the HoTT book [64, Def 10.3.11 and Cor 10.3.13], a27

simulation between ordinals (X,≺X) and (Y,≺Y ) is a function f : X → Y such that:28

(a) f is monotone: (x1 ≺X x2)→ (f x1 ≺Y f x2); and29

(b) for all x : X and y : Y , if y ≺Y f x, then we have an x0 ≺X x such that f x0 = y.30

We write X ≤ Y for the type of simulations between (X,≺X) and (Y,≺Y ). Given an ordinal (X,≺) and31

x : X, the initial segment of elements below x is given as X/x :≡ Σ(y : X).y ≺ x. Again following the32

HoTT book [64, Def 10.3.19], a simulation f : X ≤ Y is bounded if we have y : Y such that f induces an33

equivalence X ' Y/y. We write X < Y for the type of bounded simulations. This completes the definition of34

Ord together with type families ≤ and <.35

1Note that the HoTT book [64, Def 10.3.17] asks for X to be a set, but Escardó [33] proved that this follows from the rest of
the definition, and we therefore drop this requirement.
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4. An Abstract Axiomatic Framework for Ordinals1

Which properties do we expect a type of ordinals to have? Compared to the previous section, we go up one
level of abstraction and consider an arbitrary set A together with relations < and ≤ valued in propositions:

A : hSet (25)
(_<_) : A→ A→ hProp (26)
(_≤_) : A→ A→ hProp. (27)

The types Cnf, Brw, Ord with their relations are concrete implementations of such a triple (A,<,≤).2 In the2

current section, we discuss the various constructions that a concrete implementation may or may not allow,3

and list the main results (see the “summary boxes” below and on the next pages); in Sections 5 to 7, we4

discuss Cnf, Brw, and Ord respectively in detail, and prove the precise theorems.5

For Cnf, the relation ≤ is the reflexive closure of <, but the analogous statement is not constructively6

provable for Brw and Ord. In the current section, we make the following basic assumptions:7

(A1) < is transitive (x < y → y < z → x < z) and irreflexive (¬(x < x));8

(A2) ≤ is reflexive (x ≤ x), transitive, and antisymmetric (x ≤ y → y ≤ x→ x = y);9

(A3) we have (<) ⊆ (≤) and (< ◦ ≤) ⊆ (<).10

On top of these assumptions, we can now consider additional properties that we would expect ordinals to11

have. The third condition (A3) means that (x < y)→ (x ≤ y) and (x < y)→ (y ≤ z)→ (x < z). We do not12

assume the “symmetric” variation13

(≤ ◦ <) ⊆ (<), (28)

which is true for Cnf and Brw, but only holds for Ord iff LEM holds. This constructive failure is known and14

can be seen as motivation for plump ordinals [59, 61].15

Proving that ≤ for Brw is antisymmetric is challenging because of the path constructors in the inductive-16

inductive definition of Brouwer trees. Of course, this difficulty arises as a consequence of our chosen definition17

for Brw, and other definitions would make antisymmetry easy; but unsurprisingly, such alternative definitions18

simply shift the difficulties to other places, see Section 6.7.19

In Sections 5 to 7, we will prove in detail which of the properties discussed here hold for Cnf, Brw, and20

Ord. In the current section, we very briefly summarise these results in boxes such as the one below. While21

some of the stated properties are original results of the current paper, others are known and stated for22

comparison only; the references included in the boxes lead to the precise theorems and proofs or citations.23

Summary of results

The assumptions (A1), (A2), and (A3) are satisfied for Cnf, Brw, and Ord. The property (≤ ◦ <) ⊆ (<)
holds for Cnf and Brw, but is equivalent to LEM for Ord.

Precise statements: Thm 18 (Cnf); Cor 37 (Brw); Lem 57 and Cor 59 (Ord).
24

For the rest of Section 4, we assume that (A,<,≤) is given and satisfies the conditions above.25

4.1. Extensionality and Well-Foundedness26

Following the HoTT book [64, Def 10.3.9], we call a relation ≺ extensional if, for all a, b : A, we have27

(∀c.c ≺ a↔ c ≺ b)→ a = b. (29)

2Note that we do not require A to live in a specified universe, as Ord is larger than Cnf or Brw.
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Assumption (A2) implies that ≤ is extensional: given a and b such that c ≤ a ↔ c ≤ b for every c, we1

have a ≤ a by reflexivity, and hence a ≤ b by assumption. Similarly, we get b ≤ a, and hence a = b by2

antisymmetry. In contrast, extensionality is not guaranteed for <, but we will show that it holds for our3

three instances Cnf, Brw, and Ord. This is non-trivial in the case of Brw — note that it fails for the “naive”4

version of Brw, where the path constructor bisim is missing.5

We use the inductive definition of accessibility and well-foundedness (with respect to <) by Aczel [1].6

Concretely, the type family Acc : A→ U is inductively defined by the constructor7

access : (a : A)→ ((b : A)→ b < a→ Acc(b))→ Acc(a). (30)

An element a : A is called accessible if Acc(a), and < is well-founded if all elements of A are accessible. It is8

well known that the following induction principle can be derived from the inductive presentation [64]:9

Lemma 3 (l, transfinite induction). Let < be well-founded and P : A → U be a type family such that10

∀a.(∀b < a.P (b))→ P (a). Then, it follows that ∀a.P (a).11

In all our use cases in this paper, P will be a mere property (i.e. a family of propositions), although the12

induction principle is valid even without this assumption.13

As a standard sample application, we show that the classical formulation of well-foundedness is a14

consequence:15

Lemma 4 (l). If < is well-founded, then there is no infinite decreasing sequence:16

¬ (Σ(f : N→ A).(i : N)→ f(i+ 1) < f(i)) . (31)

In particular, there is no cycle a0 < a1 < . . . < an < a0. For n ≡ 0, this says that < is irreflexive.17

Proof. We apply Lemma 3 with the property P given by18

P (a) :≡ ¬Σ(f : N→ A).(f 0 = a)× ((i : N)→ f(i+ 1) < f(i)) . (32)

To show the induction step, assume a sequence f with f(0) = a is given. Then, the sequence λi.f(i + 1)19

gives a contradiction by the induction hypothesis.20

From the global assumptions that A is a set and < is irreflexive as well as valued in propositions, we get21

that x < y and x = y are mutually exclusive propositions. Therefore, we get the following observation for22

the reflexive closure:23

Lemma 5 (l). The reflexive closure of <, given by (x < y) ] (x = y), is valued in propositions.24

Summary of results

For each of Cnf, Brw, and Ord, the relation < is extensional and well-founded.

Precise statements: Thms 18 and 19 (Cnf); Thms 35 and 38 (Brw); Thm 58 (Ord).
25

Note that the results stated so far in particular mean that Cnf and Brw can be seen as elements of Ord26

themselves.27

4.2. Classification as Zero, a Successor, or a Limit28

All standard formulations of ordinals allow us to determine a minimal ordinal zero and (constructively)29

calculate the successor of an ordinal, but only some allows us to also calculate the supremum or limit of a30

family of ordinals.31
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4.2.1. Zero, Successors, and Suprema1

Let a be an element of A. It is zero, or bottom, if it is at least as small as any other element2

is-zero(a) :≡ ∀b.a ≤ b, (33)

and we say that the triple (A,<,≤) has a zero if we have an inhabitant of the type Σ(z : A).is-zero(z). Both3

the types “being a zero” and “having a zero” are propositions.4

We say that a is a successor of b if it is the least element strictly greater3 than b:5

(a is-suc-of b) :≡ (a > b)× ∀x > b.a ≤ x. (34)

We say that (A,<,≤) has successors if there is a function s : A→ A which calculates successors, i.e. such6

that ∀b.s(b) is-suc-of b. “Calculating successors” and “having successors” are propositional properties, i.e. if a7

function that calculates successors exists, then it is unique. The following statement is simple but useful. Its8

proof uses assumption (A3).9

Lemma 6 (l). A function s : A→ A calculates successors if and only if ∀b x.(b < x)↔ (s b ≤ x).10

Dual to “a is the least element strictly greater than b” is the statement that “b is the greatest element11

strictly below a”, in which case it is natural to call b the predecessor of a. If a is the successor of b and b the12

predecessor of a, then we call a the strong successor of b:13

(a is-str-suc-of b) :≡ a is-suc-of b× ∀x < a.x ≤ b. (35)

We say that A has strong successors if there is s : A→ A which calculates strong successors, i.e. such that14

∀b.s(b) is-str-suc-of b. The additional information contained in a strong successor plays an important role in15

our technical development.16

Finally, we consider the suprema or, synonymously, least upper bounds of families of ordinals. Given a17

type X and f : X → A, an element a : A is the supremum of f if it is at least as large as every f(x), and if18

any b with this property is at least as large as a:19

(a is-sup-of f) :≡ (∀x.f(x) ≤ a)× (∀b.(∀x.f(x) ≤ b)→ a ≤ b). (36)

We say that (A,<,≤) has suprema of X-indexed families if there is a function t : (X → A) → A which20

calculates suprema, i.e. such that (f : X → A) → (tf) is-sup-of f . Note that the supremum is unique if21

it exists, i.e. the type of suprema is propositional for a given pair (X, f). Both the properties “calculating22

suprema” and “having suprema” are propositions. If (A,<,≤) has suprema of 2-indexed families, we also say23

that A has binary joins. Unless explicitly specified, in the following we will consider suprema of N-indexed24

families only.25

Instead of considering functions f without further structure, we can ask for f to be a morphism of (partial)
orders. Of particular interest is the case of ≤-monotone N-indexed sequences, i.e. functions f : N → A
such that fn ≤ fn+1. We also consider strictly increasing N-indexed sequences satisfying the condition
fn < fn+1. Note that every a : A is trivially the supremum of the sequence constantly a, and therefore,
“being a supremum” does not describe the usual notion of limit ordinals. One might consider a a proper
supremum of f if a is pointwise strictly above f , i.e. ∀i.fi < a. This is automatically guaranteed for strictly
increasing N-sequences, and in this case, we call a the limit of f :

_ is-N-lim-of _ : A→ (N <−→ A)→ U (37)
a is-N-lim-of (f, q) :≡ a is-sup-of f. (38)

We say that A has limits if there is a function limit : (N <−→ A)→ A that calculates limits of strictly increasing26

N-sequences. Note that Cnf cannot have limits since one can construct a sequence (see Theorem 70) which27

3Note that > is the obvious symmetric notation for <; it is not a newly assumed relation.
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comes arbitrarily close to ε0. The question becomes more interesting if we consider bounded sequences, i.e.1

sequences f with b : Cnf such that fi < b for all i : N.2

Summary of results

All our notions of ordinals have zeroes and strong successors. Ord is the only considered notion that
constructively has suprema of arbitrary small families — this was proven by de Jong and Escardó [25].
Cnf only has suprema of finite families, which Brw does not have constructively; on the other hand, Brw
has suprema of strictly increasing N-indexed sequences. Monotonicity of the successor function holds for
Cnf and Brw, but not constructively for Ord.

Precise statements: Lem 22 and Thm 29 (Cnf); Lem 39, Cor 40, and Thm 55 (Brw); Lem 60 and Thm 63 (Ord).
3

4.2.2. Classifiability4

For classical set-theoretic ordinals, every ordinal is either zero, a successor, or a limit. We say that a
notion of ordinals which allows this has classification. This is very useful, as many theorems that start with
“for every ordinal” have proofs that consider the three cases separately. In the same way as not all definitions
of ordinals make it possible to calculate limits, only some formulations make it possible to constructively
classify any given ordinal. We already defined what it means to be zero in (33). We now also define what it
means for a : A to be a strong successor or a limit of a strictly increasing N-indexed sequence:

is-str-suc(a) :≡ Σ(b : A).(a is-str-suc-of b) (39)

is-N-lim(a) :≡ ∃f : N <−→ A. a is-N-lim-of f. (40)

In addition, we say that a is a general limit if it is the supremum of the set of all elements below a (and5

there exists at least one such element). As in Section 3.3, we write A/a :≡ Σ(b : A).b < A for this type. We6

have the first projection fst : A/a → A and define:7

is-general-lim(a) :≡ ‖A/a‖ × (a is-sup-of fst). (41)

Remark 7 (l). One can also consider to define a to be a general limit if a is the supremum of some small8

and inhabited family of elements below a, i.e., if there exists a small inhabited type X and f : X → A9

such that f(x) < a for every x : X, and a is-sup-of f . Note that every general limit in this sense is also a10

general limit in the sense of (41), and if A is small, then the two notions are equivalent. However, the type11

of transitive, extensional, and well-founded orders in particular is not small, and so this definition is different12

from (41) for Ord, as fst : Ord/X → Ord is a large family. We do not know whether the relevant part of13

Theorem 63 holds for this notion of general limits, i.e., whether LEM implies that every X is either zero or a14

successor or the limit of a small family.15

All of is-zero(a), is-str-suc(a), is-N-lim(a), and is-general-lim(a) are propositions. This is true even though16

is-str-suc(a) is defined without a propositional truncation because, if a is the strong successor of both b and17

b′, we have b ≤ b′ and b′ ≤ b, implying b = b′ by antisymmetry.18

Lemma 8 (l). Any a : A can be at most one out of {zero, strong successor, limit}, and in a unique19

way. In other words, the type is-zero(a) ] is-str-suc(a) ] is-general-lim(a) is a proposition. Similarly, the type20

is-zero(a) ] is-str-suc(a) ] is-N-lim(a) is a proposition.21

Proof. As mentioned above, all considered summands are propositions. What we have to check is that22

they mutually exclude each other. Note that is-N-lim(a) implies is-general-lim(a), which means it suffices to23

consider the case of is-zero(a) ] is-str-suc(a) ] is-general-lim(a).24

Since the goal is a proposition, we can assume that we are given b and b0 < a in the successor and limit25

case. Assume that a is zero and the successor of b. This implies b < a ≤ b and thus b < b, contradicting26

irreflexivity. If a is zero and the limit of fst : A/a → A, the same argument (with b replaced by b0) applies.27

Finally, assume that a is the strong successor of b and the limit of fst. These assumptions show that b is an28

upper bound of fst, thus we get a ≤ b. Together with b < a, this gives the contradiction b < b as above.29
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We say that an element of A is weakly classifiable if it is zero or a strong successor or a general limit,1

and classifiable if it is zero or a strong successor or a limit of a strictly increasing N-indexed sequence. We2

say (A,<,≤) has (weak) classification if every element of A is (weakly) classifiable.4 By Lemma 8, (A,<,≤)3

has classification exactly if the type is-zero(a) ] is-str-suc(a) ] is-N-lim(a) is contractible, in the jargon of4

homotopy type theory.5

Classifiability corresponds to a case distinction, but the useful principle from classical ordinal theory is6

the related induction principle:7

Definition 9 (classifiability induction). We say that (A,<,≤) satisfies the principle of classifiability induction
if the following holds: For every family P : A→ hProp such that

is-zero(a)→ P (a) (42)
(a is-str-suc-of b)→ P (b)→ P (a) (43)
(a is-N-lim-of f)→ (∀i.P (fi))→ P (a), (44)

we have ∀a.P (a).8

Note that classifiability induction does not ask that there are functions that computes successors or limits.9

The following is immediate:10

Corollary 10 (l, of Lemma 8). If (A,<,≤) satisfies classifiability induction, then it has classification.11

For the reverse direction, we need a further assumption:12

Theorem 11 (l). Assume (A,<,≤) has classification and satisfies the principle of transfinite induction.13

Then (A,<,≤) satisfies the principle of classifiability induction.14

Proof. With the assumptions of the statement and (42),(43), and (44), we need to show ∀a.P (a). By15

transfinite induction, it suffices to show16

(∀b < a.P (b))→ P (a) (45)

for some fixed a. By classification, we can consider three cases. If is-zero(a), then (42) gives us P (a), which17

shows (45) for that case. If a is the strong successor of b, we use that the predecessor b is one of the elements18

that the assumption of (45) quantifies over; therefore, this is implied by (43). Similarly, if is-N-lim(a), the19

assumption of (45) gives ∀i.P (fi), thus (44) gives P (a).20

It is also standard in classical set theory that classifiability induction implies transfinite induction: showing21

P by transfinite induction corresponds to showing ∀x < a.P (x) by classifiability induction. In our setting,22

this would require strong additional assumptions, including the assumption that (x ≤ a) is equivalent to23

(x < a) ] (x = a), i.e. that ≤ is the reflexive closure of <. The standard proof works with several strong24

assumptions of this form, but we do not consider this interesting or useful, and concentrate on the results25

which work for the weaker assumptions (A1), (A2), (A3) that are satisfied for Brw and Ord.26

Summary of results

Cnf and Brw have classification and satisfy classifiability induction, while Ord does not, constructively.
Ord has weak classification if an only if LEM holds.

Precise statements: Thm 27 (Cnf); Thm 41 (Brw); Thm 63 (Ord).
27

4As the terminology suggests, we focus on limits of increasing sequences and classification, while weak classification only
plays a very minor role. The reason is that none of our notions of ordinals has weak classification without having classification,
and the latter is easier to work with.
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4.3. Arithmetic1

Using the predicates is-zero(a), a is-suc-of b, and a is-sup-of f , we can define what it means for (A,<,≤)2

to have the standard arithmetic operations. We still work under the assumptions declared at the beginning3

of the section — in particular, we do not assume that e.g. limits can be calculated, which is important to4

make the theory applicable to Cnf.5

Definition 12 (having addition). We say that (A,<,≤) has addition if there is a function + : A→ A→ A
which satisfies the following properties:

is-zero(a)→ c+ a = c (46)
a is-suc-of b→ d is-suc-of (c+ b)→ c+ a = d (47)
a is-N-lim-of f → b is-sup-of (λi.c+ fi)→ c+ a = b (48)

We say that A has unique addition if there is exactly one function + with these properties.6

Note that (48) makes an assumption only for (strictly) increasing sequences f ; this suffices to define7

a well-behaved notion of addition, and it is not necessary to include a similar requirement for arbitrary8

sequences. Since (λi.c+ fi) is a priori not necessarily increasing, the middle term of (48) has to talk about9

the supremum, not the limit.10

Completely analogously to addition, we can formulate multiplication and exponentiation, again without11

assuming that successors or limits can be calculated:12

Definition 13 (having multiplication). Assuming that A has addition +, we say that it has multiplication
if we have a function · : A→ A→ A that satisfies the following properties:

is-zero(a)→ c · a = a (49)
a is-suc-of b→ c · a = c · b+ c (50)
a is-N-lim-of f → b is-sup-of (λi.c · fi)→ c · a = b (51)

A has unique multiplication if it has unique addition and there is exactly one function · with the above13

properties.14

Definition 14 (having exponentiation). Assume A has addition + and multiplication ·. We say that A has
exponentiation with base c if we have a function c− : A→ A that satisfies the following properties:

is-zero(b)→ a is-suc-of b→ cb = a (52)

a is-suc-of b→ ca = cb · c (53)

a is-N-lim-of f → ¬is-zero(c)→ b is-sup-of cfi → ca = b (54)

a is-N-lim-of f → is-zero(c)→ ca = c (55)

A has unique exponentiation with base c if it has unique addition and multiplication, and if c− is unique.15

Let us now define subtraction, an operation that can be specified using addition. Note that there is more16

than one canonical choice: Given numbers a and b with a ≤ b, we can either require their difference c to17

satisfy a+ c = b or c+ a = b (or even both), but only the first option (left subtraction) is in line with the18

specification for addition.519

Definition 15 (having subtraction). We say that (A,<,≤) has subtraction if it has addition +, and a20

function − : (b : A)→ (a : A)→ (p : a ≤ b)→ A, written b−p a, such that a+ (b−p a) = b. We say that A21

has unique subtraction if it has unique addition and there is exactly one function − with these properties.22

5If a is a limit, then c+ a cannot be a successor, and vice versa; in other words, requiring c+ a = b would imply that the
difference between a limit and a successor cannot exist.
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Completely analogously, it would be possible to specify division and logarithm. Such constructions are1

further discussed in Section 5 below in the context of Cantor normal forms, but play otherwise no role in this2

paper.3

Summary of results

Cnf uniquely has addition, multiplication, exponentiation with base ω, subtraction, and division. Brw
uniquely has addition, multiplication, and exponentiation. Further, Brw has subtraction (necessarily
unique) if and only if LPO holds. Ord has addition and multiplication, but subtraction is available if and
only if LEM holds.

Precise statements: Thms 25 and 28 and Lem 24 (Cnf); Thms 42 and 45 (Brw); Thms 61 and 62 (Ord).
4

4.4. Constructive Aspects5

The main differences between our three versions of constructive ordinals are their varying degrees of6

decidability of certain properties. As described in the introduction, we view Cantor normal forms as a notion7

where almost everything is decidable, while basically nothing is decidable for extensional well-founded orders,8

and Brouwer trees sit in the sweet spot in the middle. In this section, we want to make this intuition precise.9

We say that a proposition6 P is decidable if we have either P or ¬P , i.e.10

Dec(P ) :≡ P ] ¬P, (56)

and stable if its double negation is as strong as P ,11

Stable(P ) :≡ ¬¬P → P. (57)

Of course, decidable propositions are always stable.12

Given a set A, we can then ask whether equality is stable (∀(x, y : A).Stable(x = y)) or even decidable13

(∀(x, y : A).Dec(x = y)). Slightly weakening the properties we can, for a given x0 : A, ask whether equality is14

locally stable (∀(y : A).Stable(x0 = y)) or decidable (∀(y : A).Dec(x0 = y)). If the set comes with relations15

<, ≤, we can ask the same questions for these. Moreover, we can ask whether ≤ splits,16

Splits(A,<,≤) :≡ ∀(x, y : A).(x ≤ y)→ (x < y) ] (x = y). (58)

A relation ≤ is connex if (a ≤ b)] (b ≤ a), and a relation < is trichotomous if (a < b)] (a = b)] (b < a).17

Note that these two properties are very strong; under mild additional assumptions, they imply most or all of18

the other discussed properties. As an example, we have:19

Lemma 16 (l). If (A,<,≤) satisfies the assumptions (A1) and < is trichotomous, then assumption (A3)20

holds if and only if ≤ splits.21

Proof. We only show the direction “only if”. Assume x ≤ y. By trichotomy, we have x < y or x = y or y < x.22

In the first or second case, we are done. In the last case, (A3) implies y < y, contradicting (A1).23

When we work with concrete implementations of types of ordinals, it would of course be great to have24

a formulation that combines as many desirable properties as possible. However, we cannot have certain25

properties at the same time, as demonstrated by the following no-go theorem:26

Theorem 17 (l). Assume that (A,<,≤) has zero, successors, and limits of strictly increasing sequences.27

If A has decidable equality, then WLPO holds.28

6While these definitions do not require P to be a proposition but work for any type, we only use them for propositions.
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Proof. Zero z and a successor function s allow us to define a canonical strictly increasing function ι : N→ A.1

Let us write ω for the limit of this sequence.2

Let t : N→ 2 be a binary sequence. We construct a sequence3

t↑ : N→ A (59)

by

t↑ 0 :≡ z (60)

t↑ (n+ 1) :≡

{
ω if n is minimal such that tn = tt

s(t↑ n) else.
(61)

We call t↑ the jumping sequence of t as it “jumps” as soon as a tt is discovered in the sequence t. It is easy to4

see that t↑ is strictly increasing. By assumption, it thus has a limit j : A.5

We claim that j = ω if and only if ∀i.ti = ff. If j = ω, then ti = tt leads to a contradiction for any i, thus6

we have ∀i.ti = ff. Vice versa, if ∀i.ti = ff, then j = ω by construction.7

Therefore, if the equality j = ω is decidable, then so is the property ∀i.ti = ff.8

Theorem 17 means that a “perfectly convenient” implementation of ordinals cannot exist in a constructive9

world without WLPO, and any implementation with zero and successors will have to sacrifice either decidable10

equality or limits. In this paper, the three implementations demonstrating these choices are Cnf, Brw, and11

Ord.12

Summary of results

Everything is decidable for Cnf (as long as no infinite families of ordinals are involved), ≤ splits and is
connex, and < is trichotomous. The situation is very different for Ord, where most properties that can be
formulated using the above concepts imply or are equivalent to LEM.

Brw is the most interesting case: Many of the discussed properties are equivalent to LPO, including
decidability of the relations, splitting of ≤, and trichotomy. At the same time, it is decidable whether
x : Brw is finite, and equalities/inequalities are decidable on the subtype of finite Brouwer tree ordinals.
Local equality at ω is decidable if and only if WLPO holds, but local equality at ω · 2 is already equivalent
to LPO. While local equality at ω is stable, local equality at ω · 2 implies MP.

Precise statements: Thm 18 (Cnf); Thms 46, 48 to 51 and 53 (Brw); Thms 63 and 64 (Ord).
13

5. Cantor Normal Forms14

Ordinal notation systems based on Cantor normal forms (with or without coefficients) have been widely15

studied [6, 19, 26, 28, 39, 53, 58, 60]. In this section, we recall the well-known results of Cantor normal forms,16

adapted for our chosen representation Cnf defined in Section 3.1. We additionally prove that the arithmetic17

operations on Cnf are uniquely correct with respect to our axiomatisation (Theorems 25 and 28), which has18

not been verified for Cantor normal forms previously, as far as we know.19

As mentioned above, Cnf provides a decidable formulation of ordinals in the following sense.20

Theorem 18 (l). Cnf is a set with decidable equality. The relations < and ≤ are valued in propositions,21

decidable, extensional, and transitive. In addition, < is irreflexive and trichotomous, while ≤ is reflexive,22

antisymmetric, connex, and splits. If x ≤ y and y < z, then x < z follows.23

Proof. Most properties are proved by induction on the arguments. We prove the trichotomy property as an24

example. It is trivial when either argument is zero. Given ωa b and ωc d, by the induction hypothesis we25

have (a < c) ] (a = c) ] (c < a) correspondingly. For the first and last cases, we have ωa b < ωc d and26

ωc d < ωa b. For the middle case, the induction hypothesis on b and d gives the desired result.27

17
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Using Lemma 16, the above theorem shows that (Cnf, <,≤) is an instantiation of the triple (A,<,≤)1

considered in Section 4.2

We recall the following well-foundedness result of CNFs, which can be found in Nordvall Forsberg and3

Xu [53, Thm 5.1] and in Grimm [39, §2.3].4

Theorem 19 (l). The relation < is well-founded.5

By Lemma 3, we obtain transfinite induction for CNFs. We next move on to arithmetic on CNF, which is6

defined using decidability of <.7

Definition 20 (Addition and multiplication of CNFs). We define addition and multiplication as follows.7

0 + b :≡ b (62)
a+ 0 :≡ a (63)

(ωa c) + (ωb d) :≡

{
ωb d if a < b

ωa (c+ ωb d) otherwise
(64)

0 · b :≡ 0 (65)
a · 0 :≡ 0 (66)

a · (ω0 d) :≡ a+ a · d (67)

(ωa c) · (ωb d) :≡ (ωa+b 0) + (ωa c) · d if b 6= 0 (68)

The above operations are well-defined and have the expected ordinal arithmetic properties:8

Lemma 21 (l). If a, b are CNFs, then so are a+ b and a · b. Both operations are associative and strictly9

increasing in the right argument. Moreover, (·) is distributive on the left, i.e., a · (b+ c) = a · b+ a · c.10

Recall that we write 1 as abbreviation for ω0 0. It is immediate to check that:11

Lemma 22 (l). 0 is a zero (in the sense of (33)), and λa.a+ 1 gives strong successors that are <- and12

≤-monotone.13

We also have:14

Definition 23 (Exponentiation with base ω). We define the CNF ω by ω :≡ ω1 0 and the exponentiation15

ωa of CNF a with base ω by ωa :≡ ωa 0.16

It is easy to show that ω(−) is exponentiation with base ω in the sense of Definition 14. To show that (+)17

is addition and (·) is multiplication in the sense of Definitions 12 and 13, we need their inverse operations18

subtraction and division.19

Lemma 24 (l). For all CNFs a, b,20

(i) if a ≤ b, then there is a CNF c such that a+ c = b and thus we denote c by b− a;21

(ii) if b > 0, then there are CNFs c and d such that a = b · c+ d and d < b.22

Proof. For (i), we define subtraction (−) as follows:

0− b :≡ 0 (69)
a− 0 :≡ a (70)

(ωa c)− (ωb d) :≡


0 if a < b

c− d if a = b

ωa c if a > b.

(71)

See our formalisation for the proof of correctness. The proof of (ii) consists of the following cases:23

7Caveat: is a notation for the tree constructor, while + is an operation that we define. We use parenthesis so that all
operations can be read with the usual operator precedence.
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• If a < b, then we take c :≡ 0 and d :≡ a.1

• If a = b, then we take c :≡ 1 and d :≡ 0.2

• If a > b, then there two possibilities:3

– a = ωu u′ and b = ωv v′ with u > v. By the induction hypothesis on u′ and b, we have c′4

and d such that u′ = b · c′ + d and d < b. We take c :≡ ω(u−v) c′ and then have a = ωu u′ =5

ωv+(u−v) + u′ = b · ω(u−v) + b · c′ + d = b · c+ d.6

– a = ωu u′ and b = ωu v′ with u′ > v′. By the induction hypothesis on u′ − v′ and b, we7

have c′ and d such that u′ − v′ = b · c′ + d and d < b. We take c :≡ c′ + 1 and then have8

a = ωu u′ = ωu + v′ + (u′ − v′) = b+ b · c′ + d = b · c+ d.9

The above defines the (Euclidean) division of CNFs.10

Theorem 25 (l). Cnf has addition (+), multiplication (·) and exponentiation ω(−) with base ω.11

Proof. We show the limit case for (+), and refer to our formalisation for the rest. Suppose a is the limit of f .12

The goal is to show that c+ a is the supremum (and thus the limit) of λi.c+ fi. We know c+ fi ≤ c+ a for13

all i because (+) is increasing in the right argument (Lemma 21). It remains to prove that if c+ fi ≤ x for14

all i then c+ a ≤ x. Thanks to Lemma 24(i), we have fi ≤ x− c for all i and thus a ≤ x− c because a is the15

limit of f . Therefore, we have c+ a ≤ c+ (x− c) = x.16

We conjecture that Cnf has exponentiation with arbitrary base.8 Specifically, we have constructed an17

operation (−)(−) and attempted to show a logarithm lemma: for any CNFs a > 0 and b > 1, there are CNFs18

x, y and z such that a = bx · y + z and 0 < y < b and z < bx.19

All the arithmetic operations of CNFs are unique. An easy way to prove this fact is to use classifiability20

induction (Definition 9) which we obtain as follows — note that we can classify a CNF as a limit, even if we21

cannot compute limits of CNFs.22

Lemma 26 (l). If a CNF is neither zero nor a successor, then it is a limit.23

Proof. If a CNF x is neither zero nor a successor, then x = ωa 0 with a > 0 or x = ωa b where b > 0 is24

not a successor. There are three possible cases, for each of which we construct a strictly increasing sequence25

s : N→ Cnf whose limit is x:26

(i) If x = ωa 0 and a = c+ 1, we define si :≡ (ωc 0) · ηi where η : N→ Cnf embeds natural numbers to27

CNFs.28

(ii) If x = ωa 0 and a is not a successor, the induction hypothesis on a gives a sequence r, and then we29

define si :≡ ωri 0.30

(iii) If x = ωa b and b > 0 is not a successor, the induction hypothesis on b gives a sequence r, and then31

we define si :≡ ωa ri.32

The sequence s is known as the fundamental sequence of the CNF x.33

The construction of fundamental sequences for limit CNFs is standard and well known. For example,34

Grimm has developed it in Coq [39, §2.5].35

Theorem 27 (l). Cnf has classification and satisfies classifiability induction.36

Proof. Since Cnf has decidable equality, being zero and being a successor are both decidable. Then Lemma 2637

shows that Cnf has classification. We then get classifiability induction from Theorem 11.38

8The formalised proof is work in progress at the time of submission of this paper.
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We use classifiability induction to prove the uniqueness of the arithmetic operations.1

Theorem 28 (l). The operations of addition, multiplication and exponentiation with base ω on Cnf are2

unique.3

Proof. We sketch the proof for the uniqueness of addition and refer to our formalisation for the rest. Assume4

that (+′) is also an addition operation on CNFs. The goal is to show that x+ y = x+′ y for all x and y. We5

use classifiability induction on y. The zero- and successor-cases are trivial. When y is a limit, we use the6

fact that (+) preserves suprema, i.e., if a is a supremum of a sequence f , then c+ a is a supremum of the7

sequence λi.c+ fi.8

We can check if a CNF is a limit and construct the fundamental sequence for limit CNFs. However, we9

cannot compute suprema or limits in general.10

Theorem 29 (l). Cnf does not have suprema or limits. Assuming the law of exclude middle (LEM), Cnf11

has suprema (and thus limits) of arbitrary bounded sequences. If Cnf has limits of bounded strictly increasing12

sequences, then the weak limited principle of omniscience (WLPO) is derivable.13

Proof. To show that Cnf does not have suprema or limits, we construct the following counterexample. Let14

ω ↑↑ be a sequence of CNFs defined by ω ↑↑ 0 :≡ ω and ω ↑↑ (k + 1) :≡ ωω↑↑k. If it has a limit, say x, then15

any CNF a is strictly smaller than x, including x itself. But this is in contradiction with irreflexivity.16

For the second part, we use Theorem 10.4.3 from the HoTT book [64, Thm 10.4.3] which we recall as17

Lemma 56 in Section 7. It states that, assuming LEM, (A,≺) is an extensional well-founded order if and18

only if every nonempty subset B ⊆ A has a least element. Given a bounded sequence f with bound b, we19

consider the subset P : Cnf → hProp of all the CNFs that are upper bounds of f . This subset contains at20

least b and is thus nonempty. We already have that < on Cnf is extensional and well-founded. Therefore, if21

we assume LEM, then P has a least element which is a supremum of f .22

On the other hand, the proof of Theorem 17 demonstrates that, if sequences bounded by ω · 2 have limits,23

then WLPO holds.24

6. Brouwer Trees25

We now consider the construction of Brouwer trees in Section 3.2 in more detail: the type Brw was26

defined mutually with the relation ≤, and we defined x < y as succx ≤ y. The elimination principles for27

such a quotient inductive-inductive construction [29] are on an intuitive level explained in the HoTT book28

(e.g. in Chapter 11.3 [64, Chp 11.3]), and a full specification as well as further explanations are given by29

Altenkirch, Capriotti, Dijkstra, Kraus and Nordvall Forsberg [2] and Kaposi and Kovács [42, 43, 44].30

We want to elaborate on the arguments that are required to establish the results listed in Section 4.31

Many proofs are very easy, for example the property (A3) of “mixed transitivity” is (almost) directly given32

by the constructor ≤-trans (cf. our formalisation); the property (28) is true as well, with an only slightly less33

direct argument. When we prove a propositional property by induction on a Brouwer tree, we only need to34

consider cases for point constructors, and multiple properties already follow from this. Below, we focus on35

the more difficult arguments and explain some of the more involved proofs.36

6.1. Distinction of Constructors37

To start with, we need to prove that the point constructors of Brw are distinguishable, e.g. that we38

have ¬(zero = succx) — point constructors are not always distinct in the presence of path constructors.39

Nevertheless, this is fairly simple in our case, as the path constructor bisim only equates limits, and the40

standard strategy of simply defining distinguishing families (such as isZero : Brw → hProp in the proof of41

Lemma 30 below) works.42

Lemma 30 (l). The constructors of Brw are distinguishable, i.e. one can construct proofs of zero 6= succx,43

zero 6= limit f , and succx 6= limit f .44
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Proof. We show how to distinguish zero and succx; the other parts are shown in the same way. Setting

isZero zero :≡ 1 (72)
isZero (succx) :≡ 0 (73)
isZero (limit f) :≡ 0 (74)

means the proof obligations for the path constructors (bisim and the truncation constructor) are trivial. Now1

if zero = succx, since isZero zero is inhabited, isZero (succx) ≡ 0 must be as well — a contradiction, which2

shows ¬(zero = succx).3

6.2. Codes Characterising ≤4

Antisymmetry of ≤ as well as well-foundedness and extensionality of < are among the technically most5

difficult results about Brw that we present in this paper. They are also the properties that would most easily6

fail with the “wrong” definition of Brw. To see the difficulty, let us for example consider well-foundedness7

of <: Given a strictly increasing sequence f , we have to show that limit f is accessible, i.e. that any given8

x < limit f is accessible. However, the induction hypothesis only tells us that every f k is accessible. Thus,9

we want to show that there exists a k such that x < f k, but doing this directly does not seem possible.10

We use a strategy corresponding to the encode-decode method [48] and define a type family11

Code : Brw→ Brw→ hProp (75)

which has the correctness properties

toCode : x ≤ y → Codex y (76)
fromCode : Codex y → x ≤ y, (77)

for every x, y : Brw, with the goal of providing a concrete description of x ≤ y. On the point constructors,
the definition works as follows:

Code zero _ :≡ 1 (78)
Code (succx) zero :≡ 0 (79)
Code (succx) (succ y) :≡ Code x y (80)
Code (succx) (limit f) :≡ ∃n.Code (succx) (f n) (81)
Code (limit f) zero :≡ 0 (82)
Code (limit f) (succ y) :≡ ∀k.Code (f k) (succ y) (83)
Code (limit f) (limit g) :≡ ∀k.∃n.Code (f k) (g n) (84)

The part of the definition of Code given above is easy enough; the tricky part is defining Code for the
path constructor bisim. If for example we have g ≈ h, we need to show that Code (limit f) (limit g) =
Code (limit f) (limith). The core argument is not difficult; using the bisimulation g ≈ h, one can translate
between indices for g and h with the appropriate properties. However, this example already shows why this
becomes tricky: The bisimulation gives us inequalities ≤, but the translation requires instances of Code,
which means that toCode has to be defined mutually with Code. This is still not sufficient: In total, the
mutual higher inductive-inductive construction needs to simultaneously prove and construct Code, toCode,
versions of transitivity and reflexivity of Code as well several auxiliary lemmas:

toCode : x ≤ y → Codex y (85)
Code-trans : Codex y → Code y z → Codex z (86)
Code-refl : Codexx (87)
Code-cocone : Codex (fk)→ Codex (limit f) (88)
Code-succ-incr-simple : Codex (succx) (89)
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After the mutual definition is complete, we can separately prove fromCode : Codex y → x ≤ y. The complete1

construction is presented in the Agda formalisation.2

Code allows us to easily derive various useful auxiliary lemmas, for example the following four:3

Lemma 31 (l). For x, y : Brw, we have x ≤ y ↔ succx ≤ succ y.4

Proof. This is a direct consequence of (80) and the correctness of Code.5

Lemma 32 (l). Let f : N <−→ Brw be a strictly increasing sequence and x : Brw a Brouwer tree such that6

x < limit f . Then, there exists an n : N such that x < f n.7

Proof. By definition, x < limit f means succx ≤ limit f . Using toCode together with the case (81), there8

exists an n such that Code (succx) (f n). Using fromCode, we get the result.9

Lemma 33 (l). If f , g are strictly increasing sequences with limit f ≤ limit g, then f is simulated by g.10

Proof. For every k : N, (84) tells us that there exists an n : N such that, after using fromCode, we have11

f k ≤ g n.12

Lemma 34 (l). If f is a strictly increasing sequence and x a Brouwer tree such that limit f ≤ succx, then13

limit f ≤ x. Dually, limits are closed under successors: if x < limit f then also succx < limit f .14

Proof. From (83), we have that f k ≤ succx for every k. But since f is increasing, succ (f k) ≤ f (k + 1) ≤15

succx for every k, hence by Lemma 31 f k ≤ x for every k, and the result follows using the constructor16

≤-limiting. For the second statement, if x < limit f then by Lemma 32 we have x < f n for some n, and since17

f is increasing, succx < f (n+ 1) < limit f .18

An alternative proof of Lemma 31, which does not rely on the machinery of codes, is given in our19

formalisation.20

6.3. Antisymmetry, Well-Foundedness, and Extensionality21

With the help of the consequences of the characterisation of ≤ shown above, we can show multiple22

non-trivial properties of Brw and its relations. Regarding well-foundedness, we can now complete the23

argument sketched above:24

Theorem 35 (l). The relation < is well-founded.25

Proof. We need to prove that every y : Brw is accessible. When doing induction on y, the cases of path26

constructors are automatic as we are proving a proposition. From the remaining constructors, we only show27

the hardest case, which is when y ≡ limit f . We have to prove that any given x < limit f is accessible. By28

Lemma 32, there exists an n such that x < f n, and the latter is accessible by the induction hypothesis.29

Next we show that ≤ is antisymmetric, i.e. if x ≤ y and y ≤ x then x = y.30

Theorem 36 (l). The relation ≤ is antisymmetric.31

Proof. Let x, y with x ≤ y and y ≤ x be given. We do nested induction. As before, we can disregard the32

cases for path constructors, giving us 9 cases in total, many of which are duplicates. We discuss the two33

most interesting cases:34

• x ≡ limit f and y ≡ succ y′: In that case, Lemma 34 and the assumed inequalities show succ y′ ≤35

limit f ≤ y′ and thus y′ < y′, contradicting the well-foundedness of <.36

• x ≡ limit f and y ≡ limit g: By Lemma 33, f and g simulate each other. By the constructor bisim,37

x = y.38
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Corollary 37 (l). (Brw, <,≤) satisfies the assumptions (A1), (A2), and (A3), i.e. it is an instantiation1

of the abstract triple (A,<,≤) discussed in Section 4. Furthermore, the symmetric variation of the second2

half of assumption (A3) holds for (Brw, <,≤), i.e., if x ≤ y and y < z, then x < z.3

Proof. The only non-immediate properties are antisymmetry of ≤ (Theorem 36) and irreflexivity of <4

(Theorem 35 and Lemma 4). That x ≤ y < z implies x < z follows directly from the definition of a < b as5

succ a ≤ b, transitivity of ≤, and monotonicity of succ.6

Finally we can show that < is extensional, i.e. that Brouwer trees with the same predecessors are equal.7

Theorem 38 (l). The relation < is extensional.8

Proof. Let x and y be two elements of Brw with the same set of smaller elements. As in the above proof, we9

can consider 9 cases. If x and y are built of different constructors, it is easy to derive a contradiction. For10

example, in the case x ≡ limit f and y ≡ succ y′, we have y′ < y and thus y′ < limit f . By Lemma 32, there11

exists an n such that y′ < f n, which in turn implies y < f (n+ 1) and thus y < limit f . By the assumed set12

of smaller elements, that means we have y < y, contradicting well-foundedness.13

The other interesting case, x ≡ limit f and y ≡ limit g, is easy. For all k : N, we have f k < f (k+1) ≤ limit f14

and thus f k < limit g; by the constructor ≤-limiting, this implies limit f ≤ limit g. By the symmetric argument15

and by antisymmetry of ≤, it follows that limit f = limit g.16

6.4. Classifiability17

Classifiability is straightforward for Brw, as the point constructors of the data type exactly corresponds18

to zero, successors and limits.19

Lemma 39 (l). Brw has zero, strong successors, and limits of strictly increasing sequences, and each part20

is given by the corresponding constructor.21

Proof. Most of these claims are easy. To verify that succ is a strong successor we need to show that x < succ b22

implies x ≤ b. But x < succ b is defined to mean succx ≤ succ b which, by Lemma 31, is indeed equivalent to23

x ≤ b.24

By the definition of < for Brw, we have:25

Corollary 40 (l, of Lemma 31). The strong successor of Brw is <- and ≤-monotone.26

Hence we can now observe that the special case of induction for Brw where the goal is a proposition27

is exactly classifiability induction, and by Corollary 10, Brw has classification. This proves the following28

theorem:29

Theorem 41 (l). Brw has classification and satisfies classifiability induction.30

6.5. Arithmetic of Brouwer Trees31

The standard arithmetic operations on Brouwer trees can be implemented with the usual strategy32

well-known in the functional programming community, i.e. by recursion on the second argument. However,33

there are several additional difficulties which stem from the fact that our Brouwer trees enforce correctness.34

Let us start with addition. The obvious definition is

x + zero :≡ x (90)
x + succ y :≡ succ (x+ y) (91)
x + limit f :≡ limit (λk.x+ f k). (92)

For this to work, we need to prove, mutually with the above definition, that the sequence λk.x+ f k in the35

last line is still increasing, which follows from mutually proving that + is monotone in the second argument,36
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both with respect to ≤ and <. We also need to show that bisimilar sequences f and g lead to bisimilar1

sequences x+ f k and x+ g k.2

The same difficulties occur for multiplication (·), where they are more serious: Even if f is increasing
(with respect to <), then λk. x · f k is not necessarily increasing, as x could be zero. What saves us is that
it is decidable whether x is zero (cf. Section 6.1); and if it is, the correct definition is x · limit f :≡ zero. If
x is not zero, then it is at least succ zero (another simple lemma for Brw), and the sequence is increasing.
With the help of several lemmas that are all stated and proven mutually with the actual definition of (·), the
mentioned decidability is the core ingredient which allows us to complete the construction:

x · zero :≡ zero (93)
x · succ y :≡ (x · y) + x (94)

x · limit f :≡

{
zero if x = zero

limit (λk.x · f k). otherwise
(95)

That λk.x ·f k is increasing if x > zero and f is increasing follows from mutually proving that · is monotone in
the second argument, and that zero ·y = zero. Exponentiation xy comes with similar caveats as multiplication,
but works with the same strategy.

xzero :≡ succ zero (96)
xsucc y :≡ (xy) · x (97)

xlimit f :≡


zero if x = zero

succ zero if x = succ zero

limit (λk.xf k) otherwise.
(98)

With these definitions, the properties introduced in Section 4.3 are automatically satisfied, and our Agda3

formalisation shows that these properties describe the above operations uniquely:4

Theorem 42 (l). Brw has unique addition, multiplication, and exponentation, given by (90) – (98).5

Many arithmetic properties can easily be established by induction, for example:6

Lemma 43 (l).7

(i) Addition and multiplication are weakly monotone in the first argument: if x ≤ y then x+ z ≤ y+ z and8

x · z ≤ y · z.9

(ii) Addition is left cancellative: if x+ y = x+ z then y = z.10

(iii) Addition and multiplication associative, and multiplication distributes over addition: x · (y + z) =11

(x · y) + (x · z).12

(iv) Exponentiation is a homomorphism: xy+z = xy · xz.13

The first infinite ordinal ω can be defined as a Brouwer tree as ω :≡ limit ι, where ι : N <−→ Brw embeds14

the natural numbers as finite Brouwer trees. As an example of how Brw behaves as expected as a type of15

ordinals, we can also define ε0 :≡ limit (λk.ω ↑↑ k), where ω ↑↑ (k+1) :≡ ωω↑↑k, and use the bisim constructor16

to show that indeed ωε0 = ε0. Similarly, using the lemmas we have already established, it is now not so hard17

to establish other expected properties of Brouwer trees, that would not hold without the path constructors18

in the definition of Brw:19

Lemma 44 (l). Brouwer trees of the form ωx are additive principal:20

(i) if a < ωx then a+ ωx = ωx.21
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(ii) if a < ωx and b < ωx then a+ b < ωx.1

Furthermore, if x > zero and n : N, then ι(n+ 1) · ωx = ωx.2

Proof. For (i), by antisymmetry it is enough to show a+ ωx ≤ ωx, since ωx ≤ a+ ωx holds by ωx = 0 + ωx3

and monotonicity of addition. We prove a+ ωx ≤ ωx by induction on a, making crucial use of Lemma 32.4

Statement (ii) is an easy corollary of (i) and strict monotonicity of + in the second argument. The final5

statement is proven by induction on x, with an inner induction on n for the successor case.6

Perhaps more surprisingly, even though Brw has addition with expected properties, it is a constructive7

taboo that Brw has subtraction. This is in contrast with the situation for Cnf, where subtraction is computable,8

and in fact was crucial in our proof of correctness of the arithmetic operations.9

Theorem 45 (l). If Brw has subtraction, then it has unique subtraction. Brw has subtraction if and only10

if LPO holds.11

Proof. Firstly, note that the type of having subtraction for Brw is a proposition due to left cancellability of12

addition: if z and z′ are candidates for y − x, then x+ z = y = x+ z′, hence z = z′ by Lemma 43(ii). Hence13

subtraction and unique subtraction coincide for Brw.14

In Theorem 53, we will show that LPO holds if and only if Splits(Brw, <,≤). Thus it is sufficient to show15

that Brw has subtraction if and only if Splits(Brw, <,≤). If Brw has subtraction, then we can split p : x ≤ y16

by comparing y −p x with 0, which is possible by Lemma 30 — we have x = y if y −p x = 0, and x < y if17

y −p x > 0. Conversely, assume ≤ splits, and let x, y with x ≤ y be given. Since having subtraction for Brw18

is a proposition, we can use classifiability induction on y to construct y −p x. In each case, we first split p: if19

x = y, then we define y −p x :≡ zero. If instead x < y, we cannot have y = zero, and if y = succ y′, we can20

use Lemma 31 to define y −p x using the induction hypotheses. Finally if y = limit f we use Lemma 32 to21

again be able to use the induction hypothesis to finish the job.22

6.6. Decidability and Undecidability for Brouwer Trees23

We now consider what is decidable and what is not for Brouwer trees. Because we can distinguish24

constructors by Lemma 30, we can decide most properties of finite Brouwer trees, i.e. Brouwer trees x with25

x < ω.26

Theorem 46 (l). It is decidable whether a Brouwer tree is finite. If n is a finite Brouwer tree and ∼ is27

one of the relations =, <, ≤, then the predicates (n ∼ _) and (_ ∼ n) are decidable.28

Proof. Deciding finiteness is easy to do by induction, since limit f is never finite, and hence the bisim29

constructor is trivially respected. Similar considerations apply when deciding (n ∼ _) and (_ ∼ n); see the30

Agda formalisation for details.31

Theorem 46 covers the most important properties that are decidable. In order to demonstrate that certain32

other properties cannot be shown to be decidable, we use constructive taboos as discussed in Section 2.2.33

Many constructive taboos talk about binary sequences, while the sequences that are important in the34

construction of Brw are strictly increasing sequences of Brouwer trees. In order connect the taboos with35

properties of Brw, we therefore want to be able to translate between both types of sequences. Recall the36

construction of the jumping sequence in the proof of Theorem 17. For Brw, we can implement it as a concrete37

function of type38

·↑ : (N→ 2)→ (N <−→ Brw). (99)

We then have:39

Lemma 47 (l). For any binary sequence s : N→ 2, we have limit s↑ ≤ ω · 2. Moreover, the following three40

statements are equivalent:41

(i) ∃k.sk = tt42
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(ii) limit s↑ = ω · 21

(iii) ω < limit s↑2

Proof. For any i, we have s↑i ≤ ω + i, and thus limit s↑ ≤ ω · 2. To see the equivalences, we have:3

(i)⇒ (ii): From (i), we can compute a minimal k such that sk = tt. Then, we have s↑i = i for i < k, and4

s↑k+i = ω + i. Therefore, limit s↑ = ω · 2.5

(ii)⇒ (iii): This is immediate as ω < ω · 2.6

(iii) ⇒ (i): By Lemma 32, there exists some n such that ω < s↑ n. In particular, s↑ n is infinite. By7

Lemma 2 and Theorem 46, we can therefore find an n such that s↑ n is infinite. The minimal such n has the8

property that sn = tt.9

Vice versa, assume f : N→ Brw is a sequence and P : Brw→ hProp a predicate such that for all n, P (f n)10

is decidable. We then define the unjumping sequence11

f↓P : N→ 2 (100)

by setting12

f↓P n :≡

{
tt if P (f n)

ff if ¬P (f n).
(101)

We now put the jumping sequence to work to show that most decidability questions of arbitrary Brouwer13

trees are in fact equivalent to each other, and to the constructive taboo of LPO.14

Theorem 48 (l). For the type of Brouwer trees, the following statements are equivalent:15

(i) LPO16

(ii) ∀x, y.Dec(x ≤ y)17

(iii) ∀x, y.Dec(x < y)18

(iv) ∀x.Dec(ω < x)19

(v) ∀x, y.Dec(x = y)20

(vi) ∀x.Dec(x = ω · 2)21

Proof. We show the equivalence using two cycles: (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i) and (i)⇒ (v)⇒ (vi)⇒ (i).22

(i)⇒ (ii): Assume LPO and define P (x) :≡ ∀y.Dec(x ≤ y). We show ∀x.P (x) by classifiability induction.23

• case P (zero): Trivial, since zero ≤ y for any y.24

• case P (succx): To decide succx ≤ y, we do classifiability induction on y. Using the results of Section 6.2,25

we know that succx ≤ zero is false and that succx ≤ succ y′ holds iff x ≤ y′, which is decidable by26

the induction hypothesis. Asked whether succx ≤ limit f , we use that succx ≤ f n is decidable by the27

induction hypothesis and consider the unjumping sequence f↓Q, with Q(z) :≡ (succx ≤ z); i.e. we have28

f↓Q(n) :≡

{
tt if succx ≤ f n
ff if ¬(succx ≤ f n).

(102)

Thanks to LPO, we know that the sequence f↓Q is either constantly ff, or (cf. Lemma 2) we get29

n such that succx ≤ f n. In the first case, we assume succx ≤ limit f ; by Lemma 32, this implies30

∃n.succx ≤ f n, contradicting the statement that the sequence is constantly ff. In the second case, we31

clearly have succx ≤ limit f .32
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• case P (limit f): We have to decide limit f ≤ y. We use the unjumping sequence with Q(z) :≡ ¬(z ≤ y),1

i.e.2

f↓Q(n) :≡

{
tt if ¬(f n ≤ y)

ff if f n ≤ y
(103)

Again, we apply LPO. If the sequence is constantly ff, we have limit f ≤ y. If we get an n with3

¬(f n ≤ y), then the assumption limit f ≤ y gives a contradiction.4

(ii)⇒ (iii): Trivial, since (x < y) ≡ (succx ≤ y).5

(iii)⇒ (iv): The latter is a special case of the former.6

(iv)⇒ (i): Assume (iv) and let s be a binary sequence. By assumption, we can decide ω < limit s↑, and7

thus ∃i.si = tt by Lemma 47, implying LPO.8

(i) ⇒ (v): Since (x = y) ↔ (x ≤ y) ∧ (y ≤ x) by antisymmetry, this follows from the result (i) ⇒ (ii)9

above.10

(v)⇒ (vi): The latter is a special case of the former.11

(vi)⇒ (i): Similar to the direction (iv)⇒ (i) above, this follows from Lemma 47.12

It is worth noting that the argument of (iv) ⇒ (i) in the above proof shows LPO, while Theorem 17,13

under similar assumptions and with a similar strategy, only shows WLPO. The construction of a concrete n14

is made possible by the earlier results on Brw, but is not possible for the abstract situation considered by15

Theorem 17.16

As we have just seen, being able to check equality with ω · 2 is equivalent to LPO, and equality with17

a finite number is always decidable. Equality with ω lies in-between, in the sense that it is equivalent to18

WLPO:19

Theorem 49 (l). Brw has locally decidable equality at ω if and only if WLPO holds:20

WLPO ↔ ∀(x : Brw).Dec(x = ω) (104)

Proof. Assume ∀x.Dec(x = ω). Let s be a binary sequence. If limit s↑ = ω, then s is constantly ff; otherwise,21

s is not constantly ff.22

Assume now WLPO and let x : Brw be given. If x is zero or a successor, then x 6= ω; thus, we assume23

that x is limit f . Consider f↓¬isFinite. If this sequence is constantly ff, then every fi is finite and the limit is ω.24

If is it not constantly ff, then x must differ from ω.25

For comparison, we observe the following:26

Theorem 50 (l). Let n be a natural number larger or equal to 2. Deciding equalities locally at ω · n is27

equivalent to LPO:28

LPO ↔ ∀(x : Brw).Dec(x = ω · n). (105)

Proof. By left cancellation of addition (Lemma 43), we have29

(∀x.Dec(x = ω + a))→ (∀x.Dec(x = a)) (106)

for any a. As a consequence, decidability of equality with ω · n, for n ≥ 2, implies decidability of equality30

with ω · 2, which implies LPO, which implies decidability of equality by Theorem 48.31

Summarising Theorems 46, 49 and 50, we have shown that decidability of equality with ω · n holds for32

n = 0, corresponds to WLPO for n = 1, and to LPO if n ≥ 2. For stability, which is somewhat weaker than33

decidability, we have:34

Theorem 51 (l). Equality of Brw is stable at ω, but stability at ω · n for n ≥ 2 implies MP:

∀(x : Brw).Stable(x = ω) (107)
(∀(x : Brw).Stable(x = ω · n))→ MP. (108)
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Proof. Assume ¬¬(x = ω); then, since x cannot be zero or a successor, let x = limit f . We have x = ω if and1

only if every fi is finite. If any fi is not finite, then x 6= ω, in contradiction to the assumption.2

For the second part, setting x :≡ limit s↑ and applying Lemma 47 shows immediately that the statement3

∀(x : Brw).Stable(x = ω · 2) implies MP. The general case for n > 2 again follows by left cancellation of4

addition (Lemma 43), since it implies5

(∀x.Stable(x = ω + a))→ (∀x.Stable(x = a)) (109)

for any a.6

Adding a finite number k does not change the situation in Theorems 49 to 51: If we replace ω · n by7

ω · n+ k, the remaining statements hold without any further difference.8

The following observation will be the key ingredient of a proof that LPO implies trichotomy:9

Lemma 52 (l). If LPO holds then, for all x, y : Brw, we have ¬(x ≤ y)→ (y < x).10

Proof. Assume LPO. Note that by Lemma 1, we then also have MP. We do classifiability induction on x.11

• Case x ≡ zero: The assumption ¬(zero ≤ y) is absurd.12

• Case x ≡ succx′: We have to show ¬(succx′ ≤ y)→ (y < succx′). We do classifiability induction on13

y. The case y ≡ zero is trivial, and the case y ≡ succ y′ follows from Lemma 31. Finally, we need to14

consider the situation y ≡ limit g:15

¬(succx′ ≤ limit g) ⇒ ¬∃i.succx′ ≤ gi
⇒ ∀i.¬(succx′ ≤ gi)
⇒ ∀i.gi < succx′

⇒ ∀i.gi ≤ x′

⇒ limit g ≤ x′

⇒ limit g < succx′.

(110)

• The final case is x ≡ limit f :16

¬(limit f ≤ y) ⇒ ¬(∀i.fi ≤ y)

⇒ ¬¬(∃i.¬(fi ≤ y))

⇒ ¬¬(∃i.y < fi)

(using MP on a decidable family of propositions)
⇒ ∃i.y < fi

⇒ y < limit f.

(111)

17

Using this lemma, and going via LPO, we can now show that splitting ≤ implies trichotomy for Brw — in18

the general setting, only the reverse direction, i.e., that trichotomy implies splitting, holds.19

Theorem 53 (l). The following properties are equivalent for the type of Brouwer trees:20

(i) LPO21

(ii) trichotomy: ∀x, y.(x < y) ] (x = y) ] (y < x)22

(iii) splitting: ∀x, y.(x ≤ y)→ (x < y) ] (x = y).23

28
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Proof. We show (i)⇒ (ii)⇒ (iii)⇒ (i).1

(i)⇒ (ii): Assume LPO. By Theorem 48, we can decide x < y. If it holds, we are done. Otherwise, by2

the contrapositive of Lemma 52, we get ¬¬(y ≤ x) and, since decidability implies stability, therefore y ≤ x.3

In the same way, we decide y < x, which gives us either y < x or x ≤ y. The second case implies x = y by4

antisymmetry.5

(ii)⇒ (iii): This is an instance of Lemma 16.6

(iii)⇒ (i): Given a binary sequence s, we know limit s↑ ≤ ω · 2 from Lemma 47. Splitting this inequality7

allows us to decide whether limit s↑ = ω · 2 which, again by Lemma 47, yields the conclusion of LPO.8

Another natural question is if we can compute suprema of not necessarily increasing sequences of Brouwer9

trees. An important special case is the join or maximum x t y of two trees, which is the suprema of the10

sequence (x, y, y, y, . . .). This is easy to compute if one of the trees is at most ω, as ω ≤ limit f for any11

f : N <−→ Brw:12

Theorem 54 (l). If y = n for a finite n, or y = ω, we can define a function (_ t y) : Brw → Brw13

calculating the binary join with y.14

Proof. For y = n finite, we can define15

x t n =


x if n = 0 or x = limit f

n if x = 0

succ (x′ t n′) if x = succx′ and n = succn′
(112)

and prove that this indeed is the join of x and n. Indeed any limit is going to be larger than any finite n,16

and 0 is always the smallest element, hence x t 0 = 0 t x = x. If both Brouwer trees are successors, we know17

that their join is a successor as well.18

For joins with y = ω, note that by Theorem 46, we can decide if x is finite or not. Clearly a finite x is19

smaller than ω, and ω is the smallest infinite Brouwer tree, leading to the following definition:20

x t ω =

{
ω if x is finite
x otherwise

(113)

See our Agda formalisation for the proof that this indeed is the join of x and ω.21

This is as far as we can go — already for y = ω+1 being able to calculate xty would imply a constructive22

taboo:23

Theorem 55 (l). If LPO holds, then x t (ω + 1) exists for every x : Brw. If x t (ω + 1) exists for every24

x : Brw, then WLPO follows.25

Proof. Assume LPO and let x : Brw be given. By Theorem 48, we can decide ω < x. If this is the case, it is26

easy to see that x = x t (ω + 1). If it is not the case and x ≡ limit f , then every fi must be finite, implying27

x = ω, and the binary join is ω + 1. If ¬(ω < x) and x is a successor, then x must be finite, again allowing28

us to see that the join is ω + 1.29

Now, assume that x t (ω + 1) exists for any x. We show that we can decide the equality x = ω which, by30

Theorem 49, implies WLPO. When deciding the proposition x = ω, we can assume x ≡ limit f , as the other31

cases are trivial. Using Theorem 41, we can check whether (limit f) t (ω + 1) is a successor or a limit. In the32

first case, any fi being infinite would lead to a contradiction, thus every fi must be finite, and limit f = ω33

follows. In the second case, we observe that limit f = ω would imply that the join with ω+ 1 is ω+ 1, yielding34

a contradiction.35
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6.7. An Alternative Equivalent Definition of Brouwer Trees1

We also considered an alternative quotient inductive-inductive construction of Brouwer trees using a path2

constructor3

antisym : x ≤ y → y ≤ x→ x = y (114)

following the construction of the partiality monad [3]. This constructor should be seen as a more powerful4

version of the bisim constructor, since if f . g, then limit f ≤ limit g. By Theorem 7.2.2 of the HoTT book5

[64, Thm 7.2.2], this constructor further implies that the constructed type is a set. Let us write Brw′ for the6

variation of Brw which uses the constructor (114) instead of bisim.7

Of course, Brw′ has antisymmetry for free, but the price to pay is that the already very involved proof8

of well-foundedness becomes significantly more difficult. After proving antisymmetry for Brw, we managed9

to prove Brw ' Brw′, thus establishing well-foundedness for Brw′ — but we did not manage to prove this10

directly.11

Note that the constructor limit of Brw asks for strictly increasing sequences; without that condition,12

extensionality fails. For Brw′, one can consider removing the condition, but Brw′ is then no longer equivalent13

to Brw. Most importantly, the constructors overlap and the ability to decide whether an element is zero is14

lost, without which we do not know how to define e.g. exponentiation on Brw.15

7. Transitive, Extensional and Well-Founded Orders16

As introduced in Section 3.3, Ord is the type of ordinals (X,≺) where the order is well-founded, extensional,17

and transitive. As noticed by Escardó [33], extensionality and Lemma 3.3 of Kraus, Escardó, Coquand and18

Altenkirch [46, Lem 3.3] imply that X is a set. It further follows that also Ord is a set [64, Thm 10.3.10].19

Clearly, the identity function is a simulation, and the composition of two (bounded) simulations is a20

(bounded) simulation; thus, ≤ is reflexive and ≤ as well as < are transitive. Note that the simulation21

requirement (b) is a proposition by Corollary 10.3.13 of the HoTT book [64, Cor 10.3.13] (i.e. even if22

formulated using Σ rather than ∃), and X ≤ Y is a proposition [64, Lem 10.3.16]. As a consequence, ≤ is23

antisymmetric. Similarly, if a simulation is bounded, then the bound is unique, and hence also the type24

X < Y is a proposition.25

We recall a result of the HoTT book that we will use to prove non-constructive results:26

Lemma 56 ([64, Thm 10.4.3]). Assuming LEM, (A,≺) is an ordinal if and only if every nonempty subset27

of A has a least element.28

Given ordinals A and B, one can construct a new ordinal A ]B, reusing the order on each component,29

and letting inl(a) ≺A]B inr(b). This construction has been formalised by Escardó [33], and amounts to the30

categorical join. This is used in the proof of the second part of the following lemma:31

Lemma 57. If A < B and B ≤ C then A < C. However A ≤ B and B < C implies A < C if and only if32

excluded middle LEM holds.33

Proof. If A ' B/b and g : B ≤ C then A ' C/g(b). Assuming LEM and f : A ≤ B, g : B < C, there is a34

minimal c : C not in the image of g ◦ f by Lemma 56 and A ' C/c. Conversely, let P be a proposition; it is35

an ordinal with the empty order. Consider also the unit type 1 as an ordinal with the empty order. We have36

1 ≤ 1 ] P and 1 ] P < 1 ] P ] 1, so by assumption 1 < 1 ] P ] 1. Now observe which component of the37

sum the bound is from: this shows if P holds or not.38

As noted in the HoTT book [64, Thm 10.3.20], Ord itself carries the structure of an extensional well-founded39

order, and so is an element of Ord, albeit in the next higher universe.40

Theorem 58. The order < on Ord is well-founded, extensional, and transitive.41

Since < is well-founded, it is also irreflexive by Lemma 4.42

Corollary 59. The triple (Ord, <,≤) satisfies the assumptions (A1), (A2), and (A3).43

30



Proof. Most requirements are given by Theorem 58, which in particular implies that < is irreflexive. Lemma 571

shows (A3). The remaining properties follow directly from the definitions.2

There is exactly one order on the empty type 0, and this order makes 0 into a zero for Ord. Similarly3

there is only one irreflexive order on the unit type 1, namely the one where the only element is not related to4

itself. The successor of A is given by A adjoined with 1 to the right A ] 1, thus adding one more element5

greater than all the given elements. As proven by de Jong and Escardó [25], notably Ord has suprema of6

arbitrary small families of ordinals, not only of N-indexed families, or of strictly increasing sequences, such as7

the case for Brw.8

Lemma 60 (�). The type 0 is zero. The strong successor of A is A]1, and if F : X → Ord is an X-indexed9

family of ordinals, then its supremum supF is the quotient (Σx : X.Fx)/ ∼, where (x, y) ∼ (x′, y′) if and10

only if (Fx)/y ' (Fx′)/y′ , with [(x, y)] ≺ [(x′, y′)] if (Fx)/y < (Fx′)/y′ .11

Proof. Zero is clear. The definition of a bounded simulation implies (X < Y ) ↔ (X ] 1 ≤ Y ), making12

Lemma 6 applicable. The definition of the type supF can be found in the HoTT book [64, Lem 10.3.22], and13

the proof that it is indeed the supremum was given by de Jong and Escardó [25, Thm 5.12].14

Theorem 61. Ord has addition given by A+B = A ]B, and multiplication given by A ·B = A×B, with15

the order reverse lexicographic, i.e. (x, y) ≺ (x′, y′) is defined to be y ≺B y′ ] (y = y′ × x ≺A x′).16

Proof. The key observation is that a sequence of simulations F0 ≤ F1 ≤ F2 ≤ . . . is preserved by adding or17

multiplying a constant on the left, i.e. we have C · F0 ≤ C · F1 ≤ C · F2 (but note that adding a constant on18

the right fails, see Theorem 63 below). This allows us to use the explicit representation of suprema from19

Lemma 60 in the limit cases.20

Many constructions that we have performed for Cnf and Brw are not possible for Ord, at least not21

constructively:22

Theorem 62. Ord has subtraction if and only if LEM holds.23

Proof. Let P be a proposition and assume that Ord has subtraction. Then, there is Q such that P ]Q = 1.24

This implies Q↔ ¬P , and the assumed equation becomes P ] ¬P .25

For the other direction, assume LEM and let s : X ≤ Y be given. Defining X1 :≡ Σ(y : Y ).¬s−1(y)26

ensures X ]X1 = Y , where LEM is required to show that the canonical function is a simulation (equivalently,27

to construct the inverse).28

Theorem 63. Each of the following statements on its own implies the law of excluded middle (LEM), and29

each of the first five statements is equivalent to LEM:30

(i) The successor (_ ] 1) is ≤-monotone.31

(ii) The successor (_ ] 1) is <-monotone.32

(iii) < is trichotomous, i.e. (X < Y ) ] (X = Y ) ] (X > Y ).33

(iv) ≤ is connex, i.e. (X ≤ Y ) ] (X ≥ Y ).34

(v) Ord has weak classification.35

(vi) Ord has classification.36

(vii) Ord satisfies classifiability induction.37

31
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Proof. We first show the chain LEM⇒ (i)⇒ (ii)⇒ LEM.1

LEM⇒ (i): Let f : A ≤ B. Using LEM, there is a minimal b : B ] 1 which is not in the image of f by2

Lemma 56. The simulation A ] 1 ≤ B ] 1 is given by f ] b.3

(i) ⇒ (ii): Assume we have A < B. By Lemmas 6 and 60, this is equivalent to A ] 1 ≤ B. Assuming4

(_ ] 1) is ≤-monotone, we get A ] 2 ≤ B ] 1, and applying Lemma 6 once more, this is equivalent to5

A ] 1 < B ] 1.6

(ii) ⇒ LEM: Assume P is a proposition. We have 0 < 1 ] P . If (_ ] 1) is <-monotone, then we get7

0 ] 1 < 1 ] P ] 1. Observing if the simulation f sends inr(?) to the P summand or not, we decide P ] ¬P .8

Next, we show LEM⇒ (iii)⇒ (iv)⇒ LEM, where the first implication is given by Theorem 10.4.1 of the9

HoTT book [64, Thm 10.4.1].10

(iii)⇒ (iv): Each of the three cases of (iii) gives us either X ≤ Y or X ≥ Y or both.11

(iv)⇒ LEM: Given a proposition P , we compare P ] P with 1. If P ] P ≤ 1 then ¬P , while 1 ≤ P ] P12

implies P .13

The next step is to show (vii)⇒ (vi)⇒ (v)⇒ LEM. The first implication is Corollary 10 and the second14

implication is automatic since any classifiable ordinal is also weakly classifiable. We have (v)⇒ LEM because15

a classifiable proposition P is either 0 (thus ¬P ) or a successor X ] 1 (thus P and necessarily X = 0) or the16

supremum of fst : Ord/X → Ord where there exists X0 < P (this case is impossible).17

Finally, we check LEM ⇒ (v). Thus, we assume LEM and a given X. If X is the supremum of18

fst : Ord/X → Ord then either X is empty or X is a general limit and we are done.19

Now assume that X is not the supremum of fst : Ord/X → Ord. Since X certainly satisfies the first part20

of the definition (36) and we have LEM (as well as Lemma 56) at our disposal, this means that there is some21

Y with22

∀X ′.(X ′ < X)→ (X ′ ≤ Y ) (115)

together with ¬(X ≤ Y ) which, by the previous parts of this theorem, implies Y < X. With the terminology23

of Section 4.2.1, this means that Y is a predecessor of X. We show that X in fact is the strong successor of24

Y . To do so, we additionally need that, for a given Y ′ such that Y < Y ′, we have X ≤ Y ′. Assume not:25

since LEM ⇒ (iii), we then have Y ′ < X, and using (115) therefore Y ′ ≤ Y , leading to the contradiction26

Y < Y ′ ≤ Y .27

Last but not least, we consider splitting:28

Theorem 64. Inequalities in Ord split ((X ≤ Y )→ (X = Y ) ] (X < Y )) if and only if LEM holds.29

Proof. For the “only if” direction, let P be a proposition; we always have P ≤ 1. If we can split this inequality,30

it follows that P ] ¬P .31

For the other direction, we assume LEM and e : X ≤ Y . If e is surjective, then it is an equivalence and32

X = Y follows. If e is not surjective, the complement of its image has a smallest element y0 by Lemma 56.33

Thus, e is bounded by y0 and witnesses X < Y .34

8. Interpretations Between the Notions35

In this section, we show how our three notions of ordinals can be connected via structure preserving36

embeddings.37

8.1. From Cantor Normal Forms to Brouwer Trees38

The arithmetic operations of Brw allow the construction of a function CtoB : Cnf → Brw in a canonical
way. We define CtoB : Cnf → Brw by:

CtoB(0) :≡ zero (116)

CtoB(ωa b) :≡ ωCtoB(a) + CtoB(b) (117)
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Theorem 65 (l). The function CtoB preserves and reflects < and ≤, i.e., a < b↔ CtoB(a) < CtoB(b),1

and a ≤ b↔ CtoB(a) ≤ CtoB(b).2

Proof. We show the proof for <; each direction of the statement for ≤ is a simple consequence.3

(⇒) By induction on a < b. The case when ωa b < ωc d because a < c uses Lemma 44.4

(⇐) Assume CtoB(a) < CtoB(b). If a ≥ b, then CtoB(a) ≥ CtoB(b) by (⇒), in conflict with the assumption.5

Hence a < b by the trichotomy of < on Cnf.6

We remark once again that the above proof was only possible because of the “correct” definition of Brw —7

it would not be the case that CtoB preserves < if we had used a “naive” version of Brouwer trees without8

path constructors. By reflecting ≤ and antisymmetry, we have:9

Corollary 66 (l). The function CtoB is injective.10

Proof. CtoB(a) = CtoB(b) implies CtoB(a) ≤ CtoB(b) and thus, by Theorem 65, a ≤ b. Analogously, one has11

b ≤ a. Antisymmetry gives a = b.12

We note that CtoB also preserves all arithmetic operations on Cnf. For multiplication, this relies on13

ι(n) · ωx = ωx for Brw (Lemma 44) — see our formalisation for details.14

Theorem 67 (l). CtoB commutes with addition, multiplication, and exponentiation with base ω.15

Proof. As an example, we show that CtoB commutes with addition, i.e., CtoB(a+ b) = CtoB(a) + CtoB(b)16

for all a, b : Cnf. The proof is carried out by induction on a, b. It is trivial when either of them is 0. Assume17

a = ωx u and b = ωy v. If x < y, then a+ b = b. We have also ωx < ωy, which implies ωCtoB(x) < ωCtoB(y)
18

by Theorem 65. Then by Lemma 44(i) we have ωCtoB(x) + ωCtoB(y) = ωCtoB(y). By the same argument, from19

the fact u < ωy we derive CtoB(u) + ωCtoB(y) = ωCtoB(y). Therefore, both CtoB(a+ b) and CtoB(a) + CtoB(b)20

are equal to CtoB(b). If y ≤ x, then a + b = ωx u+ b by definition. By the induction hypothesis, we21

have CtoB(u + b) = CtoB(u) + CtoB(b). Therefore, both CtoB(a + b) and CtoB(a) + CtoB(b) are equal to22

ωCtoB(x) + CtoB(u) + CtoB(b).23

Although we cannot calculate suprema in Cnf, we can still ask whether CtoB preserves those that exist.24

We restrict the question to the case of strictly increasing sequences. We first note that CtoB does preserve25

the fundamental sequences that we constructed for each limit CNF in the proof of Lemma 26, in the sense26

that CtoB sends x, the limit of its fundamental sequence s, to the limit of CtoB ◦ s.27

Lemma 68 (l). Let x : Cnf be a limit, and s its fundamental sequence as assigned in the proof of Lemma 26.28

We then have CtoB(x) = limit(CtoB ◦ s).29

Proof. Let x be given. We analyse how the fundamental sequence s of x is constructed and compute, using30

Theorem 67 extensively. In the following, we leave the embedding of natural numbers into both Cnf and Brw31

implicit, for convenience.32

(i) Case x ≡ ωc+1 0: By definition, we have33

CtoB(ωc+1 0) = ωCtoB(c+1)

= ωCtoB(c)+1

= ωCtoB(c) · ω
= ωCtoB(c) · limit(λi.i)

= limit(ωCtoB(c) · i)

(118)

On the other hand, the fundamental sequence is in this case defined as s :≡ λi.(ωc 0) · i), and therefore34

limit(CtoB ◦ s) = limit (λi.CtoB((ωc 0) · i))
= limit (λi.CtoB(ωc 0) · i)
= limit(λi.ωCtoB(c) · i)

(119)
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(ii) Case x ≡ ωa 0, where a is not a successor: Writing r for the fundamental sequence of a, then the1

fundamental sequence of s is, by definition, λi.ωri 0. Using that CtoB preserves the limit of r by2

induction, we have3

CtoB(ωa 0) = ωCtoB(a)

= ωlimit(CtoB◦r)

= limit(λi.ωCtoB(ri))

= limit(λi.CtoB(ωri))

= limit(CtoB ◦ s).

(120)

(iii) If x = ωa b with b > 0, then b necessarily is a limit with fundamental sequence r. Recall that the4

fundamental sequence of x is then given by λi.ωa ri.5

CtoB(ωa b) = ωCtoB a + CtoB b

= ωCtoB a + limit(CtoB ◦ r)
= limit(λi.ωCtoB a + CtoB(ri))

= limit(λi.CtoB(ωa ri))

= limit(CtoB ◦ s).

(121)

6

This might seem like an encouraging first step, but in fact continuity of CtoB in general turns out to be a7

constructive taboo. This is because Cnf and Brw are powerful in different ways: if CtoB were to preserve8

limits, then we could use the decidable equality of Cnf to confirm that a CNF is the limit of some sequence,9

then transfer the limit across to Brw where we could use the strong property of strict inequalities below10

limits factoring through one of the elements of the sequence to find an explicit witness. Using this idea, we11

can show that continuity of CtoB implies Markov’s principle. Conversely, Markov’s principle proves that12

CtoB is continuous with respect to strictly increasing sequences, so we have an exact correspondence.13

Theorem 69 (l). CtoB preserves limits of strictly increasing sequences if and only if MP holds.14

Proof. First, assume that CtoB preserves limits of strictly increasing sequences. We want to show MP.15

Therefore, let s be a binary sequence such that ¬(∀i.si = ff). We claim that ω + ω is the limit of the16

jumping sequence s↑ : N → Cnf from (59). The first condition we need to check for ω + ω to be the limit17

is ∀n.s↑ n ≤ ω + ω; but this is easy since every s↑ n is either finite or of the form ω + k, depending on18

the decidable property of whether there is i ≤ n with si = tt. The second condition requires us to check19

∀c.(∀n.s↑ n ≤ c)→ ω + ω ≤ c. If c < ω + ω, then each s↑ i is below ω and thus si = ff, which contradicts the20

assumption. Therefore, we have ω + ω ≤ c thanks to the trichotomy of Cnf by Theorem 18.21

By assumption, we thus have limit (CtoB ◦ s↑) = ω + ω. By Lemma 32, there exists n such that22

CtoB(s↑ (n + 1)) > ω, and by Theorem 65 CtoB reflects this inequality, hence s↑ (n + 1) > ω (since CtoB23

preserves ω by Theorem 67). This means s↑ (n+ 1) = ω + k for some k, and indeed we must have sn−k = tt,24

i.e., we have proven ∃i.si = tt, as required.25

For the other direction, we first show the following:26

Claim: Assume we have x, y : Cnf and strictly increasing sequences f, g : N → Cnf such that27

x is-N-lim-of f and y is-N-lim-of g. If x ≤ y and MP holds, then f is simulated by g:28

∀i.∃k.fi ≤ gk. (122)

To see this, let us fix i and define h : N→ 2 by29

hk :≡

{
ff if gk < fi

tt if fi ≤ gk.
(123)
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If ∀k.hk = ff, then ∀k.gk < fi and therefore y ≤ fi < x in contradiction to the assumption. Therefore, using1

MP, we have ∃k.hk = tt, i.e. ∃k.fi ≤ gk.2

We are now ready to show that MP implies that CtoB preserves limits of strictly increasing sequences.3

Let f be such a sequence with limit x; we want to show CtoB(x) = limit(CtoB ◦ f). Let s be the fundamental4

sequence of x as constructed in the proof of Lemma 26. Using the above claim and MP, we see that s and f5

are bisimilar. Since CtoB preserves the relations (Theorem 65), CtoB ◦ f and CtoB ◦ s are bisimilar in Brw6

and therefore have equal limits. Hence using Lemma 68, we have CtoB(x) = limit(CtoB ◦ s) = limit(CtoB ◦ f),7

as required.8

Lastly, as expected, Brouwer trees define bigger ordinals than Cantor normal forms: when embedded into9

Brw, all Cantor normal forms are below ε0, the limit of the increasing sequence ω, ωω, ωω
ω

, . . .10

Theorem 70 (l). For all a : Cnf, we have CtoB(a) < limit (λk.ω ↑↑ k), where ω ↑↑ 0 :≡ ω and11

ω ↑↑ (k + 1) :≡ ωω↑↑k.12

Proof. By induction on a. Using that ε0 = ωε0 = ωω
ε0 , in the step case we have ωCtoB(a) + CtoB(b) < ε0 by13

Lemma 44, strict monotonicity of ω−, and the induction hypothesis.14

8.2. From Brouwer Trees to Extensional Well-Founded Orders15

As Brw comes with an order that is well-founded, extensional, and transitive, it can itself be seen as an16

element of Ord. Every “subtype” of Brw (constructed by restricting to trees smaller than a given tree) inherits17

this property, giving a canonical function from Brouwer trees to extensional, well-founded orders. We define18

BtoO(a) = Σ(y : Brw).(y < a). (124)

with order relation (y, p) ≺ (y′, p′) if y < y′. This extends to a function BtoO : Brw → Ord. The first19

projection gives a simulation BtoO(a) ≤ Brw:20

Lemma 71. For X : Ord with x : X, the first projection fst : X/x → X is a simulation. If x, y : X and21

f : X/x → X/y is a function, then f is a simulation if and only if fst ◦ f = fst.22

Proof. Both properties required in the definition of a simulation are obvious in the case of fst. In the second23

sentence, if f is a simulation, then the equality follows from the uniqueness of simulations [64, Thm 10.3.16].24

If the equality holds then, again, the two properties in the definition of a simulation are clear for f .25

Using extensionality of Brw, this implies that BtoO is an embedding from Brw into Ord. Using that26

< on Brw is propositional, and that carriers of orders are sets, it is also not hard to see that BtoO is27

order-preserving:28

Lemma 72 (�). The function BtoO : Brw→ Ord is injective, and preserves < and ≤.29

Proof. The first part (injectivity of BtoO) is a special case of the following statement: Given X : Ord, the30

map X → Ord, x 7→ X/x is injective. This is remarked just before Definition 10.3.19 in the HoTT book [64,31

Def 10.3.19]. We give a detailed proof:32

Note that an equality Y = Z in Ord gives rise to a canonical simulation X ≤ Y by path induction. Now,33

assume x, y : X with X/x = X/y. We get f : X/x ≤ X/y. By Lemma 71, f maps (z, p) to (z, q), with34

q : z < y; that is, every element below x is also below y. The symmetric statement follows by the symmetric35

argument, and injectivity of x 7→ X/x by extensionality.36

If q : x ≤ y in Brw, then the map X/x → X/y, (z, p)→ (z, p · q) is a simulation by Lemma 71, thus BtoO37

preserves ≤. This implies that < is preserved as well since X < Y ↔ (X ] 1) ≤ Y .38

A natural question is whether the above result can be strengthened further, i.e. whether BtoO is a39

simulation. David Wärn pointed out to us that this is a special case of the map x 7→ X/x : X → Ord being a40

simulation for any small ordinal X.41

35

https://cj-xu.github.io/agda/type-theoretic-approaches-to-ordinals/index.html#Theorem-70
https://cj-xu.github.io/agda/type-theoretic-approaches-to-ordinals/index.html#Lemma-72


Theorem 739. The function BtoO : Brw→ Ord is a simulation.1

Proof. Given B < BtoO(a), we need to find a Brouwer tree a′ < a such that BtoO(a′) = B. By definition2

of B < BtoO(a), there is (a′, p) : Σ(y : Brw).(y < a) such that B ' BtoO(a)/(a′,p). Since a′ < a, we have3

BtoO(a)/(a′,p) = Σ(y : Brw).((y < a)× (y < a′)) ' BtoO(a′), and hence BtoO(a′) = B as needed.4

Remark 749. Unfortunately, in an earlier version of this paper, we erroneously claimed that BtoO : Brw→ Ord5

being a simulation would imply the constructive taboo of WLPO. We are thankful to David Wärn for catching6

our mistake.7

We trivially have BtoO(zero) = 0. One can further prove that BtoO commutes with limits, i.e.8

BtoO(limit(f)) = lim(BtoO ◦ f). However, BtoO does not commute with successors; it is easy to see9

that BtoO(x) ] 1 ≤ BtoO(succx), but the other direction implies WLPO. This also means that BtoO does10

not preserve the arithmetic operations but “over-approximates” them, i.e. BtoO(x+ y) ≥ BtoO(x) ] BtoO(y)11

and BtoO(x · y) ≥ BtoO(x)× BtoO(y).12

9. Computational Efficiency of Our Notions of Ordinals13

Apart from logical expressiveness, it is also interesting to compare the computational efficiency of our
different notions of ordinal. This is possible to do, since we have formalised them in Cubical Agda, which
has computational support for higher inductive types and the Univalence Axiom. Inspired by Berger’s
benchmarking of ordinal recursive versus higher type programs extracted from Gentzen’s proof of transfinite
induction up to ε0 [6], we compared the efficiency of our different ordinal representations for computing
Hωn(1), where, for each notion of ordinal O, H : O → N→ N is the Hardy hierarchy [67], with

H0(n) = n (125)
Hα+1(n) = Hα(n+ 1) (126)
Hlim f (n) = Hf(n)(n). (127)

However, since obviously Hlim f depends on the choice of fundamental sequence f in the limit case, this is
not a well defined function on ordinals. To work around this issue, we instead compute H : O → N→ ‖N‖,
where ‖N‖ is the propositional truncation of N. All elements of ‖N‖ are propositionally equal, but we can
still let Cubical Agda compute their normal form, which will be of the form |k| for some numeral k, which
we can extract for a closed program. We are thus interested in the following defining equations:

H0(n) = |n| (128)
Hα+1(n) = Hα(n+ 1) (129)
Hlim f (n) = Hf(n)(n) (130)

For O = Brw, this definition can now be implemented directly by induction on the Brouwer tree, whereas14

for O = Cnf, we use classifiability induction to define H. We cannot define H at all for O = Ord, since15

classification for Ord is a constructive taboo. Using Cubical Agda’s --erased-cubical feature, we compiled16

these definitions and ran Hωn(1) for increasing values of n — the result is the same for each n, but the17

run time increases. The results can be found in Figure 1. As can be seen there, Cantor normal forms are18

significantly more efficient than Brouwer trees for this computation. This could be in part due to their19

first-order representation, but also perhaps due to our implementation of classifiability induction for Cantor20

normal forms: this follows Gentzen’s proof of transfinite induction up to ε0, and as Berger [6] noticed, this21

gives rise to an efficient, higher-order implementation.22

9Theorem 73 and Remark 74 are updated compared to the publisher’s version.
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Figure 1: Benchmarking running time for Hωn (1), n = 500, 1000, . . . , for Brouwer trees (Brw) and Cantor normal forms (Cnf).

10. Conclusions and Future Directions1

We have introduced Cantor normal forms (Cnf), Brouwer trees (Brw), and extensional well-founded orders2

(Ord), three different approaches to ordinal theory in the setting of homotopy type theory. Even though3

these approaches are quite different in their implementation, we have shown that they can all be studied in a4

single abstract setting and shown to share many expected properties of ordinals from their classical theory.5

It is our hope that our work may shed light on other constructive or formalised approaches to ordinals also6

in other settings [12, 13, 50, 54].7

Cantor normal forms are a formulation where most properties are decidable, while the opposite is the8

case for extensional well-founded orders. Brouwer trees sit in the middle, with some of its properties being9

decidable, such as being a finite ordinal. However other properties, such as deciding equality between10

Brouwer trees in general, is a constructive taboo in the sense that it is equivalent to the non-constructive11

principle LPO. This is in contrast to the situation for extensional well-founded orders, where decidability12

of most properties is equivalent to the constructively much stronger principle LEM. In the future, we plan13

to investigate such decidability aspects further, including the notion of semidecidability [24] from synthetic14

computability theory [5, 36]. For example, if c : Cnf is smaller than ω2, then the families (CtoB c ≤ _) and15

(CtoB c < _) are semidecidable.16

Along another dimension, the canonical maps CtoB : Cnf → Brw and BtoO : Brw→ Ord embeds “smaller”17

types of ordinals into “larger” ones: while every element of Cnf represents an ordinal below ε0, Brw can go18

much further, and since Brw can be viewed as an element of Ord, the latter can clearly reach larger ordinals19

than the former by the Burali-Forti argument [10, 18]. To at least partially overcome these limitations20

comparing Cnf to Brw, it would be interesting to consider more powerful ordinal notation systems such as21

those based on the Veblen functions [55, 65] or collapsing functions [4, 16], and see how these compare to22

Brouwer trees.23

One can also explore more powerful variations of Brouwer trees. Following Schwichtenberg’s approach [57],24

we could replace limits of countable sequences with larger limits and construct higher number classes as25

quotient inductive-inductive types in a similar way, e.g. a type Brw2 closed under limits of Brw-indexed26

sequences, and then more generally types Brwn+1 closed under limits of Brwn-indexed sequences, and so on.27

Finally, there are interesting connections between the ordinals we can represent and the proof-theoretic28

strength of the ambient type theory: each proof of well-foundedness for a system of ordinals is also a lower29

bound for the strength of the type theory it is constructed in. It is well known that definitional principles30

such as simultaneous inductive-recursive definitions [31] and higher inductive types [49] can increase the31

proof-theoretical strength, and so, we hope that they can also be used to faithfully represent even larger32

ordinals.33
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