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Abstract—In constructive set theory, an ordinal is a hereditar-
ily transitive set. In homotopy type theory (HoTT), an ordinal
is a type with a transitive, wellfounded, and extensional binary
relation. We show that the two definitions are equivalent if we use
(the HoTT refinement of) Aczel’s interpretation of constructive
set theory into type theory. Following this, we generalize the
notion of a type-theoretic ordinal to capture all sets in Aczel’s
interpretation rather than only the ordinals. This leads to a
natural class of ordered structures which contains the type-
theoretic ordinals and realizes the higher inductive interpretation
of set theory. All our results are formalized in Agda.

I. INTRODUCTION

Set theory and dependent type theory are two very different
settings in which constructive mathematics can be developed,
but not always in comparable ways. Lively discussions on what
foundation is “better” are not uncommon. While we do not
dare to offer a judgment on this question, we can at least report
that the choice of foundation is in a certain sense insignificant
for the development of constructive ordinal theory. We consider
this an interesting finding since ordinals are fundamental in the
foundations of set theory and are used in theoretical computer
science in termination arguments [1] and semantics of inductive
definitions [2], [3].

In constructive set theory, following Powell’s seminal
work [4], a standard definition1 of an ordinal is that of a
transitive set whose elements are again transitive sets (also
cf. Aczel and Rathjen [8]). A set x is transitive if for every
y ∈ x and z ∈ y, we have z ∈ x, i.e., if y ∈ x implies
y ⊆ x. Note how this definition makes essential use of
how the membership predicate ∈ in set theory is global, by
simultaneously referring to z ∈ y and z ∈ x. In type theory,
on the other hand, the statement “if y : x and z : y then z : x”
is ill-formed, and so ordinals need to be defined differently.
In homotopy type theory, an ordinal is defined to be a type
equipped with an order relation that is transitive, extensional,
and wellfounded [9, §10.3].

1In a classical setting, Cantor’s ordinals [5] can be presented in multiple
equivalent ways. In a constructive setting, these presentations are not equivalent
and are often not as well-behaved as one would wish. Therefore, various
reasonable definitions of ordinals are known and have been studied; for example,
Taylor [6] gave a constructively better-behaved formulation, and in previous
work, we compared several approaches [7].

A priori, the set-theoretic and the type-theoretic approaches
to ordinals are thus quite different. One way to compare them
is to interpret one foundation into the other. Aczel [10] gave
an interpretation of Constructive ZF set theory into type theory
using so-called setoids, which was later refined using a higher
inductive type V in the HoTT book [9, §10.5], referred to as
the cumulative hierarchy. Through this construction, homotopy
type theory hosts a model of set theory, and we make use of
this to study the set-theoretic approach to ordinals within it.

To be specific, the cumulative hierarchy V allows us to
define a set membership relation ∈, which makes it possible to
consider the type Vord of elements of V that are set-theoretic
ordinals. Similarly, we write Ord for the type of all type-
theoretic ordinals, i.e., for the type of transitive, extensional,
and wellfounded order relations. We show that Vord and Ord
are equivalent (isomorphic), meaning that we can translate
between type-theoretic and set-theoretic ordinals.

This translation by itself would not be satisfactory if it were
not well-behaved; what makes it valuable is that it preserves
the respective order. A fundamental result of type-theoretic
ordinals is that the type Ord of (small) ordinals is itself a type-
theoretic ordinal when ordered by inclusion of strictly smaller
initial segments (also referred to as bounded simulations). To
complement this, we show that the type Vord of set-theoretic
ordinals also canonically carries the structure of a type-theoretic
ordinal. The isomorphisms that we construct respect these
orderings, and our first main result (Theorem 33) is that Ord
and Vord are isomorphic as ordinals (and, consequently, equal,
by a standard application of univalence). Thus, the set-theoretic
and type-theoretic approaches to ordinals coincide in homotopy
type theory.

Going further, we dive deeper into the study of the isomor-
phism Vord → Ord. The analogue to this function in set theory
computes the rank [2], [8], [11] of sets recursively. While
our definition is recursive as well, we show that it is possible
to give a conceptually simpler, non-recursive description of
the rank of transitive sets, although this requires paying close
attention to size issues. Specifically, we show that the rank of a
set-theoretic ordinal α is isomorphic to — but not equal to for
size reasons — the type of all members of α (Corollary 46).

In the second part of the paper, we generalize
the isomorphism between set- and type-theoretic ordi-
nals. Given that the subtype Vord of V is isomorphic



to Ord, a type of ordered structures, it is natural to
ask what type of ordered structures captures all of V.

Vord Ord

V T

'

'

(1)

That is, we look for a natural
type T of ordered structures such
that the diagram on the right
commutes. Since V is Vord with
transitivity dropped, it is tempting
to try to choose T to be Ord
without transitivity, i.e., the type
of extensional and wellfounded relations. However, such an
attempt is too naive to work: consider the type-theoretic ordinal
α with two elements 0 < 1, whose corresponding set in Vord
is the set 2 = {∅, {∅}}. The latter is the set-theoretic transitive
closure of the non-transitive set {{∅}} ⊆ 2, but the only
extensional, wellfounded order whose order-theoretic transitive
closure is α is α itself. In other words, there cannot be an order-
preserving isomorphism between V and the type of extensional,
wellfounded order relations, since there is no corresponding
order for the set {{∅}} — we need additional structure to fully
capture this set.

To this end, we introduce the theory of (covered) marked
extensional wellfounded orders (mewos), i.e., extensional,
wellfounded relations with additional structure in the form
of a marking. The idea is that the carrier of the order also
contains elements representing elements of elements of the set,
with the marking designating the “top-level” elements: the set
{{∅}} is again represented by the order α with two elements
0 < 1, but with only element 1 marked. Such a marking is
covering if any element can be reached from a marked top-
level element, i.e., if the order contains no “junk”. Since every
ordinal can be equipped with the trivial covering by marking
all elements, the type Ord of ordinals is a subtype of the type
MEWOcov of covered mewos, as requested by Diagram 1.

The idea of encoding sets as wellfounded structures is not
new; see, e.g., [12, §7], [6, §3], [13, §4.7] and Aczel’s [14]
“canonical picture” [13, Ex 4.22]. Instead, the point is to have a
notion that allows for a smooth type-theoretic generalization of
the theory of ordinals. Additionally, covered mewos are shown
to work predicatively (i.e., without the need to assume resizing
axioms), which is not obvious for the previously mentioned
approaches.

Aiming for an isomorphism V ' MEWOcov, we develop the
theory of the covered mewos: the type of covered mewos is
itself a covered mewo, and it has both a successor operation,
and least upper bounds of arbitrary (small) families of covered
mewos. Compared to the theory of ordinals, some additional
care is required as the orders involved are not assumed to be
transitive. Using successors and least upper bounds of mewos,
we construct a map V→ MEWOcov by the recursive formula
for the rank of a set, and show that it has an inverse.

A. Summary of contributions

• We show that set-theoretic and type-theoretic ordinals
coincide (Theorem 33).

• We show that the rank of an ordinal can be defined in a
non-recursive way (Corollary 46).

• We show that the model of set theory V is equivalently
represented by the structure of covered marked extensional
wellfounded order relations (Theorem 76).

B. Related work

Constructive treatments of ordinals can be found in Joyal and
Moerdijk [15] and Taylor [6]. In the context of homotopy type
theory, what we call type-theoretic ordinals were developed
in the HoTT book [9, §10.3], and their theory significantly
expanded by Escardó and collaborators [16]. In previous
work [7], [17], we developed a framework for different notions
of constructive ordinals, and showed that all ordinals we
considered embed into the type-theoretic ordinals in an order-
preserving way. In fact, the current paper grew out of an
attempt to locate the set-theoretic ordinals somewhere between
the countable Brouwer tree ordinals (as considered by, e.g.,
Brouwer [18], Church [19], Kleene [20], Martin-Löf [21], and
Coquand, Lombardi and Neuwirth [22]) and the type-theoretic
ordinals in this framework, before we realised that they actually
coincide with the latter!

To the best of our knowledge, the first interpretation of
Constructive ZF set theory into type theory was given by
Aczel [10]. This original interpretation uses so-called setoids
and has a form of choice built-in. It was later refined using
a higher inductive type V in the HoTT book [9, §10.5],
referred to as the cumulative hierarchy, and this is the version
we use in the current paper. Gylterud [23] showed that V
can be constructed using only an ordinary inductive type
without higher constructors. Although it is not our main
motivation, the current paper demonstrates that V can be
realized not as an inductive type at all, but as the collection of
all covered marked wellfounded extensional relations (however,
the notion of wellfoundedness is defined as an inductive type,
and the notion of coveredness uses higher constructors in the
form of propositional truncations). Taylor [6] also considers
wellfounded extensional relations (which he calls ensembles) as
“codes” for sets in an elementary topos, but does not consider
markings on them. Coverings and markings are what allow us
to achieve completeness, i.e., to represent all sets in V.

C. Setting, assumptions, and notation

We work in and assume basic familiarity with homotopy
type theory as introduced in the HoTT book [9], i.e., Martin-
Löf type theory extended with higher inductive types and the
univalence axiom. We also follow this book closely regarding
notation and denote the Martin-Löf identity type by a = b,
while a ≡ b is reserved for definitional (also referred to as
judgmental) equality. Universe levels are kept implicit, and
we write U+ for the next universe containing the universe U .
For an implicitly fixed universe U , we write Prop or PropU
for the subtype of propositions, Prop :≡ Σ(P : U).is-prop(X),
where a proposition is a type with at most one element (“proof-
irrelevant”). Following standard terminology, a set is a type
whose identity types are propositions.

We write the type of dependent functions Π(x : A).B(x) as
∀(x : A).B(x) when B(x) is known to be a family of proposi-
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tions. Moreover, we denote by ∃(x : A).B(x) the propositional
truncation of the type of dependent pairs ‖Σ(x : A).B(x)‖.

D. Formalization

All our results have been formalized in the Agda proof
assistant, and type checks using Agda 2.6.3. Our formaliza-
tion of Section II is building on Escardó’s TypeTypology
library [24], whereas our formalization of Section III is
building on the agda/cubical library [25]. The formalization
has been archived with the DOI 10.5281/zenodo.7857275, and
an HTML rendering of our Agda code is also available at
https://tdejong.com/agda-html/st-tt-ordinals/. Throughout (the
arXiv version of) our paper, the symbol � is a clickable link
to the corresponding machine-checked statement.

II. ORDINALS IN TYPE THEORY AND SET THEORY

We start by reviewing both the set-theoretic and type-
theoretic approaches to ordinals. We then recall the higher
inductive construction of a model of constructive set theory
in homotopy type theory [9, §10.5], allowing us to consider
the set-theoretic ordinals inside homotopy type theory, and
to prove that they coincide with the type-theoretic ordinals.
Finally, we revisit a recursive aspect of our proof and provide
alternative non-recursive constructions, which require paying
close attention to type universe levels.

A. Ordinals in homotopy type theory

The theory of ordinals in homotopy type theory was
introduced in the HoTT book [9, §10.3] and significantly
expanded on by Escardó and collaborators [16]. One of the
core concepts is wellfoundedness which, constructively, is
conveniently phrased in terms of accessibility:

Definition 1 (� Accessibility). For a type X equipped with
a binary relation <, the type family is-accessible< on X is
inductively defined by saying that is-accessible<(x) holds if
is-accessible<(y) holds for every y < x.

The point of accessibility is that it captures the principle of
transfinite induction by a single inductive definition.

Lemma 2 (� Transfinite induction). For a type X equipped
with a binary relation <, every element of X is accessible
if and only if for every type family P on X , we have P (x)
for all x : X as soon as for every x : X , the statement
∀(y : X).y < x→ P (y) implies P (x).

Cantor’s original definition of ordinal numbers was that of
isomorphism classes of well-ordered sets, but using univalence,
all representatives of a given isomorphism class in homotopy
type theory are identical. Hence, we can use the well-ordered
sets directly to represent ordinals. The classical definition of
well-order states that every non-empty subset has a minimal
element. Constructively, the following (classically equivalent)
formulation is better behaved.

Definition 3 (� Type-theoretic ordinal). A binary relation <
on a type X is said to be

(i) prop-valued if x < y is a proposition for every x, y : X;

(ii) wellfounded if every element of X is accessible with
respect to <, i.e., ∀(x : X). is-accessible<(x);

(iii) extensional if ∀(z : X).(z < x↔ z < y) implies x = y
for every x, y : X; and

(iv) transitive if x < y and y < z together imply x < z for
every x, y, z : X .

A (type-theoretic) ordinal is a type X with a binary relation
< on X that is prop-valued, wellfounded, extensional, and
transitive.

Remark 4. While [9] requires the carrier of an ordinal to be
a set (in the sense of HoTT), Escardó [16] observed that this
follows from prop-valuedness and extensionality.

We now recall the notion of an initial segment and bounded
simulation, which will play fundamental roles in our construc-
tions and proofs.

Definition 5 (� Initial segment, α↓a; bounded simulation, <).
An element a of an ordinal α determines an initial segment of
α defined as

α ↓ a :≡ Σ(x : α).x < a,

which is again an ordinal with the order induced by α. A
bounded simulation between ordinals, p : α < β, is a proof
that α is an initial segment of β,

α < β :≡ (Σ(b : β).α ' β ↓ b).

Note that the definition of α < β above is equivalent to
the definition given in [9, Def 10.3.19]; in particular, it is a
proposition.

Remark 6. In Definition 5 above, we could have defined a
bounded simulation using an identification α = β ↓ b, but opted
for an equivalence α ' β ↓ b instead. These two expressions are
equivalent by univalence. However, the latter has the advantage
of begin small, i.e., living in the same universe as α and β,
while the former lives in the next universe.

Theorem 7 (�). The type Ord of ordinals in a univalent
universe, together with the relation < of bounded simulations,
is itself a (large) type-theoretic ordinal.

A bounded simulation is a special case of the following
more general definition that serves as a notion of morphism
between ordinals:

Definition 8 (� Simulation, ≤). A simulation between two
ordinals α and β is a function f between the underlying types
satisfying:

(i) monotonicity: x <α y implies f x <β f y for every two
elements x, y : α, and

(ii) the initial segment property: for every x : α and y : β, if
y <β f x, then there is a x′ <α x with f x′ = y.

If we have a simulation between α and β, then, motivated by
Proposition 9 below, we denote this by α ≤ β.

We stress that ≤ is a primitive relation, and not given as the
disjunction of < and equality — in fact, we have α ≤ β ↔

3

https://doi.org/10.5281/zenodo.7857275
https://tdejong.com/agda-html/st-tt-ordinals/
https://tdejong.com/agda-html/st-tt-ordinals/index.html#Definition-1
https://tdejong.com/agda-html/st-tt-ordinals/index.html#Lemma-2
https://tdejong.com/agda-html/st-tt-ordinals/index.html#Definition-3
https://tdejong.com/agda-html/st-tt-ordinals/index.html#Definition-5
https://tdejong.com/agda-html/st-tt-ordinals/index.html#Theorem-7
https://tdejong.com/agda-html/st-tt-ordinals/index.html#Definition-8


(
(α < β) + (α = β)

)
for all ordinals α and β if and only if

the law of excluded middle holds [7, Thm 64].

Proposition 9 (�). Simulations make Ord into a poset.
Moreover, for ordinals α and β, the following are equivalent:

(i) α ≤ β,
(ii) for every γ : Ord, if γ < α, then γ < β, and

(iii) for every a : A, we have a (necessarily unique) b : β with
α ↓ a = β ↓ b.

Given f : α ≤ β, the element b in (iii) is given by f(a).

The relation ≤ on Ord is antisymmetric, which can be used
to prove that two ordinals are isomorphic; however, it is often
convenient to work with the following alternative description.

Lemma 10 (�). A map between ordinals is an isomorphism
if and only if it is bijective and preserves and reflects the
order.

Univalence implies that isomorphic ordinals in the same
universe are equal (as ordinals), which allows us to prove the
equalities in the upcoming lemmas.

Lemma 11 (�). For p : a < b in an ordinal α, iterations of
initial segments simplify as follows: (α ↓ a)↓(b, p) = α↓b.

Besides initial segments, we will need two additional
constructions of ordinals, sums and suprema, as well as a few
lemmas expressing how these interact with initial segments.

Definition 12 (� Sum of ordinals, α+β). Given two ordinals
α and β, we construct another ordinal, the sum α + β, by
ordering the coproduct of the underlying types of α and β as

inl a < inr b :≡ 1, inl a < inl a′ :≡ a <α a′,
inr b < inl a :≡ 0, inr b < inr b′ :≡ b <β b′.

Initial segments of sums obey the following laws:

Lemma 13 (�). For ordinals α and β, and a : α, we have:
(i) (α+ β) ↓ inl a = α ↓ a, and

(ii) (α+ 1) ↓ inr ? = α.

Definition 14 (� Supremum of ordinals,
∨
i:I αi). Given a

type I : U and a family of α : I → Ord of ordinals in U , we
construct another ordinal, the supremum

∨
i:I αi, as the set

quotient of Σ(i : I).αi by the relation

(i, x) ≈ (j, y) :≡ (αi ↓ x ' αj ↓ y)

and ordered by

[i, x] < [j, y] :≡ (αi ↓ x < αj ↓ y).

Note that the distinction between ' and = discussed in
Remark 6 is important in the definition above. It ensures that
the supremum

∨
i:I αi lives in the “correct” universe, i.e., is

an element of Ord.
The name “supremum” comes from the fact that

∨
i:I αi

indeed is the supremum (least upper bound) of the family
α : I → Ord in the poset Ord, as shown in [26, Thm 5.8] which
extends [9, Lem 10.3.22]. In particular, we have simulations
αj ≤

∨
i:I αi for every j : I given by x 7→ [j, x].

Lemma 15 (�). Initial segments of suprema obey the following
laws for all families α : I → Ord of ordinals:

(i)
∨
i:I αi ↓ [j, x] = αj ↓ x for all j : I and x : αj , and

(ii) for every y :
∨
i:I αi, there exist j : J and x : αi for

which
∨
i:I αi ↓ y = αj ↓ x.

Thus, an initial segment of a supremum is given by an initial
segment of a component.

Proof. The first property follows from Proposition 9 and the
fact that for every j : I , the map x 7→ [j, x] from αj to

∨
i:I αi

is a simulation. The second follows from the first and the
surjectivity of the map [−] : (Σ(j : J).αj)→

∨
j:J αj .

B. Ordinals in set theory

In constructive set theory, following Powell [4], the standard
definition [8, Def 9.4.1] of an ordinal is simple to state: it is a
transitive set whose elements are again transitive sets.

Definition 16 (� Transitive set). A set x is transitive if for
every z and y with z ∈ y and y ∈ x, we have z ∈ x.

Note how this definition makes essential use of how the mem-
bership predicate ∈ in set theory is global, by simultaneously
referring to z ∈ y and z ∈ x.

Example 17. The sets ∅, {∅}, {∅, {∅}} and {∅, {∅}, {{∅}}}
are all transitive, but {{∅}} is not, because ∅ is not a member.

Definition 18 (� Set-theoretic ordinal). A set-theoretic ordinal
is a hereditarily transitive set, i.e., a transitive set whose
elements are all transitive sets.

The first three sets of Example 17 are all ordinals, but the
fourth is not, because its member {{∅}} is non-transitive.

The elements of an ordinal are not only transitive sets: they
are in fact ordinals again, as shown by the following standard
argument.

Lemma 19 (�). Being an ordinal is hereditary: the elements
of a set-theoretic ordinal are themselves ordinals.

Proof. Let x be a set-theoretic ordinal and y ∈ x. Then y is
a transitive set by assumption. Moreover, if z ∈ y, then z is
again a transitive set, because z ∈ x by transitivity of x.

C. Set theory in homotopy type theory

In order to relate the set-theoretic and type-theoretic ap-
proaches to ordinals, we recall a higher inductive [9, §6]
construction of a model of constructive set theory inside
homotopy type theory from [9, §10.5]. The model may be seen
as a refinement of Aczel’s [10] interpretation of constructive
set theory in type theory, and is referred to as the cumulative
hierarchy in the HoTT book [9] and the iterative hierarchy in
Gylterud [23].

It is convenient to introduce the following terminology before
proceeding.

Definition 20 (� Equal images). Two maps f : A→ X and
g : B → X with the same codomain are said to have equal
images if for every a : A, there exists some b : B such that
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f a = g b, and conversely, for every b : B, there exists some
a : A with g b = f a.

Definition 21 (� Cumulative hierarchy V; [9, Def 10.5.1]).
The cumulative hierarchy V with respect to a type universe U
is the higher inductive type with the following constructors:

(i) for every type A : U and f : A→ V we have an element
of V, denoted by V-set(A, f);

(ii) for every two types A,B : U and maps f : A→ V and
g : B → V, if f and g have equal images, then we have
an identification V-set(A, f) = V-set(B, g);

(iii) set-truncation, i.e., for every x, y : V and p, q : x = y,
we have an identification p = q.

V is a model of set theory by [9, Thm 10.5.8]. It is
instructive to see how to represent the sets ∅, {∅} and {∅, {∅}}
from Example 17 in V:
• The empty set ∅ is represented as p∅q :≡ V-set(0, !)

where ! is the unique map from 0 to V.
• The singleton set {∅} may be represented by setting

p{∅}q :≡ V-set(1, λ ? . p∅q).
• Finally, the set {∅, {∅}} can be encoded as V-set(2, f)

where f(0) :≡ p∅q and f(1) :≡ p{∅}q.
The second constructor of V ensures that the elements have

the correct notion of equality. For instance, using the example
given directly above, it means that the elements V-set(2, f)
and V-set(N, f ◦ isEven) are equal.

Observe that V is a large type, i.e., it lives in the next universe
U+. Following [9, §10.5], we now define the set membership
and the subset relation on V, so that we can define set-theoretic
ordinals inside V.

Definition 22 (� Set membership ∈ on V). We define the set
membership relation ∈ : V→ V→ PropU+ inductively as:

x ∈ V-set(A, f) :≡ ∃(a : A).f a = x.

This is well-defined because PropU+ is a set (in the sense of
HoTT), and if f and g have equal images, then x ∈ V-set(A, f)
holds exactly when x ∈ V-set(B, g) does.

Definition 23 (� Subset relation ⊆). We define the subset
relation ⊆ : V→ V→ PropU+ as

x ⊆ y :≡ ∀(v : V).v ∈ x→ v ∈ y.

The type V models Myhill’s Constructive Set Theory [23],
and in fact all of Zermelo-Fraenkel set theory with Choice,
if we assume the axiom of choice in type theory [27]. In
the following, we will in particular need the following two
set-theoretic axioms:

Lemma 24 (� Items (i) and (vii) of [9, Thm 10.5.8]). The
following two set-theoretic axioms are satisfied by V:

(i) extensionality: two elements x and y of V are equal if
and only if x ⊆ y and y ⊆ x, and

(ii) ∈-induction: for any prop-valued family P : V→ Prop,
if, for every x : V, we have P (x) whenever P (y) holds
for all y ∈ x, then P holds at every element of V.

The set membership relation allows us to formulate the set-
theoretic notions of Section II-B for V, and hence, to define
the type of set-theoretic ordinals in V.

Definition 25 (� Type of set-theoretic ordinals). The type Vord
of set-theoretic ordinals is the Σ-type of those x : V such that
x is a set-theoretic ordinal in the sense of Definition 18.

The subtype of set-theoretic ordinals is then an example of
a type-theoretic ordinal, which we show to be equal to the
type Ord of type-theoretic ordinals in the next subsection.

Theorem 26 (�). Set membership makes Vord into a type-
theoretic ordinal.

Proof. Wellfoundedness follows from ∈-induction, and set
membership is a transitive relation on Vord: if we have set-
theoretic ordinals x, y, z : Vord such that x ∈ y and y ∈ z, then
x ∈ z, because z is a transitive set. For extensionality, assume
that we have x, y : Vord such that u ∈ x ↔ u ∈ y for every
u : Vord. We need to show that x = y. By extensionality in the
sense of Lemma 24, it suffices to show that v ∈ x ↔ v ∈ y
for all v : V. But if v ∈ x, then v : Vord, because being a
set-theoretic ordinal is hereditary (Lemma 19). Hence, v ∈ y
by assumption. Similarly, v ∈ y implies v ∈ x, so that x = y,
as desired.

D. Set-theoretic and type-theoretic ordinals coincide

Having reviewed the necessary preliminaries, we prove in
this subsection that the set-theoretic and type-theoretic ordinals
coincide. More precisely, we construct an isomorphism of type-
theoretic ordinals between Vord and Ord by constructing maps
in both directions.

Definition 27 (� Φ). The map Φ : Ord → V is defined by
transfinite recursion on Ord as

Φ(α) :≡ V-set(α, λ a . Φ(α ↓ a))

The function Φ is well-defined, because for every a : α, the
initial segment α ↓ a is strictly smaller than α, as ordinals.

Lemma 28 (�). The map Φ is injective and preserves and
reflects the strict and weak orders, i.e., for every two type-
theoretic ordinals α, β : Ord, we have

(i) α = β ↔ Φα = Φβ,
(ii) α < β ↔ Φα ∈ Φβ, and

(iii) α ≤ β ↔ Φα ⊆ Φβ.

Proof. That Φ preserves equality is automatic.
a) α < β ⇒ Φα ∈ Φβ: If α < β, then we have b : β

such that α = β↓b. Hence, in this case, we have Φα = Φ(β↓b),
viz. Φα ∈ Φβ by the definitions of ∈ and Φ.

b) α ≤ β ⇒ Φα ⊆ Φβ: For x ∈ Φα, we get an a with
x = Φ(α ↓ a) by definition. Proposition 9 gives us b such that
α ↓ a = β ↓ b, and hence x ∈ Φβ, as desired.

c) Injectivity – Φα = Φβ ⇒ α = β: We do transfinite
induction on Ord. Assume α : Ord and the induction
hypothesis: for every element a : α and ordinal β : Ord,
if Φ(α ↓ a) = Φβ, then α ↓ a = β. We must prove that
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Φα = Φβ implies α = β for all ordinals β : Ord. So assume
that β : Ord is such that Φα = Φβ. We show that α ≤ β;
the reverse inequality is proved similarly. By Proposition 9, it
suffices to prove that α ↓ a < β for every a : α. For such a : α
we have Φ(α ↓ a) ∈ Φα = Φβ, and hence, there exists some
b : β with Φ(α ↓ a) = Φ(β ↓ b). Our induction hypothesis then
yields α ↓ a = β ↓ b, and hence the desired α ↓ a < β.

d) Φα ∈ Φβ ⇒ α < β: If Φα ∈ Φβ, then there exists
some b : β with Φα = Φ(β↓b), and hence α < β by injectivity
of Φ.

e) Φα ⊆ Φβ ⇒ α ≤ β: Suppose Φα ⊆ Φβ. Then for
every a : α, there exists some b : β with Φ(α ↓ a) = Φ(β ↓ b).
Injectivity of Φ and Proposition 9 imply α ≤ β.

Lemma 29 (�). The map Φ : Ord → V factors through the
inclusion Vord ↪→ V.

Proof. We first show directly that Φα is a transitive set for
every α : Ord: if we have x, y : V with x ∈ y ∈ Φα, then
there exists a : α with x = Φ(α ↓ a) and hence b : α ↓ a with
y = Φ((α ↓ a) ↓ b). But (α ↓a)↓ b and α ↓ b are equal ordinals
by Lemma 11, so y = Φ(α ↓ b) and thus y ∈ Φα, as desired.

Now we prove that Φα is a set-theoretic ordinal for every
α : Ord by transfinite induction on Ord. We just established
that Φα is a transitive set and if x ∈ Φα, then x = Φ(α↓a) for
some a : α, so that x must be a transitive set by the induction
hypothesis.

Thus, one half of the desired isomorphism is given by
Φ : Ord→ Vord. We define a map in the other direction now.

Definition 30 (� Ψ). We define Ψ : V→ Ord recursively by

Ψ(V-set(A, f)) :≡
∨
a:A

(Ψ(f a) + 1).

This map is well-defined because Ord is a set, and if f and g
have equal images then the suprema Ψ(V-set(A, f)) and
Ψ(V-set(B, g)) are seen to coincide.

Remark 31. This function above assigns the rank to a set and
is well-known in set theory, see for example [2, p. 743] and [8,
Def 9.3.4].

Proposition 32 (�). When restricted to Vord, the map Ψ is a
section of Φ, i.e., for x : Vord, we have Φ(Ψx) = x.

Proof. Since we are proving a proposition, the induction
principle of V implies that it suffices to prove that for every
A : U and f : A→ V such that V-set(A, f) is a set-theoretic
ordinal, the equality Φ(Ψ(V-set(A, f))) = V-set(A, f) holds,
assuming the induction hypothesis: Φ(Ψ(f a)) = f a holds for
all a : A. (Note that every f a is a set-theoretic ordinal if
V-set(A, f) is.) We compute that

Φ(Ψ(V-set(A, f))) = V-set(s, λ y . Φ(s ↓ y)),

where s :≡
∨
a:A(Ψ(f a) + 1). We now use the second

constructor of V to prove that V-set(s, λ y . Φ(s ↓ y)) is equal
to V-set(A, f), i.e., we show that λ y . Φ(s ↓ y) and f have
the same image. It is convenient to set up some notation: we
write ca for Ψ(f a) + 1.

In one direction, suppose that a : A, then

f a = Φ(Ψ(f a)) = Φ(ca ↓ inr ?) = Φ(s ↓ [a, inr ?]),

where the first equality holds by induction hypothesis and the
second and third by Lemmas 13 and 15, respectively.

Conversely, if we have y : s, then by Lemma 15 there exist
some a : A and w : ca such that s ↓ y = ca ↓w. There are now
two cases: either w = inr ? or w = inlx with x : Ψ(f a). If
w = inr ?, then, as before,

Φ(s ↓ y) = Φ(ca ↓ inr ?) = Φ(Ψ(f a)) = f a.

So suppose that w = inlx with x : Ψ(f a). It is here that we
use our assumption that V-set(A, f) is a set-theoretic ordinal.
Indeed, since Ψ(f a) ↓ x is an initial segment of Ψ(f a), we
have Φ(Ψ(f a) ↓x) ∈ Φ(Ψ(f a)) = f a by Lemma 28 and the
induction hypothesis. But f a ∈ V-set(A, f) and the latter is
a transitive set, so Φ(Ψ(f a)↓x) ∈ V-set(A, f). By definition
of set membership, this means that there exists some a′ : A
with Φ(Ψ(f a) ↓ x) = f(a′). Finally,

Φ(s ↓ y) = Φ(ca ↓ inlx) = Φ(Ψ(f a) ↓ x) = f(a′),

where the second equality holds by Lemma 13. Hence, f and
Φ(s ↓ −) have the same image, completing the proof.

We are now ready to prove the main theorem of Section II:
the type-theoretic and set-theoretic ordinals coincide.

Theorem 33 (�). The ordinals Ord and Vord are isomorphic
(as type-theoretic ordinals). Hence, by univalence, they are
equal.

Proof. By Lemma 29 we have a map Φ : Ord → Vord.
Moreover, it is an injection by Lemma 28 and a (split) surjection
by Proposition 32. Hence, Φ is a bijection. But Lemma 28
tells us that it also preserves and reflects the strict orders, so
it is an isomorphism of ordinals by Lemma 10.

E. Revisiting the rank of a set

The recursive nature of the map Ψ from Definition 30 that
computes the rank of a set in V is convenient for proving
properties by induction. It is possible, however, to give a
conceptually simpler and non-recursive description, although
this requires paying close attention to size issues.

Definition 34 (� Type of elements, Tx). Given an element
x : V, we write Tx for its type of elements, i.e.,

Tx :≡ Σ(y : V).y ∈ x.

Proposition 35 (�). If x : V is a set-theoretic ordinal, then
Tx ordered by ∈ is a type-theoretic ordinal.

Proof. Since being a set-theoretic ordinal is hereditary, we
have Tx = Σ(y : Vord).y ∈ x, so that the former inherits the
ordinal structure from Vord.

It now becomes important to pay close attention to type
universe parameters, so we will annotate them with subscripts.
Notice that the T-operation does not define a map VU → OrdU
like Ψ does, but rather a map VU → OrdU+ , because the
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cumulative hierarchy VU with respect to the universe U is
itself a type in the next universe U+.

Still, we will prove that Ψ(x) and Tx are isomorphic
ordinals for every set-theoretic ordinal x : VU , even though
they cannot be equal due to their different sizes. However, we
can do a bit better by observing, as in the HoTT book [9,
Lem 10.5.5], that the cumulative hierarchy is locally small (in
the sense of Rijke [28]), meaning its identity types are U -valued
up to equivalence. Then we observe that T(V-set(A, f)) is
equal to the image of f , which is equivalent to a type in U
thanks to the fact that V is a locally small set. This general
fact on small images of maps into locally small sets is a “set
replacement principle”, discussed by Rijke [28] and de Jong
and Escardó [26]. Specifically, the image of f is equivalent
to the set quotient A/∼, where A is the domain of f and ∼
relates two elements if f identifies them. We then make the
quotient A/∼ into an ordinal by defining [a] < [b] as f a ∈ f b.
Finally, we can resize A/∼ to an ordinal in U by using that
V is locally small and by employing a U-valued membership
relation, as explained below.

We stress that none of the above constructions rely on
propositional resizing principles.

1) The cumulative hierarchy is locally small: We again
follow [9, §10.5] in defining a recursive bisimulation relation
that makes V a locally small type.

Definition 36 (� Bisimulation [9, Def 10.5.4]). The bi-
simulation relation ≈ : VU → VU → PropU is inductively
defined by

V-set(A, f) ≈ V-set(B, g) :≡ (∀(a : A).∃(b : B).f a ≈ g b)
× (∀(b : B).∃(a : A).g b ≈ f a).

Lemma 37 (� Lemma 10.5.5 of [9]). For every x, y : VU , we
have an equivalence of propositions (x = y) ' (x ≈ y).

Hence, the bisimulation relation captures equality on V, but
has the advantage that it has values in U rather than U+. This
also allows us to define a U-valued membership relation.

Definition 38 (� ∈U ). Define ∈U : VU → VU → PropU
inductively by x ∈U V-set(A, f) :≡ ∃(a : A).f a ≈ x.

Lemma 39 (�). For every x, y : VU , we have an equivalence
of propositions (x ∈ y) ' (x ∈U y).

Proof. By V-induction and Lemma 37.

2) The set quotients: Throughout this subsection, assume
that we are given A : U and f : A→ V such that V-set(A, f)
is a set-theoretic ordinal. We show that the type of elements of
V-set(A, f) is given by a suitable quotient of A. This simple
quotient can capture all the elements of V-set(A, f) precisely
because V-set(A, f) is hereditarily transitive.

Definition 40 (�). We write A/∼ for the set quotient of A
by the U+-valued equivalence relation a ∼ b :≡ (f a = f b).
Similarly, we write A/∼U for the set quotient of A by the
U -valued equivalence relation given by a ∼U b :≡ (f a ≈ f b).

The important thing to note in the above definition is that
A/∼ : U+, while A/∼U : U . It is easy to prove that the latter
is a small replacement of the former:

Lemma 41 (�). Writing im f :≡ Σ(v : V).∃(a : A).f a = v
for the image of f , we have (A/∼U ) ' (A/∼) = (im f).

We define relations on the quotients that make them into
large and small type-theoretic ordinals, respectively.

Definition 42 (�). We define a U+-valued binary relation ≺
on A/∼ by [a] ≺ [b] :≡ (f a ∈ f b). Similarly, we define a
U -valued relation ≺U on A/∼U by [a] ≺U [b] :≡ (f a∈U f b).

Proposition 43 (�). The relation ≺ makes A/∼ into an
ordinal in U+, and ≺U makes A/∼U into an ordinal in U .

Proof. For transitivity, it suffices to prove that [a] ≺ [b] and
[b] ≺ [c] together imply [a] ≺ [c] for all a, b, c : A. But this
follows from the fact that f(c) is a transitive set which holds
because it is an element of the set-theoretic ordinal V-set(A, f).
For extensionality, assume that x ≺ [a]↔ x ≺ [b] for every
x : A/∼. We have to prove that [a] = [b], i.e., that f a = f b.
We show that f a ⊆ f b and note that the reverse inclusion is
proved similarly. Suppose that we have x : V with x ∈ f a.
Then because f a is a member of the transitive set V-set(A, f),
we get x ∈ V-set(A, f). Hence, there exists some c : A with
f(c) = x. But then f(c) = x ∈ f a, and so [c] ≺ [a]. Hence,
[c] ≺ [b] by assumption, and therefore, x = f(c) ∈ f b, as
desired. Further, to see that every element of A/∼ is accessible,
we prove the following statement by transfinite induction in
the ordinal (V,∈): for every x : V and every a : A, if f a =
x, then [a] is accessible. So let x : V and a : A be such
that f a = x and assume the induction hypothesis that for
every y ∈ x and b : A, if f b = y, then [b] is accessible.
For accessibility of [a], it suffices to prove that every [b] is
accessible whenever we have b : A with [b] ≺ [a]. But given
such a b : A we have f b ∈ f a = x, and hence accessibility
of [b] by induction hypothesis. The claim about (A/∼U ,≺U )
is proved analogously.

Finally, the quotient is equal to the type of elements:

Lemma 44 (�). For every A : U and f : A→ V, the ordinals
(A/∼,≺) and (T(V-set(A, f)),∈) are equal.

Proof. By Lemma 10, we only need to verify that the bijection
from Lemma 41 preserves and reflects the order, but this is
clear because [a] ≺ [b] holds exactly when f a ∈ f b.

3) Alternative descriptions of the rank: We are now ready
to prove the main result of this subsection: we show that the
rank of V-set(A, f), as recursively computed by Ψ, is equal
to the quotient A/∼U , thus providing a simpler non-recursive
description of its rank.

Theorem 45 (�). The ordinals Ψ(V-set(A, f)) and A/∼U
are equal.
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Proof. Because Φ is injective with inverse Ψ (Lemma 28
and Proposition 32), it suffices to show that

Φ(A/∼U ) = V-set(A, f).

By definition of Φ and equality on V, it is enough to prove

Φ(A/∼U ↓ [a]) = f a

for every a : A. We slightly generalize this statement so that it
becomes amenable to a proof by transfinite induction on A/∼U .
Namely, we show that for every a′ : A/∼U and every a : A, if
a′ = [a], then Φ(A/∼U ↓ [a]) = f a holds. So suppose that we
have a : A. We first show that f a ⊆ Φ(A/∼U ↓ [a]). Now if
x ∈ f a, then there exists some b : A with x = f b, because f a
is a member of the transitive set V-set(A, f). But then f b =
x ∈ f a, so [b] ≺ [a] and hence Φ(A/∼U ↓ [b]) = f b = x by
the induction hypothesis. Further, Φ(A/∼U ↓ [b]) is an element
of Φ(A/∼U ↓ [a]), because [b] ≺ [a] and (A/∼U ↓ [a]) ↓ [b] =
A/∼U ↓ [b] by Lemma 11. Hence, x = Φ(A/∼U ↓ [b]) ∈
Φ(A/∼U ↓ [a]), as desired. For the other inclusion, suppose
that x ∈ Φ(A/∼U ↓ [a]). By another application of Lemma 11,
we see that there exists some b : A such that [b] ≺ [a] and
x = Φ(A/∼U ↓ [b]). Then x = Φ(A/∼U ↓ [b]) = f b by the
induction hypothesis, but also [b] ≺ [a], so that x = f b ∈ f a,
as we wished to show.

Corollary 46 (�). For every x : VU , the ordinals Ψ(x) and
Tx are isomorphic, but not equal, because the latter lives in
a larger universe.

Proof. Since we are proving a proposition, V-induction im-
plies that it is enough to prove that Ψ(V-set(A, f)) and
T(V-set(A, f)) are isomorphic ordinals, for every A : U
and f : A → V. But this holds by the following chain of
isomorphisms of ordinals:

Ψ(V-set(A, f)) ' A/∼U (by Theorem 45)
' A/∼ (by Lemma 41)
' T(V-set(A, f)) (by Lemma 44).

III. GENERALIZING FROM ORDINALS TO SETS

Since we now understand the subtype of V that
consists of exactly the hereditarily transitive sets, it
is a natural goal to characterize the full type V

Vord Ord

V ?

'

'

to complete the square on the left, by
generalizing the notion of type-theoretic
ordinals. Since arbitrary V-sets are not
necessarily transitive, we certainly need
to give up transitivity. However, as
discussed in the introduction, doing
so and simply considering extensional

wellfounded relations is insufficient to complete the square.
Our solution is to further equip them with covering markings.
We then develop a generalization of the theory of type-theoretic
ordinals that matches V.

Giving up transitivity as an assumption, we at times need to
consider the transitive and reflexive-transitive closure of a given
relation <, i.e., the smallest proposition-valued such relations

that include <. We denote them by <+ and <∗ respectively.
In type theory, it is standard to implement <+ and <∗ using
inductive families describing sequences of steps, which then
can be propositionally truncated to ensure proof-irrelevance.

A. Mewos: marked extensional wellfounded order relations

We start by defining the generalization of type-theoretic
ordinals that we need to complete the above square.

Definition 47 (� Mewo). A marked extensional wellfounded
order (mewo) is a triple (X,<,m), where X is a type, < is
a binary relation on X that is extensional, wellfounded, and
valued in propositions, i.e., (X,<) is an ensemble in the sense
of Taylor [6], and m : X → Prop is a prop-valued predicate
on X (called a marking).

We say that x : X is marked if m(x), and covered if there
exists a marked x0 such that x <∗ x0. A covered mewo is a
mewo where every element is covered.

We write MEWO for the type of mewos, and MEWOcov for
its subtype of covered mewos. From now on, we keep the order
and the marking implicit, overloading the symbols < and m
whenever required, and denote a mewo only by its carrier X .
The subtype of marked elements of X is the total space of m,

MX :≡ Σ(x : X).m(x)

and we implicitly apply the first projection to treat elements
of MX as elements of X . With this convention, a mewo is
covered if we can show

∀(x : X).∃(x0 : MX).x <∗ x0.

Remark 48. As for ordinals, the extensionality of the relation
< implies that X is necessarily a set. Further note that,
by univalence, an equality X = Y between mewos is an
equivalence e : X ' Y that preserves and reflects both order
and marking, i.e., satisfies (x1 < x2) ↔ (e x1 < ex2) and
m(x) ↔ m(e x). The identical characterization holds if the
mewos in consideration are covered since coveredness is a
propositional property.

Our second main result is that MEWOcov is the missing
corner in the discussed square as shown on the right, cf.

Vord Ord

V MEWOcov

'

'

(2)

Theorem 76. This means
that a covered mewo si-
multaneously behaves like
a generalized type-theoretic
ordinal and a set in V. The
first connection is easy to
make precise:

Example 49 (Ordinals as covered mewos). Given a type-
theoretic ordinal, we get a covered mewo by forgetting the
transitivity of the order and marking everything.

We will later see that, if we view a mewo as a V-set, it
is exactly the marked elements that become elements of the
set (while the unmarked ones become elements of elements
of . . . ). Therefore, for type-theoretic ordinals, everything will
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be an element of the corresponding V-set. This is already
determined by the top horizontal map in (2), i.e., the map Φ
from Definition 27. Based on this observation, Example 49
guides and motivates much of our theory of mewos.

B. Order relations between mewos

The main concepts that we need to generalize from type-
theoretic ordinals are the relations ≤ and < between mewos.
The above square (2) means that these relations necessarily
need to correspond to the relations ⊆ and ∈ between V-sets.
To begin, the concept of a simulation between type-theoretic
ordinals is straightforward to generalize to mewos:

Definition 50 (� Simulation, ≤). Given mewos X and Y , a
function f : X → Y is a simulation if it fulfills the following
properties:

(i) it preserves the markings: ∀x.m(x)→ m(f x);
(ii) it is monotone: x1 < x2 → f x1 < f x2;

(iii) it has the initial segment property, i.e., its image is
downwards closed in a strong sense:

∀x2.∀(y < f x2).∃(x1 < x2).f x1 = y. (3)

We write X ≤ Y for the type of simulations.

An example of a function that fails to be a simulation
precisely because it does not preserve markings is the identity
function on the order 0 < 1, if we mark both 0 and 1 in
the domain, but only 1 in the codomain. In set theory, this
corresponds to the fact that {∅, {∅}} is not a subset of {{∅}}.

Lemma 51 (�). For mewos X , Y , and Z, we have the
following properties of simulations:

(i) The underlying function f of a simulation X ≤ Y is
injective: f x1 = f x2 implies x1 = x2.

(ii) There is at most one simulation between any two mewos,
i.e., X ≤ Y is a proposition.

(iii) Simulations are antisymmetric, i.e.

X ≤ Y → Y ≤ X → X = Y.

(iv) We have the trivial simulation X ≤ X and simulations
can be composed, i.e.

X ≤ Y → Y ≤ Z → X ≤ Z.

(v) X = Y is a proposition, i.e., MEWO is a set.
(vi) In the property (3) of the definition of a simulation, the

symbol ∃ can equivalently be replaced by Σ.

Proof. The arguments are copies of the proofs for type-
theoretic ordinals (cf. [9, Lem 10.3.12, Cor 10.3.13&15,
Lem 10.3.16]).

Definition 52 (� Initial segment, X ↓+ x). If X is a mewo and
x : X , then the initial segment X ↓+ x is the mewo of elements
transitively below x, with the canonical inherited order. The
marked elements are the immediate predecessors of x.

That is, in detail, the carrier of X ↓+ x is given by the
type Σ(x′ : X).(x′ <+ x), the order by (x1, s) < (x2, t) :≡
(x1 < x2), and the marking by m(x1, s) :≡ (x1 < x).

Lemma 53 (�). The mewo (X ↓+ x) is covered for every x.

Proof. Given (x1, s) with s : (x1 <
+ x), we wish to show

that there exists a marked p such that x1 <∗ p. Since we are
proving a proposition, we may assume that s is a sequence
x1 < . . . < xn < x, and xn is marked by definition.

For type-theoretic ordinals, a bounded simulation is a
simulation whose domain is equivalent to an initial segment
under a certain element of its codomain. For mewos, we ensure
that the latter property is true by definition. Some caveats and
subtleties are discussed in Section III-C below.

Definition 54 (� Bounded simulation, <). A bounded simula-
tion between mewos X and Y is a pair (y, e), where y : MY is
a marked element in Y and e : X ' (Y ↓+ y) an equivalence
of mewos. We write X < Y for the type of such pairs.

It is important that the above definition specifies that y is
marked, in line with our earlier explanation that exactly the
marked elements of a mewo correspond to elements of a V-set.
We will later (Corollary 59) see that the type X < Y is a
proposition. For now, let us observe the following:

Lemma 55 (�). The relation < is wellfounded on MEWO
and MEWOcov.

Proof. Since MEWOcov ↪→ MEWO is order-preserving, it
suffices to check that MEWO is wellfounded. Thus, we need
to show that every mewo X is accessible, i.e., that all its
predecessors are accessible. By definition, every predecessor
is of the form X ↓+ x0 for some marked x0 : X .

Exploiting that the order on X itself is wellfounded, we show
by transfinite induction on x the more general statement that
every X ↓+ x is accessible, no matter whether x is marked.
Thus, assume that, for all z < x, we have that X ↓+ z is
accessible. We need to prove that all predecessors of X ↓+ x,
i.e., all (X ↓+ x) ↓+(x1, p), are accessible. An adaption of
Lemma 11 for mewos shows that this mewo is equal to X ↓+ x1,
which is accessible by the induction hypothesis.

C. Subtleties caused by markings

Observing how bounded simulations interact with other
(possibly bounded) simulations reveals the complete change of
view we are forced to make when generalizing from ordinals
to mewos. This is indeed intended since we claim (and prove)
that ≤ and < correspond to ⊆ and ∈, and for arbitrary sets,
the latter relations fail to have many properties that one might
associate with the former relations.

The first point is that X < Y generally does not imply
X ≤ Y . A bounded simulation X < Y gives rise to a function
f : X → Y via the composition of the function underlying
e : X = (Y ↓+ y) and the first projection (Y ↓+ y) → Y .
However, the first projection is in general not a simulation
as it may not preserve markings. A counter-example is the
covered mewo ◦ ← •, i.e., the mewo with two comparable
elements, the larger of which is marked (denoted by •), while
the smaller is not (denoted by ◦). Since (◦ ← •) ↓+ • is, by
definition, simply •, there is a bounded simulation from • to
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◦ ← •. However, there is no simulation as the marking is not
preserved. The crux here is that the operation ↓+ changes the
marking. The translation to the language of sets is that {∅} is
an element, but not a subset, of {{∅}}.

Secondly, the < relation on mewos is not transitive. The
principle that “an initial segment of an initial segment is an
initial segment” does not hold. A simple counter-example is the
empty mewo ∅ together with • and ◦ ← •. We have bounded
simulations ∅ < • < (◦ ← •), but no bounded simulation
∅ < (◦ ← •). In this case, the translation is that ∅ is an
element of {∅}, which itself is an element of {{∅}}; the latter
however does not have ∅ as an element.

For technical reasons, it is occasionally useful to use mewos
that ensure that the discussed properties do hold. This can be
achieved by changing the marking to the trivial one:

Definition 56 (� Trivializing the marking, X). If X is a mewo,
we write X for the mewo that has the same carrier and order
as X , but where every element is marked.

In the language of V-sets, X is the union of all the sets
represented by elements (of elements of elements . . . ) of X .
Note that X is still not transitive and thus not a type-theoretic
ordinal. Nevertheless, this operation allows us to recover several
important properties of type-theoretic ordinals:

Lemma 57 (�). For given mewos X , Y , and Z, we have:

(i) for every x : X , the first projection (X ↓+ x)→ X is a
simulation;

(ii) X < Y → X ≤ Y ;
(iii) X < Y → Y < Z → X < Z.

Proof. As the conditions involving markings now are vacuously
true, the arguments for type-theoretic ordinals apply.

As a demonstration of how this is useful, we can show the
following technical lemma:

Lemma 58 (�). Given a mewo X , the function x 7→ X ↓+ x
is injective: (X ↓+ x1) = (X ↓+ x2) implies x1 = x2.

Proof. We show that f : (X ↓+ x1) ≤ (X ↓+ x2) implies that
any predecessor of x1 is also a predecessor of x2; extensionality
of X then gives the claimed injectivity. To do this, let us
consider the following diagram:

X ↓+ x1

X

X ↓+ x2
f

fst fst

All maps are simulations and, by uniqueness of simulations
(Lemma 51), the diagram necessarily commutes. Given a
predecessor x < x1, it is marked in X ↓+ x1 by construction,
and since f preserves markings, f x is marked as well, i.e.,
we have f x < x2. But since the diagram commutes, we have
f x = x as elements of X .

A consequence is that bounded simulations are unique:

Corollary 59 (�). For mewos X and Y , the type X < Y of
bounded simulations is a proposition.

Proof. By definition, X < Y ≡ Σ(y : Y ).(X = (Y ↓+ y)).
Assume (y, p), (y′, q) : X < Y . By the above lemma, we then
have y = y′ since (Y ↓+ y) = X = (Y ↓+ y′), and p = q
since MEWO is a set. Hence (y, p) = (y′, q), as desired.

D. Simulations and coverings

As we have seen, bounded simulations and simulations
are tricky to compare. The first step towards improving this
situation is to characterize a simulation via initial segments:

Lemma 60 (�). Let X and Y be mewos. Further, let f : X →
Y be a function between the carriers that preserves markings,
i.e., such that m(x)→ m(f x). The following are equivalent:

(i) f is a simulation.
(ii) for all x : X , we have (X ↓+ x) = (Y ↓+(f x)).

Proof. (i)⇒ (ii): An equality of mewos is a surjective simu-
lation that preserves and reflects the markings. The simulation
f is monotone and thus can be restricted to a simulation
f̄ : X ↓+ x ≤ Y ↓+(f x). Monotonicity of f guarantees that
markings are preserved, while the initial segment property
ensures that markings are reflected. Finally, by induction on
the number of steps, the initial segment property for < can be
extended to <+; hence every y in Y ↓+(f x) has a preimage.

(ii)⇒ (i): Assume that, for every x, we have an equality
ex : X ↓+ x = Y ↓+(f x) of mewos.

It is a standard result that the transitive closure of a
wellfounded relation is wellfounded. Using this we show, by
transfinite induction on x, that f is a simulation at point x:
• for x1 < x we have f x1 < f x;
• for y1 < f x, there is x1 < x such that f x1 = y1.

The induction hypothesis states that f is a simulation at every
point z with z <+ x or, in other words, that the composition
(X ↓+ x)

fst−→ X
f−→ Y is a simulation (cf. Definition 56).

Therefore, the diagram

X ↓+ x

X

Y ↓+(f x)

Y

ex

f
(4)

commutes by uniqueness of simulations (Lemma 51). We can
now easily check that f is a simulation at point x. First,
z < x means that z is a marked element in X ↓+ x, thus ex z
is marked in Y ↓+(f x), translating to fst(ex z) < f x, and
commutativity of (4) implies fst(ex z) = f z. Second, let y1 <
f x be given. This means that y1 is marked in Y ↓+(f x) and
we get the marked x1 as the unique preimage of y1 under the
equivalence ex.

While we have seen in Section III-C that < is not transitive
and does not necessarily imply ≤, we now get the following
familiar property:

Corollary 61 (�). For mewos X , Y and Z, we have

X < Y → Y ≤ Z → X < Z.
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Proof. We have X = (Y ↓+ y) by assumption and (Y ↓+ y) =
(Z ↓+ f y) by Lemma 60.

One may view Lemma 60 as stating that a function is a
simulation if and only if it behaves like a simulation pointwise
(or locally). We now consider such functions that are only
defined on the marked elements:

Definition 62 (� Partial simulation, ≤M). A partial simulation
between mewos X and Y is a function f : MX → MY that
preserves initial segments,

psim(f) :≡ ∀(x : MX).(X ↓+ x) = (Y ↓+ f x),

and we write X ≤M Y :≡ Σ(f : MX → MY ).psim(f).

A convenient alternate representation is the following:

Lemma 63 (�). The type of partial simulations X ≤M Y is
equivalent to the type

∀(x : MX).∃(y : MY ).X ↓+ x = Y ↓+ y.

and hence a proposition.

Proof. We can calculate

X ≤M Y ≡ Σ(f : MX → MY ).∀x.(X ↓+ x) = (Y ↓+ f x)

' Π(x : MX).Σ(y : MX).(X ↓+ x) = (Y ↓+ y)

' ∀(x : MX).∃(y : MX).(X ↓+ x) = (Y ↓+ y),

where the first step is the definition of ≤M, the second is
the “untruncated axiom of choice” [9, Thm 2.15.7], and the
last step uses that (Y ↓+ y1) = (Y ↓+ y2) implies y1 = y2 by
Lemma 58, which means that Σ and ∃ are equivalent.

A mewo can have the property that its marking alone already
fully determines how it maps into other mewos. The notions
introduced above allow us to make this precise:

Definition 64 (� Principality). The marking of a mewo X is
principal if, for all mewos Y , the canonical restriction map
(X ≤ Y )→ (X ≤M Y ) given by Lemma 60 is an equivalence.

In other words, for any chosen codomain Y , the marking of
X is principal if a (necessarily unique) partial simulation out
of X already determines a (necessarily unique) simulation out
of X . However, being principal is actually simply a “relative”
description of the “absolute” property of being covering:

Lemma 65 (�). A marking covers if and only if it is principal.

Proof. Let m be a marking on a mewo X .
a) covers ⇒ principal: Assume we have a partial sim-

ulation f : X ≤M Y . For a given x : X , we need to find
a (necessarily unique) y : Y such that X ↓+ x = Y ↓+ y. By
the covering property, there exists x0 : MX with p : x <∗ x0.
By analyzing p, we get either x = x0, in which case the
goal is given by the partial simulation, or x <+ x0. In the
latter case, we get e : (X ↓+ x0) = (Y ↓+ f x0) from the
partial simulation. Applying the function underlying e on x,
we generate an element y : Y that satisfies the required property.
If x is marked, then the (unique) y that we find is necessarily

equal to the one given by the partial simulation, which is
marked by assumption.

b) principal ⇒ covers: Assume m is principal. Let X̂
be the mewo of all elements covered by MX , defined as

X̂ :≡ Σ(x : X).∃(x0 : MX).(x <∗ x0),

with order and marking inherited from X . We have X̂ ≤ X
by projection. We also have X ≤M X̂ by definition and thus
X ≤ X̂ by principality, meaning that the two mewos are equal
by antisymmetry. In other words, m covers all of X .

We have seen in Lemma 55 that < is wellfounded on MEWO
and MEWOcov. The observation that principality and covering
coincide allows us to show that, in the latter case, the order is
also extensional:

Theorem 66 (�). The structure (MEWOcov, <) is an exten-
sional wellfounded order.

Proof. Wellfoundedness has been established in Lemma 55.
Extensionality follows antisymmetry (Lemma 51) as soon as
we can show that

∀(Z : MEWOcov).(Z < X)→ (Z < Y ) (5)

implies X ≤ Y . Thus, let us prove this property.
Let X and Y be covered mewos. By principality and

Lemma 63, we need to show that for every x : MX there
exists some y : MY with X ↓+ x = Y ↓+ y. By definition,
the predecessors of X are exactly the mewos of the form
X ↓+ x for marked x, so that this formula is equivalent to the
assumption (5).

In contrast, the relation < is clearly not extensional on
MEWO, as there are many different mewos without predeces-
sors, namely exactly those with completely empty markings.

E. Constructions on mewos

Recall the rank function Ψ : V→ Ord from Definition 30.
Since different V-sets can have the same rank, Ψ is not injective
and thus certainly not a simulation. We have seen that we can
turn it into a simulation by restricting its domain to Vord.
This is of course not sufficient anymore for our current goal
of characterizing all of V; instead, we extend the codomain
from Ord to MEWO. Doing this requires us to generalize the
operations on Ord that we used to construct the rank function.
In Definition 12, we recalled the addition of type-theoretic
ordinals. While it would be possible to phrase this definition in
full generality for mewos, we restrict ourselves for simplicity
to the case of interest (the successor), which already contains
the crucial ideas.

There is however an important difference. The successor
operation for type-theoretic ordinals, if translated to and written
in the notation of set theory, maps a set S to S ∪ {S}. This is
of course required in order not to leave the realm of transitive
sets (and orders). For mewos, we need to slightly refine the
function so that it corresponds to the (non-transitive) singleton
operation S 7→ {S}.
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Definition 67 (� Singleton, {X}). For a given mewo X , we
define the singleton order {X} to be the marked order with
carrier X + 1 and the order given as follows:

• (inlx < inl y) if and only if x < y;
• (inlx < inr ?) if and only if m(x);
• (inr ? < z) false for all z.

Finally, we mark the single point inr ?.

It is worth pointing out how this almost generalizes the
successor operation of a type-theoretic ordinal. Since such
an ordinal is a completely marked (and transitive) mewo, the
second clause above matches exactly the sum operation given
in Definition 12 when the second summand is 1. However, a
faithful generalization of Definition 12 would in the end mark
not only inr ?, but also all elements that were marked in X .

Another critical point to note is that, for an arbitrary mewo X ,
the singleton {X} need not be a mewo. As an example, consider
the mewo ◦ with exactly one element, which is unmarked. If
we now take its singleton, neither this existing element nor the
newly added element has any predecessors. Since they are not
equal, extensionality is missing. The obstacle in this example is
that the original marking is insufficient. Fortunately, if we start
with a covered mewo, the successor is not only extensional
but also covered again:

Lemma 68 (�). If X is a covered mewo, then so is {X}.

Proof. Wellfoundedness is immediate. Regarding extensional-
ity, the interesting case is comparing an element of the form
inlx with inr ?. It suffices to show that their predecessors are not
the same. To do so, observe that x is covered in X , i.e., there
exists x0 with x <∗ x0. By construction, x0 is a predecessor
of inr ?, while wellfoundedness ensures that it cannot possibly
be a predecessor of inlx. Coveredness: The element inr ? is
marked and thus trivially covered. To see that an arbitrary inlx
is covered, note that there exists a marked x0 with x <∗ x0
in X . By construction, we have inlx0 < inr ?, implying that
inlx is covered.

The second important construction that we discussed for
type-theoretic ordinals is computing suprema (Definition 14).
In the case of mewos, the better intuition is to think of unions,
although the universal property of the supremum is satisfied
too, as we will see shortly in Lemma 71.

Definition 69 (� Union of mewos,
⋃
F ). The union

⋃
F of

a family of mewos F : A→ MEWO is defined as follows:

• The carrier is Σ(a : A).F a quotiented by ≈, where we
define (a, x) ≈ (b, y) to be (Fa ↓+ x) ' (Fb ↓+ y) as
(covered) mewos;

• and [a, x] < [b, y] is defined as (F a ↓+ x) < (F b ↓+ y).

We mark s :
⋃
F if and only if there exist a0 : A and x0 : F a0

with s = [a0, x0] such that x0 is marked in F a0.

Remark 70. The explanation given in Remark 6 applies.
A priori, the type (Fa ↓+ x) = (Fb ↓+ y) is too large as it
lives in a higher universe than the mewos in consideration,

which is why we use ' in the definition above. The issue is
also extensively discussed in Section II-E.

Continuing the observation that mewos act as sets and
simultaneously generalize ordinals, we note that the union
is also a supremum:

Lemma 71 (�).
⋃
F is the least upper bound of all F (a).

Proof. F a ≤
⋃
F is easy to check. Assume now that we

have F a ≤ Y for every a; we want to prove
⋃
F ≤ Y . By

a calculation analogous to the one in Lemma 63, this goal
means we need to show that, for any z :

⋃
F , there exists a

y : Y such that (
⋃
F ↓+ z) = (Y ↓+ y) and m(z) → m(y).

This follows by induction on z, using the uniqueness of y and
the assumption for the marking condition.

Lemma 72 (�). If F is a family of covered mewos, then
⋃
F

is covered.

Proof. Let [a, x] be an element of
⋃
F ; we want to show

that [a, x] is covered. By assumption, x is covered in F a
by some x0. Since the operation (F a ↓+ ) preserves <, it
also preserves <∗ and we get F a ↓+ x <∗ F a ↓+ x0, giving
[a, x] <∗ [a, x0] as required.

Remark 73. Note that, in the situation of Definition 69, we
can have (a, x) ≈ (b, y) such that x is marked while y is not.
The simplest example when this happens is the union of the
mewos • ← • and ◦ ← • (cf. Section III-C for the notation),
in set-theoretic notation corresponding to the union of {{∅}, ∅}
and {{∅}}. Therefore, it is important to phrase the marking
condition in Definition 69 using an exists instead of forall.

F. V-sets and covered mewos coincide

We are ready to prove our second main theorem, and
complete the square (2) by showing that V and MEWOcov

coincide. We have seen that the relation ∈ on V is wellfounded
and extensional. By marking everything, V is therefore a (large)
mewo. Similarly, MEWOcov itself is a (large) mewo, using
Theorem 66 and total marking. To show that they are equal as
such, we construct simulations between them.

Lemma 74 (�). We have a simulation V ≤ MEWOcov.

Proof. We define the function Ψ : V→ MEWOcov underlying
the simulation by induction on the input by defining

Ψ(V-set(A, f)) :≡
⋃
a:A

({Ψ(f a)}) .

We need to verify that extensionally equal representatives are
mapped to equal mewos, which follows from Lemma 71.

The following observation is helpful to see that Ψ is a
simulation: the predecessors (i.e., elements) of V-set(A, f) are
exactly the elements of the form f(a0) for a0 : A, and similarly,
via a quick calculation, the predecessors of

⋃
a:A ({Ψ(f a)})

are of the form Ψ(f a0).
Regarding monotonicity, assume we have elements v1 ∈ v2

in V. By induction on v2, we may assume that it is of the
form V-set(A, f), and its predecessor v1 is therefore of the
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form f(a0). As we have just seen, we then have the desired
Ψ(f a0) < Ψ(V-set(A, f)). Regarding the second property,
we proceed similarly. Given any y ∈ Ψ(V-set(A, f)), we know
that y is of the form Ψ(f a0), and hence we have f(a0) ∈
V-set(A, f) as required.

Lemma 75 (�). We have a simulation MEWOcov ≤ V.

Proof. We define the function Φ : MEWOcov → V by

Φ(X) :≡ V-set
(
MX , λ x0 . Φ(X ↓+ x0)

)
.

The predecessors of X are of the form X ↓+ x0 for x0 : MX ,
while the elements of Φ(X) are Φ(X ↓+ x0) for x0 : MX .
Therefore, the simulation properties for Φ follow analogously
to how we derived them in the proof of Lemma 74.

By Lemmas 74 and 75, and antisymmetry, we get:

Theorem 76 (�). The structures (V,∈) and (MEWOcov, <)
are equal as covered mewos.

IV. CONCLUSION

Working in homotopy type theory, we have shown that
the set-theoretic ordinals in V coincide with the type-theoretic
ordinals. Moreover, by generalizing from type-theoretic ordinals
to covered mewos, we have captured all sets in V.

A natural question is whether similar results can be obtained
by working inside set theory instead. E.g., we expect the type-
theoretic ordinals in the cubical sets model [29] of homotopy
type theory to coincide with the set-theoretic ordinals, using the
Mostowski collapse lemma [30]. Another, orthogonal question
is whether the presentation of V as the type of covered mewos
can shed any light on the open problem [9, below Cor 10.5.9] of
whether V satisfies the strong collection and subset collection
axioms of Constructive ZF set theory. Moreover, it would be
interesting to study how other, different notions of constructive
ordinals, such as Taylor’s plumb ordinals [6], behave in a
type-theoretic setting.
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