POSITIVE INDUCTIVE-RECURSIVE DEFINITIONS

NEIL GHANI, LORENZO MALATESTA, AND FREDRIK NORDVALL FORSBERG

University of Strathclyde, UK

ABSTRACT. A new theory of data types which allows for the definition of data types as
initial algebras of certain functors Fam(C) — Fam(C) is presented. This theory, which
we call positive inductive-recursive definitions, is a generalisation of Dybjer and Setzer’s
theory of inductive-recursive definitions within which C had to be discrete — our work can
therefore be seen as lifting this restriction. This is a substantial endeavour as we need to
not only introduce a type of codes for such data types (as in Dybjer and Setzer’s work),
but also a type of morphisms between such codes (which was not needed in Dybjer and
Setzer’s development). We show how these codes are interpreted as functors on Fam(C)
and how these morphisms of codes are interpreted as natural transformations between such
functors. We then give an application of positive inductive-recursive definitions to the
theory of nested data types and we give concrete examples of recursive functions defined on
universes by using their elimination principle. Finally we justify the existence of positive
inductive-recursive definitions by adapting Dybjer and Setzer’s set-theoretic model to our
setting.

1. INTRODUCTION

Inductive types are the bricks of a dependently typed programming language: they represent
the building blocks on which any other type is built. The mortar the dependently typed
programmer has at her disposal for computation with dependent types is recursion. Usually,
a type A is defined inductively, and then terms or types can be defined recursively over the
structure of A. The theory of inductive-recursive definitions [Dyb00, [DS99] explores the
simultaneous combination of these two basic ingredients, pushing the limits of the theoretical
foundations of data types.

The key example of an inductive-recursive definition is Martin-Lof’s universe a la
Tarski [ML84]. A type U consisting of codes for small types is introduced, together with a
decoding function 7', which maps codes to the types they denote. The definition is both
inductive and recursive; the type U is defined inductively, and the decoding function 7' is
defined recursively on the way the elements of U are generated. The definition needs to be
simultaneous, since the introduction rules for U refer to T'. We illustrate this by means of a
concrete example: say we want to define a data type representing a universe containing a
name for the natural numbers, closed under X-types. Such a universe will be the smallest

LOGICAL METHODS © Neil Ghani, Lorenzo Malatesta, and Fredrik Nordvall Forsberg
IN COMPUTER SCIENCE DOI:10.2168/LMCS-7?7? Creative Commons

2 NEIL GHANI, LORENZO MALATESTA, AND FREDRIK NORDVALL FORSBERG

family of sets (U, T) satisfying the following equations

U = 14+ XYu:UTu—=U
T'(inl %) = N (1.1)
T(inr (u,f)) = Xz:Tu. T(fx)

In this definition we see how ground types and the type constructor > are reflected in U.
The left summand of the right hand side of the equation defining U is a code for natural
numbers, while the right summand is a code reflecting X-types. Indeed the name of a -type,
Y AB for A: Set, B: A — Set, in the universe (U,T') will consists of a name in U for
the type A, i.e. an element u:U, and a function f : Tu — U representing the A-indexed
family of sets B. The decoding function 7" maps elements of U according to the description
above: the code for natural numbers decodes to the set of natural numbers N while an
element (u, f) of the right summand decodes to the 3-type it denotes. Other examples of
inductive-recursive definitions have also appeared in the literature, such as e.g. Martin-Lof’s
computability predicates [ML72] or Aczel’s Frege structures [Acz80]. Lately the use of
inductive-recursive definitions to encode invariants in ordinary data structures has also been
considered [EHAQ9].

Dybjer’s [Dyb00] insight was that these examples are instances of a general notion,
which Dybjer and Setzer [DS99] later found a finite axiomatisation of. Their theory of
inductive-recursive definitions IR consists of: (i) a representation of types as initial algebras
of functors; (ii) a grammar for defining such functors. Elements of the grammar are called
IR codes, while functors associated to IR codes are called IR functors. The theory naturally
covers simpler inductive types such as lists, trees, vectors, red-black trees etc. as well.
Dybjer and Setzer [DS03] then gave an initial algebra semantics for IR codes by showing
that IR functors are naturally defined on the category Fam(D) of families of elements of
a (possibly large) type D and that these functors do indeed have initial algebras. More
generally, abstracting on the families construction and the underlying families fibration
7w : Fam(D) — Set, we have recently shown how to interpret IR functors in an arbitrary
fibration endowed with the appropriate structure [GMNES13]. In this article, we will only
consider the families fibration.

There is, however, a complication. When interpreting IR functors such as those building
universes closed under dependent products, the mixture of covariance and contravariance
intrinsic in the I operator forces one to confine attention to functors Fam |C| — Fam |C]| or,
equivalently, to work with only those morphisms between families which are commuting
triangles. As we have shown [GMNFES13], more abstractly, this corresponds to working in
the split cartesian fragment of the families fibration 7 : Fam(C) — Set, i.e. to only consider
those morphisms in Fam(C) which represent strict reindexing. In this paper we remove this
constraint and hence explore a further generalization of IR, orthogonal to the one proposed
in Ghani et al. [GMNESI3]. We investigate the necessary changes of IR needed to provide
a class of codes which can be interpreted as functors Fam(C) — Fam(C). This leads us
to consider a new variation IRT of inductive-recursive definitions which we call positive
mnductive-recursive definitions. The most substantial aspect of this new theory is that in
order to define these new codes, one needs also to define the morphisms between those codes.
This is no handle-turning exercise!

We first recall Dybjer and Setzer’s theory of inductive-recursive definitions (Section .
To develop the theory we then introduce a syntax and semantics consisting of IR codes
and their morphisms, and an explanation how these codes are interpreted as functors

POSITIVE INDUCTIVE-RECURSIVE DEFINITIONS 3

Fam(C) — Fam(C), where C is an arbitrary category (Section [3]). We then illustrate the
stronger elimination principles that are possible for positive inductive-recursive definitions.
We consider several examples of catamorphisms that are not possible with ordinary inductive-
recursive definitions (Section. As a practical application, we use positive inductive-recursive
definitions to shed new light on nested data types (Section. We formally compare IRT with
the existing theory of IR (Section [6), and adapt Dybjer and Setzer’s model construction to
our setting (Section [7)). The material in this paper has been formalised in Agda [GMNF14].

The paper uses a mixture of categorical and type theoretic constructions. However, the
reader should bear in mind that the foundations of this paper are type theoretic. In other
words, all constructions should be understood to take place in extensional Martin-Lof type
theory with one universe Set. This is entirely standard in the literature. The one exception
is the use of a Mahlo cardinal required to prove that positive inductive recursive functors
have initial algebras in Section |7l It should be emphasised that the Mahlo cardinal is only
used to justify the soundness of the theory, and does not play any computational role. We
refer the interested reader to Dybjer and Setzer [DS99] — they use a Mahlo cardinal for the
same purpose — for the technical details. We also use fibrational terminology occasionally
when we feel it adds insight, however readers not familiar with fibrations can simply ignore
such comments.

2. INDUCTIVE-RECURSIVE DEFINITIONS

In increasing complexity and sophistication, inductive definitions, indexed inductive defini-
tions and inductive-recursive definitions encode more and more information the programmer
knows about the data structures in question into the type itself. From the top of this hierar-
chy inductive-recursive definitions provides a unifying theoretical framework encompassing
these data types, and indeed both inductive and indexed inductive definitions are simple
instances of IR [GHM™13].

The original presentation of induction recursion given by Dybjer [Dyb00] was as a
schema. Dybjer and Setzer [DS99] further developed the theory to internalize the concept
of an inductive-recursive definition. They developed a finite axiomatization of the theory
through the introduction of a special type of codes for inductive-recursive definitions. The
following axiomatization which closely follows Dybjer and Setzer [DS99] presents the syntax
of IR as an inductive definition.

Definition 2.1 (IR codes). Let D be a (possibly large) type. The type of IR(D) codes has
the following constructors:

d:D
vd : IR(D)
A:Set f:A—IR(D)
oaf 1 IR(D)
A:Set F :(A— D)—IR(D)
3.F : IR(D)

This is the syntax of induction recursion — it is quite remarkable in our opinion that
this most powerful of theories of data types can be presented in such a simple fashion.
These rules have been written in natural-deduction style and we may use the ambient type
theory to define, for example, the function f in the code o4 f. An example of an IR code is
given in Example this code represents the universe containing the natural numbers and

4 NEIL GHANI, LORENZO MALATESTA, AND FREDRIK NORDVALL FORSBERG

closed under X-types given in Equation . We now turn to the semantics of induction
recursion: we interpret IR codes as functors, and to this end, we use the standard families
construction Fam from category theory. We start recalling the definition of the category
Fam(C) of families of objects of a category C.

Definition 2.2. Given a category C, the category Fam(C) has objects pairs (X, P) where
X isaset and P: X — C is a functor which we can think of as an X-indexed family of
objects of C. A morphism from (X, P) to (Y,Q) is a pair (h,k) where h : X — Y is a

function, and k : P — Q o h is a natural transformation.

Of course, the naturality condition in the definition of a morphism of families is vacuous
as the domains of the functors in question are discrete.

Remarks 2.3. For any category C, the category Fam(C) always has rich structure:

e Fam(C) is fibred over Set (see e.g. Jacobs [Jac99]). We omit here the definitions,
but recall the standard splitting cleavage of the fibration 7 : Fam(C) — Set which is
relevant later: a morphism (h, k) : (X, P) — (Y, Q) is a split cartesian morphism if
k is a family of identity morphisms, i.e. if P = Q o h.

e Fam(C) is the free set indexed coproduct completion of C; that is Fam(C) has all
set indexed coproducts and there is an embedding C — Fam(C) universal among
functors F' : C — D where D is a category with set indexed coproducts. Given an
A-indexed collection of objects (Xg, Py)q:4 in Fam(C), its A-indexed coproduct is
the family (>°,. 4 Xa, [Pala:4)-

e Fam(C) is cocomplete if and only if C has all small connected colimits (Carboni and
Johnstone [CJ95, dual of Prop. 2.1]).

e Fam is a functor CAT — CAT; given F' : C — D, we get a functor Fam(F’) : Fam(C) —
Fam(D) by composition: Fam(F)(X, P) = (X, F o P). Here CAT is the category of
large categories.

When C is a discrete category, a morphism between families (X, P) and (Y, Q) in Fam(C)
consists of a function h : X — Y such that Px = @Q (hx) for all x in X. From a fibrational
perspective, this amounts to the restriction to the split cartesian fragment Fam |C| of the
fibration 7w : Fam(C) — Set, for C an arbitrary category. This observation is crucial for
the interpretation of IR codes as functors. Indeed, given a type D, which we think of as
the discrete category |D| (with objects terms of type D), we interpret IR codes as functors
Fam|D| — Fam|D|.

Theorem 2.4 (IR functors [DS03]). Let D be a (possibly large) type. Every code vy : IR(D)
induces a functor
[v] : Fam |D| — Fam |D|

Proof. We define [v] : Fam |D| — Fam |D| by induction on the structure of the code . We
first give the action on objects:

[ec](X,P)=(1,A_.c)
[o4 f1(X, P) =) _[f al(X, P)
a:A

[BaFI(X.P)= Y [F(Pog)](X,P)
g:A—>X

POSITIVE INDUCTIVE-RECURSIVE DEFINITIONS 5

We now give the action on morphisms. Let (h,id) : (X, P) — (Y, @) be a morphism in
Fam|D|,ie. h: X - Y and Qo h = P.

[c](h,id) = (id1, id)

[04 f](R,id) = [ing o [f a] (R, id)]a:a
[04 F](h,id) = [inpog o [F(Q o ho g)](h,id)]g:a-x
Here, the last line type checks @ o h = P since D is discrete. Hence
Qohog=Pog (2.1)
and we can apply the induction hypothesis. L]

Note how the interpretation of both ¢ and § codes makes essential use of coproducts of
families as defined in Remarks [2.3] In particular, the interpretation of a code d4F' uses as
index set of the coproduct the function space A — X, which is a set since both A and X are.

Ghani et al. [GHM™13| introduces morphisms between (small) IR codes. The morphisms
are chosen to make the interpretation function [—] : IR(D) — (Fam|D| — Fam|D|) full and
faithful. Thus, transporting composition and identity along this function makes IR(D) into
a category, and [—] : IR(D) — (Fam|D| — Fam|D]|) can really be seen as a full and faithful
functor. We will draw inspiration from this in Section [3| when we generalise the semantics
to endofunctors on Fam(C) for possibly non-discrete categories C. Note however that the
definition of morphisms between codes we give here differs from the one appearing in Ghani
et al. [GHM™13|. The key idea of the latter is a characterization of the interpretation of §
codes as left Kan extensions. In our more general setting where C can be a non-discrete
category, this characterization fails. As a consequence, we lose the full and faithfulness of
the interpretation functor [—] and we have to prove by hand that the set of codes and
morphisms between them actually is a category. Full and faithfulness of the interpretation is
convenient and desirable, and often simplifies calculations. Nonetheless, it is not an essential
property, and we manage to make do without it.

We call a data type inductive-recursive if it is the initial algebra of a functor induced
from an IR code. Let us look at some examples.

Example 2.5 (A universe closed under dependent sums). In the introduction, we introduced
a universe in Equation , containing the natural numbers and closed under >-types, and
claimed that this universe can be defined via an inductive-recursive definition. Indeed, one
can easily write down a code yyx : IR(Set) for a functor that will have such a universe as its
initial algebra:

MW,y = tNHR (X = Ix (Y = ¢ E(X*)Y)) : IR(Set)
Here we have used v+ry’ := 02 (0 — 7;1 — 9’) to encode a binary coproduct as a 2-indexed

coproduct. Also, in the above, note that X : 1 — Set and so X« is simply the application of
X to the canonical element of 1. If we decode 5, we get a functor which satisfies

[wsl(U,T) = (14+3u:U.T(u) = U,inl_— Nsinr(u, f) = Xz:T(u) . T(f(z)))
so that the initial algebra (U, T') of [yn x|, which satisfies (U,T") = [ynx](U,T) by Lambek’s
Lemma, indeed satisfies Equation ([1.1)).
Example 2.6 (A universe closed under dependent function spaces). In the same way, we

can easily write a down a code for a universe closed under Il-types:
= tN+R I1(X = Ox(Y — (II(X*)Y)) : IR(Set)

6 NEIL GHANI, LORENZO MALATESTA, AND FREDRIK NORDVALL FORSBERG

Even though this looks extremely similar to the code in the previous example, we will see in
the next section that there is a big semantic difference between them.

3. PosITIVE INDUCTIVE-RECURSIVE DEFINITIONS

Theorem tells us that IR codes can be interpreted as functors on families built over a
discrete category. What happens if we try to interpret IR codes on the category Fam(C),
and not just on the subcategory Fam |C|, whose morphisms are the split cartesian ones only?
Consider the following morphism in Fam |C|:

h Y
N e

C
What if the diagram above does not commute on the nose, since C is not simply a discrete
category, but a category whose intrinsic structure we want to keep track of? For instance,
it is natural to require that the diagram above only commutes up to isomorphism, i.e.
P(z) = Q(h(z)) instead of P(x) = Q(h(x)). What structure is required to interpret
inductive-recursive definitions in this larger category? The problem is that if we allow for
more general morphisms, we can not prove functoriality of the semantics of a § code as it
stands anymore: it is essential to have an actual equality on the second component of a
morphism in Fam(C) in order to have a sound semantics.

In this section we propose a new axiomatization which enables us to solve this problem.
This new theory, which we dub positive inductive-recursive definitions, abbreviated IRT,
represents a generalization of IR which allows the interpretation of codes as functors defined
on Fam(C) for an arbitrary category C. In particular, if we choose C to be a groupoid, i.e.
a category where every morphism is an isomorphism, we get triangles commuting up to
isomorphism as morphisms in Fam(C).

X

3.1. Syntax and Semantics of IRT(C). The crucial insight which guides us when intro-
ducing the syntax of IR" is to deploy proper functors in the introduction rule of a § code.
This enables us to remove the restriction on morphisms within inductive recursive definitions;
indeed, if we know that F : (A — C) — IRT(C) is a functor, and not just a function, we do
not have to rely on an identity in Equation , but we can use the second component of a
morphism (h, k) : (X, P) — (Y,Q) in Fam(C) to get a map P o g — Q o h o g; then we can
use the fact that F' is a functor to get a morphism between codes F'(Pog) — F(Qohog).

But, now we have to roll up our sleeves. For F : (A — C) — IRT(C) to be a functor,
we need both A — C and IRT(C) to be categories. While it is clear how to make A — C a
category, turning IR (C) into a category entails defining both codes and morphisms between
codes simultaneously, in an inductive-inductive fashion [NES12, NF13]. We give an axiomatic
presentation of IRT analogously to the one given in Section [2| for the syntax of IR; however
we now have mutual introduction rules to build both the type of IRT(C) codes and the type
of IRT(C) morphisms, for C a given category. The semantics we give then explains how
IRT(C) codes can be interpreted as functors on Fam(C), while IR™(C) morphisms between
such codes can be interpreted as natural transformations.

POSITIVE INDUCTIVE-RECURSIVE DEFINITIONS 7

Definition 3.1. Given a category C we simultaneously define the type IRT(C) of positive
inductive-recursive codes on C, and the type of morphisms between these codes IRT(C)(_,) :
IRT(C) — IR (C) — type as follows:

e IRT(C) codes:
c:C
te: IRT(C)

A : Set f:A—IRT(C)
oaf : IRT(C)

A @ Set F:(A—C)—IRT(C)
S4F : IRT(C)

e IRT(C) morphisms:
f : Homg(c, &)
(t=¢)(f) : Homg+ gy (e,)

a:A—= B p:(z:A) = Hompge o (f(2), g(()))

(0=>0)(a, p) : Homg+ ¢y (0a f, 0B 9)

a:B— A p: Nat(F,G(— o))
((5:>5)(Ck”0> : HOm|R+((C)<5AF, 5BG)

In the last clause, we have indicated with Nat(F, G(— o «)) the collection of natural trans-
formations between the functors F' and G(—o) : (A — C) — IRT(C).

We need to make sure that Definition really defines a category, i.e. that composition
of IRT morphisms can be defined, and that it is associative and has identities. This can be
proved by recursion on the structure of morphisms:

Lemma 3.2. Let C be a category. Then IRT(C) is a category with morphisms given by
Hom|R+(C).

Proof. We define id; : Homg+ ¢)(, z) by recursion on x:
id! = (t=1)(id.)
|d: ;= (o=0)(ida, Aa. |d+())
'd(—S:F = (5:>5)(|dA,)\h.|d;C(h))
Composition _ojg+ - : Homg+) (¥, 2) = Homg+ ¢y (2, y) = Homig+ (¢ (2, 2) is defined by
(z,y):
(= 0)(f) ors L= 0)(f) = (t=1)(f oc 9)
(0=0)(e, p) og+ (0=0)(B,7) = (0= 0) (o B, Ax. p(a(x)) og+ 7())
(0=06)(v, p) op+ (0=0)(B,7) = (0= 0)(Boa,Ah.p(hof) o+ 7(h))

Three more straightforward inductions prove that composition is associative, and that id™ is
both a left and a right unit for composition. L]

recursion on f : Hom|R+(C) (y,2) and g : H0m|R+(<c)

8 NEIL GHANI, LORENZO MALATESTA, AND FREDRIK NORDVALL FORSBERG

We now explain how each code 7 : IRT(C) is interpreted as an endofunctor
[v] : Fam(C) — Fam(C)

A functor which is isomorphic to a functor induced by an IR" code is called an IR' functor.
The semantics of IR" closely follows the one given in Section |2} as before we make essential
use of coproducts in Fam(C). Having said that, the crucial feature which separates the
semantics of IRT from the semantics of IR is the following: when explaining the semantics of
IR we can first interpret IR codes as functors and only later we define morphisms between
codes which are interpreted as natural transformations between the corresponding functors.
In IRT the type of codes and the type of morphisms between codes are simultaneously
defined in an inductive-inductive way, and therefore they are also decoded simultaneously
as functors and natural transformations respectively. This is exactly what the elimination
principle for an inductive-inductive definition gives.

In the following theorem, note that there is no restriction on the category C — all
structure that we need comes for free from the families construction Fam.

Theorem 3.3 (IR" functors). Let C be an arbitrary category.
(i) Every code v : IR*(C) induces a functor [] : Fam(C) — Fam(C).
(ii) Every morphism r : IRT(C)(,7) for codes v,~" : IRT(C) gives rise to a natural
transformation [r] : [v] — [¥]

Proof. While the action on objects is the same for both IR™ and IR functors, the action
on morphisms is different when interpreting a code of type §4F: in the semantics of IR
we exploit the fact that F': (4 — C) — IRT(C) is now a functor, so that it also has an
action on morphisms (which we, for the sake of clarity, write F_,). We give the action of IR
functors on morphisms only, and refer to the semantics given in Theorem for the action
on objects of Fam(C).

The action on morphisms is given as follows. Let (h,k) : (X, P) — (Y,Q) in Fam(C).
We define [y](h, k) : [v](X, P) — [7](Y, Q) by recursion on ~:

[ec](h, k) = (id1,id.)
[of10h, k) = fing o [f al (b, B4
AR,) = g © [F(Q 0 0 9101,) [(" ()] o
In the last clause g*(k) : Pog — Qo ho g is the natural transformation with component
g (k)a = kga : P(ga) = Q(k(ga)); note that such a natural transformation is nothing
but the vertical morphism above A obtained by reindexing (idx, k) along g in the families
fibration 7 : Fam(C) — Set.

We now explain how an IRT morphism r : v — + is interpreted as a natural transfor-
mation [r] : [y] — [+] between IRT functors by specifying the component [r] x p) at
(X, P) : Fam(C). Naturality of these transformations can be proved by a routine diagram
chase.

[(t=0)(N]x,py = (id1, f)
[[(O-:U)(av p)]](X,P) = [ina(x) © [[p<x)]](X,P)]$:A
[(60=06)(c, P)]](X,P) = [ingoq © [[p(Pog)]](X,P)]g:AHX

POSITIVE INDUCTIVE-RECURSIVE DEFINITIONS 9

Remark 3.4. In the conference version of this paper [GMNE13|, we considered a different
collection of morphisms; since more morphisms makes it easier to define codes, we tried
to include as many morphisms as possible. As a result, the proof that IRT(C) is a cate-
gory becomes quite long and tedious, although straightforward. In this presentation, we
have instead decided to restrict ourselves to the smallest possible “usable” combination of
morphisms. It should be noted that our results are completely parametric in the choice
of morphisms used; any collection that represents natural transformations between the
codes works, as long as the identity morphisms and composition can be defined. The range
spans all the way from no morphisms at all (in which case it is rather hard to define a
functor (A — C) — IRT(C)!) to taking Hom g+ (z,y) = [z] — [y], which gives rise to a full
and faithful interpretation by definition. The latter would mean that the interpretation
[—] would need to be defined simultaneously with the codes, with the effect that the very
definition of positive inductive-recursive definitions itself would be inductive-recursive. To
avoid this stronger assumption in the metatheory, we prefer the current formulation, where
the meta-theory only uses inductive-inductive definitions — a much weaker principle.

Let us now return to the examples from the end of Section

Example 3.5 (A universe closed under dependent sums in Fam(Set®?)). In Example
we defined an ordinary IR code vy : IR(Set) for a universe closed under sigma types. We
can extend this code to an IR™ code

e =t N+R (X = 5x.(Y = 0 S5(X*)Y)) 1 IRT(SetP)

where now G =Y — 1 X(X*)Y and F = X — dx. G needs to be functors. Given
f:Y =Y in X — Set® i.e. an X-indexed collection of morphisms f, :Y(z) — Y'(z) in
Set®P, we have Xz : (Xx).f, : 2(X*)Y — X(X%) Y’ in Set®? so that we can define

G(f) 1 13(X%)Y — 1 3(X*) Y’

by G(f) = (t=1)(Bx : (X*).fz).

We also need F' to be a functor. Given f: X — X’ in 1 — Set°?, we need to define
F(f) : dx+«G — 0x/+« G. According to Definition it is enough to give fi : X'x — Xx
and a natural transformation p from G to G(— o f.). We can choose p to be the natural
transformation whose component at Y : X — Set®? is given by py = (t=¢)([inf, 2]z x74)5
where [inf,z]z.x7% 1 2(X'*)Y o f, = X(X*)Y. Notice that working in Set®® made sure that
f+ was going in the right direction.

Example 3.6 (A universe closed under dependent function spaces in Fam(Set™)). In
Example we saw how we could use induction-recursion to define a universe closed under
II-types in Fam |Set|, using the following code:

i = tN+HR (X = 0x (Y = o II(X*)Y)) : IR(Set)

If we try to extend this to an IRT code in Fam(Set) or Fam(Set°?), we run into problems.
Basically, given a morphism f : X’ — X, we need to construct a morphism II X’ (Y o f) —
I1 XY, which of course is impossible if e.g. X' =0, X =1, and Y* = 0.

Hence the inherent contravariance in the II-type means that vy does not extend to
a IR"(Set) or IRT(Set°P) code. However, if we move to the groupoid Set™, which is the
subcategory of Set with only isomorphisms as morphisms, we do get an IRT(Set™) code
describing the universe in question, which is still living in a category beyond the strict
category Fam |Set|. It would be interesting to understand the relevance of positive induction

10 NEIL GHANI, LORENZO MALATESTA, AND FREDRIK NORDVALL FORSBERG

recursion to Homotopy Type Theory [Unil3] where groupoids and their higher order relatives
play such a prominent role.

4. STRONGER ELIMINATION PRINCIPLES

From Example we know that the IR code yy x defining a universe containing the set of
natural numbers N and closed under ¥-type can be extended to a IR™ code of type IR (Set™)
or IR"(Set°?). Thus, the code yyx can be interpreted as an endofunctor on Fam(Set™) or
on Fam(Set®P) respectively. In this section we aim to explore by means of an example what
the elimination principle for IR* codes can be used for: we show how the simple elaboration
of the code yn x to a code of type IRT(Set™) offers us the possibility to implement a more
sophisticated recursion principle on the universe we are currently building.

Recall that, from the perspective of initial algebra semantics, the elimination principle
for a type is captured by the universal property of the initial algebra: if F' is an endofunctor
and (up,ing) its initial algebra, then we know that for any other algebra (X, f) there exists
a (unique) F-algebra homomorphism a; : up — X which makes the following diagram

commute:

Fup —"— pp

F(ag)l la-‘?

FX——X
g

The initial property of (up,inr) then gives us a definition by recursion on any other type
possessing the right F-algebra structure. By working in Fam(C) instead of Fam |C|, we are
allowing many more algebras compared to ordinary inductive-recursive definitions, or put
differently, we get a stronger elimination principle.

Example 4.1. To see why a stronger elimination principle is sometimes necessary, consider
the initial algebra ((U*,T*), (ing,in1)) for a code v1nx : IRT(Set™) representing a universe
containing a set 1 with only one element, the set N of natural numbers and moreover closed
under X-types. The universe U* contains many codes for “the same” set, up to isomorphism.
For instance, it contains codes for each of the following isomorphic sets:

1¥(31)1 = (21)(21)1
N (EXN)1 = (¥1)N = (Z1)(X1)N ...
Moreover, for each Y-type the following isomorphism holds:
(Xz: (B2 : A)B(2))C(2) = (Zx: A)(Zy : B(a))C({(z,y)) (4.1)

Therefore, for each 3 set with at least two nested 3’s, U™ contains a code for both these ways
to parenthesize a Y-type. It might be advantageous to instead keep a single representative
for each isomorphism class. We might hope to do so using the initiality of (U*,T*), and
indeed, the elimination principle for positive inductive-recursive definitions allows us to do
exactly that.

First of all we need to decide what normal forms for elements in the universe we want.
We can specify this by defining a predicate NF : U* — Set on the universe (U*, T*), which
decides if a set is in normal form: we decree that the codes for the sets 1 and N are in normal
form, and a code for ¥ A B is in normal form if A is in normal form, B(a) is in normal form
for each a : A, A is not 1, and finally it is of the form of the right hand side of . There

POSITIVE INDUCTIVE-RECURSIVE DEFINITIONS 11

is of course some room for different choices here. Formally, and employing some cleverness
in how we set things up, we can define the predicate by the elimination principle for U* by
the following clauses:

NF(1)

I
oA

NF(N
NF(21

V)
b)
NF(ENb) = wlNNme
NF((2 (2 a' V) b)
We now define a new family (U, T\g), containing sets in normal forms only, by letting
Unrk := (Zu : U")NF(u)
Ine(u,p) :==T"(u)

We can also define a Fam(Set™) morphism (¢,7) : [v1.55](Une, Ine) = (Ung, Tne) which
endows (Unp, Tnf) with an [v1 y x]-algebra structure. For this, is it crucial that we are
working in Fam(Set™) and not Fam |Set|, since we can only expect that a Y-type of normal
forms is isomorphic to a normal form, not equal to one; i.e. if A is in normal form, and B(a)
is in normal form for all a : A, then ¥ A B is not necessary normal (as e.g. A = 1 shows),
but we can always find a normal form isomorphic to ¥ A B. The function ¢ maps A and B
to this normal form, and 7 is a proof that it is indeed isomorphic to ¥ A B. We only give
the definition of ¢ : [y1,nx]o(Unr, InF) — Unr here; the definition of 7 follows the same
pattern.

¢(1) = (1,%)
o(N) = (N, %)
¢((1,p)b) = (mob(+), m1b(x))
¢((N,p)b) = (EN(m 0 b),n = m1(b(n)))
$(S (SN, p)b) = (EN(n = mo(¢(..))), (n = m(é(...)))

where ¢(...) = ¢(3 (V' (n), p(n))(y = b(n,y)))
(X (2 (Zab)b,p)c) impossible case by def of NF; p: L
gzﬁ(fl (f) 1 b',p)c) impossible case by def of NF; p: L

By initiality of (U*,T*) we get a morphism (nf,correct) making the following diagram
comimute:

(in07in1)
_—

[Vl (U, TF)
[v1,n, 2] (nf correct) l l (nf,correct)

[v1,8,5] (UnF, Tnp) — o (Unr, TnF)

The map (nf, correct) recursively computes the normal form for each set in the universe
(U*,T*). Indeed, nf : U* — Uynr maps each name u of a set T'(u) in the universe to the
name of the corresponding set in normal form, while the natural transformation correct, :
T*(u) = Tne(nf(u)) ensures that the code actually denotes isomorphic sets. Of course, we

U=, T7)

12 NEIL GHANI, LORENZO MALATESTA, AND FREDRIK NORDVALL FORSBERG

do not get (nf, correct) for free; defining ¢ and n already amounts to most of the work for
the full definition. The point is rather that initiality in Fam(Set™) is a definitional principle
which allows us to define nf and correct. Furthermore, by using initiality, we can give a
structured definition, where we only have to consider the separate cases in isolation.

Example 4.2. As another example of the use of elimination principles beyond ordinary
inductive-recursive definitions, we can define functions between universes with different
ground sets. Consider two universes Uy, Us closed under the same type-theoretic operations,
but containing different ground sets By, Bo. Given a function B; — Bs, we would like to be
able to extend this function to a function U; — Us between all of the two universes. For
example, we could have a universe (Unyx, T), closed under ¥-types and containing the
natural numbers N, and another universe (Uzx, 1% 5) also closed under X-types but instead
containing the integers Z as ground set. Clearly these two universes are closely related and
there ought to exist a function between them in Fam(Set®P) (the contravariance is needed for
the negative occurrence of U in the code for the sigma type). By the elimination principle
for positive inductive-recursive definitions, it suffices to provide a function between the
ground sets, i.e. a function from Z into N, and there are clearly plenty of such functions,
for instance the absolute value function or the square function. In detail, every function
f +Z — N induces a Fam(Set°?)-morphism

IwslUzys,Tzy) — (Uzys,Tz%)

showing that (Uz s, Tz 5) has an [yy x]-algebra structure. Therefore, initiality of (Un s, T x)
gives us a map (Unyx, Iivy) — (Uzx, T7x) which uses f to recursively compute the embed-
ding Of (UN,Ev TN,E) into (UZ,E; TZ,Z)~

5. APPLICATION: A CONCRETE REPRESENTATION OF NESTED TYPES

Nested data types [AMUOQO5] have been used to implement a number of advanced data
types in languages which support higher-kinded types, such as the widely-used functional
programming language Haskell. Among these data types are those with constraints, such as
perfect trees [Hin00]; types with variable binding, such as untyped A-terms [FPT99]; cyclic
data structures [GHUVO06]; and certain dependent types [MMO04].

A canonical example of a nested data type is Lam : Set — Set defined in Haskell as
follows:

data Lam a = Var a | App (Lam a) (Lam a) | Abs (Lam (Maybe a))

The type Lam a is the type of untyped A-terms over variables of type a up to a-equivalence.
Here, the constructor Abs models the bound variable in an abstraction of type Lam a by the
Nothing constructor of type Maybe a, and any free variable x of type a in an abstraction of
type Lam a by the term Just x of type Maybe a; The key observation about the type Lam a
is that elements of the type Lam (Maybe a) are needed to build elements of Lam a so that,
in effect, the entire family of types determined by Lam has to be constructed simultaneously.
Thus, rather than defining a family of inductive types, the type constructor Lam defines a
type-indezxed inductive family of types. The kind of recursion captured by nested types is a
special case of non-uniform recursion [Bla0Q].

On the other hand, ordinary non-nested data types such as List a or Tree a can be
represented as containers [AAGOS, [Abb03]. Recall that a container (S, P) is given by a
set S of shapes, together with a family P : .S — Set of positions. Each container gives rise

POSITIVE INDUCTIVE-RECURSIVE DEFINITIONS 13

to a functor [S, P]cont : Set — Set defined by [S, P]cont(X) = Xs : §. P(s) — X. Since
also nested data types such as Lam have type Set — Set, it make sense to ask the following
question: Are nested data types representable as containers? There would be benefits of a
positive answer, since one could then apply container technology to nested data types, e.g.
one could classify the natural transformations between them and operate on them using,
for example, the derivative. While the latter has clear practical importance, note that the
canonical recursion operator fold associated to inductive types is, when analysed for nested
data types, a natural transformation.

We give a positive answer to the above question using IRT. As far as we are aware, this
is a new result. We sketch our overall development as follows:

(i) We define a grammar Nest for defining nested types and a decoding function (—) :
Nest — (Set — Set) — (Set — Set). The data types we are interested in arise as initial
algebras p(N) for elements N of the grammar.

(ii) We show that (N) restricts to an endofunctor (N)cont : Cont — Cont on the category
Cont of containers.

(iii) Noting that Cont = Fam(Set°?), we use IR" to define (N)cont. Hence by the results
of this paper, (N)cont has an initial algebra pu(N)cont. We finish by arguing that
u(N) = [p(NDcont]cont and hence that, indeed, nested types are containers.

A Grammar for Nested Types. We now present a grammar for defining nested data
types. Since our point is not to push the theory of nested data types, but rather to illustrate
an application of positive induction-recursion, we keep the grammar simple. The grammar
we use is
F=W|KC|F+F|FxF|F&F

where C' is any container. The intention is that |d stands for the identity functor mapping a
functor to itself, K'C' stands for the constant functor mapping any functor to the interpretation
of the container C', + and x stand for the coproduct and product of functors respectively,
and ® for the pointwise composition of functors. These intentions are formalised by a
semantics for the elements of our grammar given as follows

(- : Nest — (Set — Set) — (Set — Set)
(Id) F = F

(K C) F = [Clcont

(Fo+F)F = (Fo) F+ () F

(]]:0 X]:1[) F = (].F()[) F x (]./_"1D F

(F o= (Fo) Fo(R)F

For example, the functor
LFX = X + (FX x FX) + F(X +1)
whose initial algebra is the type Lam, is of the form (Nz| with
Np=KlIlc + (ldxId) + (ld® (K M))

where Ic = (1,_+ 1) is the container with one shape and one position, representing the
identity functor on Set, and M = (2, x + if = then 1 else 0) is the container with two shapes,
the first one with one position, and the second one with no position. M represents the
functor on Set mapping X to X + 1.

14 NEIL GHANI, LORENZO MALATESTA, AND FREDRIK NORDVALL FORSBERG

Nested Types as Functors on Containers. The next thing on our agenda is to show
that every element N of Nest has an interpretation as an operator on containers (N)cont :
Cont — Cont, such that (N)cont is the restriction of (N) to the subcategory of functors
that are extension of containers. This is done easily enough by recursion on N, noting that
containers are closed under coproduct, product and composition:

Lemma 5.1 (JAAGO5]). Let (S, P) and (S, P'") be containers. Define
(S,P)+ (8", P')=(S+ 9, [P, P
(S,P) x (8", P') = (S x5, (s,8)— P(s) + P'(s))
(S.P)o (8, ') i= (Ss: 8. (P(s) = &), (5, f) = Sp: P(s) . P((0)))
We then have
+ (8, P)]cont =[S, Plcont + [, P'Jcont
X (Slapl)]]Cont =[S, Plcont X [[S,,P/HCont
[(S,P)o (S/7P/)]]Cont =[S, Plcont © [[Slypl]]Cont

L]
Thus, the interpretation (N]) indeed restricts to the subcategory Cont:
Proposition 5.2. Define (—|)cont : Nest — Cont — Cont by
(Id)cont C = C
(K (S, P))cont C = (S, P)
(]‘7:0 + leCont C = (]‘FODCont C+ (]]rl[)Cont C
(]-7:0 X leCont C = qfODCont C x q]:lDCont C
(]-7:0 ® leCont C = qfODCont Co (]fll)Cont C
The following diagram then commutes:
Cont e ——= (Set — Set)
qNDContl lGND
Cont — (Set — Set)
—lCont
L]

Coming back to our running example, if we consider the nested code Ny, for Lam, we
have (]NLDCont(Sy P) = (SL, PL) with

St = 14+ (SxS)+Xs:S. P(s) > 2
Pr, (ing %) =1

Pr, (ina(s,8")) = P(s)+ P(s)

Pr (ing (s, f)) = Xp: P(s).if f(p)then 1else 0

We see that indeed the positions P show up in the equation for the shape S, so that
we should expect an inductive-recursive definition to be the initial solution to this set of
equations.

POSITIVE INDUCTIVE-RECURSIVE DEFINITIONS 15

Nested Types are Containers. We know that Cont = Fam(Set®?). Now, we want to show
that for every code N : Nest, the functor (N)cont is a IRT functor: to see this one needs to
carefully examine the constructions on families used to build (N))cont. We will need to show
that we can emulate the identity functor, containers and container product, coproduct and
composition using IRT codes. Most of these are straightforward, but container composition
will require some sophistication: we will need to observe that all IRT codes in question
in fact are of a particularly simple, uniform form. We deal with each code in the nested
grammar in turn.

Lemma 5.3 (IR" codes for Id and K (S, P)).
(1) [61((X : 1 — SetP) — (X x))]C = C
(i1) Jos(s — ¢ P(s)]|C = (S, P) [

For encoding container coproducts, we can reuse the binary coproducts +r on IRT codes
from Example

Lemma 5.4 (IR" codes for N + N'). [y +r Y]C = ([7]oC + [¥']oC, [Y1 C, [Y]1C) O

Emulating products of containers requires a little more work. The basic idea is that
we get the product of two codes v and + by replacing all occurrences of the terminating
code ¢ ¢ in the first code v by the second code ~/, where, in turn, we replace all codes ¢ ¢’
with ¢ (¢ x /). In general, we can replace ¢ ¢ with ¢ G(c,c’) for a functor G : C x C — C.
Formally, we define a functor [tz — tG(_,x)] : IRT x C — IRT for such a functor G by

()ex — G(e,x)] = 1 Gle,)
(caf)ltx— G(c,z)] =04 (Aa. f(a)[tx — G(c,x)])
(0aF)tx — G(e,x)] =04 (M. F(h)[tz — G(c,x)])

See the formal development [GMNF14] for the action on morphisms, which needs to be
defined simultaneously in order to show that F'(h)[tx — G(c,z)] in the 0 case again is a
functor. Using this, we can now define the product v x¢ 7' of two codes with respect to the
functor G:

(co) xgy=7la — Glc,)]
(0af) xgy=0a(Aa. f(a) xg7)
((5AF) XGY = (5A()\h.F(h) X(;’y)

Again, we need to simultaneosuly show that X is functorial in order for F'(h) x 7 in the §
case to be a functor.

Lemma 5.5. [y xg Y']C = ([7]oC % [V]oC, (s,5") — G([v]1C's, [7]:1Cs")) O

In particular, if we choose G(X,Y) = X + Y, we recover the container product.

Finally, we get to container composition. Composition of IRT codes (and IR codes)
is an open problem in general, but since we are interested in emulating composition of
containers, one could hope that there is more structure to be exploited, and this is indeed
the case. The main insight is that all codes in the image of the translation are uniform,
in the sense of unpublished work by Peter Hancock. Intuitively, a IRT code is uniform
if the shape of the code (i.e. 0/d/¢ followed by o/§/¢ followed by...) is independent of
the arguments; e.g. 04 (A .0p() (AY .6 (ay) (A2 1d(2,y, 2)))) is uniform, while the code
on (Az.if 2 = 17 then dp(A\y . tc(y)) else oc () (MY - Op(a,y) (A2 . td(,y, 2)) is not, since the

16 NEIL GHANI, LORENZO MALATESTA, AND FREDRIK NORDVALL FORSBERG

shape is sometimes o-0-¢ and sometimes o-0-9-t. A precise description and study of uniform
IRT codes is out of scope of this paper; for further information, we refer to our formal
development |[GMNE14].

The main construction that uniform IR* codes allow, while arbitrary codes seem not
to, is to construct a code for exponentiation of a IRT code v with a set K, i.e. a code
K — ~ such that [K — v]C 2 (K — [7]oC, f — 2k : K.[v]1C(f(k))). Note how there
is a sigma type in the decoding of the family; as we have seen in Example families
closed under ¥ are canonical examples of a IRT construction. Since the construction of
K — = depends on the definition of uniform codes, we do not give it here, but refer again
to our Agda formalisation [GMNF14], where we also show that all constructions so far in
this section result in uniform codes (except for the coproduct of codes, whose construction
must be modified slightly). Given such a construction, we can now interpret also container
composition with nested functors as a IR" code by defining e : Nest — IR™ — IR™ in the
following way:

Idey =01 (AX.X(x) =)
K(S,P)ey=0g(As.P(s) =)
(N+N)ey=(Nevy)+ir (N e7)
(N xN')ey=(Ney)xy (N ey)
(N®N')ey=Ne(Ney)
Lemma 5.6. [N ¢ y]C = ((N)contC) o [7]C U]
Putting everything together, we arrive at the main theorem of this section.
Theorem 5.7. For every N : Nest, the initial algebra u(N) ezists and is a container functor.

Proof. By Lemmas to (N)cont is an IRT functor. Hence by the results in Section
it has an initial algebra which is a container (Sx, Py). Since [—]cont preserves initial objects
and filtered colimits of cartesian morphisms ([Abb03] Propositions 4.5.1 and 4.6.7) and we
know from Lemma in Section [7] that the initial algebra chain of an IR™ functor is made
from cartesian morphisms only, we can conclude that [(Sn, Pn)]cont = p(N) showing that
all nested types indeed are definable using containers.]

6. COMPARISON TO PLAIN IR

We now investigate the relationship between IRT and IR. On the one hand we show in
Proposition how to embed Dybjer and Setzer’s original coding scheme for IR into IR™;
this way we can see IR as a subsystem of IRT. On the other hand we show in Proposition
that on discrete categories, the two schemas agrees having the same functorial interpretation;
thus, using the canonical embedding of the discretisation of a category into itself, we can
build a functor mapping IR™ into IR.

Note that every type D can be regarded as a discrete category, which we by abuse of
notation denote |D|. In the other direction, every category C gives rise to a type |C| whose
elements are the objects of C.

Proposition 6.1. There is a functor ¢ : [IR(D)| — IRT |D| such that
[[@(’Y)ﬂuﬁ |D| = [[’Y]]lR(D)

POSITIVE INDUCTIVE-RECURSIVE DEFINITIONS 17

Proof. The only interesting case is v = d4 F' : IR(D); we define p(d4 F) =04 (po F). We
need to ensure that ¢ o F' indeed is a functor, but since |D| is a discrete, so is A — |D|, and
the mapping on objects ¢ o F': (A — |D|) — IRT | D| can trivially be extended to a functor
(A — |D|) — IRT|D|. Tt is easy to see that the two semantics do agree: on objects, the
action is the same, and if (h,id) is a morphism in Fam |D|, we see from the definition of
[64 FJig+|pj(h, k) in the proof of Theorem [3.3| that

[04 (¢ 0 F)lig+ p|(h,id) = [inhog © [p(F(Q o h o g)](h,id) o [(p 0 F)~(g7(id))] (x,p)]g:4-x
= [Nhog 0 [p(F(Q 0 ho g)](h,id)]g:a-x
= [inhOg © [[F(Q oho Q)HIR(D)(ha id)]g:A—>X
= [6a Flir(p)
where [(¢ o F')(g*(id))] x,p) = id since [(v o F')(—)](x,p) is a functor. O

This proposition shows that the theory of IR can be embedded in the theory of IRT. Some
readers might perhaps be surprised that we only define a functor from the discrete category
[IR(D)], i.e. a function IR(D) — IR™ |D|. The reason is the mismatch of morphisms between
IR(D) and IR™ | D|; because IR(D) has a full and faithful embedding into Fam |D| — Fam |D|,
whereas IR" |D| has not, there are necessarily morphisms in IR(D) that have no counterpart
in IR" |D|. Going the other way, we are more successful, and can make the previous result
more precise: using the functoriality of Fam (Remarks [2.3)), we can embed Fam |C| into
Fam(C). We can then show that forgetting about the extra structure of C in IRT simply
gets us back to plain IR.

Proposition 6.2. Lete : |C| — C the canonical embedding of the discretisation of a category
C into itself. There is a functor 1 : IRTC — IR|C| such that for all v : IRTC

Fam(e) o [¥(V)liric) = [V]ir+(c) © Fam(e) (*)
Furthermore, 1 o ¢ = id, where ¢ : IR(C) — IR |C| is the function from Proposition .

Proof. We define the functor 1 : IRT(C) — IR|C| by recursion on the structure of v. On
objects, 1 is defined as follows:

Y(e)=1e
P(oaf) = oala = ¢(fa))
P(6aF) = 0A(X = P(F(e 0 X)))

We now use full and faithfulness of the interpretation functor [Jir|c|, as proved in Ghani et
al. [GHM™13], to let the function ¢ act on morphisms as well as on objects. Since the two
interpretation functors agree on objects, i.e. [v](X, P) = [¢(7)]ir|c/(X, P), a IRT morphism
7 1y — 7/ corresponds to a natural transformation [r] : [¢(v)]ir|c| = [¥(¥)]ir|c|- By full
and faithfulness of []ir|c| such a natural transformation corresponds to an IR morphism
¥(y) = (7)) which we take as the definition of ¢ (r). Similarly, full and faithfulness of
[-Ir i) ensure that composition and identity are preserved by 1, which is therefore a functor.

We are left with checking that (ED holds for morphisms. Recall from Remarks
that a morphism in Fam |C| correspond to a split cartesian morphism in Fam(C), i.e one
whose second component is an identity. Thus, to verify (ED it is enough to check that

18 NEIL GHANI, LORENZO MALATESTA, AND FREDRIK NORDVALL FORSBERG

[v] preserves such split cartesian morphisms. The interesting case is 7 = J4F. Let
(h,id) : (X,Poh) — (Y, P) be a morphism in Fam |C|. We have
ARV id) = [inneq o [P(P o o g)](hd) [P (5" ()] x,pla-a-x
= [inhog o [F(P o hog)](h,id)]g:a-x

where [F'(g*id)](x,py = id since g*, F' and [] are functors. By the induction hypothesis,
each [F(P o ho g)](h,id) is split cartesian. Furthermore injections are split cartesian in
Fam(C), and since compositions and cotuplings of split cartesian morphisms are still split
cartesian in Fam(C) we conclude that [d4 F](h,id) indeed is a split cartesian morphism as
required.

Finally, since € is the identity on discrete categories the two schemas agrees on discrete
categories and we automatically get ¥ o ¢ = id. []

7. EXISTENCE OF INITIAL ALGEBRAS

We briefly revisit the initial algebra argument used by Dybjer and Setzer [DS99]. Inspecting
their proof, we see that it indeed is possible to adapt it also for the more general setting of
positive inductive-recursive definitions by making the appropriate adjustments.

Remember that a morphism (h,k) : (U,T) — (U,T") in Fam(C) is a split cartesian
morphism if k = idp, i.e. T" o h = T. We indicate by Fam |C| the subcategory (subfibration)
of Fam(C) with the same objects, but with morphisms the split cartesian ones only.

The proof of existence of initial algebras for IR functors as given by Dybjer and
Setzer [DS99] takes place in the category Fam |C|. The hard work of the proof is divided
between two lemmas. First Dybjer and Setzer prove that an IR functor [y] preserves
k-filtered colimits if k is an inaccessible cardinal which suitably bounds the size of the index
sets in the image of the filtered diagram. Secondly they use the assumption of the existence
of a large cardinal, namely a Mahlo cardinal, to prove that such a cardinal bound for the
index sets can actually be found. The exact definition of when a cardinal is a Mahlo cardinal
will not be important for the current presentation; see Dybjer and Setzer [DS99] for how this
assumption is used. The existence of an initial algebra then follows a standard argument:
the initial algebra of a k-continuous functor can be constructed as the colimit of the initial
chain up to iterations (see e.g. Addmek et al. [AMMIO0]).

Inspecting the proofs, we see that they crucially depend on morphisms being split
cartesian in several places. Luckily, the morphisms involved in the corresponding proofs
for IR actually are! As is well-known, a weaker condition than k-continuity is actually
sufficient: it is enough that the functor in question preserve the specific colimit of the initial
k-chain. We thus show that the initial chain of a IRT functor actually lives in Fam |C|, which
will allow us to modify Dybjer and Setzer’s proof accordingly.

Lemma 7.1. For each v : IRT C, the initial chain

0 — [4](0) = [+]*(0) — ...
consists of split cartesian morphisms only.
Proof. Recall that the connecting morphisms w; : [Y]7(0) — [v]*(0) are uniquely deter-
mined as follows:

® Wo,1 = '[['y}](O) is unique. '
o wirthr 35 [Y)wik) : DIV (0)) = [IA]*(0)-

POSITIVE INDUCTIVE-RECURSIVE DEFINITIONS 19

® wj) is the colimit cocone for j a limit ordinal.

We prove the statement by induction on j. It is certainly true that ' 5.0y : (0,!) — [v](0) is
an identity at each component — there are none. Thus wq 1 is a split cartesian morphism.
At successor stages, we apply Proposition Proposition [6.2] and the induction hypothesis.
Finally, at limit stages, we use the fact that the colimit lives in Fam |C| and hence coincides
with the colimit in that category on split cartesian morphisms, so that the colimit cocone is
split cartesian. L]

Inspecting Dybjer and Setzer’s original proof, we see that it now goes through also for
IR if we insert appeals to Lemma where necessary. To finish the proof, we also need
to ensure that Fam(C) has x-filtered colimits; this is automatically true if C has all small
connected colimits (compare Remarks , since Fam(C) then is cocomplete. Note that
discrete categories have all small connected colimits for trivial reasons.

Theorem 7.2. Assume that a Mahlo cardinal exists in the meta-theory. If C has connected
colimits, then every functor [y] for v : IRT C has an initial algebra. []

8. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced the theory IR of positive inductive-recursive definitions as a
generalization of Dybjer and Setzer’s theory IR of inductive-recursive definitions [DS99, [DS03|
DS06], different from the fibrational generalization explored in Ghani et al. [GMNES13]: by
modifying both syntax and semantics of IR we have been able to broaden the semantics to all
of Fam(C) and not just Fam |C|. The theory of IR", with IR as a subtheory, paves the way
to the analysis of more sophisticated data types which allow not only for the simultaneous
definition of an inductive type X and of a recursive function f : X — D, but also takes the
intrinsic structure between objects in the target type D into account. This is the case for
example when D is a setoid, the category Set or Set®P, a groupoid or, even more generally,
an arbitrary category C.

In future work we aim to explore the theory of IRT from a fibrational perspective:
this will allow us to reconcile the theory of IRT with the analysis of IR as given in
Ghani et al. [GMNFESI3]. In particular this will amount to characterising the seman-
tics of & codes as left Kan extensions. An open problem for both IR" and IR is the question
whether the definable functors are closed under composition, i.e. if there is a code v o+’ such
that [y o] = [y] o [7/] for all codes v and +'. Another interesting direction of research is
to investigate to which extent the rich structure of the families construction Fam will help
shed light on the analysis of IR" types: in particular to exploit the monadic structure of
Fam and then to investigate the relationship between the theory of IR™ and the theory of
familial 2-functors introduced by Weber [Web(7].

REFERENCES

[AAGO5] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Constructing strictly positive
types. Theoretical Computer Science, 342(1):3 — 27, 2005.

[Abb03] Michael Abbott. Category of Containers. PhD thesis, University of Leicester, 2003.

[Acz80] Peter Aczel. Frege structures and the notions of proposition, truth and set. In Jon Barwise,
H. Jerome Keisler, and Kenneth Kunen, editors, The Kleene Symposium, volume 101 of Studies
in Logic and the Foundations of Mathematics, pages 31 — 59. Elsevier, 1980.

20

[AMM10]
[AMUOS5]
[Bla00]
[CJ95]

[DS99)]

[DS03]
[DS06]
[Dyb00]
[EHA09]
[FPT99)
[GHM*13]
[GHUV06]
[GMNF13]

[GMNF14]

[GMNFS13]
[Hin00]
[Jac99]
[ML72]

[ML&4]
[MMO04]

[NF13]
[NFS12]

[Uni13)]

[Web07]

NEIL GHANI, LORENZO MALATESTA, AND FREDRIK NORDVALL FORSBERG

Jiri Addmek, Stefan Milius, and Lawrence Moss. Initial algebras and terminal coalgebras: a
survey. Draft, June 29 2010.

Andreas Abel, Ralph Matthes, and Tarmo Uustalu. Iteration and coiteration schemes for
higher-order and nested datatypes. Theoretical Computer Science, 333(1-2):3-66, 2005.

Paul Blampied. Structured Recursion for Non-uniform Data-types. PhD thesis, University of
Nottingham, 2000.

Aurelio Carboni and Peter Johnstone. Connected limits, familial representability and Artin
glueing. Mathematical Structures in Computer Science, 5(04):441-459, 1995.

Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive definitions. In
Typed lambda calculi and applications: 4th international conference, TLCA’99, L’Aquila, Italy,
April 7-9, 1999: proceedings, pages 129-146. Springer Verlag, 1999.

Peter Dybjer and Anton Setzer. Induction—recursion and initial algebras. Annals of Pure and
Applied Logic, 124(1-3):1-47, 2003.

Peter Dybjer and Anton Setzer. Indexed induction—recursion. Journal of logic and algebraic
programming, 66(1):1-49, 2006.

Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions in type
theory. Journal of Symbolic Logic, 65(2):525-549, 2000.

Linus Ek, Ola Holmstréom, and Stevan Andjelkovic. Formalizing Arne Andersson trees and
Left-leaning Red-Black trees in Agda. Bachelor thesis, Chalmers University of Technology, 2009.
Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable binding. In
Proc. Logic in Computer Science, pages 193-202, 1999.

Neil Ghani, Peter Hancock, Lorenzo Malatesta, Conor McBride, and Thorsten Altenkirch. Small
induction recursion. In TLCA 2013, 2013.

Neil Ghani, Makoto Hamana, Tarmo Uustalu, and Varmo Vene. Representing cyclic structures
as nested types. Presented at Trends in Functional Programming, 2006.

Neil Ghani, Lorenzo Malatesta, and Fredrik Nordvall Forsberg. Positive inductive-recursive
definitions. In CALCO 2018, 2013.

Neil Ghani, Lorenzo Malatesta, and Fredrik Nordvall Forsberg. Positive inductive-
recursive definitions: Agda formalisation, 2014. https://personal.cis.strath.ac.uk/
fredrik.nordvall-forsberg/positive_IR/.

Neil Ghani, Lorenzo Malatesta, Fredrik Nordvall Forsberg, and Anton Setzer. Fibred data types.
In LICS 2013, 2013.

Ralf Hinze. Functional pearl: Perfect trees and bit-reversal permutation. Journal of Functional
Programming, 10(3):305-317, 2000.

Bart Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic and the
Foundations of Mathematics. North Holland, Elsevier, 1999.

Per Martin-L6f. An intuitionistic theory of types. Published in Twenty-Five Years of Constructive
Type Theory, 1972.

Per Martin-Lof. Intuitionistic type theory. Bibliopolis Naples, 1984.

Conor McBride and James McKinna. The view from the left. Journal of Functional Programming,
14(1):69-111, 2004.

Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis, Swansea University, 2013.
Fredrik Nordvall Forsberg and Anton Setzer. A finite axiomatisation of inductive-inductive
definitions. In Ulrich Berger, Diener Hannes, Peter Schuster, and Monika Seisenberger, editors,
Logic, Construction, Computation, volume 3 of Ontos mathematical logic, pages 259 — 287. Ontos
Verlag, 2012.

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-
matics. http://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

Mark Weber. Familial 2-functors and parametric right adjoints. Theory and Applications of
Category Theory, 18(22):665-732, 2007.

https://personal.cis.strath.ac.uk/fredrik.nordvall-forsberg/positive_IR/
https://personal.cis.strath.ac.uk/fredrik.nordvall-forsberg/positive_IR/
http://homotopytypetheory.org/book

	1. Introduction
	2. Inductive-recursive definitions
	3. Positive Inductive-Recursive Definitions
	3.1. Syntax and Semantics of IR+ (C)

	4. Stronger elimination principles
	5. Application: A Concrete Representation of Nested Types
	6. Comparison to Plain IR
	7. Existence of Initial Algebras
	8. Conclusions and Future Work
	References

