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Course plan

▶ Today: Using type theory.

▶ Rules

▶ Logic and mathematics in type theory

▶ Tomorrow: Semantics of type theory.

▶ Thursday: Implementation and metatheory.
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Main source material

▶ Principles of Dependent Type Theory, Carlo Angiuli and
Daniel Gratzer. Draft book, 2025.

▶ Intuitionistic Type Theory, Per Martin-Löf, “Bibliopolis
Book”, 1984.

▶ Syntax and semantics of dependent types, Martin
Hofmann, 1997.

▶ Slides and exercises: https://fredriknf.com/splv2025/
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Why learn type theory?

A few reasons:

1. Type theories are beautiful mathematical structures with deep
connections to logic, category theory, abstract homotopy
theory.

2. Type theories are the basis of proof assistants, and you just
want to get Reviewer 2 to shut up by formalising all your
proofs.

3. Active research area, with lots of interesting problems to work
on.

4. It might give you a new perspective on other “more
mainstream” programming languages you might be working
in/on.
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Brief and incomplete history leading to type theory

▶ BHK interpretation: informal explanation of what a
constructive proof is (Heyting 1934, Kolmogorov 1932)

▶ Curry: the simply typed lambda calculus/typed combinatory
logic corresponds precisely to implicational fragment of
constructive propositional logic (Curry 1958)

▶ Howard: Curry’s correspondance extends also to ∧, ∨, ∀ and ∃
— latter two correspond to dependent types (Howard 1969)

▶ Constructive Type Theory extends correspondence to predicate
logic by introducing the identity type (Martin-Löf 1972)

L.E.J. Brouwer Arend Heyting Andrey Kolmogorov Haskell Curry William Howard Per Martin-Löf
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4



Informal vs formal

Constructive type theory is meant to be a foundational system for
constructive mathematics.

As such, it is a formal system presented by rules.

When working in type theory, arguments can be presented
informally (cf. “working in ZFC”).

But when working on type theory, the rules of course need to be
precise.
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Judgements

Fundamental underlying concept: judgements.

“context” ⊢ “statement”

x : N ⊢ x + 5 : N

For simple (non-dependent) types, the judgements are also simple:

Γ valid Γ is a well formed context
A type A is a well formed type
Γ ⊢ a : A a is of type A
Γ ⊢ a ≡ a′ : A a and a′ are the same term (in type A)
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Simple types

Simple types are built up inductively:

N type Bool type

A type B type

A → B type

A type B type

A× B type

Contexts are lists of variables and their types:

· valid
Γ valid A type

Γ, x : A valid

And terms then make sense in context, e.g.

Γ, x : A, Γ′ ⊢ x : A

Γ, x : A ⊢ t : B

Γ ⊢ λ(x : A).t : A → B · · ·
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The need for dependent types

If we want more expressiveness, we need so-called dependent types.

For example, with simple types we can form the types

Bool Bool×Bool Bool×Bool×Bool Bool×Bool×Bool×Bool

but in general, we can only form such Boolk for fixed, external k .

This fact is responsible for a lot of complexity and boilerplate in
languages such as Haskell and C++.

In dependent type theory, we can have types depending on terms
instead:

n : N ⊢ Booln type
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Judgements for dependent types

The price to pay is that our judgements are more complicated, and
more intertwined.

Γ valid Γ is a well formed context
Γ ⊢ A type A is a well formed type (in context Γ)
Γ ⊢ a : A a is of type A
Γ ⊢ A ≡ B A and B are the same type
Γ ⊢ a ≡ a′ : A a and a′ are the same term (in type A)

Convention: We normally suppress mentioning Γ, and only show
context extensions x : A ⊢ . . ..
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Inference rules

Formally type theory is given by a collection of inference rules

J1 . . . Jn

J

A judgement J is derivable if we can construct a derivation tree
with conclusion J using the inference rules. For example:

n : N,m : N ⊢ Bool type

n : N,m : N ⊢ n : N n : N,m : N ⊢ m : N
n : N,m : N ⊢ n +m : N

n : N,m : N ⊢ Booln+m type

Of course, when working in type theory, we never explicitly
construct derivation trees!
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Caveats

Judgements are “external” — they cannot be proven inside the
language.

In contrast, “a ∈ A” in set theory is an “internal” statement.

Quiz: what makes sense to prove or disprove?

▶ 5 is a natural number (in type theory).

✗ No, “5 : N” is a
judgement, not a statement.

▶ 5 is even.

✓ Yes, would expect “y : N ⊢ Even(y) type”.

▶ "hello" is even.

✗ No, statement does not type-check, since
"hello" is not a natural number.

▶ π ∈ cos (in set theory).

✓ Yes.

Note that A ≡ B and a ≡ a′ : A also are “external” statements; we
will see an internal version that can be (dis)proven later.
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Basic rules

Variables:
Γ, x : A, Γ′ ⊢ x : A

Conversion:
t : A A ≡ B

t : B

Judgemental equality:

t : A
t ≡ t : A

t ≡ s : A
s ≡ t : A

s ≡ t : A t ≡ u : A
s ≡ u : A

Congruence rules: for example

A ≡ A′ B ≡ B ′

(A → B) ≡ (A′ → B ′)

(many more!)
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A pattern for introducing types

A type is usually given by four (five) groups of rules:

Formation What is needed to construct the type?

Introduction What is needed to construct canonical elements of
the type?

Elimination How can elements of the type be used?

Computation What happens when you eliminate canonical
elements? (“β-rules”)

Uniqueness (sometimes) How are functions into or out of the type
determined? (“η-rules”)
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Pair types

Formation
A type B type

A× B type

Introduction
a : A b : B
(a, b) : A× B

Elimination
p : A× B

fst p : A

p : A× B

snd p : B

Computation fst (a, b) ≡ a : A and snd (a, b) ≡ b : B.

Uniqueness
p : A× B

p ≡ (fst(p), snd(p)) : A× B
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Pair types: alternative elimination and computation rules
Elimination

p : A× B

fst p : A

p : A× B

snd p : B

Computation fst (a, b) ≡ a : A and snd (a, b) ≡ b : B.

Uniqueness
p : A× B

p ≡ (fst(p), snd(p)) : A× B

Alternatively:

Elimination’

z : A× B ⊢ C type x : A, y : B ⊢ c : C [z 7→ (x , y)] p : A× B

elim×(C , c , p) : C [z 7→ p]

Computation’
elim×(C , c , (a, b)) ≡ c[x 7→ a, y 7→ b] : C [z 7→ (a, b)].

Exercise
Show that E + C follows from E’ + C’, and that E’ + C’ follows
from E + C + Uniqueness. Does Uniqueness follow from E’ + C’?
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Function types

Formation
A type B type

A → B type

Introduction
x : A ⊢ t : B

λ(x : A).t : A → B

Elimination
f : A → B a : A

f a : B

Computation (λ(x : A).t) a ≡ t[x 7→ a] : B

Uniqueness
f : A → B

f ≡ (λ(x : A).f x) : A → B
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Example: swap function

Given types A and B, let us write swap : A× B → B × A.

swap : A× B → B × A

swap = ?0 : A× B → B × A

x : A× B ⊢ x : A× B
x : A× B ⊢ snd x : B

x : A× B ⊢ x : A× B
x : A× B ⊢ fst x : A

x : A× B ⊢ (snd x , fst x) : B × A

⊢ λ(x : A× B).(snd x , fst x) : A× B → B × A
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The empty type

Formation
0 type

Introduction (none)

Elimination
C type p : 0

elim0(C , p) : C

Computation (none)

Exercise
Prove a dependent elimination rule from the non-dependent one:

z : 0 ⊢ C type p : 0

elim0(C , p) : C [z 7→ p]

18



The unit type

Formation
1 type

Introduction ⋆ : 1.

Elimination (none)

Computation (none)

Uniqueness
u : 1

u ≡ ⋆ : 1

Exercise
Formulate and prove elimination and computation rules.

19



Disjoint union type
Formation

A type B type

A+ B type

Introduction
a : A

inl a : A+ B
b : B

inr b : A+ B

Elimination

z : A+ B ⊢ C type
x : A ⊢ c : C [z 7→ inl x ]
y : B ⊢ d : C [z 7→ inr y ] s : A+ B

elim+(C , c , d , s) : C [z 7→ s]

Computation
elim+(C , c, d , inl a) ≡ c[x 7→ a] : C [z 7→ inl a]
elim+(C , c, d , inr b) ≡ d [y 7→ b] : C [z 7→ inr b]

Exercise
Define Bool = 1+ 1, and formulate and prove its rules.

20



Dependent function types

Formation
A type x : A ⊢ B type

(Πx : A)B type

Introduction
x : A ⊢ t : B

λ(x : A).t : (Πx : A)B

Elimination
f : (Πx : A)B a : A

f a : B[x 7→ a]

Computation (λ(x : A).t) a ≡ t[x 7→ a] : B[x 7→ a]

Uniqueness
f : (Πx : A)B

f ≡ (λ(x : A).f x) : (Πx : A)B

A → B is the special case when B does not depend on x : A.
21



Dependent pair types

Formation
A type x : A ⊢ B type

(Σx : A)B type

Introduction
a : A b : B[x 7→ a]

(a, b) : (Σx : A)B

Elimination
p : (Σx : A)B

fst p : A

p : (Σx : A)B

snd p : B[x 7→ fst p]

Computation fst (a, b) ≡ a : A and snd (a, b) ≡ b : B[x 7→ a].

Uniqueness
p : (Σx : A)B

p ≡ (fst(p), snd(p)) : (Σx : A)B

A× B is the special case when B does not depend on x : A.
22



Example: the type-theoretic “Theorem of Choice”

Assume A type, B type and x : A, y : B ⊢ R type.

ac :

(
(Πx : A)

(
(Σy : B)R[x , y ]

))
→

(
(Σf : A → B)

(
(Πx : A)R[x , f x ]

))
ac g = ?0 : (Σf : A → B)

(
(Πx : A)R[x , f x ]

)
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Universes

A type U of types.

“À la Russell”:
A : U
A type

“À la Tarski”:
A : U

T (A) type

U contains “codes” for the types we are interested in. Allows
computing types from data (“large elimination”), by computing a
code in the universe instead.

Proof assistants such as Agda and Rocq often blur the distinction
between “A type” and “A : U”.

24



Natural numbers

Formation
N type

Introduction

0 : N
n : N

suc n : N

Elimination

z : N ⊢ C type
c : C [z 7→ 0]

x : N, x̄ : C [z 7→ x ] ⊢ d : C [z 7→ suc x ] n : N
elimN(C , c, d , n) : C [z 7→ n]

Computation
elimN(C , c , d , 0) ≡ c : C [z 7→ 0]

elimN(C , c , d , suc n) ≡ d [x 7→ n, x̄ 7→ elimN(C , c, d , n)] : C [z 7→ suc n]
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Lists

Formation
A type

ListA type

Introduction

[] : ListA
a : A as : ListA
(a :: as) : ListA

Elimination

as : ListA
z : ListA ⊢ C type

c : C [z 7→ []]
xs : ListA, x̄s : C [z 7→ xs] ⊢ d : C [z 7→ x :: xs]

elimList(C , c , d , as) : C [z 7→ as]

Computation
elimList(C , c , d , []) ≡ c : C [z 7→ []]

elimList(C , c , d , a :: as) ≡ d [xs 7→ as, x̄s 7→ elimList(C , c , d , as)] : C [a :: as]
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Propositions as types

A proof of . . . is, according to BHK. . .
A ∧ B a proof of A and a proof of B

A× B

A ∨ B a proof of A or a proof of B

A+ B

A → B a way to prove B given a proof of A

A → B

⊤ always has a proof

1

⊥ never has a proof

0

¬A a proof that A is impossible

A → 0

∀(x : A).B[x ] a way to prove B[a] for any a : A

(Πx : A)B

∃(x : A).B[x ] a choice of a : A and a proof of B[a]

(Σx : A)B
s = t ?
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The identity type
Formation

A type a : A a′ : A

a =A a′ type

Introduction
a : A

refla : a =A a

Elimination

x : A, y : A, z : x =A y ⊢ C type
x : A ⊢ d : C [x 7→ x , y 7→ x , z 7→ reflx ] p : a =A a′

elim=(C , d , p) : C [x 7→ a, y 7→ a′, z 7→ p]

Computation
elim=(C , d , refla) ≡ d [x 7→ a] : C [x 7→ a, y 7→ a, z 7→ refla].

Exercise
Use elim= to show = is symmetric and transitive, and to define
subst : x =A y → P[x ] → P[y ].
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Contentious axioms
Many extensions of type theory relates to the identity type.

Function extensionality:

(Πx : A)
(
f x =B g x

)
f =(Πx :A)B g

Extensional Type Theory: Adds the equality reflection rule

p : a =A b

a ≡ b : A

Uniqueness of Identity Proofs:

p : a =A b q : a =A b
p =a=Ab q

Univalence: “(A =U B) ∼= (A ∼= B)”

Are they independent of other axioms? Consistent?
Computationally well behaved?
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Mathematics in type theory

Using elimN, we can define addition, and multiplication.

We can then define Even(y) :≡ (Σk : N) y =N 2 · k .

We can construct terms

0-even : Even(0)

ss-even : (Πn : N)
(
Even(n) → Even(n + 2)

)
even-dec : (Πn : N)

(
Even(n) + (Even(n) → 0)

)
. . .

Exercise
Use the recursion principle for N and a universe to show
¬(0 =N 1). Can you do it without a universe?

All is well?
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Sometimes you want a non-free lunch

All fine as long as we do not want to identify data with different
generators, e.g.

1

2
!
=

5

10

Similarly, sometimes we do not want to make a distinction between
different witnesses of an existential statement.

|(2, . . .)| !
= |(7, . . .)| : (∃p : N).Prime(p)

Worse, some statements are simply inconsistent when formulated
using Σ as existential quantification, even though they have
topos-theoretic models (Escardó and Xu 2015).
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Setoids

One approach is to not work with raw types directly, but to
manually keep track of the equality they “should” have.

Definition A setoid is given by a type A and a relation
RA : A → A → U , together with terms

r : (Πa : A).RA(a, a)

s : (Πa : A)(Πb : A).RA(a, b) → RA(b, a)

t : (Πa : A)(Πb : A)(Πc : A).RA(a, b) → RA(b, c) → RA(a, c)

Definition A setoid morphism (A,RA) → (B,RB) is given by a
function f : A → B such that if RA(a, b) then RB(f (a), f (b)).

Any type A can be turned into a setoid (A,=A); appropriate for
e.g. N and other “free” types. There is nothing to check for setoid
morphisms (A,=A) → (B,RB).
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Function setoids and quotient setoids

Given two setoids A and B, we can form the setoid A → B of
setoid morphisms, and with

RA→B(f , g) := (Πa : A).RB(f (a), g(a))

If we have a setoid (A,RA) and an equivalence relation ∼ on A
(which respects RA), then we can form the quotient setoid (A,∼).

In particular, we can quotient (Σa : A).P by the “chaotic” relation
which relates everything to create (∃a : A).P.

Two major downsides:

▶ Every time we write a function, we need to prove that it is
“well-defined”;

▶ We also want type families to respect the equivalence relation,
but stating this gets unwieldy.
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Quotient types

Homotopy type theory (and Lean) instead has a way to quotient
ordinary types.

Formation
A type R : A → A → U

A/R type

Introduction
a : A

|a| : A/R
r : R[a, b]

eq r : |a| =A/R |b|

Elimination

x : A/R ⊢ C type a : A ⊢ d : C [x → |a|] y : A/R
a : A, b : A, r : R[a, b] ⊢ subst(eq r , d [a]) =C [|b|] d [b]

elimA/R(C , d , y) : C [x 7→ y ]

Computation
elimA/R(C , d , |a|) ≡ d : C [x 7→ |a|].
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Consequences of adding quotient types

Simply adding quotient types to type theory destroys many nice
properties of the theory.

However, it is nevertheless quite convenient to work with!

To regain the nice properties, one can move to a different type
theory such as Observational Type Theory or Cubical Type Theory.
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Quotient types gives function extensionality
Perhaps surprisingly, quotient types also changes the meaning of
equality at seemingly unrelated types. (Hofmann 1995)

Theorem If we have the quotient type Bool/ ∼ where
false ∼ true, then we have

funext :
(
(Πx : A).f (x) =B g(x)

)
→ f =Π(x :A).B g

Assume h : (Πx : A).f (x) =B g(x). For each x : A, we can define
hx : Bool → B[x ] by

hx(false) = f (x)

hx(true) = g(x)

and h(x) is a proof that hx(false) = hx(true).

Hence we get elimBool/∼(hx) : Bool/∼ → B[x ] and we have
f ≡ (λx : A).f (x) ≡ (λx : A).elimBool/∼(hx)(|false|) and
g ≡ (λx : A).g(x) ≡ (λx : A).elimBool/∼(hx)(|true|), hence f = g
since |false| = |true|.
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The Axiom of Choice, again

We can “prop-truncate” any type A into one with at most one
inhabitant ∥A∥ := A/∼, and we define (∃x : A).P := ∥(Σx : A).P∥.

Previously we saw a proof of(
(Πx : A)

(
(Σy : B)R[x , y ]

))
→

(
(Σf : A → B)

(
(Πx : A)R[x , f x ]

))
Can we also prove(
(Πx : A)

(
(∃y : B)R[x , y ]

))
→

(
(∃f : A → B)

(
(Πx : A)R[x , f x ]

))
?

What happens when we try to do it with setoids? What about
countable choice, i.e., for A = N?
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(Πx : A)

(
(∃y : B)R[x , y ]

))
→

(
(∃f : A → B)

(
(Πx : A)R[x , f x ]

))
?

No. What happens when we try to do it with setoids? No luck.
What about countable choice, i.e., for A = N? It works for setoids.
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Summary

We have seen rules for Martin-Löf type theory.

Curry-Howard correspondence: can encode logic as types.

In mathematical practice, one also needs some kind of quotient
construction.

Tomorrow: Semantics of type theory.
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Per Martin-Löf. “An intuitionistic theory of types”. In: Twenty-Five Years of Constructive Type Theory.
Ed. by G. Sambin and J. Smith. Reprinted version of an unpublished report from 1972. Oxford University
Press, 1998.
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