
Type Theory

Lecture 2: Semantics of Type Theory

Fredrik Nordvall Forsberg
University of Strathclyde, Glasgow

SPLV Summer school, Edinburgh, 22 July 2025

https://fredriknf.com/splv2025/

https://fredriknf.com/splv2025/

Course plan

▶ Yesterday: Using type theory.

▶ Today: Semantics of type theory.

▶ Categorical framework for models

▶ Some concrete models, and what they are good for

▶ Thursday: Implementation and metatheory.

Slides and exercises: https://fredriknf.com/splv2025/

1

https://fredriknf.com/splv2025/

What is a model of simple type theory?

Simple types: function types A → B, product types A× B
(maybe a base type, say ι).

Set-theoretic model:

▶ For each type A, define set JAK (canonical def. for → and ×);

▶ for each context Γ = x1 : A1, . . . , xn : An, define
JΓK = JA1K × . . . JAnK; and

▶ for each term Γ ⊢ t : A, define a function JΓK → JAK.

▶ Soundness: If Γ ⊢ t = u : A, then JtK = JuK.

▶ Completeness: If JtKM = JuKM for all models M, do we
have Γ ⊢ t = u : A?

Completeness in this form is true [Friedman 1975], but quite hard
to prove (since we need to use the full function space).

2

What is a model of simple type theory?

Simple types: function types A → B, product types A× B
(maybe a base type, say ι).

Set-theoretic model:

▶ For each type A, define set JAK (canonical def. for → and ×);

▶ for each context Γ = x1 : A1, . . . , xn : An, define
JΓK = JA1K × . . . JAnK; and

▶ for each term Γ ⊢ t : A, define a function JΓK → JAK.

▶ Soundness: If Γ ⊢ t = u : A, then JtK = JuK.

▶ Completeness: If JtKM = JuKM for all models M, do we
have Γ ⊢ t = u : A?

Completeness in this form is true [Friedman 1975], but quite hard
to prove (since we need to use the full function space).

2

What is a model of simple type theory?

Simple types: function types A → B, product types A× B
(maybe a base type, say ι).

Set-theoretic model:

▶ For each type A, define set JAK (canonical def. for → and ×);

▶ for each context Γ = x1 : A1, . . . , xn : An, define
JΓK = JA1K × . . . JAnK; and

▶ for each term Γ ⊢ t : A, define a function JΓK → JAK.

▶ Soundness: If Γ ⊢ t = u : A, then JtK = JuK.

▶ Completeness: If JtKM = JuKM for all models M, do we
have Γ ⊢ t = u : A?

Completeness in this form is true [Friedman 1975], but quite hard
to prove (since we need to use the full function space).

2

What is a model of simple type theory?

Simple types: function types A → B, product types A× B
(maybe a base type, say ι).

Set-theoretic model:

▶ For each type A, define set JAK (canonical def. for → and ×);

▶ for each context Γ = x1 : A1, . . . , xn : An, define
JΓK = JA1K × . . . JAnK; and

▶ for each term Γ ⊢ t : A, define a function JΓK → JAK.

▶ Soundness: If Γ ⊢ t = u : A, then JtK = JuK.

▶ Completeness: If JtKM = JuKM for all models M, do we
have Γ ⊢ t = u : A?

Completeness in this form is true [Friedman 1975], but quite hard
to prove (since we need to use the full function space).

2

What is a model of simple type theory?

Simple types: function types A → B, product types A× B
(maybe a base type, say ι).

Set-theoretic model:

▶ For each type A, define set JAK (canonical def. for → and ×);

▶ for each context Γ = x1 : A1, . . . , xn : An, define
JΓK = JA1K × . . . JAnK; and

▶ for each term Γ ⊢ t : A, define a function JΓK → JAK.

▶ Soundness: If Γ ⊢ t = u : A, then JtK = JuK.

▶ Completeness: If JtKM = JuKM for all models M, do we
have Γ ⊢ t = u : A?

Completeness in this form is true [Friedman 1975], but quite hard
to prove (since we need to use the full function space).

2

What is a model of simple type theory?

Simple types: function types A → B, product types A× B
(maybe a base type, say ι).

Set-theoretic model:

▶ For each type A, define set JAK (canonical def. for → and ×);

▶ for each context Γ = x1 : A1, . . . , xn : An, define
JΓK = JA1K × . . . JAnK; and

▶ for each term Γ ⊢ t : A, define a function JΓK → JAK.

▶ Soundness: If Γ ⊢ t = u : A, then JtK = JuK.

▶ Completeness: If JtKM = JuKM for all models M, do we
have Γ ⊢ t = u : A?

Completeness in this form is true [Friedman 1975], but quite hard
to prove (since we need to use the full function space).

2

Models of simple types in Cartesian Closed Categories

Rather than insisting on interpreting types as sets, we can broaden
our notion of model.

This makes Completeness weaker (and easier to prove), but
Soundness stronger.

Cartesian closure: A category C is Cartesian closed if it has

▶ A terminal object 1

▶ Binary products A× B

▶ Exponentials A ⇒ B

Exactly what we need to interpret the simply typed λ-calculus!

Soundness and completeness: Γ ⊢ t = u : A iff JtKC = JuKC for
every Cartesian closed category C.

3

Models of simple types in Cartesian Closed Categories

Rather than insisting on interpreting types as sets, we can broaden
our notion of model.

This makes Completeness weaker (and easier to prove), but
Soundness stronger.

Cartesian closure: A category C is Cartesian closed if it has

▶ A terminal object 1

▶ Binary products A× B

▶ Exponentials A ⇒ B

Exactly what we need to interpret the simply typed λ-calculus!

Soundness and completeness: Γ ⊢ t = u : A iff JtKC = JuKC for
every Cartesian closed category C.

3

Models of simple types in Cartesian Closed Categories

Rather than insisting on interpreting types as sets, we can broaden
our notion of model.

This makes Completeness weaker (and easier to prove), but
Soundness stronger.

Cartesian closure: A category C is Cartesian closed if it has

▶ A terminal object 1

▶ Binary products A× B

▶ Exponentials A ⇒ B

Exactly what we need to interpret the simply typed λ-calculus!

Soundness and completeness: Γ ⊢ t = u : A iff JtKC = JuKC for
every Cartesian closed category C.

3

Models of simple types in Cartesian Closed Categories

Rather than insisting on interpreting types as sets, we can broaden
our notion of model.

This makes Completeness weaker (and easier to prove), but
Soundness stronger.

Cartesian closure: A category C is Cartesian closed if it has

▶ A terminal object 1

▶ Binary products A× B

▶ Exponentials A ⇒ B

Exactly what we need to interpret the simply typed λ-calculus!

Soundness and completeness: Γ ⊢ t = u : A iff JtKC = JuKC for
every Cartesian closed category C.

3

What is a model of dependent type theory?

As usual, things are more intricate for dependent types.

Categories with families were introduced by Peter Dybjer [1995].

Inspired by contextual categories, categories with attributes and
generalised algebraic theories by John Cartmell [1978].

Main idea: What is fundamental is the category of contexts.

4

What is a model of dependent type theory?

As usual, things are more intricate for dependent types.

Categories with families were introduced by Peter Dybjer [1995].

Inspired by contextual categories, categories with attributes and
generalised algebraic theories by John Cartmell [1978].

Main idea: What is fundamental is the category of contexts.

4

Categories with families

Definition A category with families (CwF) is given by:

▶ A category C with a terminal object.

▶ A presheaf Ty : Cop → Set.

▶ A presheaf Tm : (
∫
C Ty)

op → Set.

▶ A context extension Γ · A ∈ C for every Γ ∈ C and A ∈ Ty(Γ)
satisfying a certain universal property.

Together, Ty and Tm constitute a functor

(Ty,Tm) : Cop → FamSet

to the category of families of sets, hence the name.

5

Categories with families

Definition A category with families (CwF) is given by:

▶ A category C with a terminal object.

▶ A presheaf Ty : Cop → Set.

▶ A presheaf Tm : (
∫
C Ty)

op → Set.

▶ A context extension Γ · A ∈ C for every Γ ∈ C and A ∈ Ty(Γ)
satisfying a certain universal property.

Together, Ty and Tm constitute a functor

(Ty,Tm) : Cop → FamSet

to the category of families of sets, hence the name.

5

Unpacking the definition: the category C

Intuition:

Objects (Interpretation of) contexts

Morphisms (Interpretation of) substitutions

In the syntax, a substitution Γ → ∆ with ∆ = x1 : A1, . . . , xn : An

is given by a sequence of terms (t1, . . . , tn) with

Γ ⊢ t1 : A1

Γ ⊢ t2 : A2[x1 7→ t1]

...

In particular, there is a unique substitution Γ → 1 to the empty
context 1 for every Γ — 1 is a terminal object.

6

Unpacking the definition: types

The presheaf Ty : Cop → Set gives:

▶ A set of (semantic) types Ty(Γ) for each (semantic) context
Γ ∈ C.

▶ For each σ : ∆ → Γ, a function [σ] : Ty(Γ) → Ty(∆),

▶ such that A[id] = A and A[σ][τ] = A[σ ◦ τ].

7

Unpacking the definition: terms

Definition Given a functor F : Cop → Set, the category of elements∫
C F has as objects pairs (Γ,A) where Γ ∈ C and A ∈ F (Γ).

Morphisms are underlying morphisms preserving the element.

Hence, the presheaf Tm : (
∫
C Ty)

op → Set gives:

▶ For each Γ ∈ C and A ∈ Ty(Γ), a set Tm(Γ,A).

▶ For each σ : ∆ → Γ, a function [σ] : Tm(Γ,A) → Tm(∆,A[σ]),

▶ such that t[id] = t and t[σ][τ] = t[σ ◦ τ].

(These equations make sense because of the equations for types.)

8

Unpacking the definition: terms

Definition Given a functor F : Cop → Set, the category of elements∫
C F has as objects pairs (Γ,A) where Γ ∈ C and A ∈ F (Γ).
Morphisms are underlying morphisms preserving the element.

Hence, the presheaf Tm : (
∫
C Ty)

op → Set gives:

▶ For each Γ ∈ C and A ∈ Ty(Γ), a set Tm(Γ,A).

▶ For each σ : ∆ → Γ, a function [σ] : Tm(Γ,A) → Tm(∆,A[σ]),

▶ such that t[id] = t and t[σ][τ] = t[σ ◦ τ].

(These equations make sense because of the equations for types.)

8

Unpacking the definition: terms

Definition Given a functor F : Cop → Set, the category of elements∫
C F has as objects pairs (Γ,A) where Γ ∈ C and A ∈ F (Γ).
Morphisms are underlying morphisms preserving the element.

Hence, the presheaf Tm : (
∫
C Ty)

op → Set gives:

▶ For each Γ ∈ C and A ∈ Ty(Γ), a set Tm(Γ,A).

▶ For each σ : ∆ → Γ, a function [σ] : Tm(Γ,A) → Tm(∆,A[σ]),

▶ such that t[id] = t and t[σ][τ] = t[σ ◦ τ].

(These equations make sense because of the equations for types.)

8

Unpacking the definition: terms

Definition Given a functor F : Cop → Set, the category of elements∫
C F has as objects pairs (Γ,A) where Γ ∈ C and A ∈ F (Γ).
Morphisms are underlying morphisms preserving the element.

Hence, the presheaf Tm : (
∫
C Ty)

op → Set gives:

▶ For each Γ ∈ C and A ∈ Ty(Γ), a set Tm(Γ,A).

▶ For each σ : ∆ → Γ, a function [σ] : Tm(Γ,A) → Tm(∆,A[σ]),

▶ such that t[id] = t and t[σ][τ] = t[σ ◦ τ].

(These equations make sense because of the equations for types.)

8

Unpacking the definition: terms

Definition Given a functor F : Cop → Set, the category of elements∫
C F has as objects pairs (Γ,A) where Γ ∈ C and A ∈ F (Γ).
Morphisms are underlying morphisms preserving the element.

Hence, the presheaf Tm : (
∫
C Ty)

op → Set gives:

▶ For each Γ ∈ C and A ∈ Ty(Γ), a set Tm(Γ,A).

▶ For each σ : ∆ → Γ, a function [σ] : Tm(Γ,A) → Tm(∆,A[σ]),

▶ such that t[id] = t and t[σ][τ] = t[σ ◦ τ].

(These equations make sense because of the equations for types.)

8

Unpacking the definition: terms

Definition Given a functor F : Cop → Set, the category of elements∫
C F has as objects pairs (Γ,A) where Γ ∈ C and A ∈ F (Γ).
Morphisms are underlying morphisms preserving the element.

Hence, the presheaf Tm : (
∫
C Ty)

op → Set gives:

▶ For each Γ ∈ C and A ∈ Ty(Γ), a set Tm(Γ,A).

▶ For each σ : ∆ → Γ, a function [σ] : Tm(Γ,A) → Tm(∆,A[σ]),

▶ such that t[id] = t and t[σ][τ] = t[σ ◦ τ].

(These equations make sense because of the equations for types.)

8

Context extension

▶ For each Γ ∈ C and A ∈ Ty(Γ), we have an object Γ · A ∈ C.

▶ Further, there is a “projection” pΓ,A : Γ · A → Γ in C,

▶ and a term qΓ,A ∈ Tm(Γ · A,A[pΓ,A]),

▶ and if σ : ∆ → Γ and u ∈ Tm(∆,A[σ]) then there is a unique
morphism ⟨σ, u⟩ : ∆ → Γ · A such that p ◦ ⟨σ, u⟩ = σ and
q[⟨σ, u⟩] = u.

9

Context extension

▶ For each Γ ∈ C and A ∈ Ty(Γ), we have an object Γ · A ∈ C.

▶ Further, there is a “projection” pΓ,A : Γ · A → Γ in C,

▶ and a term qΓ,A ∈ Tm(Γ · A,A[pΓ,A]),

▶ and if σ : ∆ → Γ and u ∈ Tm(∆,A[σ]) then there is a unique
morphism ⟨σ, u⟩ : ∆ → Γ · A such that p ◦ ⟨σ, u⟩ = σ and
q[⟨σ, u⟩] = u.

9

Context extension

▶ For each Γ ∈ C and A ∈ Ty(Γ), we have an object Γ · A ∈ C.

▶ Further, there is a “projection” pΓ,A : Γ · A → Γ in C,

▶ and a term qΓ,A ∈ Tm(Γ · A,A[pΓ,A]),

▶ and if σ : ∆ → Γ and u ∈ Tm(∆,A[σ]) then there is a unique
morphism ⟨σ, u⟩ : ∆ → Γ · A such that p ◦ ⟨σ, u⟩ = σ and
q[⟨σ, u⟩] = u.

9

Context extension

▶ For each Γ ∈ C and A ∈ Ty(Γ), we have an object Γ · A ∈ C.

▶ Further, there is a “projection” pΓ,A : Γ · A → Γ in C,

▶ and a term qΓ,A ∈ Tm(Γ · A,A[pΓ,A]),

▶ and if σ : ∆ → Γ and u ∈ Tm(∆,A[σ]) then there is a unique
morphism ⟨σ, u⟩ : ∆ → Γ · A such that p ◦ ⟨σ, u⟩ = σ and
q[⟨σ, u⟩] = u.

9

Some useful constructions

Given t ∈ Tm(Γ,A), we can construct t := ⟨id, t⟩ : Γ → Γ ·A which
“plugs in t”: if B ∈ Ty(Γ · A) then B[t] ∈ Ty(Γ).

Given σ : ∆ → Γ and A ∈ Ty(Γ), we can construct
σ+ := ⟨σ ◦ p, q⟩ : ∆ · A[σ] → Γ · A which “lifts σ under binders”.

Exercise
The following diagram commutes, and is in fact a pullback:

∆ · A[σ] σ+
//

p

��

Γ · A
p

��
∆ σ

// Γ

10

Some useful constructions

Given t ∈ Tm(Γ,A), we can construct t := ⟨id, t⟩ : Γ → Γ ·A which
“plugs in t”: if B ∈ Ty(Γ · A) then B[t] ∈ Ty(Γ).

Given σ : ∆ → Γ and A ∈ Ty(Γ), we can construct
σ+ := ⟨σ ◦ p, q⟩ : ∆ · A[σ] → Γ · A which “lifts σ under binders”.

Exercise
The following diagram commutes, and is in fact a pullback:

∆ · A[σ] σ+
//

p

��

Γ · A
p

��
∆ σ

// Γ

10

Some useful constructions

Given t ∈ Tm(Γ,A), we can construct t := ⟨id, t⟩ : Γ → Γ ·A which
“plugs in t”: if B ∈ Ty(Γ · A) then B[t] ∈ Ty(Γ).

Given σ : ∆ → Γ and A ∈ Ty(Γ), we can construct
σ+ := ⟨σ ◦ p, q⟩ : ∆ · A[σ] → Γ · A which “lifts σ under binders”.

Exercise
The following diagram commutes, and is in fact a pullback:

∆ · A[σ] σ+
//

p

��

Γ · A
p

��
∆ σ

// Γ

10

The Set model

We can take C = Set, the category of sets and functions.

We define Ty(Γ) := Γ → Set.

Type substitution for f : ∆ → Γ: A[f] := A ◦ f .

We define Tm(Γ,A) := (Πγ ∈ Γ).A(γ).

Term substitution for f : ∆ → Γ and t ∈ Tm(Γ,A): t[f]δ := tf (δ).

Finally we define Γ · A := (Σγ ∈ Γ).A(γ) with p := fst, q := snd.

11

The Set model

We can take C = Set, the category of sets and functions.

We define Ty(Γ) := Γ → Set.

Type substitution for f : ∆ → Γ: A[f] := A ◦ f .

We define Tm(Γ,A) := (Πγ ∈ Γ).A(γ).

Term substitution for f : ∆ → Γ and t ∈ Tm(Γ,A): t[f]δ := tf (δ).

Finally we define Γ · A := (Σγ ∈ Γ).A(γ) with p := fst, q := snd.

11

The Set model

We can take C = Set, the category of sets and functions.

We define Ty(Γ) := Γ → Set.

Type substitution for f : ∆ → Γ: A[f] := A ◦ f .

We define Tm(Γ,A) := (Πγ ∈ Γ).A(γ).

Term substitution for f : ∆ → Γ and t ∈ Tm(Γ,A): t[f]δ := tf (δ).

Finally we define Γ · A := (Σγ ∈ Γ).A(γ) with p := fst, q := snd.

11

The Set model

We can take C = Set, the category of sets and functions.

We define Ty(Γ) := Γ → Set.

Type substitution for f : ∆ → Γ: A[f] := A ◦ f .

We define Tm(Γ,A) := (Πγ ∈ Γ).A(γ).

Term substitution for f : ∆ → Γ and t ∈ Tm(Γ,A): t[f]δ := tf (δ).

Finally we define Γ · A := (Σγ ∈ Γ).A(γ) with p := fst, q := snd.

11

The Set model

We can take C = Set, the category of sets and functions.

We define Ty(Γ) := Γ → Set.

Type substitution for f : ∆ → Γ: A[f] := A ◦ f .

We define Tm(Γ,A) := (Πγ ∈ Γ).A(γ).

Term substitution for f : ∆ → Γ and t ∈ Tm(Γ,A): t[f]δ := tf (δ).

Finally we define Γ · A := (Σγ ∈ Γ).A(γ) with p := fst, q := snd.

11

The Set model

We can take C = Set, the category of sets and functions.

We define Ty(Γ) := Γ → Set.

Type substitution for f : ∆ → Γ: A[f] := A ◦ f .

We define Tm(Γ,A) := (Πγ ∈ Γ).A(γ).

Term substitution for f : ∆ → Γ and t ∈ Tm(Γ,A): t[f]δ := tf (δ).

Finally we define Γ · A := (Σγ ∈ Γ).A(γ) with p := fst, q := snd.

11

Additional type structure

A “pure” CwF does not actually interpret any type formers; we
have to ask for those on top.

But we now have the language needed to translate syntactic to
semantic notions.

(Often there is also a more elegant equivalent “semantic” criterion,
see e.g. Awodey’s work on so-called natural models (2018).)

12

Additional type structure

A “pure” CwF does not actually interpret any type formers; we
have to ask for those on top.

But we now have the language needed to translate syntactic to
semantic notions.

(Often there is also a more elegant equivalent “semantic” criterion,
see e.g. Awodey’s work on so-called natural models (2018).)

12

Dependent function types

Definition A CwF C supports dependent function types if

▶ for all A ∈ Ty(Γ) and B ∈ Ty(Γ · A) there is ΠAB ∈ Ty(Γ),

▶ for all t ∈ Tm(Γ · A,B) there is λA,B(t) ∈ Tm(Γ,ΠAB),

▶ for all f ∈ Tm(Γ,ΠAB) and u ∈ Tm(Γ,A), there is
AppA,B(f , u) ∈ Tm(Γ,B[u])

▶ such that

(ΠAB)[σ] = Π (A[σ]) (B[σ+])

(λA,B(t))[σ] = λA[σ],B[σ+](t[σ
+])

(AppA,B(f , u))[σ] = AppA[σ],B[σ+](f [σ], u[σ
+])

AppA,B(λA,B(t), u) = t[u]

λA,B(AppA,B(t[p], q)) = t

13

Dependent function types

Definition A CwF C supports dependent function types if

▶ for all A ∈ Ty(Γ) and B ∈ Ty(Γ · A) there is ΠAB ∈ Ty(Γ),

▶ for all t ∈ Tm(Γ · A,B) there is λA,B(t) ∈ Tm(Γ,ΠAB),

▶ for all f ∈ Tm(Γ,ΠAB) and u ∈ Tm(Γ,A), there is
AppA,B(f , u) ∈ Tm(Γ,B[u])

▶ such that

(ΠAB)[σ] = Π (A[σ]) (B[σ+])

(λA,B(t))[σ] = λA[σ],B[σ+](t[σ
+])

(AppA,B(f , u))[σ] = AppA[σ],B[σ+](f [σ], u[σ
+])

AppA,B(λA,B(t), u) = t[u]

λA,B(AppA,B(t[p], q)) = t

13

Dependent function types

Definition A CwF C supports dependent function types if

▶ for all A ∈ Ty(Γ) and B ∈ Ty(Γ · A) there is ΠAB ∈ Ty(Γ),

▶ for all t ∈ Tm(Γ · A,B) there is λA,B(t) ∈ Tm(Γ,ΠAB),

▶ for all f ∈ Tm(Γ,ΠAB) and u ∈ Tm(Γ,A), there is
AppA,B(f , u) ∈ Tm(Γ,B[u])

▶ such that

(ΠAB)[σ] = Π (A[σ]) (B[σ+])

(λA,B(t))[σ] = λA[σ],B[σ+](t[σ
+])

(AppA,B(f , u))[σ] = AppA[σ],B[σ+](f [σ], u[σ
+])

AppA,B(λA,B(t), u) = t[u]

λA,B(AppA,B(t[p], q)) = t

13

Dependent function types

Definition A CwF C supports dependent function types if

▶ for all A ∈ Ty(Γ) and B ∈ Ty(Γ · A) there is ΠAB ∈ Ty(Γ),

▶ for all t ∈ Tm(Γ · A,B) there is λA,B(t) ∈ Tm(Γ,ΠAB),

▶ for all f ∈ Tm(Γ,ΠAB) and u ∈ Tm(Γ,A), there is
AppA,B(f , u) ∈ Tm(Γ,B[u])

▶ such that

(ΠAB)[σ] = Π (A[σ]) (B[σ+])

(λA,B(t))[σ] = λA[σ],B[σ+](t[σ
+])

(AppA,B(f , u))[σ] = AppA[σ],B[σ+](f [σ], u[σ
+])

AppA,B(λA,B(t), u) = t[u]

λA,B(AppA,B(t[p], q)) = t

13

The empty type

Definition A CwF C supports the empty type if

▶ there is Empty ∈ Ty(Γ),

▶ for all C ∈ Ty(Γ) and p ∈ Tm(Γ,Empty) there is
elimEmpty(C , p) ∈ Tm(Γ,C),

▶ such that

Empty[σ] = Empty

(elimEmpty(C , p))[σ] = elimEmpty(C [σ], p[σ])

and similarly for the natural numbers, etc.

14

The empty type

Definition A CwF C supports the empty type if

▶ there is Empty ∈ Ty(Γ),

▶ for all C ∈ Ty(Γ) and p ∈ Tm(Γ,Empty) there is
elimEmpty(C , p) ∈ Tm(Γ,C),

▶ such that

Empty[σ] = Empty

(elimEmpty(C , p))[σ] = elimEmpty(C [σ], p[σ])

and similarly for the natural numbers, etc.

14

The empty type

Definition A CwF C supports the empty type if

▶ there is Empty ∈ Ty(Γ),

▶ for all C ∈ Ty(Γ) and p ∈ Tm(Γ,Empty) there is
elimEmpty(C , p) ∈ Tm(Γ,C),

▶ such that

Empty[σ] = Empty

(elimEmpty(C , p))[σ] = elimEmpty(C [σ], p[σ])

and similarly for the natural numbers, etc.

14

The empty type

Definition A CwF C supports the empty type if

▶ there is Empty ∈ Ty(Γ),

▶ for all C ∈ Ty(Γ) and p ∈ Tm(Γ,Empty) there is
elimEmpty(C , p) ∈ Tm(Γ,C),

▶ such that

Empty[σ] = Empty

(elimEmpty(C , p))[σ] = elimEmpty(C [σ], p[σ])

and similarly for the natural numbers, etc.

14

The identity type

Definition A CwF C supports identity types if for every A ∈ Ty(Γ),

▶ there is IdA ∈ Ty(Γ · A · A[p]),

▶ and refl ∈ Tm(Γ · A, IdA[⟨idΓ·A, q⟩]),
▶ and for each C ∈ Ty(Γ · A · A[p] · IdA), there is

elim= : Tm(Γ · A,C [⟨⟨id, q⟩, refl⟩]) → Tm(Γ · A · A[p] · IdA,C)

▶ all stable under substitution.

15

The identity type

Definition A CwF C supports identity types if for every A ∈ Ty(Γ),

▶ there is IdA ∈ Ty(Γ · A · A[p]),
▶ and refl ∈ Tm(Γ · A, IdA[⟨idΓ·A, q⟩]),

▶ and for each C ∈ Ty(Γ · A · A[p] · IdA), there is
elim= : Tm(Γ · A,C [⟨⟨id, q⟩, refl⟩]) → Tm(Γ · A · A[p] · IdA,C)

▶ all stable under substitution.

15

The identity type

Definition A CwF C supports identity types if for every A ∈ Ty(Γ),

▶ there is IdA ∈ Ty(Γ · A · A[p]),
▶ and refl ∈ Tm(Γ · A, IdA[⟨idΓ·A, q⟩]),
▶ and for each C ∈ Ty(Γ · A · A[p] · IdA), there is

elim= : Tm(Γ · A,C [⟨⟨id, q⟩, refl⟩]) → Tm(Γ · A · A[p] · IdA,C)

▶ all stable under substitution.

15

The identity type

Definition A CwF C supports identity types if for every A ∈ Ty(Γ),

▶ there is IdA ∈ Ty(Γ · A · A[p]),
▶ and refl ∈ Tm(Γ · A, IdA[⟨idΓ·A, q⟩]),
▶ and for each C ∈ Ty(Γ · A · A[p] · IdA), there is

elim= : Tm(Γ · A,C [⟨⟨id, q⟩, refl⟩]) → Tm(Γ · A · A[p] · IdA,C)

▶ all stable under substitution.

15

The Set model again

The Set model supports all type formers we have considered as
follows:

Given A : Γ → Set and B : (Σγ ∈ Γ).A(γ) → Set, define

(ΠAB) γ := (Πx ∈ A(γ)).B(γ, x)

Given A : Γ → Set, and a, b ∈ (Πγ ∈ Γ).A(γ), define

Id(A, a, b) γ = {⋆ | a(γ) = b(γ)}

The empty type, natural numbers can be interpreted by defining
Empty : Γ → Set, Nat : Γ → Set by

Empty γ := ∅ Nat γ := N

16

The Set model again

The Set model supports all type formers we have considered as
follows:

Given A : Γ → Set and B : (Σγ ∈ Γ).A(γ) → Set, define

(ΠAB) γ := (Πx ∈ A(γ)).B(γ, x)

Given A : Γ → Set, and a, b ∈ (Πγ ∈ Γ).A(γ), define

Id(A, a, b) γ = {⋆ | a(γ) = b(γ)}

The empty type, natural numbers can be interpreted by defining
Empty : Γ → Set, Nat : Γ → Set by

Empty γ := ∅ Nat γ := N

16

The Set model again

The Set model supports all type formers we have considered as
follows:

Given A : Γ → Set and B : (Σγ ∈ Γ).A(γ) → Set, define

(ΠAB) γ := (Πx ∈ A(γ)).B(γ, x)

Given A : Γ → Set, and a, b ∈ (Πγ ∈ Γ).A(γ), define

Id(A, a, b) γ = {⋆ | a(γ) = b(γ)}

The empty type, natural numbers can be interpreted by defining
Empty : Γ → Set, Nat : Γ → Set by

Empty γ := ∅ Nat γ := N

16

The Set model again

The Set model supports all type formers we have considered as
follows:

Given A : Γ → Set and B : (Σγ ∈ Γ).A(γ) → Set, define

(ΠAB) γ := (Πx ∈ A(γ)).B(γ, x)

Given A : Γ → Set, and a, b ∈ (Πγ ∈ Γ).A(γ), define

Id(A, a, b) γ = {⋆ | a(γ) = b(γ)}

The empty type, natural numbers can be interpreted by defining
Empty : Γ → Set, Nat : Γ → Set by

Empty γ := ∅ Nat γ := N

16

Constructions on models

The notion of CwF (plus type structure) is a generalised algebraic
theory (Cartmell 1978), thus very well behaved:

There is a canonical notion of morphism of models (preserving all
the structure).

We can take the product of models.

There is an initial model: the syntax.

Theorem (soundness and completeness) A judgement holds in
the syntax iff it holds in all models.

Completeness is practically useless, but something would be wrong
if we did not have it.

17

Constructions on models

The notion of CwF (plus type structure) is a generalised algebraic
theory (Cartmell 1978), thus very well behaved:

There is a canonical notion of morphism of models (preserving all
the structure).

We can take the product of models.

There is an initial model: the syntax.

Theorem (soundness and completeness) A judgement holds in
the syntax iff it holds in all models.

Completeness is practically useless, but something would be wrong
if we did not have it.

17

Some concrete models

Let us take a look at some concrete models and how they can be
used for independence results:

▶ Smith’s almost-trivial model (1988)

▶ Hofmann and Streicher’s groupoid model (1994)

▶ A realizability model (see e.g. Beeson (1982))

Models such as the cubical sets model (Bezem, Coquand, and
Huber 2013) can also inspire new syntax.

18

The truth-valuemodel

Peano’s Fourth Axiom

Using a universe, one can prove that 0 ̸= suc n for any n : N.

Is it possible to prove this without using a universe?

Smith (1988) showed that this is impossible, by constructing a
model where every type has at most one inhabitant.

19

The truth-value model

We take C := {false, true} with a unique morphism false ≤ true.

We define

Ty(Γ) := {false, true} for all (both) Γ

A[σ] := A

and

Tm(Γ,A) := {⋆ | Γ ≤ A}
t[σ] := t

That is, there is a (unique) term of type A unless Γ = true and
A = false.

We take Γ · A := Γ ∧ A, for which we can define p : Γ ∧ A ≤ Γ and
q = ⋆ ∈ Tm(Γ ∧ A,A).

20

The truth-value model

We take C := {false, true} with a unique morphism false ≤ true.

We define

Ty(Γ) := {false, true} for all (both) Γ

A[σ] := A

and

Tm(Γ,A) := {⋆ | Γ ≤ A}
t[σ] := t

That is, there is a (unique) term of type A unless Γ = true and
A = false.

We take Γ · A := Γ ∧ A, for which we can define p : Γ ∧ A ≤ Γ and
q = ⋆ ∈ Tm(Γ ∧ A,A).

20

The truth-value model

We take C := {false, true} with a unique morphism false ≤ true.

We define

Ty(Γ) := {false, true} for all (both) Γ

A[σ] := A

and

Tm(Γ,A) := {⋆ | Γ ≤ A}
t[σ] := t

That is, there is a (unique) term of type A unless Γ = true and
A = false.

We take Γ · A := Γ ∧ A, for which we can define p : Γ ∧ A ≤ Γ and
q = ⋆ ∈ Tm(Γ ∧ A,A).

20

The truth-value model

We take C := {false, true} with a unique morphism false ≤ true.

We define

Ty(Γ) := {false, true} for all (both) Γ

A[σ] := A

and

Tm(Γ,A) := {⋆ | Γ ≤ A}
t[σ] := t

That is, there is a (unique) term of type A unless Γ = true and
A = false.

We take Γ · A := Γ ∧ A, for which we can define p : Γ ∧ A ≤ Γ and
q = ⋆ ∈ Tm(Γ ∧ A,A).

20

Interpreting the type formers

The plan is to interpret potentially inhabited types as true and
empty types as false.

Hence we define

Empty := false

Unit := true

Nat := true

ΠAB := A ⊃ B (Boolean implication)

ΣAB := A ∧ B

Id(A, a, b) := true

Whenever we are asked to interpret a term, we can use ⋆ by
construction.

21

Interpreting the type formers

The plan is to interpret potentially inhabited types as true and
empty types as false.

Hence we define

Empty := false

Unit := true

Nat := true

ΠAB := A ⊃ B (Boolean implication)

ΣAB := A ∧ B

Id(A, a, b) := true

Whenever we are asked to interpret a term, we can use ⋆ by
construction.

21

Interpreting the type formers

The plan is to interpret potentially inhabited types as true and
empty types as false.

Hence we define

Empty := false

Unit := true

Nat := true

ΠAB := A ⊃ B (Boolean implication)

ΣAB := A ∧ B

Id(A, a, b) := true

Whenever we are asked to interpret a term, we can use ⋆ by
construction.

21

0 ̸= suc n in the model?

What are the terms of type (0 = suc n) → 0 in the model?

Tm(1, Id(Nat, 0, suc n) → Empty) = Tm(true, true ⊃ false)

= {⋆ | true ≤ false}
= ∅

Hence by soundness, there cannot be a proof of (0 = suc n) → 0,
since such a proof would be interpreted by an element of ∅.

Note The model does not support universes, because they cannot
afford to ignore all dependencies!

22

0 ̸= suc n in the model?

What are the terms of type (0 = suc n) → 0 in the model?

Tm(1, Id(Nat, 0, suc n) → Empty) = Tm(true, true ⊃ false)

= {⋆ | true ≤ false}
= ∅

Hence by soundness, there cannot be a proof of (0 = suc n) → 0,
since such a proof would be interpreted by an element of ∅.

Note The model does not support universes, because they cannot
afford to ignore all dependencies!

22

0 ̸= suc n in the model?

What are the terms of type (0 = suc n) → 0 in the model?

Tm(1, Id(Nat, 0, suc n) → Empty) = Tm(true, true ⊃ false)

= {⋆ | true ≤ false}
= ∅

Hence by soundness, there cannot be a proof of (0 = suc n) → 0,
since such a proof would be interpreted by an element of ∅.

Note The model does not support universes, because they cannot
afford to ignore all dependencies!

22

0 ̸= suc n in the model?

What are the terms of type (0 = suc n) → 0 in the model?

Tm(1, Id(Nat, 0, suc n) → Empty) = Tm(true, true ⊃ false)

= {⋆ | true ≤ false}
= ∅

Hence by soundness, there cannot be a proof of (0 = suc n) → 0,
since such a proof would be interpreted by an element of ∅.

Note The model does not support universes, because they cannot
afford to ignore all dependencies!

22

The groupoidmodel

Uniqueness of identity proofs?

Given p, q : a =A b, is it possible to prove p =a=Ab q?

This is true in the Set model (so we cannot hope to disprove it).

Also provable in a natural extension of type theory: Streicher’s
Axiom K (1993) or Coquand’s dependent pattern matching
(1992). (Mc Bride (1999) showed that in fact Axiom K and
pattern matching are equivalent.)

23

Uniqueness of identity proofs?

Given p, q : a =A b, is it possible to prove p =a=Ab q?

This is true in the Set model (so we cannot hope to disprove it).

Also provable in a natural extension of type theory: Streicher’s
Axiom K (1993) or Coquand’s dependent pattern matching
(1992). (Mc Bride (1999) showed that in fact Axiom K and
pattern matching are equivalent.)

23

Uniqueness of identity proofs?

Given p, q : a =A b, is it possible to prove p =a=Ab q?

This is true in the Set model (so we cannot hope to disprove it).

Also provable in a natural extension of type theory: Streicher’s
Axiom K (1993) or Coquand’s dependent pattern matching
(1992). (Mc Bride (1999) showed that in fact Axiom K and
pattern matching are equivalent.)

23

Identities between identity proofs

Some equations are provable:

trans(p, refl) = p

trans(refl, q) = q

trans(trans(p, q), r) = trans(p, trans(q, r))

trans(p, sym(p)) = refl

trans(sym(q), q) = q

So identity types makes every type into a groupoid — at least up
to higher identity types! ; ∞-groupoids.

Further, every function respects equality, so from this perspective,
every function is a functor between groupoids, etc.

Hofmann’s insight: we can turn this around and make a model out
of groupoids!

24

Identities between identity proofs

Some equations are provable:

trans(p, refl) = p

trans(refl, q) = q

trans(trans(p, q), r) = trans(p, trans(q, r))

trans(p, sym(p)) = refl

trans(sym(q), q) = q

So identity types makes every type into a groupoid — at least up
to higher identity types! ; ∞-groupoids.

Further, every function respects equality, so from this perspective,
every function is a functor between groupoids, etc.

Hofmann’s insight: we can turn this around and make a model out
of groupoids!

24

Identities between identity proofs

Some equations are provable:

trans(p, refl) = p

trans(refl, q) = q

trans(trans(p, q), r) = trans(p, trans(q, r))

trans(p, sym(p)) = refl

trans(sym(q), q) = q

So identity types makes every type into a groupoid — at least up
to higher identity types! ; ∞-groupoids.

Further, every function respects equality, so from this perspective,
every function is a functor between groupoids, etc.

Hofmann’s insight: we can turn this around and make a model out
of groupoids!

24

Identities between identity proofs

Some equations are provable:

trans(p, refl) = p

trans(refl, q) = q

trans(trans(p, q), r) = trans(p, trans(q, r))

trans(p, sym(p)) = refl

trans(sym(q), q) = q

So identity types makes every type into a groupoid — at least up
to higher identity types! ; ∞-groupoids.

Further, every function respects equality, so from this perspective,
every function is a functor between groupoids, etc.

Hofmann’s insight: we can turn this around and make a model out
of groupoids!

24

The groupoid model

We take C := Gpd, the category of groupoids and functors.

We define Ty(Γ) := [Γ,Gpd] (functors from Γ to Gpd)

If f : ∆ → Γ, we can take A[f] := A ◦ f : [∆,Gpd].

Terms Tm(Γ,A) are “dependent functors”:

M0 ∈ (Πγ ∈ Γ).A(γ)

M1 ∈ (Πf : γ → γ′).
(
A(f)(M0(γ)) → M0(γ

′)
)

s.t. M1(idγ) = idM0(γ) and M1(f ◦ g) = M1(f) ◦ A(f)(M1(g)).
Substitution is again composition.

We define Γ · A :=
∫
Γ A, i.e., objects are pairs (γ ∈ Γ, a ∈ A(γ))

and (f , g) : (γ, a) → (γ′, a′) if f : γ → γ′ and g : A(f)(a) → a′.

25

The groupoid model

We take C := Gpd, the category of groupoids and functors.

We define Ty(Γ) := [Γ,Gpd] (functors from Γ to Gpd)

If f : ∆ → Γ, we can take A[f] := A ◦ f : [∆,Gpd].

Terms Tm(Γ,A) are “dependent functors”:

M0 ∈ (Πγ ∈ Γ).A(γ)

M1 ∈ (Πf : γ → γ′).
(
A(f)(M0(γ)) → M0(γ

′)
)

s.t. M1(idγ) = idM0(γ) and M1(f ◦ g) = M1(f) ◦ A(f)(M1(g)).
Substitution is again composition.

We define Γ · A :=
∫
Γ A, i.e., objects are pairs (γ ∈ Γ, a ∈ A(γ))

and (f , g) : (γ, a) → (γ′, a′) if f : γ → γ′ and g : A(f)(a) → a′.

25

The groupoid model

We take C := Gpd, the category of groupoids and functors.

We define Ty(Γ) := [Γ,Gpd] (functors from Γ to Gpd)

If f : ∆ → Γ, we can take A[f] := A ◦ f : [∆,Gpd].

Terms Tm(Γ,A) are “dependent functors”:

M0 ∈ (Πγ ∈ Γ).A(γ)

M1 ∈ (Πf : γ → γ′).
(
A(f)(M0(γ)) → M0(γ

′)
)

s.t. M1(idγ) = idM0(γ) and M1(f ◦ g) = M1(f) ◦ A(f)(M1(g)).
Substitution is again composition.

We define Γ · A :=
∫
Γ A, i.e., objects are pairs (γ ∈ Γ, a ∈ A(γ))

and (f , g) : (γ, a) → (γ′, a′) if f : γ → γ′ and g : A(f)(a) → a′.

25

The groupoid model

We take C := Gpd, the category of groupoids and functors.

We define Ty(Γ) := [Γ,Gpd] (functors from Γ to Gpd)

If f : ∆ → Γ, we can take A[f] := A ◦ f : [∆,Gpd].

Terms Tm(Γ,A) are “dependent functors”:

M0 ∈ (Πγ ∈ Γ).A(γ)

M1 ∈ (Πf : γ → γ′).
(
A(f)(M0(γ)) → M0(γ

′)
)

s.t. M1(idγ) = idM0(γ) and M1(f ◦ g) = M1(f) ◦ A(f)(M1(g)).
Substitution is again composition.

We define Γ · A :=
∫
Γ A, i.e., objects are pairs (γ ∈ Γ, a ∈ A(γ))

and (f , g) : (γ, a) → (γ′, a′) if f : γ → γ′ and g : A(f)(a) → a′.

25

The groupoid model

We take C := Gpd, the category of groupoids and functors.

We define Ty(Γ) := [Γ,Gpd] (functors from Γ to Gpd)

If f : ∆ → Γ, we can take A[f] := A ◦ f : [∆,Gpd].

Terms Tm(Γ,A) are “dependent functors”:

M0 ∈ (Πγ ∈ Γ).A(γ)

M1 ∈ (Πf : γ → γ′).
(
A(f)(M0(γ)) → M0(γ

′)
)

s.t. M1(idγ) = idM0(γ) and M1(f ◦ g) = M1(f) ◦ A(f)(M1(g)).
Substitution is again composition.

We define Γ · A :=
∫
Γ A, i.e., objects are pairs (γ ∈ Γ, a ∈ A(γ))

and (f , g) : (γ, a) → (γ′, a′) if f : γ → γ′ and g : A(f)(a) → a′.

25

Interpreting identity types

We interpret IdAa b as the discrete groupoid with objects
HomA(a, b). On morphisms, we define (IdA f g)(r) := g ◦ r ◦ f −1.

For refl : IdAa a, we can take refl := ida ∈ HomA(a, a).

For elim=, we are given d(x) ∈ C (x , x , idx) and r : Id(x , y), and
must construct elim=(d , r) ∈ C (x , y , r).

C is a functor, so it suffices to construct a morphism
(x , x , idx) → (x , y , r). Such a morphism is given by

f : x → x in A

g : x → y in A

h : IdA(f , g)(idx) → r in IdA(x , y)

So we can take f = id, g = r , h = id, and define
elim=(d , r) := C (id, r , id)(d(x)). (We also need to define actions on morphisms.)

26

Interpreting identity types

We interpret IdAa b as the discrete groupoid with objects
HomA(a, b). On morphisms, we define (IdA f g)(r) := g ◦ r ◦ f −1.

For refl : IdAa a, we can take refl := ida ∈ HomA(a, a).

For elim=, we are given d(x) ∈ C (x , x , idx) and r : Id(x , y), and
must construct elim=(d , r) ∈ C (x , y , r).

C is a functor, so it suffices to construct a morphism
(x , x , idx) → (x , y , r). Such a morphism is given by

f : x → x in A

g : x → y in A

h : IdA(f , g)(idx) → r in IdA(x , y)

So we can take f = id, g = r , h = id, and define
elim=(d , r) := C (id, r , id)(d(x)). (We also need to define actions on morphisms.)

26

Interpreting identity types

We interpret IdAa b as the discrete groupoid with objects
HomA(a, b). On morphisms, we define (IdA f g)(r) := g ◦ r ◦ f −1.

For refl : IdAa a, we can take refl := ida ∈ HomA(a, a).

For elim=, we are given d(x) ∈ C (x , x , idx) and r : Id(x , y), and
must construct elim=(d , r) ∈ C (x , y , r).

C is a functor, so it suffices to construct a morphism
(x , x , idx) → (x , y , r). Such a morphism is given by

f : x → x in A

g : x → y in A

h : IdA(f , g)(idx) → r in IdA(x , y)

So we can take f = id, g = r , h = id, and define
elim=(d , r) := C (id, r , id)(d(x)). (We also need to define actions on morphisms.)

26

Interpreting identity types

We interpret IdAa b as the discrete groupoid with objects
HomA(a, b). On morphisms, we define (IdA f g)(r) := g ◦ r ◦ f −1.

For refl : IdAa a, we can take refl := ida ∈ HomA(a, a).

For elim=, we are given d(x) ∈ C (x , x , idx) and r : Id(x , y), and
must construct elim=(d , r) ∈ C (x , y , r).

C is a functor, so it suffices to construct a morphism
(x , x , idx) → (x , y , r). Such a morphism is given by

f : x → x in A

g : x → y in A

h : IdA(f , g)(idx) → r in IdA(x , y)

So we can take f = id, g = r , h = id, and define
elim=(d , r) := C (id, r , id)(d(x)). (We also need to define actions on morphisms.)

26

Interpreting identity types

We interpret IdAa b as the discrete groupoid with objects
HomA(a, b). On morphisms, we define (IdA f g)(r) := g ◦ r ◦ f −1.

For refl : IdAa a, we can take refl := ida ∈ HomA(a, a).

For elim=, we are given d(x) ∈ C (x , x , idx) and r : Id(x , y), and
must construct elim=(d , r) ∈ C (x , y , r).

C is a functor, so it suffices to construct a morphism
(x , x , idx) → (x , y , r). Such a morphism is given by

f : x → x in A

g : x → y in A

h : f −1 ◦ idx ◦ g = r in IdA(x , y)

So we can take f = id, g = r , h = id, and define
elim=(d , r) := C (id, r , id)(d(x)). (We also need to define actions on morphisms.)

26

Interpreting identity types

We interpret IdAa b as the discrete groupoid with objects
HomA(a, b). On morphisms, we define (IdA f g)(r) := g ◦ r ◦ f −1.

For refl : IdAa a, we can take refl := ida ∈ HomA(a, a).

For elim=, we are given d(x) ∈ C (x , x , idx) and r : Id(x , y), and
must construct elim=(d , r) ∈ C (x , y , r).

C is a functor, so it suffices to construct a morphism
(x , x , idx) → (x , y , r). Such a morphism is given by

f : x → x in A

g : x → y in A

h : f −1 ◦ idx ◦ g = r in IdA(x , y)

So we can take f = id, g = r , h = id, and define
elim=(d , r) := C (id, r , id)(d(x)). (We also need to define actions on morphisms.)

26

Interpreting other type formers

Other type fomers can be interpreted much as in the Set model,
after taking care to define actions on morphisms.

Of particular interest is the universe.

Given a set-theoretic universe V , we define U : Γ → Gpd as
U(γ) := GpdV , the groupoid of V -small groupoids, with an
inclusion El : GpdV ↪→ Gpd.

That is: the objects of GpdV are groupoids whose object set and
morphism sets live in V , and the morphisms in GpdV are
isomorphisms.

In particular, this means that A =U B in the model iff A ∼= B.
; Precursor to the Univalence Axiom.

27

Interpreting other type formers

Other type fomers can be interpreted much as in the Set model,
after taking care to define actions on morphisms.

Of particular interest is the universe.

Given a set-theoretic universe V , we define U : Γ → Gpd as
U(γ) := GpdV , the groupoid of V -small groupoids, with an
inclusion El : GpdV ↪→ Gpd.

That is: the objects of GpdV are groupoids whose object set and
morphism sets live in V , and the morphisms in GpdV are
isomorphisms.

In particular, this means that A =U B in the model iff A ∼= B.
; Precursor to the Univalence Axiom.

27

Interpreting other type formers

Other type fomers can be interpreted much as in the Set model,
after taking care to define actions on morphisms.

Of particular interest is the universe.

Given a set-theoretic universe V , we define U : Γ → Gpd as
U(γ) := GpdV , the groupoid of V -small groupoids, with an
inclusion El : GpdV ↪→ Gpd.

That is: the objects of GpdV are groupoids whose object set and
morphism sets live in V , and the morphisms in GpdV are
isomorphisms.

In particular, this means that A =U B in the model iff A ∼= B.
; Precursor to the Univalence Axiom.

27

Interpreting other type formers

Other type fomers can be interpreted much as in the Set model,
after taking care to define actions on morphisms.

Of particular interest is the universe.

Given a set-theoretic universe V , we define U : Γ → Gpd as
U(γ) := GpdV , the groupoid of V -small groupoids, with an
inclusion El : GpdV ↪→ Gpd.

That is: the objects of GpdV are groupoids whose object set and
morphism sets live in V , and the morphisms in GpdV are
isomorphisms.

In particular, this means that A =U B in the model iff A ∼= B.
; Precursor to the Univalence Axiom.

27

Interpreting other type formers

Other type fomers can be interpreted much as in the Set model,
after taking care to define actions on morphisms.

Of particular interest is the universe.

Given a set-theoretic universe V , we define U : Γ → Gpd as
U(γ) := GpdV , the groupoid of V -small groupoids, with an
inclusion El : GpdV ↪→ Gpd.

That is: the objects of GpdV are groupoids whose object set and
morphism sets live in V , and the morphisms in GpdV are
isomorphisms.

In particular, this means that A =U B in the model iff A ∼= B.
; Precursor to the Univalence Axiom.

27

Refuting UIP

Let G be your favourite non-trivial group (e.g. G = (Z,+, 0)) and
consider the one-element groupoid BG with BG (⋆, ⋆) = G .

Suppose u is a proof of UIP, i.e.,

u : (ΠA : U)(Πa : El(A))(Πb : El(A))(Πp : a = b))(Πq : a = b)).p = q

We would then have

u(BZ, ⋆, ⋆, 0, 1) ∈ Id (IdBZ ⋆ ⋆) 0 1

in the model, but IdBZ ⋆ ⋆ is a discrete groupoid, hence
Id (IdBZ ⋆ ⋆) 0 1 = ∅ since 0 ̸= 1. Hence no such proof u can
exist.

28

Refuting UIP

Let G be your favourite non-trivial group (e.g. G = (Z,+, 0)) and
consider the one-element groupoid BG with BG (⋆, ⋆) = G .

Suppose u is a proof of UIP, i.e.,

u : (ΠA : U)(Πa : El(A))(Πb : El(A))(Πp : a = b))(Πq : a = b)).p = q

We would then have

u(BZ, ⋆, ⋆, 0, 1) ∈ Id (IdBZ ⋆ ⋆) 0 1

in the model, but IdBZ ⋆ ⋆ is a discrete groupoid, hence
Id (IdBZ ⋆ ⋆) 0 1 = ∅ since 0 ̸= 1. Hence no such proof u can
exist.

28

Refuting UIP

Let G be your favourite non-trivial group (e.g. G = (Z,+, 0)) and
consider the one-element groupoid BG with BG (⋆, ⋆) = G .

Suppose u is a proof of UIP, i.e.,

u : (ΠA : U)(Πa : El(A))(Πb : El(A))(Πp : a = b))(Πq : a = b)).p = q

We would then have

u(BZ, ⋆, ⋆, 0, 1) ∈ Id (IdBZ ⋆ ⋆) 0 1

in the model, but IdBZ ⋆ ⋆ is a discrete groupoid, hence
Id (IdBZ ⋆ ⋆) 0 1 = ∅ since 0 ̸= 1. Hence no such proof u can
exist.

28

Going higher

Because each IdAa b is discrete, the model does validate
uniqueness of identity proofs between identity proofs (“UIPIP”).

Their uniqueness can be refuted in a model of 2-groupoids, then
we might want to move to 3-groupoids to refute UIPIPIP, etc.

In the limit, we would rediscover Voevodsky’s simplicial sets (aka
∞-groupoids) model of homotopy type theory (Kapulkin and
Lumsdaine, 2021).

29

Going higher

Because each IdAa b is discrete, the model does validate
uniqueness of identity proofs between identity proofs (“UIPIP”).

Their uniqueness can be refuted in a model of 2-groupoids, then
we might want to move to 3-groupoids to refute UIPIPIP, etc.

In the limit, we would rediscover Voevodsky’s simplicial sets (aka
∞-groupoids) model of homotopy type theory (Kapulkin and
Lumsdaine, 2021).

29

Going higher

Because each IdAa b is discrete, the model does validate
uniqueness of identity proofs between identity proofs (“UIPIP”).

Their uniqueness can be refuted in a model of 2-groupoids, then
we might want to move to 3-groupoids to refute UIPIPIP, etc.

In the limit, we would rediscover Voevodsky’s simplicial sets (aka
∞-groupoids) model of homotopy type theory (Kapulkin and
Lumsdaine, 2021).

29

TheD-setsmodel

A model based on computation

Intuitively, all constructions of type theory are computable. Can we
make this precise?

We will construct a model where each term has an associated
piece of “computation data” from a model of computation D.

Definition A combinatory algebra is a set D with a binary
operation $: D × D → D together with elements K ,S ∈ D such
that

K $ x $ y = x S $ x $ y $ z = (x $ z) $ (y $ z)

(Can also work with partial combinatory algebras, i.e. $ partial.)

Examples D = untyped lambda terms, D = an enumeration of
Turing machines as natural numbers.

30

A model based on computation

Intuitively, all constructions of type theory are computable. Can we
make this precise?

We will construct a model where each term has an associated
piece of “computation data” from a model of computation D.

Definition A combinatory algebra is a set D with a binary
operation $: D × D → D together with elements K ,S ∈ D such
that

K $ x $ y = x S $ x $ y $ z = (x $ z) $ (y $ z)

(Can also work with partial combinatory algebras, i.e. $ partial.)

Examples D = untyped lambda terms, D = an enumeration of
Turing machines as natural numbers.

30

A model based on computation

Intuitively, all constructions of type theory are computable. Can we
make this precise?

We will construct a model where each term has an associated
piece of “computation data” from a model of computation D.

Definition A combinatory algebra is a set D with a binary
operation $: D × D → D together with elements K , S ∈ D such
that

K $ x $ y = x S $ x $ y $ z = (x $ z) $ (y $ z)

(Can also work with partial combinatory algebras, i.e. $ partial.)

Examples D = untyped lambda terms, D = an enumeration of
Turing machines as natural numbers.

30

Functional completeness

D is functionally complete: for each term t(x1, . . . , xn) ∈ D there
is f ∈ D such that f $ a1 $. . . $ an = t(a1, . . . , an).

Hence we can do the usual Church encoding tricks and define
pairing and projections: There are π1, π2, <a, b> ∈ D such that

π1 $ a $ b = a

π2 $ a $ b = b

<a, b> $ c = c $ a $ b

Hence <a, b> $π1 = a and <a, b> $π2 = b.

Similarly we can define Church numerals cn for natural numbers.

31

Functional completeness

D is functionally complete: for each term t(x1, . . . , xn) ∈ D there
is f ∈ D such that f $ a1 $. . . $ an = t(a1, . . . , an).

Hence we can do the usual Church encoding tricks and define
pairing and projections: There are π1, π2, <a, b> ∈ D such that

π1 $ a $ b = a

π2 $ a $ b = b

<a, b> $ c = c $ a $ b

Hence <a, b> $π1 = a and <a, b> $π2 = b.

Similarly we can define Church numerals cn for natural numbers.

31

Functional completeness

D is functionally complete: for each term t(x1, . . . , xn) ∈ D there
is f ∈ D such that f $ a1 $. . . $ an = t(a1, . . . , an).

Hence we can do the usual Church encoding tricks and define
pairing and projections: There are π1, π2, <a, b> ∈ D such that

π1 $ a $ b = a

π2 $ a $ b = b

<a, b> $ c = c $ a $ b

Hence <a, b> $π1 = a and <a, b> $π2 = b.

Similarly we can define Church numerals cn for natural numbers.

31

D-sets and their morphisms

Definition A D-set (or assembly) is a pair (X ,⊩X), where X is a
set and ⊩X⊆ D × X , such that for each x ∈ X , there exists a ∈ D
such that a ⊩X x .

A morphism (X ,⊩X) → (Y ,⊩Y) is a function X → Y such that
there exists d ∈ D such that if a ⊩X x then d $ a ⊩Y f (x).

Terminology if a ⊩X x , we call a a realizer of x . We say that d
above tracks f .

There is an identity morphism, and D-set morphisms compose
(easy by functional completeness).

32

D-sets and their morphisms

Definition A D-set (or assembly) is a pair (X ,⊩X), where X is a
set and ⊩X⊆ D × X , such that for each x ∈ X , there exists a ∈ D
such that a ⊩X x .

A morphism (X ,⊩X) → (Y ,⊩Y) is a function X → Y such that
there exists d ∈ D such that if a ⊩X x then d $ a ⊩Y f (x).

Terminology if a ⊩X x , we call a a realizer of x . We say that d
above tracks f .

There is an identity morphism, and D-set morphisms compose
(easy by functional completeness).

32

D-sets and their morphisms

Definition A D-set (or assembly) is a pair (X ,⊩X), where X is a
set and ⊩X⊆ D × X , such that for each x ∈ X , there exists a ∈ D
such that a ⊩X x .

A morphism (X ,⊩X) → (Y ,⊩Y) is a function X → Y such that
there exists d ∈ D such that if a ⊩X x then d $ a ⊩Y f (x).

Terminology if a ⊩X x , we call a a realizer of x . We say that d
above tracks f .

There is an identity morphism, and D-set morphisms compose
(easy by functional completeness).

32

D-sets and their morphisms

Definition A D-set (or assembly) is a pair (X ,⊩X), where X is a
set and ⊩X⊆ D × X , such that for each x ∈ X , there exists a ∈ D
such that a ⊩X x .

A morphism (X ,⊩X) → (Y ,⊩Y) is a function X → Y such that
there exists d ∈ D such that if a ⊩X x then d $ a ⊩Y f (x).

Terminology if a ⊩X x , we call a a realizer of x . We say that d
above tracks f .

There is an identity morphism, and D-set morphisms compose
(easy by functional completeness).

32

The category of D-sets

The category of D-sets has lots of nice structure:

▶ Products (X ,⊩X)× (Y ,⊩Y) = (X × Y ,⊩) where d ⊩ (x , y)
iff d = <a, b> such that a ⊩X x and b ⊩Y y .

▶ Exponentials (X ,⊩X) ⇒ (Y ,⊩Y) with underlying sets D-sets
morphisms, and d ⊩ f iff d tracks f .

▶ A natural numbers objects (N,⊩N) where d ⊩N n iff d = cn.

▶ Coproducts (X0,⊩X0) + (X1,⊩X1) = (X0 + X1,⊩) where
d ⊩ ini x iff d = <ci , a> such that a ⊩Xi

x .

33

D-sets as a CwF

We build a category with families structure on the category of
D-sets.

We take

Ty((X ,⊩X)) := X → D-Set

Tm((X ,⊩X),Y) := {b : (Πx ∈ X).Y (x) | ∃d ∈ D.d tracks b}

and define (X ,⊩X) · Y := ((Σx ∈ X).Y (x),⊩) where d ⊩ (x , y) iff
d = <a, b> such that a ⊩X x and b ⊩Y (x) y .

Using the categorical structure in D-Set, we interpret (dependent)
functions and pairs, disjoint unions, natural numbers, etc.

34

D-sets as a CwF

We build a category with families structure on the category of
D-sets.

We take

Ty((X ,⊩X)) := X → D-Set

Tm((X ,⊩X),Y) := {b : (Πx ∈ X).Y (x) | ∃d ∈ D.d tracks b}

and define (X ,⊩X) · Y := ((Σx ∈ X).Y (x),⊩) where d ⊩ (x , y) iff
d = <a, b> such that a ⊩X x and b ⊩Y (x) y .

Using the categorical structure in D-Set, we interpret (dependent)
functions and pairs, disjoint unions, natural numbers, etc.

34

An impredicative universe

There is an interesting subcategory of so-called modest D-sets:

Definition A D-set (X ,⊩X) is modest if d ⊩X x and d ⊩X y
implies x = y . (A family Y : X → D-Set is called modest if each
Yx is modest.)

Example Unless D is trivial, (N,⊩N) is modest.

Modest sets are isomorphic to partial equivalence relations on D,
hence “all small”. Thus: if B ∈ Ty(Γ · A) is modest then
ΠAB ∈ Ty(Γ) is modest, for all A ∈ Ty(Γ).

Modest sets form a universe closed under impredicative
quantification, containing the natural numbers. Such a universe
contradicts classical logic.

35

An impredicative universe

There is an interesting subcategory of so-called modest D-sets:

Definition A D-set (X ,⊩X) is modest if d ⊩X x and d ⊩X y
implies x = y . (A family Y : X → D-Set is called modest if each
Yx is modest.)

Example Unless D is trivial, (N,⊩N) is modest.

Modest sets are isomorphic to partial equivalence relations on D,
hence “all small”. Thus: if B ∈ Ty(Γ · A) is modest then
ΠAB ∈ Ty(Γ) is modest, for all A ∈ Ty(Γ).

Modest sets form a universe closed under impredicative
quantification, containing the natural numbers. Such a universe
contradicts classical logic.

35

An impredicative universe

There is an interesting subcategory of so-called modest D-sets:

Definition A D-set (X ,⊩X) is modest if d ⊩X x and d ⊩X y
implies x = y . (A family Y : X → D-Set is called modest if each
Yx is modest.)

Example Unless D is trivial, (N,⊩N) is modest.

Modest sets are isomorphic to partial equivalence relations on D,
hence “all small”. Thus: if B ∈ Ty(Γ · A) is modest then
ΠAB ∈ Ty(Γ) is modest, for all A ∈ Ty(Γ).

Modest sets form a universe closed under impredicative
quantification, containing the natural numbers. Such a universe
contradicts classical logic.

35

An impredicative universe

There is an interesting subcategory of so-called modest D-sets:

Definition A D-set (X ,⊩X) is modest if d ⊩X x and d ⊩X y
implies x = y . (A family Y : X → D-Set is called modest if each
Yx is modest.)

Example Unless D is trivial, (N,⊩N) is modest.

Modest sets are isomorphic to partial equivalence relations on D,
hence “all small”. Thus: if B ∈ Ty(Γ · A) is modest then
ΠAB ∈ Ty(Γ) is modest, for all A ∈ Ty(Γ).

Modest sets form a universe closed under impredicative
quantification, containing the natural numbers. Such a universe
contradicts classical logic.

35

Summary

Categories with families as a framework for models of dependent
type theory. (There are many other similar notions.)

Looked at three models:

1. Truth-value model demonstrating the independence of
0 = suc n without universes.

2. Groupoid model demonstrating the independence of UIP, and
suggesting the “universe extensionality axiom”

3. D-sets model enabling the extraction of computable data, and
demonstrating the independence of classical logic.

Thursday: Some implementation, some metatheory.

36

References
Steve Awodey. “Natural models of homotopy type theory”. In: Mathematical Structures in Computer
Science 28.2 (2018), pp. 241–286. doi: 10.1017/S0960129516000268.

Michael Beeson. “Recursive models for constructive set theories”. In: Annals of Mathematical Logic 23.2
(1982), pp. 127–178. doi: 10.1016/0003-4843(82)90003-1.

Marc Bezem, Thierry Coquand, and Simon Huber. “A Model of Type Theory in Cubical Sets”. In:
TYPES 2013. Ed. by Ralph Matthes and Aleksy Schubert. Vol. 26. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2013, pp. 107–128. doi: 10.4230/LIPICS.TYPES.2013.107.

John Cartmell. “Generalised Algebraic Theories and Contextual Categories”. PhD thesis. Oxford
University, 1978.

Thierry Coquand. “Pattern matching with dependent types”. In: Informal proceedings of Logical
Frameworks. Vol. 92. 1992, pp. 66–79.

Peter Dybjer. “Internal Type Theory”. In: TYPES 1995. Ed. by Stefano Berardi and Mario Coppo.
Vol. 1158. Lecture Notes in Computer Science. Springer, 1995, pp. 120–134. doi:
10.1007/3-540-61780-9_66.

Harvey M. Friedman. “Equality between functionals”. In: Logic Colloquium ’73. Ed. by R. Parikh. 1975.

Martin Hofmann and Thomas Streicher. “The Groupoid Model Refutes Uniqueness of Identity Proofs”.
In: LICS 1994. IEEE Computer Society, 1994, pp. 208–212. doi: 10.1109/LICS.1994.316071.

Krzysztof Kapulkin and Peter LeFanu Lumsdaine. “The simplicial model of Univalent Foundations (after
Voevodsky)”. In: Journal of the European Mathematical Society 23.6 (2021), pp. 2071–2126. doi:
10.4171/JEMS/1050.

Conor McBride. “Dependently Typed Functional Programs and Their Proofs”. PhD thesis. University of
Edinburgh, 1999.

Jan M. Smith. “The Independence of Peano’s Fourth Axiom from Martin-Löf’s Type Theory Without
Universes”. In: The Journal of Symbolic Logic 53.3 (1988), pp. 840–845.

Thomas Streicher. Investigations into intensional type theory. Habilitation thesis. 1993.

https://doi.org/10.1017/S0960129516000268
https://doi.org/10.1016/0003-4843(82)90003-1
https://doi.org/10.4230/LIPICS.TYPES.2013.107
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1109/LICS.1994.316071
https://doi.org/10.4171/JEMS/1050

	Introduction
	Models of simple types
	Models of dependent types
	Categories with families
	Additional type structure
	Constructions on models

	Some concrete models
	The truth-value model
	The groupoid model
	The D-sets model

	Summary
	References

