
Type Theory

Lecture 3: Metatheory of Type Theory

Fredrik Nordvall Forsberg
University of Strathclyde, Glasgow

SPLV Summer school, Edinburgh, 24 July 2025

https://fredriknf.com/splv2025/

https://fredriknf.com/splv2025/

Course plan

▶ Monday: Using type theory.

▶ Tuesday: Semantics of type theory.

▶ Thursday: ((((((((
Implementation Models, and metatheory.

▶ Some concrete models, and what they are good for

▶ Canonicity and normalisation

Slides and exercises: https://fredriknf.com/splv2025/

1

https://fredriknf.com/splv2025/

Reminder: categories with families

Definition A category with families (CwF) is given by:

▶ A category C with a terminal object.

▶ A presheaf Ty : Cop → Set.

▶ A presheaf Tm : (
∫
C Ty)

op → Set.

▶ A context extension Γ · A ∈ C for every Γ ∈ C and A ∈ Ty(Γ)
satisfying a certain universal property.

2

The Set model

We can take C = Set, the category of sets and functions.

We define Ty(Γ) := Γ → Set.

Type substitution for f : ∆ → Γ: A[f] := A ◦ f .

We define Tm(Γ,A) := (Πγ ∈ Γ).A(γ).

Term substitution for f : ∆ → Γ and t ∈ Tm(Γ,A): t[f]δ := tf (δ).

Finally we define Γ · A := (Σγ ∈ Γ).A(γ) with p := fst, q := snd.

3

Some concrete models

Let us take a look at some concrete models and how they can be
used for independence results:

▶ Smith’s almost-trivial model (1988)

▶ Hofmann and Streicher’s groupoid model (1994)

▶ A realizability model (see e.g. Beeson (1982))

Models such as the cubical sets model (Bezem, Coquand, and
Huber 2013) can also inspire new syntax.

4

The truth-valuemodel

Peano’s Fourth Axiom

Using a universe, one can prove that 0 ̸= suc n for any n : N.

Is it possible to prove this without using a universe?

Smith (1988) showed that this is impossible, by constructing a
model where every type has at most one inhabitant.

5

The truth-value model

We take C := {false, true} with a unique morphism false ≤ true.

We define

Ty(Γ) := {false, true} for all (both) Γ

A[σ] := A

and

Tm(Γ,A) := {⋆ | Γ ≤ A}
t[σ] := t

That is, there is a (unique) term of type A unless Γ = true and
A = false.

We take Γ · A := Γ ∧ A, for which we can define p : Γ ∧ A ≤ Γ and
q = ⋆ ∈ Tm(Γ ∧ A,A).

6

The truth-value model

We take C := {false, true} with a unique morphism false ≤ true.

We define

Ty(Γ) := {false, true} for all (both) Γ

A[σ] := A

and

Tm(Γ,A) := {⋆ | Γ ≤ A}
t[σ] := t

That is, there is a (unique) term of type A unless Γ = true and
A = false.

We take Γ · A := Γ ∧ A, for which we can define p : Γ ∧ A ≤ Γ and
q = ⋆ ∈ Tm(Γ ∧ A,A).

6

The truth-value model

We take C := {false, true} with a unique morphism false ≤ true.

We define

Ty(Γ) := {false, true} for all (both) Γ

A[σ] := A

and

Tm(Γ,A) := {⋆ | Γ ≤ A}
t[σ] := t

That is, there is a (unique) term of type A unless Γ = true and
A = false.

We take Γ · A := Γ ∧ A, for which we can define p : Γ ∧ A ≤ Γ and
q = ⋆ ∈ Tm(Γ ∧ A,A).

6

The truth-value model

We take C := {false, true} with a unique morphism false ≤ true.

We define

Ty(Γ) := {false, true} for all (both) Γ

A[σ] := A

and

Tm(Γ,A) := {⋆ | Γ ≤ A}
t[σ] := t

That is, there is a (unique) term of type A unless Γ = true and
A = false.

We take Γ · A := Γ ∧ A, for which we can define p : Γ ∧ A ≤ Γ and
q = ⋆ ∈ Tm(Γ ∧ A,A).

6

Interpreting the type formers

The plan is to interpret potentially inhabited types as true and
empty types as false.

Hence we define

Empty := false

Unit := true

Nat := true

ΠAB := A ⊃ B (Boolean implication)

ΣAB := A ∧ B

Id(A, a, b) := true

Whenever we are asked to interpret a term, we can use ⋆ by
construction.

7

Interpreting the type formers

The plan is to interpret potentially inhabited types as true and
empty types as false.

Hence we define

Empty := false

Unit := true

Nat := true

ΠAB := A ⊃ B (Boolean implication)

ΣAB := A ∧ B

Id(A, a, b) := true

Whenever we are asked to interpret a term, we can use ⋆ by
construction.

7

Interpreting the type formers

The plan is to interpret potentially inhabited types as true and
empty types as false.

Hence we define

Empty := false

Unit := true

Nat := true

ΠAB := A ⊃ B (Boolean implication)

ΣAB := A ∧ B

Id(A, a, b) := true

Whenever we are asked to interpret a term, we can use ⋆ by
construction.

7

0 ̸= suc n in the model?

What are the terms of type (0 = suc n) → 0 in the model?

Tm(1, Id(Nat, 0, suc n) → Empty) = Tm(true, true ⊃ false)

= {⋆ | true ≤ false}
= ∅

Hence by soundness, there cannot be a proof of (0 = suc n) → 0,
since such a proof would be interpreted by an element of ∅.

Note The model does not support universes, because they cannot
afford to ignore all dependencies!

8

0 ̸= suc n in the model?

What are the terms of type (0 = suc n) → 0 in the model?

Tm(1, Id(Nat, 0, suc n) → Empty) = Tm(true, true ⊃ false)

= {⋆ | true ≤ false}
= ∅

Hence by soundness, there cannot be a proof of (0 = suc n) → 0,
since such a proof would be interpreted by an element of ∅.

Note The model does not support universes, because they cannot
afford to ignore all dependencies!

8

0 ̸= suc n in the model?

What are the terms of type (0 = suc n) → 0 in the model?

Tm(1, Id(Nat, 0, suc n) → Empty) = Tm(true, true ⊃ false)

= {⋆ | true ≤ false}
= ∅

Hence by soundness, there cannot be a proof of (0 = suc n) → 0,
since such a proof would be interpreted by an element of ∅.

Note The model does not support universes, because they cannot
afford to ignore all dependencies!

8

0 ̸= suc n in the model?

What are the terms of type (0 = suc n) → 0 in the model?

Tm(1, Id(Nat, 0, suc n) → Empty) = Tm(true, true ⊃ false)

= {⋆ | true ≤ false}
= ∅

Hence by soundness, there cannot be a proof of (0 = suc n) → 0,
since such a proof would be interpreted by an element of ∅.

Note The model does not support universes, because they cannot
afford to ignore all dependencies!

8

The groupoidmodel

Uniqueness of identity proofs?

Given p, q : a =A b, is it possible to prove p =a=Ab q?

This is true in the Set model (so we cannot hope to disprove it).

Also provable in a natural extension of type theory: Streicher’s
Axiom K (1993) or Coquand’s dependent pattern matching
(1992). (Mc Bride (1999) showed that in fact Axiom K and
pattern matching are equivalent.)

9

Uniqueness of identity proofs?

Given p, q : a =A b, is it possible to prove p =a=Ab q?

This is true in the Set model (so we cannot hope to disprove it).

Also provable in a natural extension of type theory: Streicher’s
Axiom K (1993) or Coquand’s dependent pattern matching
(1992). (Mc Bride (1999) showed that in fact Axiom K and
pattern matching are equivalent.)

9

Uniqueness of identity proofs?

Given p, q : a =A b, is it possible to prove p =a=Ab q?

This is true in the Set model (so we cannot hope to disprove it).

Also provable in a natural extension of type theory: Streicher’s
Axiom K (1993) or Coquand’s dependent pattern matching
(1992). (Mc Bride (1999) showed that in fact Axiom K and
pattern matching are equivalent.)

9

Identities between identity proofs

Some equations are provable:

trans(p, refl) = p

trans(refl, q) = q

trans(trans(p, q), r) = trans(p, trans(q, r))

trans(p, sym(p)) = refl

trans(sym(q), q) = q

So identity types makes every type into a groupoid — at least up
to higher identity types! ; ∞-groupoids.

Further, every function respects equality, so from this perspective,
every function is a functor between groupoids, etc.

Hofmann’s insight: we can turn this around and make a model out
of groupoids!

10

Identities between identity proofs

Some equations are provable:

trans(p, refl) = p

trans(refl, q) = q

trans(trans(p, q), r) = trans(p, trans(q, r))

trans(p, sym(p)) = refl

trans(sym(q), q) = q

So identity types makes every type into a groupoid — at least up
to higher identity types! ; ∞-groupoids.

Further, every function respects equality, so from this perspective,
every function is a functor between groupoids, etc.

Hofmann’s insight: we can turn this around and make a model out
of groupoids!

10

Identities between identity proofs

Some equations are provable:

trans(p, refl) = p

trans(refl, q) = q

trans(trans(p, q), r) = trans(p, trans(q, r))

trans(p, sym(p)) = refl

trans(sym(q), q) = q

So identity types makes every type into a groupoid — at least up
to higher identity types! ; ∞-groupoids.

Further, every function respects equality, so from this perspective,
every function is a functor between groupoids, etc.

Hofmann’s insight: we can turn this around and make a model out
of groupoids!

10

Identities between identity proofs

Some equations are provable:

trans(p, refl) = p

trans(refl, q) = q

trans(trans(p, q), r) = trans(p, trans(q, r))

trans(p, sym(p)) = refl

trans(sym(q), q) = q

So identity types makes every type into a groupoid — at least up
to higher identity types! ; ∞-groupoids.

Further, every function respects equality, so from this perspective,
every function is a functor between groupoids, etc.

Hofmann’s insight: we can turn this around and make a model out
of groupoids!

10

The groupoid model

We take C := Gpd, the category of groupoids and functors.

We define Ty(Γ) := [Γ,Gpd] (functors from Γ to Gpd)

If f : ∆ → Γ, we can take A[f] := A ◦ f : [∆,Gpd].

Terms Tm(Γ,A) are “dependent functors”:

M0 ∈ (Πγ ∈ Γ).A(γ)

M1 ∈ (Πf : γ → γ′).
(
A(f)(M0(γ)) → M0(γ

′)
)

s.t. M1(idγ) = idM0(γ) and M1(f ◦ g) = M1(f) ◦ A(f)(M1(g)).
Substitution is again composition.

We define Γ · A :=
∫
Γ A, i.e., objects are pairs (γ ∈ Γ, a ∈ A(γ))

and (f , g) : (γ, a) → (γ′, a′) if f : γ → γ′ and g : A(f)(a) → a′.

11

The groupoid model

We take C := Gpd, the category of groupoids and functors.

We define Ty(Γ) := [Γ,Gpd] (functors from Γ to Gpd)

If f : ∆ → Γ, we can take A[f] := A ◦ f : [∆,Gpd].

Terms Tm(Γ,A) are “dependent functors”:

M0 ∈ (Πγ ∈ Γ).A(γ)

M1 ∈ (Πf : γ → γ′).
(
A(f)(M0(γ)) → M0(γ

′)
)

s.t. M1(idγ) = idM0(γ) and M1(f ◦ g) = M1(f) ◦ A(f)(M1(g)).
Substitution is again composition.

We define Γ · A :=
∫
Γ A, i.e., objects are pairs (γ ∈ Γ, a ∈ A(γ))

and (f , g) : (γ, a) → (γ′, a′) if f : γ → γ′ and g : A(f)(a) → a′.

11

The groupoid model

We take C := Gpd, the category of groupoids and functors.

We define Ty(Γ) := [Γ,Gpd] (functors from Γ to Gpd)

If f : ∆ → Γ, we can take A[f] := A ◦ f : [∆,Gpd].

Terms Tm(Γ,A) are “dependent functors”:

M0 ∈ (Πγ ∈ Γ).A(γ)

M1 ∈ (Πf : γ → γ′).
(
A(f)(M0(γ)) → M0(γ

′)
)

s.t. M1(idγ) = idM0(γ) and M1(f ◦ g) = M1(f) ◦ A(f)(M1(g)).
Substitution is again composition.

We define Γ · A :=
∫
Γ A, i.e., objects are pairs (γ ∈ Γ, a ∈ A(γ))

and (f , g) : (γ, a) → (γ′, a′) if f : γ → γ′ and g : A(f)(a) → a′.

11

The groupoid model

We take C := Gpd, the category of groupoids and functors.

We define Ty(Γ) := [Γ,Gpd] (functors from Γ to Gpd)

If f : ∆ → Γ, we can take A[f] := A ◦ f : [∆,Gpd].

Terms Tm(Γ,A) are “dependent functors”:

M0 ∈ (Πγ ∈ Γ).A(γ)

M1 ∈ (Πf : γ → γ′).
(
A(f)(M0(γ)) → M0(γ

′)
)

s.t. M1(idγ) = idM0(γ) and M1(f ◦ g) = M1(f) ◦ A(f)(M1(g)).
Substitution is again composition.

We define Γ · A :=
∫
Γ A, i.e., objects are pairs (γ ∈ Γ, a ∈ A(γ))

and (f , g) : (γ, a) → (γ′, a′) if f : γ → γ′ and g : A(f)(a) → a′.

11

The groupoid model

We take C := Gpd, the category of groupoids and functors.

We define Ty(Γ) := [Γ,Gpd] (functors from Γ to Gpd)

If f : ∆ → Γ, we can take A[f] := A ◦ f : [∆,Gpd].

Terms Tm(Γ,A) are “dependent functors”:

M0 ∈ (Πγ ∈ Γ).A(γ)

M1 ∈ (Πf : γ → γ′).
(
A(f)(M0(γ)) → M0(γ

′)
)

s.t. M1(idγ) = idM0(γ) and M1(f ◦ g) = M1(f) ◦ A(f)(M1(g)).
Substitution is again composition.

We define Γ · A :=
∫
Γ A, i.e., objects are pairs (γ ∈ Γ, a ∈ A(γ))

and (f , g) : (γ, a) → (γ′, a′) if f : γ → γ′ and g : A(f)(a) → a′.

11

Interpreting identity types

We interpret IdAa b as the discrete groupoid with objects
HomA(a, b). On morphisms, we define (IdA f g)(r) := g ◦ r ◦ f −1.

For refl : IdAa a, we can take refl := ida ∈ HomA(a, a).

For elim=, we are given d(x) ∈ C (x , x , idx) and r : Id(x , y), and
must construct elim=(d , r) ∈ C (x , y , r).

C is a functor, so it suffices to construct a morphism
(x , x , idx) → (x , y , r). Such a morphism is given by

f : x → x in A

g : x → y in A

h : IdA(f , g)(idx) → r in IdA(x , y)

So we can take f = id, g = r , h = id, and define
elim=(d , r) := C (id, r , id)(d(x)). (We also need to define actions on morphisms.)

12

Interpreting identity types

We interpret IdAa b as the discrete groupoid with objects
HomA(a, b). On morphisms, we define (IdA f g)(r) := g ◦ r ◦ f −1.

For refl : IdAa a, we can take refl := ida ∈ HomA(a, a).

For elim=, we are given d(x) ∈ C (x , x , idx) and r : Id(x , y), and
must construct elim=(d , r) ∈ C (x , y , r).

C is a functor, so it suffices to construct a morphism
(x , x , idx) → (x , y , r). Such a morphism is given by

f : x → x in A

g : x → y in A

h : IdA(f , g)(idx) → r in IdA(x , y)

So we can take f = id, g = r , h = id, and define
elim=(d , r) := C (id, r , id)(d(x)). (We also need to define actions on morphisms.)

12

Interpreting identity types

We interpret IdAa b as the discrete groupoid with objects
HomA(a, b). On morphisms, we define (IdA f g)(r) := g ◦ r ◦ f −1.

For refl : IdAa a, we can take refl := ida ∈ HomA(a, a).

For elim=, we are given d(x) ∈ C (x , x , idx) and r : Id(x , y), and
must construct elim=(d , r) ∈ C (x , y , r).

C is a functor, so it suffices to construct a morphism
(x , x , idx) → (x , y , r). Such a morphism is given by

f : x → x in A

g : x → y in A

h : IdA(f , g)(idx) → r in IdA(x , y)

So we can take f = id, g = r , h = id, and define
elim=(d , r) := C (id, r , id)(d(x)). (We also need to define actions on morphisms.)

12

Interpreting identity types

We interpret IdAa b as the discrete groupoid with objects
HomA(a, b). On morphisms, we define (IdA f g)(r) := g ◦ r ◦ f −1.

For refl : IdAa a, we can take refl := ida ∈ HomA(a, a).

For elim=, we are given d(x) ∈ C (x , x , idx) and r : Id(x , y), and
must construct elim=(d , r) ∈ C (x , y , r).

C is a functor, so it suffices to construct a morphism
(x , x , idx) → (x , y , r). Such a morphism is given by

f : x → x in A

g : x → y in A

h : IdA(f , g)(idx) → r in IdA(x , y)

So we can take f = id, g = r , h = id, and define
elim=(d , r) := C (id, r , id)(d(x)). (We also need to define actions on morphisms.)

12

Interpreting identity types

We interpret IdAa b as the discrete groupoid with objects
HomA(a, b). On morphisms, we define (IdA f g)(r) := g ◦ r ◦ f −1.

For refl : IdAa a, we can take refl := ida ∈ HomA(a, a).

For elim=, we are given d(x) ∈ C (x , x , idx) and r : Id(x , y), and
must construct elim=(d , r) ∈ C (x , y , r).

C is a functor, so it suffices to construct a morphism
(x , x , idx) → (x , y , r). Such a morphism is given by

f : x → x in A

g : x → y in A

h : f −1 ◦ idx ◦ g = r in IdA(x , y)

So we can take f = id, g = r , h = id, and define
elim=(d , r) := C (id, r , id)(d(x)). (We also need to define actions on morphisms.)

12

Interpreting identity types

We interpret IdAa b as the discrete groupoid with objects
HomA(a, b). On morphisms, we define (IdA f g)(r) := g ◦ r ◦ f −1.

For refl : IdAa a, we can take refl := ida ∈ HomA(a, a).

For elim=, we are given d(x) ∈ C (x , x , idx) and r : Id(x , y), and
must construct elim=(d , r) ∈ C (x , y , r).

C is a functor, so it suffices to construct a morphism
(x , x , idx) → (x , y , r). Such a morphism is given by

f : x → x in A

g : x → y in A

h : f −1 ◦ idx ◦ g = r in IdA(x , y)

So we can take f = id, g = r , h = id, and define
elim=(d , r) := C (id, r , id)(d(x)). (We also need to define actions on morphisms.)

12

Interpreting other type formers

Other type fomers can be interpreted much as in the Set model,
after taking care to define actions on morphisms.

Of particular interest is the universe.

Given a set-theoretic universe V , we define U : Γ → Gpd as
U(γ) := GpdV , the groupoid of V -small groupoids, with an
inclusion El : GpdV ↪→ Gpd.

That is: the objects of GpdV are groupoids whose object set and
morphism sets live in V , and the morphisms in GpdV are
isomorphisms.

In particular, this means that A =U B in the model iff A ∼= B.
; Precursor to the Univalence Axiom.

13

Interpreting other type formers

Other type fomers can be interpreted much as in the Set model,
after taking care to define actions on morphisms.

Of particular interest is the universe.

Given a set-theoretic universe V , we define U : Γ → Gpd as
U(γ) := GpdV , the groupoid of V -small groupoids, with an
inclusion El : GpdV ↪→ Gpd.

That is: the objects of GpdV are groupoids whose object set and
morphism sets live in V , and the morphisms in GpdV are
isomorphisms.

In particular, this means that A =U B in the model iff A ∼= B.
; Precursor to the Univalence Axiom.

13

Interpreting other type formers

Other type fomers can be interpreted much as in the Set model,
after taking care to define actions on morphisms.

Of particular interest is the universe.

Given a set-theoretic universe V , we define U : Γ → Gpd as
U(γ) := GpdV , the groupoid of V -small groupoids, with an
inclusion El : GpdV ↪→ Gpd.

That is: the objects of GpdV are groupoids whose object set and
morphism sets live in V , and the morphisms in GpdV are
isomorphisms.

In particular, this means that A =U B in the model iff A ∼= B.
; Precursor to the Univalence Axiom.

13

Interpreting other type formers

Other type fomers can be interpreted much as in the Set model,
after taking care to define actions on morphisms.

Of particular interest is the universe.

Given a set-theoretic universe V , we define U : Γ → Gpd as
U(γ) := GpdV , the groupoid of V -small groupoids, with an
inclusion El : GpdV ↪→ Gpd.

That is: the objects of GpdV are groupoids whose object set and
morphism sets live in V , and the morphisms in GpdV are
isomorphisms.

In particular, this means that A =U B in the model iff A ∼= B.
; Precursor to the Univalence Axiom.

13

Interpreting other type formers

Other type fomers can be interpreted much as in the Set model,
after taking care to define actions on morphisms.

Of particular interest is the universe.

Given a set-theoretic universe V , we define U : Γ → Gpd as
U(γ) := GpdV , the groupoid of V -small groupoids, with an
inclusion El : GpdV ↪→ Gpd.

That is: the objects of GpdV are groupoids whose object set and
morphism sets live in V , and the morphisms in GpdV are
isomorphisms.

In particular, this means that A =U B in the model iff A ∼= B.
; Precursor to the Univalence Axiom.

13

Refuting UIP

Let G be your favourite non-trivial group (e.g. G = (Z,+, 0)) and
consider the one-element groupoid BG with BG (⋆, ⋆) = G .

Suppose u is a proof of UIP, i.e.,

u : (ΠA : U)(Πa : El(A))(Πb : El(A))(Πp : a = b))(Πq : a = b)).p = q

We would then have

u(BZ, ⋆, ⋆, 0, 1) ∈ Id (IdBZ ⋆ ⋆) 0 1

in the model, but IdBZ ⋆ ⋆ is a discrete groupoid, hence
Id (IdBZ ⋆ ⋆) 0 1 = ∅ since 0 ̸= 1. Hence no such proof u can
exist.

14

Refuting UIP

Let G be your favourite non-trivial group (e.g. G = (Z,+, 0)) and
consider the one-element groupoid BG with BG (⋆, ⋆) = G .

Suppose u is a proof of UIP, i.e.,

u : (ΠA : U)(Πa : El(A))(Πb : El(A))(Πp : a = b))(Πq : a = b)).p = q

We would then have

u(BZ, ⋆, ⋆, 0, 1) ∈ Id (IdBZ ⋆ ⋆) 0 1

in the model, but IdBZ ⋆ ⋆ is a discrete groupoid, hence
Id (IdBZ ⋆ ⋆) 0 1 = ∅ since 0 ̸= 1. Hence no such proof u can
exist.

14

Refuting UIP

Let G be your favourite non-trivial group (e.g. G = (Z,+, 0)) and
consider the one-element groupoid BG with BG (⋆, ⋆) = G .

Suppose u is a proof of UIP, i.e.,

u : (ΠA : U)(Πa : El(A))(Πb : El(A))(Πp : a = b))(Πq : a = b)).p = q

We would then have

u(BZ, ⋆, ⋆, 0, 1) ∈ Id (IdBZ ⋆ ⋆) 0 1

in the model, but IdBZ ⋆ ⋆ is a discrete groupoid, hence
Id (IdBZ ⋆ ⋆) 0 1 = ∅ since 0 ̸= 1. Hence no such proof u can
exist.

14

Going higher

Because each IdAa b is discrete, the model does validate
uniqueness of identity proofs between identity proofs (“UIPIP”).

Their uniqueness can be refuted in a model of 2-groupoids, then
we might want to move to 3-groupoids to refute UIPIPIP, etc.

In the limit, we would rediscover Voevodsky’s simplicial sets (aka
∞-groupoids) model of homotopy type theory (Kapulkin and
Lumsdaine, 2021).

15

Going higher

Because each IdAa b is discrete, the model does validate
uniqueness of identity proofs between identity proofs (“UIPIP”).

Their uniqueness can be refuted in a model of 2-groupoids, then
we might want to move to 3-groupoids to refute UIPIPIP, etc.

In the limit, we would rediscover Voevodsky’s simplicial sets (aka
∞-groupoids) model of homotopy type theory (Kapulkin and
Lumsdaine, 2021).

15

Going higher

Because each IdAa b is discrete, the model does validate
uniqueness of identity proofs between identity proofs (“UIPIP”).

Their uniqueness can be refuted in a model of 2-groupoids, then
we might want to move to 3-groupoids to refute UIPIPIP, etc.

In the limit, we would rediscover Voevodsky’s simplicial sets (aka
∞-groupoids) model of homotopy type theory (Kapulkin and
Lumsdaine, 2021).

15

TheD-setsmodel

A model based on computation

Intuitively, all constructions of type theory are computable. Can we
make this precise?

We will construct a model where each term has an associated
piece of “computation data” from a model of computation D.

Definition A combinatory algebra is a set D with a binary
operation $: D × D → D together with elements K ,S ∈ D such
that

K $ x $ y = x S $ x $ y $ z = (x $ z) $ (y $ z)

(Can also work with partial combinatory algebras, i.e. $ partial.)

Examples D = untyped lambda terms, D = an enumeration of
Turing machines as natural numbers.

16

A model based on computation

Intuitively, all constructions of type theory are computable. Can we
make this precise?

We will construct a model where each term has an associated
piece of “computation data” from a model of computation D.

Definition A combinatory algebra is a set D with a binary
operation $: D × D → D together with elements K ,S ∈ D such
that

K $ x $ y = x S $ x $ y $ z = (x $ z) $ (y $ z)

(Can also work with partial combinatory algebras, i.e. $ partial.)

Examples D = untyped lambda terms, D = an enumeration of
Turing machines as natural numbers.

16

A model based on computation

Intuitively, all constructions of type theory are computable. Can we
make this precise?

We will construct a model where each term has an associated
piece of “computation data” from a model of computation D.

Definition A combinatory algebra is a set D with a binary
operation $: D × D → D together with elements K , S ∈ D such
that

K $ x $ y = x S $ x $ y $ z = (x $ z) $ (y $ z)

(Can also work with partial combinatory algebras, i.e. $ partial.)

Examples D = untyped lambda terms, D = an enumeration of
Turing machines as natural numbers.

16

Functional completeness

D is functionally complete: for each term t(x1, . . . , xn) ∈ D there
is f ∈ D such that f $ a1 $. . . $ an = t(a1, . . . , an).

Hence we can do the usual Church encoding tricks and define
pairing and projections: There are π1, π2, <a, b> ∈ D such that

π1 $ a $ b = a

π2 $ a $ b = b

<a, b> $ c = c $ a $ b

Hence <a, b> $π1 = a and <a, b> $π2 = b.

Similarly we can define Church numerals cn for natural numbers.

17

Functional completeness

D is functionally complete: for each term t(x1, . . . , xn) ∈ D there
is f ∈ D such that f $ a1 $. . . $ an = t(a1, . . . , an).

Hence we can do the usual Church encoding tricks and define
pairing and projections: There are π1, π2, <a, b> ∈ D such that

π1 $ a $ b = a

π2 $ a $ b = b

<a, b> $ c = c $ a $ b

Hence <a, b> $π1 = a and <a, b> $π2 = b.

Similarly we can define Church numerals cn for natural numbers.

17

Functional completeness

D is functionally complete: for each term t(x1, . . . , xn) ∈ D there
is f ∈ D such that f $ a1 $. . . $ an = t(a1, . . . , an).

Hence we can do the usual Church encoding tricks and define
pairing and projections: There are π1, π2, <a, b> ∈ D such that

π1 $ a $ b = a

π2 $ a $ b = b

<a, b> $ c = c $ a $ b

Hence <a, b> $π1 = a and <a, b> $π2 = b.

Similarly we can define Church numerals cn for natural numbers.

17

D-sets and their morphisms

Definition A D-set (or assembly) is a pair (X ,⊩X), where X is a
set and ⊩X⊆ D × X , such that for each x ∈ X , there exists a ∈ D
such that a ⊩X x .

A morphism (X ,⊩X) → (Y ,⊩Y) is a function X → Y such that
there exists d ∈ D such that if a ⊩X x then d $ a ⊩Y f (x).

Terminology if a ⊩X x , we call a a realizer of x . We say that d
above tracks f .

There is an identity morphism, and D-set morphisms compose
(easy by functional completeness).

18

D-sets and their morphisms

Definition A D-set (or assembly) is a pair (X ,⊩X), where X is a
set and ⊩X⊆ D × X , such that for each x ∈ X , there exists a ∈ D
such that a ⊩X x .

A morphism (X ,⊩X) → (Y ,⊩Y) is a function X → Y such that
there exists d ∈ D such that if a ⊩X x then d $ a ⊩Y f (x).

Terminology if a ⊩X x , we call a a realizer of x . We say that d
above tracks f .

There is an identity morphism, and D-set morphisms compose
(easy by functional completeness).

18

D-sets and their morphisms

Definition A D-set (or assembly) is a pair (X ,⊩X), where X is a
set and ⊩X⊆ D × X , such that for each x ∈ X , there exists a ∈ D
such that a ⊩X x .

A morphism (X ,⊩X) → (Y ,⊩Y) is a function X → Y such that
there exists d ∈ D such that if a ⊩X x then d $ a ⊩Y f (x).

Terminology if a ⊩X x , we call a a realizer of x . We say that d
above tracks f .

There is an identity morphism, and D-set morphisms compose
(easy by functional completeness).

18

D-sets and their morphisms

Definition A D-set (or assembly) is a pair (X ,⊩X), where X is a
set and ⊩X⊆ D × X , such that for each x ∈ X , there exists a ∈ D
such that a ⊩X x .

A morphism (X ,⊩X) → (Y ,⊩Y) is a function X → Y such that
there exists d ∈ D such that if a ⊩X x then d $ a ⊩Y f (x).

Terminology if a ⊩X x , we call a a realizer of x . We say that d
above tracks f .

There is an identity morphism, and D-set morphisms compose
(easy by functional completeness).

18

The category of D-sets

The category of D-sets has lots of nice structure:

▶ Products (X ,⊩X)× (Y ,⊩Y) = (X × Y ,⊩) where d ⊩ (x , y)
iff d = <a, b> such that a ⊩X x and b ⊩Y y .

▶ Exponentials (X ,⊩X) ⇒ (Y ,⊩Y) with underlying sets D-sets
morphisms, and d ⊩ f iff d tracks f .

▶ A natural numbers objects (N,⊩N) where d ⊩N n iff d = cn.

▶ Coproducts (X0,⊩X0) + (X1,⊩X1) = (X0 + X1,⊩) where
d ⊩ ini x iff d = <ci , a> such that a ⊩Xi

x .

19

D-sets as a CwF

We build a category with families structure on the category of
D-sets.

We take

Ty((X ,⊩X)) := X → D-Set

Tm((X ,⊩X),Y) := {b : (Πx ∈ X).Y (x) | ∃d ∈ D.d tracks b}

and define (X ,⊩X) · Y := ((Σx ∈ X).Y (x),⊩) where d ⊩ (x , y) iff
d = <a, b> such that a ⊩X x and b ⊩Y (x) y .

Using the categorical structure in D-Set, we interpret (dependent)
functions and pairs, disjoint unions, natural numbers, etc.

20

D-sets as a CwF

We build a category with families structure on the category of
D-sets.

We take

Ty((X ,⊩X)) := X → D-Set

Tm((X ,⊩X),Y) := {b : (Πx ∈ X).Y (x) | ∃d ∈ D.d tracks b}

and define (X ,⊩X) · Y := ((Σx ∈ X).Y (x),⊩) where d ⊩ (x , y) iff
d = <a, b> such that a ⊩X x and b ⊩Y (x) y .

Using the categorical structure in D-Set, we interpret (dependent)
functions and pairs, disjoint unions, natural numbers, etc.

20

An impredicative universe

There is an interesting subcategory of so-called modest D-sets:

Definition A D-set (X ,⊩X) is modest if d ⊩X x and d ⊩X y
implies x = y . (A family Y : X → D-Set is called modest if each
Yx is modest.)

Example Unless D is trivial, (N,⊩N) is modest.

Modest sets are isomorphic to partial equivalence relations on D,
hence “all small”. Thus: if B ∈ Ty(Γ · A) is modest then
ΠAB ∈ Ty(Γ) is modest, for all A ∈ Ty(Γ).

Modest sets form a universe closed under impredicative
quantification, containing the natural numbers. Such a universe
contradicts classical logic.

21

An impredicative universe

There is an interesting subcategory of so-called modest D-sets:

Definition A D-set (X ,⊩X) is modest if d ⊩X x and d ⊩X y
implies x = y . (A family Y : X → D-Set is called modest if each
Yx is modest.)

Example Unless D is trivial, (N,⊩N) is modest.

Modest sets are isomorphic to partial equivalence relations on D,
hence “all small”. Thus: if B ∈ Ty(Γ · A) is modest then
ΠAB ∈ Ty(Γ) is modest, for all A ∈ Ty(Γ).

Modest sets form a universe closed under impredicative
quantification, containing the natural numbers. Such a universe
contradicts classical logic.

21

An impredicative universe

There is an interesting subcategory of so-called modest D-sets:

Definition A D-set (X ,⊩X) is modest if d ⊩X x and d ⊩X y
implies x = y . (A family Y : X → D-Set is called modest if each
Yx is modest.)

Example Unless D is trivial, (N,⊩N) is modest.

Modest sets are isomorphic to partial equivalence relations on D,
hence “all small”. Thus: if B ∈ Ty(Γ · A) is modest then
ΠAB ∈ Ty(Γ) is modest, for all A ∈ Ty(Γ).

Modest sets form a universe closed under impredicative
quantification, containing the natural numbers. Such a universe
contradicts classical logic.

21

An impredicative universe

There is an interesting subcategory of so-called modest D-sets:

Definition A D-set (X ,⊩X) is modest if d ⊩X x and d ⊩X y
implies x = y . (A family Y : X → D-Set is called modest if each
Yx is modest.)

Example Unless D is trivial, (N,⊩N) is modest.

Modest sets are isomorphic to partial equivalence relations on D,
hence “all small”. Thus: if B ∈ Ty(Γ · A) is modest then
ΠAB ∈ Ty(Γ) is modest, for all A ∈ Ty(Γ).

Modest sets form a universe closed under impredicative
quantification, containing the natural numbers. Such a universe
contradicts classical logic.

21

Metatheory

Metatheory

What kind of properties of a type theory might one care about?

▶ Consistency: There is no proof of 0 in the empty context.

▶ Canonicity: Every closed term of type N is equal to a
numeral sucn 0.

▶ Normalisation: Every term is equal to a term in normal form.

▶ (Strong normalisation: Every term reduces to a term in
normal form, no matter the reduction strategy.)

22

Metatheory

What kind of properties of a type theory might one care about?

▶ Consistency: There is no proof of 0 in the empty context.

▶ Canonicity: Every closed term of type N is equal to a
numeral sucn 0.

▶ Normalisation: Every term is equal to a term in normal form.

▶ (Strong normalisation: Every term reduces to a term in
normal form, no matter the reduction strategy.)

22

Consistency

Exhibited by (e.g.) the Set model:

If there was a proof of 0, it would be interpreted as an element of
∅ in the Set model, which is absurd.

If you propose an extension to a type theory, you want to
know/show that it is still consistent. But there is not much you
can do with a proof of consistency.

23

Consistency

Exhibited by (e.g.) the Set model:

If there was a proof of 0, it would be interpreted as an element of
∅ in the Set model, which is absurd.

If you propose an extension to a type theory, you want to
know/show that it is still consistent. But there is not much you
can do with a proof of consistency.

23

Canonicity

Canonicity: Every closed term of type N is (judgementally) equal
to a numeral sucn 0.

The same in spirit: “Every closed term of type Bool is
(judgementally) equal to true or false”.

How do we prove it? Unfortunately, a naive induction on typing
judgements does not work.

24

Canonicity

Canonicity: Every closed term of type N is (judgementally) equal
to a numeral sucn 0.

The same in spirit: “Every closed term of type Bool is
(judgementally) equal to true or false”.

How do we prove it? Unfortunately, a naive induction on typing
judgements does not work.

24

Canonicity

Canonicity: Every closed term of type N is (judgementally) equal
to a numeral sucn 0.

The same in spirit: “Every closed term of type Bool is
(judgementally) equal to true or false”.

How do we prove it? Unfortunately, a naive induction on typing
judgements does not work.

24

A “proof-relevant” logical relation (Coquand 2019)
To each (closed) type A we associate a family of sets A′ : A → Set
of “proofs of canonicity”.

To each closed term t : A, we associate an element t ′ ∈ A′(t).

N′(t) := {n | t ≡ sucn 0}(
(Πx : A).B

)′
(t) := (Πa : A)(Πa′ : A′(a)).B ′(a, a′) (t a)

(t a)′ := t ′ a a′(
(λx : A).t

)′
:= (λa : A)(λa′ : A′(a)).t ′ a a′

(suc n)′ := n′ + 1

...

By induction on derivations, we can show that if ⊢ a : A then
a′ ∈ A′(t) and if ⊢ a ≡ b : A then a′ = b′. (Need to generalise

statement to closing substitutions.) In particular if ⊢ t : N then
t ≡ sucn 0 for some n.

25

A “proof-relevant” logical relation (Coquand 2019)
To each (closed) type A we associate a family of sets A′ : A → Set
of “proofs of canonicity”.

To each closed term t : A, we associate an element t ′ ∈ A′(t).

N′(t) := {n | t ≡ sucn 0}(
(Πx : A).B

)′
(t) := (Πa : A)(Πa′ : A′(a)).B ′(a, a′) (t a)

(t a)′ := t ′ a a′(
(λx : A).t

)′
:= (λa : A)(λa′ : A′(a)).t ′ a a′

(suc n)′ := n′ + 1

...

By induction on derivations, we can show that if ⊢ a : A then
a′ ∈ A′(t) and if ⊢ a ≡ b : A then a′ = b′. (Need to generalise

statement to closing substitutions.) In particular if ⊢ t : N then
t ≡ sucn 0 for some n.

25

A “proof-relevant” logical relation (Coquand 2019)
To each (closed) type A we associate a family of sets A′ : A → Set
of “proofs of canonicity”.

To each closed term t : A, we associate an element t ′ ∈ A′(t).

N′(t) := {n | t ≡ sucn 0}(
(Πx : A).B

)′
(t) := (Πa : A)(Πa′ : A′(a)).B ′(a, a′) (t a)

(t a)′ := t ′ a a′(
(λx : A).t

)′
:= (λa : A)(λa′ : A′(a)).t ′ a a′

(suc n)′ := n′ + 1

...

By induction on derivations, we can show that if ⊢ a : A then
a′ ∈ A′(t) and if ⊢ a ≡ b : A then a′ = b′. (Need to generalise

statement to closing substitutions.) In particular if ⊢ t : N then
t ≡ sucn 0 for some n.

25

A more structured approach?

We can organise the argument as follows:

For each model M = (C,Ty,Tm), we build a new “canonicity”
model M∗ = (C∗,Ty∗,Tm∗) together with a model morphism
M∗ → M.

This way, it is easier to not accidentally forget a clause.

26

The “canonicity” model
The objects of C∗ are pairs (Γ, Γ′) where Γ ∈ C and
Γ′ : HomC(1, Γ) → Set, with 1∗ = (1, λ .1).

Morphisms are pairs (σ, σ′) where

σ : ∆ → Γ

σ′ : (Πτ : 1 → ∆).
(
∆′(τ) → Γ′(σ ◦ τ)

)

We define Ty∗(Γ, Γ′) to be the set of pairs (A,A′) where

A ∈ Ty(Γ)

A′ ∈ (Πσ : 1 → Γ)
(
Γ′(σ) → Tm(1,A[σ]) → Set

)
Similarly Tm∗((Γ, Γ′), (A,A′)) consists of (t, t ′) such that

t ∈ Tm(Γ,A)

t ′ ∈ (Πσ : 1 → Γ)(Πσ′ ∈ Γ′(σ)).A′ σ σ′ (t[σ])

27

The “canonicity” model
The objects of C∗ are pairs (Γ, Γ′) where Γ ∈ C and
Γ′ : HomC(1, Γ) → Set, with 1∗ = (1, λ .1).

Morphisms are pairs (σ, σ′) where

σ : ∆ → Γ

σ′ : (Πτ : 1 → ∆).
(
∆′(τ) → Γ′(σ ◦ τ)

)
We define Ty∗(Γ, Γ′) to be the set of pairs (A,A′) where

A ∈ Ty(Γ)

A′ ∈ (Πσ : 1 → Γ)
(
Γ′(σ) → Tm(1,A[σ]) → Set

)
Similarly Tm∗((Γ, Γ′), (A,A′)) consists of (t, t ′) such that

t ∈ Tm(Γ,A)

t ′ ∈ (Πσ : 1 → Γ)(Πσ′ ∈ Γ′(σ)).A′ σ σ′ (t[σ])

27

Canonicity from M∗

If M has natural numbers Nat ∈ Ty(Γ), we can define
(Nat,Nat′) ∈ Ty∗(Γ, Γ′) where

Nat′ σ σ′ t := {n | t ≡ sucn 0}

and similarly for other type and term constructors. The model
morphism π : M∗ → M is given by first projection.

Theorem In the syntax, every closed term of type N is
(judgementally) equal to a numeral sucn 0.

Proof: The syntax forms an initial model M0. We thus have a
map i : M0 → M∗

0, and π ◦ i = idM0 by initiality. For closed terms
t : N we thus have t ′ ∈ N′ ⋆ ⋆ t so t ≡ sucn 0 for some n ∈ N.

Even more abstractly, this model construction is an instance of
gluing for CwFs (Kaposi, Huber, and Sattler 2019) .

28

Canonicity from M∗

If M has natural numbers Nat ∈ Ty(Γ), we can define
(Nat,Nat′) ∈ Ty∗(Γ, Γ′) where

Nat′ σ σ′ t := {n | t ≡ sucn 0}

and similarly for other type and term constructors. The model
morphism π : M∗ → M is given by first projection.

Theorem In the syntax, every closed term of type N is
(judgementally) equal to a numeral sucn 0.

Proof: The syntax forms an initial model M0. We thus have a
map i : M0 → M∗

0, and π ◦ i = idM0 by initiality. For closed terms
t : N we thus have t ′ ∈ N′ ⋆ ⋆ t so t ≡ sucn 0 for some n ∈ N.

Even more abstractly, this model construction is an instance of
gluing for CwFs (Kaposi, Huber, and Sattler 2019) .

28

Canonicity from M∗

If M has natural numbers Nat ∈ Ty(Γ), we can define
(Nat,Nat′) ∈ Ty∗(Γ, Γ′) where

Nat′ σ σ′ t := {n | t ≡ sucn 0}

and similarly for other type and term constructors. The model
morphism π : M∗ → M is given by first projection.

Theorem In the syntax, every closed term of type N is
(judgementally) equal to a numeral sucn 0.

Proof: The syntax forms an initial model M0. We thus have a
map i : M0 → M∗

0, and π ◦ i = idM0 by initiality. For closed terms
t : N we thus have t ′ ∈ N′ ⋆ ⋆ t so t ≡ sucn 0 for some n ∈ N.

Even more abstractly, this model construction is an instance of
gluing for CwFs (Kaposi, Huber, and Sattler 2019) .

28

Canonicity from M∗

If M has natural numbers Nat ∈ Ty(Γ), we can define
(Nat,Nat′) ∈ Ty∗(Γ, Γ′) where

Nat′ σ σ′ t := {n | t ≡ sucn 0}

and similarly for other type and term constructors. The model
morphism π : M∗ → M is given by first projection.

Theorem In the syntax, every closed term of type N is
(judgementally) equal to a numeral sucn 0.

Proof: The syntax forms an initial model M0. We thus have a
map i : M0 → M∗

0, and π ◦ i = idM0 by initiality. For closed terms
t : N we thus have t ′ ∈ N′ ⋆ ⋆ t so t ≡ sucn 0 for some n ∈ N.

Even more abstractly, this model construction is an instance of
gluing for CwFs (Kaposi, Huber, and Sattler 2019) .

28

Summary

We have seen four models of type theory in the CwF framework:

1. Truth-value model demonstrating the independence of
0 = suc n without universes.

2. Groupoid model demonstrating the independence of UIP, and
suggesting the “universe extensionality axiom”

3. D-sets model enabling the extraction of computable data, and
demonstrating the independence of classical logic.

4. Canonicity model allowing us to derive canonicity.

29

References

Michael Beeson. “Recursive models for constructive set theories”. In: Annals of Mathematical Logic 23.2
(1982), pp. 127–178. doi: 10.1016/0003-4843(82)90003-1.

Marc Bezem, Thierry Coquand, and Simon Huber. “A Model of Type Theory in Cubical Sets”. In: TYPES
2013. Ed. by Ralph Matthes and Aleksy Schubert. Vol. 26. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2013, pp. 107–128. doi: 10.4230/LIPICS.TYPES.2013.107.

Thierry Coquand. “Pattern matching with dependent types”. In: Informal proceedings of Logical
Frameworks. Vol. 92. 1992, pp. 66–79.

Martin Hofmann and Thomas Streicher. “The Groupoid Model Refutes Uniqueness of Identity Proofs”. In:
LICS 1994. IEEE Computer Society, 1994, pp. 208–212. doi: 10.1109/LICS.1994.316071.

Ambrus Kaposi, Simon Huber, and Christian Sattler. “Gluing for Type Theory”. In: FSCD 2019. Ed. by
Herman Geuvers. Vol. 131. Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019, 25:1–25:19. doi: 10.4230/LIPIcs.FSCD.2019.25.

Krzysztof Kapulkin and Peter LeFanu Lumsdaine. “The simplicial model of Univalent Foundations (after
Voevodsky)”. In: Journal of the European Mathematical Society 23.6 (2021), pp. 2071–2126. doi:
10.4171/JEMS/1050.

Conor McBride. “Dependently Typed Functional Programs and Their Proofs”. PhD thesis. University of
Edinburgh, 1999.

Jan M. Smith. “The Independence of Peano’s Fourth Axiom from Martin-Löf’s Type Theory Without
Universes”. In: The Journal of Symbolic Logic 53.3 (1988), pp. 840–845.

Thomas Streicher. Investigations into intensional type theory. Habilitation thesis. 1993.

https://doi.org/10.1016/0003-4843(82)90003-1
https://doi.org/10.4230/LIPICS.TYPES.2013.107
https://doi.org/10.1109/LICS.1994.316071
https://doi.org/10.4230/LIPIcs.FSCD.2019.25
https://doi.org/10.4171/JEMS/1050

	Introduction
	Some concrete models
	The truth-value model
	The groupoid model
	The D-sets model

	Metatheory
	Summary
	References

