1. State and prove a propositional uniqueness rule for the empty type. 2. Show that the rules for identity types are equivalent to the following rules: refl : (x : A) -> Id A x x subst : (P : A -> Type) -> Id A x y -> P x -> P y unique : (x y : A) -> (r : Id A x y) -> Id ((Sigma a : A).Id A x a) (y , r) (x , refl) 3. Use the recursion principle for Nat and a universe to show (Id Nat 0 1) -> Empty. Can you do it without a universe?