Variations on inductive-recursive definitions

Fredrik Nordvall Forsberg

University of Strathclyde, Glasgow

Agda Implementors' Meeting, Gothenburg, 12 May 2017

Joint work with Neil Ghani, Conor McBride, Peter Hancock and Stephan Spahn

An inductive definition

```
data Rose (A : Set) : Set where
leaf : Rose A
node : A \rightarrow List (Rose A) \rightarrow Rose A
```

We can represent Rose A by a functor F_{Rose} : Set \rightarrow Set:

$$F_{\mathsf{Rose}}(X) = 1 + A imes \mathsf{List} X$$

An inductive definition

data Rose (A : Set) : Set where leaf : Rose Anode : $A \rightarrow$ List (Rose A) \rightarrow Rose A

We can represent Rose A by a functor F_{Rose} : Set \rightarrow Set:

$$F_{\mathsf{Rose}}(X) = 1 + A imes \mathsf{List}\,X$$

Rose A is the initial algebra of F_{Rose} .

An inductive-recursive definition

```
A universe closed inder N and \Sigma.
     data U : Set
     T : U \rightarrow Set
     data U where
        nat : U
        sig : (a : U) \rightarrow (b : T a \rightarrow U) \rightarrow U
     T nat = \mathbb{N}
     T (sig a b) = \Sigma (T a) (T \circ b)
```

An inductive-recursive definition

```
A universe closed inder N and \Sigma.
     data U : Set
     T : U \rightarrow Set
     data U where
        nat : U
        sig : (a : U) \rightarrow (b : T a \rightarrow U) \rightarrow U
     T nat = \mathbb{N}
     T (sig a b) = \Sigma (T a) (T \circ b)
```

U and T defined simultaneously.

An inductive-recursive definition

```
A universe closed inder N and \Sigma.
     data U : Set
     T : U \rightarrow Set
     data U where
        nat : U
        sig : (a : U) \rightarrow (b : T a \rightarrow U) \rightarrow U
     T nat = \mathbb{N}
     T (sig a b) = \Sigma (T a) (T o b)
```

U and T defined simultaneously.

Also (U, T) is the initial algebra of a functor.

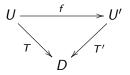
Category of families of Ds

The category Fam D for D: Set₁:

• objects pairs (U, T) where

 $U: \mathsf{Set}$ $T: U \to D$

• morphisms (U,T)
ightarrow (U',T') are f:U
ightarrow U' s.t.



commutes.

Note: Fam : Cat \rightarrow Cat is a monad; D considered as discrete category.

An endofunctor on Fam Set

data U : Set where nat : U sig : (a : U) \rightarrow (b : T a \rightarrow U) \rightarrow U T : U \rightarrow Set T nat = N T (sig a b) = Σ (T a) (T \circ b)

is represented by $F: \mathsf{Fam} \mathsf{Set} \to \mathsf{Fam} \mathsf{Set}$ where

 $F(X,Q) = (1,_\mapsto\mathbb{N}) + ((\Sigma a : X)(Q a \to X), (a,b) \mapsto \Sigma (Q a) (Q \circ b))$

An endofunctor on Fam Set

data U : Set where nat : U sig : (a : U) \rightarrow (b : T a \rightarrow U) \rightarrow U T : U \rightarrow Set T nat = N T (sig a b) = Σ (T a) (T \circ b)

is represented by $F: \mathsf{Fam} \mathsf{Set} \to \mathsf{Fam} \mathsf{Set}$ where

 $F(X,Q) = (1,_\mapsto\mathbb{N}) + ((\Sigma a : X)(Q a \to X), (a,b) \mapsto \Sigma (Q a) (Q \circ b))$

(U, T) is the initial algebra of F.

Representing inductive definitions

Not every functor defines a datatype. We want our inductive definitions to be strictly positive.

Representing inductive definitions

Not every functor defines a datatype. We want our inductive definitions to be strictly positive.

We can codify such definitions as follows (baby Dybjer-Setzer [1999, 2003, 2006]):

```
data ID : Set<sub>1</sub> where
stop : ID
side : (A : Set) \rightarrow (c : A \rightarrow ID) \rightarrow ID
ind : (A : Set) \rightarrow (c : ID) \rightarrow ID
```

Representing inductive definitions

Not every functor defines a datatype. We want our inductive definitions to be strictly positive.

We can codify such definitions as follows (baby Dybjer-Setzer [1999, 2003, 2006]):

```
data ID : Set<sub>1</sub> where
stop : ID
side : (A : Set) \rightarrow (c : A \rightarrow ID) \rightarrow ID
ind : (A : Set) \rightarrow (c : ID) \rightarrow ID
```

Each code gives rise to a functor:

A code for List A stop : ID side : (A : Set) \rightarrow (c : A \rightarrow ID) \rightarrow ID ind : (A : Set) \rightarrow (c : ID) \rightarrow ID

 $\begin{array}{l} \llbracket \text{stop} \rrbracket X = 1 \\ \llbracket \text{side } A \ c \rrbracket X = (\Sigma x : A) \llbracket c \ x \rrbracket X \\ \llbracket \text{ind } A \ c \rrbracket X = (A \rightarrow X) \times \llbracket c \rrbracket X \end{array}$

The datatype

data List (A : Set) : Set where [] : List A :: : A \rightarrow List A \rightarrow List A

is represented by

 $c_{\text{List}} = \text{side} \{ [], ::: \} ([] \mapsto \text{stop}; ::: \mapsto \text{side } A (_ \mapsto \text{ind } 1 \text{ stop}) \}$

The datatype

data List (A : Set) : Set where [] : List A \therefore : A \rightarrow List A \rightarrow List A

is represented by

 $c_{\text{List}} = \text{side} \{ [], ::\} ([] \mapsto \text{stop}; ::: \mapsto \text{side } A (\mapsto \text{ind } 1 \text{ stop}) \}$

Note: side $\{ tag_c, tag_d \}$ $(tag_c \mapsto c; tag_d \mapsto d)$ for encoding coproducts of codes.

С

Dybjer-Setzer codes for functors Fam $D \rightarrow$ Fam E:

Dybjer-Setzer codes for functors Fam $D \rightarrow$ Fam E:

```
data ID : Set<sub>1</sub> where
stop : ID
side : (A : Set) \rightarrow (c : A \rightarrow ID) \rightarrow ID
ind : (A : Set) \rightarrow (c : ID) \rightarrow ID
```

Dybjer-Setzer codes for functors Fam $D \rightarrow$ Fam E:

```
data DS (D E : Set<sub>1</sub>) : Set<sub>1</sub> where

stop : DS D E

side : (A : Set) \rightarrow (c : A \rightarrow DS D E) \rightarrow DS D E

ind : (A : Set) \rightarrow (c : DS D E) \rightarrow DS D E
```

Dybjer-Setzer codes for functors Fam $D \rightarrow$ Fam E:

data DS (D E : Set₁) : Set₁ where ι : E \rightarrow DS D E side : (A : Set) \rightarrow (c : A \rightarrow DS D E) \rightarrow DS D E ind : (A : Set) \rightarrow (c : DS D E) \rightarrow DS D E

Dybjer-Setzer codes for functors Fam $D \rightarrow$ Fam E:

data DS (D E : Set₁) : Set₁ where $\iota : E \rightarrow DS D E$ $\sigma : (A : Set) \rightarrow (c : A \rightarrow DS D E) \rightarrow DS D E$ ind : (A : Set) \rightarrow (c : DS D E) \rightarrow DS D E

Dybjer-Setzer codes for functors Fam $D \rightarrow$ Fam E:

data DS (D E : Set₁) : Set₁ where ι : E \rightarrow DS D E σ : (A : Set) \rightarrow (c : A \rightarrow DS D E) \rightarrow DS D E δ : (A : Set) \rightarrow (c : (A \rightarrow D) \rightarrow DS D E) \rightarrow DS D E

Dybjer-Setzer codes for functors Fam $D \rightarrow$ Fam E:

data DS (D E : Set₁) : Set₁ where ι : E \rightarrow DS D E σ : (A : Set) \rightarrow (c : A \rightarrow DS D E) \rightarrow DS D E δ : (A : Set) \rightarrow (c : (A \rightarrow D) \rightarrow DS D E) \rightarrow DS D E

 $[\![]]: \mathsf{DS} \ D \ E \to \mathsf{Fam} \ D \to \mathsf{Fam} \ E$

 $\begin{bmatrix} \iota & e \end{bmatrix} (U, T) = (1, \star \mapsto e)$ $\begin{bmatrix} \sigma & A & f \end{bmatrix} (U, T) = (\Sigma a : A)(\llbracket f & a \rrbracket (U, T))$ $\begin{bmatrix} \delta & A & F \rrbracket (U, T) = (\Sigma g : A \to U)(\llbracket F (T \circ g) \rrbracket (U, T)) \end{bmatrix}$

Dybjer-Setzer codes for functors Fam $D \rightarrow$ Fam E:

data DS (D E : Set₁) : Set₁ where $\iota : E \rightarrow DS D E$ σ : (A : Set) \rightarrow (c : A \rightarrow DS D E) \rightarrow DS D E δ : (A : Set) \rightarrow (c : (A \rightarrow D) \rightarrow DS D E) \rightarrow DS D E $[_]: DS D E \rightarrow Fapr D \rightarrow Fam D$ $[\iota e] (U, T) = (1, \star \mapsto e)$ $[\sigma A f] (U, T) = (\Sigma a : A)([f f] (U, T))$ $[\delta A F] (U, T) = (\Sigma g : A \to U) ([F (T \circ g)] (U, T))$

Dybjer-Setzer codes for functors Fam $D \rightarrow$ Fam E:

data DS (D E : Set₁) : Set₁ where $\iota : E \rightarrow DS D E$ σ : (A : Set) \rightarrow (c : A \rightarrow DS D E) \rightarrow DS D E δ : (A : Set) \rightarrow (c : (A \rightarrow D) \rightarrow DS D E) \rightarrow DS D E $[] : DS D E \rightarrow Fam D \rightarrow Fam E$ $[\iota e] (U, T) = (1, \star \mapsto e)$ $\llbracket \sigma \land f \rrbracket (U, T) = (\Sigma a : A)(\llbracket f a \rrbracket (U, T))$ $\llbracket \delta \ A \ F \rrbracket (U, T) = (\Sigma g : A \to U)(\llbracket F \ (T \circ g) \rrbracket (U, T))$

Note: Fam $1 \cong$ Set and DS $1 \ 1 \cong$ ID.

The code

$$c_{\Sigma\mathbb{N}} = \sigma \{ \mathsf{nat}, \mathsf{sig} \} (\mathsf{nat} \mapsto \iota \mathbb{N}; \\ \mathsf{sig} \mapsto \delta \ 1 \ (X \mapsto (\delta \ (X \star) \ (Y \mapsto \iota \ (\Sigma \ (X \star) \ Y)))))$$

$$F(U,T) = (1, \star \mapsto \mathbb{N}) + ((\Sigma s : U)(Ts \to U), (s,p) \mapsto \Sigma (Ts) (T \circ p))$$

The code

$$c_{\Sigma\mathbb{N}} = \sigma \{ \mathsf{nat}, \mathsf{sig} \} (\mathsf{nat} \mapsto \iota \mathbb{N}; \\ \mathsf{sig} \mapsto \delta \ 1 \ (X \mapsto (\delta \ (X \star) \ (Y \mapsto \iota \ (\Sigma \ (X \star) \ Y)))))$$

$$F(U,T) = (1, \star \mapsto \mathbb{N}) + ((\Sigma s : U)(Ts \to U), (s,p) \mapsto \Sigma (Ts) (T \circ p))$$

The code

$$\begin{split} c_{\Sigma\mathbb{N}} &= \sigma \; \{\mathsf{nat}, \mathsf{sig}\} \; (\mathsf{nat} \mapsto \iota \; \mathbb{N}; \\ &\qquad \mathsf{sig} \mapsto \delta \; 1 \; (X \mapsto (\delta \; (X \star) \; (Y \mapsto \iota \; (\Sigma \; (X \star) \; Y))))) \end{split}$$

$$F(U, T) = (1, \star \mapsto \mathbb{N}) + ((\Sigma s : 1 \to U)(T(s \star) \to U), (s, p) \mapsto \Sigma (T (s \star)) (T \circ p))$$

The code

$$\begin{split} c_{\Sigma\mathbb{N}} &= \sigma \; \{\mathsf{nat}, \mathsf{sig}\} \; (\mathsf{nat} \mapsto \iota \; \mathbb{N}; \\ &\qquad \mathsf{sig} \mapsto \delta \; 1 \; (X \mapsto (\delta \; (X \star) \; (Y \mapsto \iota \; (\Sigma \; (X \star) \; Y))))) \end{split}$$

$$F(U, T) = (1, \star \mapsto \mathbb{N}) + ((\Sigma s : 1 \to U)(T(s \star) \to U), (s, p) \mapsto \Sigma(T(s \star))(T \circ p))$$

The code

$$c_{\Sigma\mathbb{N}} = \sigma \{ \mathsf{nat}, \mathsf{sig} \} (\mathsf{nat} \mapsto \iota \mathbb{N}; \\ \mathsf{sig} \mapsto \delta 1 (X \mapsto (\delta (X \star) (Y \mapsto \iota (\Sigma (X \star) Y)))))$$

$$F(U, T) = (1, \star \mapsto \mathbb{N}) + ((\Sigma s : 1 \to U)(T(s \star) \to U), (s, p) \mapsto \Sigma (T (s \star)) (T \circ p))$$

The code

$$\begin{split} c_{\Sigma\mathbb{N}} &= \sigma \; \{\mathsf{nat}, \mathsf{sig}\} \; (\mathsf{nat} \mapsto \iota \; \mathbb{N}; \\ &\qquad \mathsf{sig} \mapsto \delta \; 1 \; (X \mapsto (\delta \; (X \star) \; (Y \mapsto \iota \; (\Sigma \; (X \star) \; Y))))) \end{split}$$

$$F(U, T) = (1, \star \mapsto \mathbb{N}) + ((\Sigma s : 1 \to U)(T(s \star) \to U), (s, p) \mapsto \Sigma (T (s \star)) (T \circ p))$$

DS codes represent functors; are they closed under composition?

That is, given $c : DS \ C \ D$ and $d : DS \ D \ E$, is there a code $d \bullet c : DS \ C \ E$ representing $[\![d]\!] \circ [\![c]\!] : Fam \ C \to Fam \ E$?

DS codes represent functors; are they closed under composition?

That is, given $c : DS \ C \ D$ and $d : DS \ D \ E$, is there a code $d \bullet c : DS \ C \ E$ representing $\llbracket d \rrbracket \circ \llbracket c \rrbracket$: Fam $C \to$ Fam E?

Why care?

DS codes represent functors; are they closed under composition?

That is, given $c : DS \ C \ D$ and $d : DS \ D \ E$, is there a code $d \bullet c : DS \ C \ E$ representing $[\![d]\!] \circ [\![c]\!] : Fam \ C \to Fam \ E$?

Why care?

• Modularity: plug in *c* later.

DS codes represent functors; are they closed under composition?

That is, given $c : DS \ C \ D$ and $d : DS \ D \ E$, is there a code $d \bullet c : DS \ C \ E$ representing $[\![d]\!] \circ [\![c]\!] : Fam \ C \to Fam \ E$?

Why care?

- Modularity: plug in *c* later.
- Solve $F(G(X)) \cong X$, not just $F(X) \cong X$. E.g. $c_{\mathsf{Rose}} = c_{\mathsf{List}} \bullet c_{\mathsf{List}}$.

DS codes represent functors; are they closed under composition?

That is, given $c : DS \ C \ D$ and $d : DS \ D \ E$, is there a code $d \bullet c : DS \ C \ E$ representing $[\![d]\!] \circ [\![c]\!] : Fam \ C \to Fam \ E$?

Why care?

- Modularity: plug in *c* later.
- Solve $F(G(X)) \cong X$, not just $F(X) \cong X$. E.g. $c_{\text{Rose}} = c_{\text{List}} \bullet c_{\text{List}}$.
- Longer term goal: want syntax-independent characterisation of induction-recursion (cf polynomial functors [Gambino and Kock]) will likely be closed under composition.

A proof attempt

Define $d \bullet c$ by induction on d:

A proof attempt

Define $d \bullet c$ by induction on d:

Since $\llbracket \iota \ e \rrbracket (\llbracket c \rrbracket (U, T)) = (1, \star \mapsto e),$

$$(\iota e) \bullet c = \iota e$$

is easy.

A proof attempt

Define $d \bullet c$ by induction on d:

Since $\llbracket \iota \ e \rrbracket (\llbracket c \rrbracket (U, T)) = (1, \star \mapsto e),$ $(\iota \ e) \bullet c = \iota \ e$

is easy.

Similarly $(\sigma A f) \bullet c = \sigma A (a \mapsto (f a) \bullet d)$ by the induction hypothesis.

A proof attempt

Define $d \bullet c$ by induction on d:

Since $\llbracket \iota \ e \rrbracket (\llbracket c \rrbracket (U, T)) = (1, \star \mapsto e),$ $(\iota \ e) \bullet c = \iota \ e$

is easy.

Similarly $(\sigma A f) \bullet c = \sigma A (a \mapsto (f a) \bullet d)$ by the induction hypothesis.

But what about δ ? (So far, we can compose with constant functors...)

Composing with δ

$\llbracket \delta \ A \ F \rrbracket_0(\llbracket c \rrbracket_0 Z) = \bigl(\Sigma g : A \to \llbracket c \rrbracket_0 Z\bigr)\bigl(\llbracket F\bigl(\llbracket c \rrbracket_1(Z) \circ g\bigr)\rrbracket_0(\llbracket c \rrbracket Z)\bigr)$

Composing with δ

$\llbracket \delta \ A \ F \rrbracket_0(\llbracket c \rrbracket_0 Z) = \bigl(\Sigma g : A \to \llbracket c \rrbracket_0 Z\bigr)\bigl(\llbracket F\bigl(\llbracket c \rrbracket_1(Z) \circ g\bigr)\rrbracket_0(\llbracket c \rrbracket Z)\bigr)$

Progress could be made if we had

1 $A \longrightarrow c$

2 "Concatenation" of codes

Composing with δ

$\llbracket \delta \ A \ F \rrbracket_0(\llbracket c \rrbracket_0 Z) = \bigl(\Sigma g : A \to \llbracket c \rrbracket_0 Z\bigr)\bigl(\llbracket F\bigl(\llbracket c \rrbracket_1(Z) \circ g\bigr)\rrbracket_0(\llbracket c \rrbracket Z)\bigr)$

Progress could be made if we had

2 "Concatenation" of codes

Spoiler alert: these are also necessary conditions.

"Concatenation" of codes

Item 2 is easy, because DS D is a monad (Ghani and Hancock [2016]):

Proposition. There is an operation

$$_ >>= _ : DS \ C \ D \ \rightarrow (D \ \rightarrow DS \ C \ E) \ \rightarrow DS \ C \ E$$

such that $\llbracket c \gg g \rrbracket Z \cong \llbracket c \rrbracket Z \gg _{Fam} (e \mapsto \llbracket g e \rrbracket Z).$

"Concatenation" of codes

Item 2 is easy, because DS D is a monad (Ghani and Hancock [2016]):

Proposition. There is an operation

$$_ >>= _ : DS \ C \ D \ \rightarrow (D \ \rightarrow DS \ C \ E) \ \rightarrow DS \ C \ E$$

such that $\llbracket c \gg g \rrbracket Z \cong \llbracket c \rrbracket Z \gg F_{am} (e \mapsto \llbracket g e \rrbracket Z)$. Concretely,

 $[[c \implies g]]_0 Z = (\Sigma x : [[c]]_0 Z) [[g([[c]]_1 Z x)]]_0 Z$ $[[c \implies g]]_1 Z (x, y) = [[g([[c]]_1 Z x)]]_1 Z y$

Trying to define $S \longrightarrow c$

This time ι and δ are easy, but:

$$S \to \llbracket \sigma \ A \ f \rrbracket_0 \ Z = S \to (\Sigma a : A)(\llbracket f \ a \rrbracket_0 \ Z)$$
$$\cong (\Sigma g : S \to A)((x : S) \to \llbracket f \ (g \ x) \rrbracket_0 \ Z)$$

Trying to define $S \longrightarrow c$

This time ι and δ are easy, but:

$$S \to \llbracket \sigma \ A \ f \rrbracket_0 \ Z = S \to (\Sigma a : A)(\llbracket f \ a \rrbracket_0 \ Z)$$
$$\cong (\Sigma g : S \to A)((x : S) \to \llbracket f \ (g \ x) \rrbracket_0 \ Z)$$

To continue inductively, we need to generalise to a dependent product

$$\pi: (S: \mathsf{Set}) \to (S \to \mathsf{DS} \ D \ E) \to \mathsf{DS} \ D \ E$$

Trying to define $S \longrightarrow c$

This time ι and δ are easy, but:

$$S \to \llbracket \sigma \ A \ f \rrbracket_0 \ Z = S \to (\Sigma a : A)(\llbracket f \ a \rrbracket_0 \ Z)$$
$$\cong (\Sigma g : S \to A)((x : S) \to \llbracket f \ (g \ x) \rrbracket_0 \ Z)$$

To continue inductively, we need to generalise to a dependent product

$$\pi: (S: \mathsf{Set}) \to (S \to \mathsf{DS} \ D \ E) \to \mathsf{DS} \ D \ E$$

But we cannot define this because we have nothing to induct on anymore.

Powers from composition

In fact, any definition of composition would give us powers:

Theorem. A composition operator

• : $DS D E \rightarrow DS C D \rightarrow DS C E$

is definable if and only if a power operator

 $_ \longrightarrow _ : (S : Set) \rightarrow DS D E \rightarrow DS D (S \rightarrow E)$

is definable.

Powers from composition

In fact, any definition of composition would give us powers:

Theorem. A composition operator

• : $DS D E \rightarrow DS C D \rightarrow DS C E$

is definable if and only if a power operator

$$_ \longrightarrow _ : (S : Set) \rightarrow DS D E \rightarrow DS D (S \rightarrow E)$$

is definable.

This (apparent) lack of powers thus suggests that DS, as an axiomatisation of a class of functors, could perhaps be improved upon.

Variations on inductive-recursive definitions

This leads us to investigate alternative classes of functors axiomatising inductive-recursive definitions.

If one wants closure under composition, two natural options suggest themselves:

- 1 Restrict dependency so that $S \longrightarrow c$ is definable \rightsquigarrow uniform codes (Peter Hancock).
- 2 Add a π combinator to the system \rightsquigarrow polynomial codes (Conor McBride).

Variations on inductive-recursive definitions

This leads us to investigate alternative classes of functors axiomatising inductive-recursive definitions.

If one wants closure under composition, two natural options suggest themselves:

- 1 Restrict dependency so that $S \longrightarrow c$ is definable \rightsquigarrow uniform codes (Peter Hancock).
- 2 Add a π combinator to the system \rightsquigarrow polynomial codes (Conor McBride).

Take-home message: There are many axiomatisations of induction-recursion.

Uniform codes

Uniform codes

Originally due to Peter Hancock (2012).

Discovered while trying to define composition for DS.

ln

$$\sigma: (A: \mathsf{Set}) \to (c: A \to \mathsf{DSDE}) \to \mathsf{DSDE}$$

nonuniformity comes from *c* depending on *A*.

ln

$$\sigma: (A: \mathsf{Set}) \to (c: A \to \mathsf{DSDE}) \to \mathsf{DSDE}$$

nonuniformity comes from *c* depending on *A*.

Idea: Instead make A depend on (the information in) c.

ln

$$\sigma: (A: \mathsf{Set}) \to (c: A \to \mathsf{DSDE}) \to \mathsf{DSDE}$$

nonuniformity comes from c depending on A.

Idea: Instead make A depend on (the information in) c.

Consequence: the code *c* for "the rest of the constructor" is always of the same "shape".

ln

$$\sigma: (A: \mathsf{Set}) \to (c: A \to \mathsf{DSDE}) \to \mathsf{DSDE}$$

nonuniformity comes from c depending on A.

Idea: Instead make A depend on (the information in) c.

Consequence: the code *c* for "the rest of the constructor" is always of the same "shape".

Left-nested instead of right-nested (Pollack: Dependently Typed Records in Type Theory [2002]).

Uniform codes **UF**

Let $D, E : Set_1$. Uni $D : Set_1$ and Info : Uni $D \to Set_1$ are inductive-recursively given by

$$\begin{split} \iota_{\mathsf{UF}} &: \mathsf{Uni} \ D \\ \sigma_{\mathsf{UF}} &: (c : \mathsf{Uni} \ D) \to (A : \mathsf{Info} \ c \to \mathsf{Set}) \to \mathsf{Uni} \ D \\ \delta_{\mathsf{UF}} &: (c : \mathsf{Uni} \ D) \to (A : \mathsf{Info} \ c \to \mathsf{Set}) \to \mathsf{Uni} \ D \end{split}$$

$$\begin{split} & \mathsf{Info} \ \iota_{\mathsf{UF}} = 1 \\ & \mathsf{Info} \ (\sigma_{\mathsf{UF}} \ c \ A) = \big(\Sigma\gamma : \mathsf{Info} \ c\big)(A \ \gamma) \\ & \mathsf{Info} \ (\delta_{\mathsf{UF}} \ c \ A) = \big(\Sigma\gamma : \mathsf{Info} \ c\big)(A \ \gamma \to D) \end{split}$$

Large set of uniform codes UF $D E = (\Sigma c : \text{Uni } D)(\text{Info } c \rightarrow E)$.

Decoding uniform codes

$$\llbracket \ _ \ \rrbracket_{\mathsf{Uni}} : \mathsf{Uni} \ D \to \mathsf{Fam} \ D \to \mathsf{Set}$$
$$\llbracket \ _ \ \rrbracket_{\mathsf{Info}} : (c : \mathsf{Uni} \ D) \to (Z : \mathsf{Fam} \ D) \to \llbracket \ c \ \rrbracket_{\mathsf{Uni}} \ Z \to \mathsf{Info} \ c$$

Decoding uniform codes

$$\llbracket _ \rrbracket_{Uni} : Uni \ D \to Fam \ D \to Set$$
$$\llbracket _ \rrbracket_{Info} : (c : Uni \ D) \to (Z : Fam \ D) \to \llbracket c \rrbracket_{Uni} Z \to Info \ c$$

 $\begin{bmatrix} \iota_{\mathsf{UF}} \end{bmatrix}_{\mathsf{Uni}} (U, T) = 1$ $\begin{bmatrix} \sigma_{\mathsf{UF}} c \ A \end{bmatrix}_{\mathsf{Uni}} (U, T) = (\Sigma x : \begin{bmatrix} c \end{bmatrix}_{\mathsf{Uni}} (U, T)) (A(\llbracket c \rrbracket_{\mathsf{Info}} (U, T) x))$ $\begin{bmatrix} \delta_{\mathsf{UF}} c \ A \end{bmatrix}_{\mathsf{Uni}} (U, T) = (\Sigma x : \llbracket c \rrbracket_{\mathsf{Uni}} (U, T)) (A(\llbracket c \rrbracket_{\mathsf{Info}} (U, T) x) \to U)$

 $\llbracket \delta_{\mathsf{UF}} c S \rrbracket_{\mathsf{Info}} (U, T) (x, g) = (\llbracket c \rrbracket_{\mathsf{Info}} (U, T) x, T \circ g)$

Decoding uniform codes

$$\llbracket _ \rrbracket_{\mathsf{Uni}} : \mathsf{Uni} \ D \to \mathsf{Fam} \ D \to \mathsf{Set}$$
$$\llbracket _ \rrbracket_{\mathsf{Info}} : (c : \mathsf{Uni} \ D) \to (Z : \mathsf{Fam} \ D) \to \llbracket c \rrbracket_{\mathsf{Uni}} Z \to \mathsf{Info} \ c$$

 $\begin{bmatrix} \iota_{\mathsf{UF}} \end{bmatrix}_{\mathsf{Uni}} (U, T) = 1$ $\begin{bmatrix} \sigma_{\mathsf{UF}} c A \end{bmatrix}_{\mathsf{Uni}} (U, T) = (\Sigma x : \begin{bmatrix} c \end{bmatrix}_{\mathsf{Uni}} (U, T)) (A(\llbracket c \rrbracket_{\mathsf{Info}} (U, T) x))$ $\begin{bmatrix} \delta_{\mathsf{UF}} c A \end{bmatrix}_{\mathsf{Uni}} (U, T) = (\Sigma x : \llbracket c \rrbracket_{\mathsf{Uni}} (U, T)) (A(\llbracket c \rrbracket_{\mathsf{Info}} (U, T) x) \to U)$

 $\llbracket \delta_{\mathsf{UF}} c S \rrbracket_{\mathsf{Info}} (U, T) (x, g) = (\llbracket c \rrbracket_{\mathsf{Info}} (U, T) x, T \circ g)$

÷

Finally for (c, α) : UF $D E = (\Sigma c : \text{Uni } D)(\text{Info } c \to E)$ $\llbracket (c, \alpha) \rrbracket = (\llbracket c \rrbracket_{\text{Uni}} -, \alpha \circ \llbracket c \rrbracket_{\text{Info}} -) : \text{Fam } D \to \text{Fam } E$

data W (S : Set) (P : S \rightarrow Set) : Set where sup: (s : S) \rightarrow (P s \rightarrow W S P) \rightarrow W S P

 $c_{WSP,UF} = \delta_{UF} (\sigma_{UF} \iota_{UF} (_ \mapsto S)) ((_, s) \mapsto (Ps)) : Uni 1$

data W (S : Set)(P : S \rightarrow Set) : Set where sup: (s : S) \rightarrow (P s \rightarrow W S P) \rightarrow W S P

$$c_{\mathsf{W} \ S \ P,\mathsf{UF}} = \delta_{\mathsf{UF}} \left(\sigma_{\mathsf{UF}} \ \iota_{\mathsf{UF}} \ (_ \mapsto S) \right) \left((_, s) \mapsto (P \ s) \right) : \mathsf{Uni} \ 1$$
$$c_{\mathsf{W} \ S \ P,\mathsf{DS}} = \sigma \ S \left(s \mapsto \delta \left(P \ s \right) (_ \mapsto \iota \star) \right) : \mathsf{DS} \ 1 \ 1$$

data W (S : Set)(P : S \rightarrow Set) : Set where sup: (s : S) \rightarrow (P s \rightarrow W S P) \rightarrow W S P

$$\begin{aligned} \mathsf{CW} \ & \mathsf{S} \ \mathsf{P}, \mathsf{UF} = \delta_{\mathsf{UF}} \left(\sigma_{\mathsf{UF}} \ \iota_{\mathsf{UF}} \left(_ \mapsto \mathbf{S} \right) \right) \left((_, \mathsf{s}) \mapsto (\mathsf{P} \ \mathsf{s}) \right) : \mathsf{Uni} \ 1 \\ \mathsf{CW} \ & \mathsf{S} \ \mathsf{P}, \mathsf{DS} = \sigma \ \mathbf{S} \left(\mathsf{s} \mapsto \delta \left(\mathsf{P} \ \mathsf{s} \right) \left(_ \mapsto \iota \star \right) \right) : \mathsf{DS} \ 1 \ 1 \end{aligned}$$

data W (S : Set)(P : S \rightarrow Set) : Set where sup: (s : S) \rightarrow (P s \rightarrow W S P) \rightarrow W S P

$$c_{W \ S \ P,UF} = \delta_{UF} \left(\sigma_{UF} \ \iota_{UF} \ (_ \mapsto S) \right) \left((_, s) \mapsto (P \ s) \right) : \text{Uni } 1$$
$$c_{W \ S \ P,DS} = \sigma \ S \left(s \mapsto \delta \ (P \ s) \ (_ \mapsto \iota \star) \right) : \text{DS } 1 \ 1$$

data W (S : Set) (P : S \rightarrow Set) : Set where sup: (s : S) \rightarrow (P s \rightarrow W S P) \rightarrow W S P

$$c_{\mathsf{W} \ S \ P,\mathsf{UF}} = \delta_{\mathsf{UF}} \left(\sigma_{\mathsf{UF}} \ \iota_{\mathsf{UF}} \ (_ \mapsto S) \right) \left((_, s) \mapsto (P \ s) \right) : \mathsf{Uni} \ 1$$
$$c_{\mathsf{W} \ S \ P,\mathsf{DS}} = \sigma \ S \left(s \mapsto \delta \left(P \ s \right) (_ \mapsto \iota \star) \right) : \mathsf{DS} \ 1 \ 1$$

 $\llbracket c_{\mathsf{W} \ S \ P,\mathsf{UF}} \rrbracket_{\mathsf{Uni}} (U, T) = (\Sigma(\star, s) : 1 \times S)(P(s) \to U) \\ \llbracket c_{\mathsf{W} \ S \ P,\mathsf{DS}} \rrbracket_{0} (U, T) = (\Sigma s : S)(\Sigma f : (P(s) \to U))1$

A priori we do not longer have coproducts of codes — DS coproducts relied exactly on non-uniformity of σ .

A priori we do not longer have coproducts of codes — DS coproducts relied exactly on non-uniformity of σ .

Crucial for encoding several constructors into one.

A priori we do not longer have coproducts of codes — DS coproducts relied exactly on non-uniformity of σ .

Crucial for encoding several constructors into one.

Proposition. For every uniform code c, $\llbracket c \rrbracket Z \cong \llbracket \sigma_{\mathsf{UF}} c (_ \mapsto 1) \rrbracket Z$ and $\llbracket c \rrbracket Z \cong \llbracket \delta_{\mathsf{UF}} c (_ \mapsto 0) \rrbracket Z$.

By "padding" codes with such semantically redundant information, we can define $c +_{\sf UF} d$.

A priori we do not longer have coproducts of codes — DS coproducts relied exactly on non-uniformity of σ .

Crucial for encoding several constructors into one.

Proposition. For every uniform code c, $\llbracket c \rrbracket Z \cong \llbracket \sigma_{\mathsf{UF}} c (_ \mapsto 1) \rrbracket Z$ and $\llbracket c \rrbracket Z \cong \llbracket \delta_{\mathsf{UF}} c (_ \mapsto 0) \rrbracket Z$.

By "padding" codes with such semantically redundant information, we can define $c +_{\sf UF} d$.

E.g.

 $\sigma_{\text{UF}}\left(\delta_{\text{UF}} \iota_{\text{UF}} A\right) B +_{\text{UF}} \delta_{\text{UF}} \iota_{\text{UF}} A' = \sigma_{\text{UF}}\left(\delta_{\text{UF}}\left(\sigma_{\text{UF}} \iota_{\text{UF}} 2\right) [A, A']\right) [B, 0]$

A priori we do not longer have coproducts of codes — DS coproducts relied exactly on non-uniformity of σ .

Crucial for encoding several constructors into one.

Proposition. For every uniform code c, $\llbracket c \rrbracket Z \cong \llbracket \sigma_{\mathsf{UF}} c (_ \mapsto 1) \rrbracket Z$ and $\llbracket c \rrbracket Z \cong \llbracket \delta_{\mathsf{UF}} c (_ \mapsto 0) \rrbracket Z$.

By "padding" codes with such semantically redundant information, we can define $c +_{\sf UF} d$.

E.g.

 $\sigma_{\text{UF}}\left(\delta_{\text{UF}} \iota_{\text{UF}} A\right) B +_{\text{UF}} \delta_{\text{UF}} \iota_{\text{UF}} A' = \sigma_{\text{UF}}\left(\delta_{\text{UF}}\left(\sigma_{\text{UF}} \iota_{\text{UF}} 2\right) [A, A']\right) [B, 0]$

Theorem. $\llbracket c +_{\mathsf{UF}} d \rrbracket Z \cong \llbracket c \rrbracket Z + \llbracket d \rrbracket Z$.

$\mathsf{UF} \hookrightarrow \mathsf{DS}$

Since uniform codes are "backwards", we can translate UF to DS the same way one reverses a list using an accumulator:

 $\operatorname{accUFtoDS} : (c : \operatorname{Uni} D) \to (\operatorname{Info} c \to \operatorname{DS} D E) \to \operatorname{DS} D E$

$\mathsf{UF} \hookrightarrow \mathsf{DS}$

Since uniform codes are "backwards", we can translate UF to DS the same way one reverses a list using an accumulator:

 $\operatorname{accUFtoDS} : (c : \operatorname{Uni} D) \to (\operatorname{Info} c \to \operatorname{DS} D E) \to \operatorname{DS} D E$

defined by

accUFtoDS $\iota_{\text{UF}} F = F \star$ accUFtoDS ($\sigma_{\text{UF}} c A$) $F = \text{accUFtoDS } c (\gamma \mapsto \sigma (A \gamma) (a \mapsto F (\gamma, a)))$ accUFtoDS ($\delta_{\text{UF}} c A$) $F = \text{accUFtoDS } c (\gamma \mapsto \delta (A \gamma) (h \mapsto F (\gamma, h)))$

$\mathsf{UF} \hookrightarrow \mathsf{DS}$

Since uniform codes are "backwards", we can translate UF to DS the same way one reverses a list using an accumulator:

 $\operatorname{accUFtoDS} : (c : \operatorname{Uni} D) \to (\operatorname{Info} c \to \operatorname{DS} D E) \to \operatorname{DS} D E$

defined by

accUFtoDS $\iota_{\text{UF}} F = F \star$ accUFtoDS ($\sigma_{\text{UF}} c A$) $F = \text{accUFtoDS } c (\gamma \mapsto \sigma (A \gamma) (a \mapsto F (\gamma, a)))$ accUFtoDS ($\delta_{\text{UF}} c A$) $F = \text{accUFtoDS } c (\gamma \mapsto \delta (A \gamma) (h \mapsto F (\gamma, h)))$

Proposition. [[accUFtoDS c $(\iota \circ \alpha)$]] $Z \cong$ [[(c, α)]] Z.

Going the other way seems unlikely.

This means that UF can piggyback on Dybjer and Setzer [1999]'s proof of existence of initial algebras.

This means that UF can piggyback on Dybjer and Setzer [1999]'s proof of existence of initial algebras.

However the construction of (Uni, Info) itself is one instance of large induction-recursion, albeit a particularly simple instance. No additional assumptions are needed in the set-theoretical model.

We have gained uniformity, which makes powers definable.

Unfortunately, the uniformity also means that we no longer have a monad.

We have gained uniformity, which makes powers definable.

Unfortunately, the uniformity also means that we no longer have a monad.

Bind should graft trees, but grafting a collection of uniform trees might not result in a uniform tree.

Towards composition: combined bind and powers

Is all lost? No. We can still define the instance of bind that we need, combined with a power operation. (Note: only the set depends on lnfo c.)

 $- \Longrightarrow = [- \longrightarrow -] : (c : \mathsf{Uni} \ D) \to (\mathsf{Info} \ c \to \mathsf{Set}) \to \mathsf{Uni} \ D \to \mathsf{Uni} D$

Towards composition: combined bind and powers

Is all lost? No. We can still define the instance of bind that we need, combined with a power operation. (Note: only the set depends on lnfo c.)

$$- \gg= [- \longrightarrow -]: (c: \mathsf{Uni}\ D)
ightarrow (\mathsf{Info}\ c
ightarrow \mathsf{Set})
ightarrow \mathsf{Uni}\ D
ightarrow \mathsf{Uni}\ D$$

As usual, we need to define this simultaneously with its meaning on Info:

 $(c \gg [E \longrightarrow d])_{\mathsf{Info}} : \mathsf{Info} \ (c \gg [E \longrightarrow d]) \rightarrow (\Sigma x : \mathsf{Info} \ c)(E x \rightarrow \mathsf{Info} \ d)$

Towards composition: combined bind and powers

Is all lost? No. We can still define the instance of bind that we need, combined with a power operation. (Note: only the set depends on Info c.)

$$- \gg= [- \longrightarrow -]: (c: \mathsf{Uni}\ D) o (\mathsf{Info}\ c o \mathsf{Set}) o \mathsf{Uni}\ D o \mathsf{Uni}D$$

As usual, we need to define this simultaneously with its meaning on Info:

 $(c \gg [E \longrightarrow d])_{\mathsf{Info}} : \mathsf{Info} \ (c \gg [E \longrightarrow d]) \rightarrow (\Sigma x : \mathsf{Info} \ c)(E x \rightarrow \mathsf{Info} \ d)$

Proposition. There is an equivalence

$$\begin{bmatrix} c \implies [E \longrightarrow d], (d \implies [E \longrightarrow d])_{Info} \end{bmatrix} \cong (\begin{bmatrix} c, id \end{bmatrix}) \implies_{Fam} (e \mapsto ((E e) \longrightarrow_{Fam} \llbracket d, id \rrbracket)) \square$$

Composition for UF

$_ \bullet_{\mathsf{Uni}} _ : \mathsf{Uni} \ D \to \mathsf{UF} \ C \ D \to \mathsf{Uni} \ C$ $(_ \bullet_{\mathsf{Info}} _) : (c : \mathsf{Uni} \ D) \to (R : \mathsf{UF} \ C \ D) \to \mathsf{Info} \ (c \bullet_{\mathsf{Uni}} R) \to \mathsf{Info} \ c$

Composition for ${\sf UF}$

$$_ \bullet_{Uni} _ : Uni D \rightarrow UF C D \rightarrow Uni C$$

($_ \bullet_{Info} _) : (c : Uni D) \rightarrow (R : UF C D) \rightarrow Info (c \bullet_{Uni} R) \rightarrow Info c$

$$\iota_{\mathsf{UF}} \bullet_{\mathsf{Uni}} R = \iota_{\mathsf{UF}}$$

$$(\sigma_{\mathsf{UF}} c A) \bullet_{\mathsf{Uni}} R = \sigma_{\mathsf{UF}} (c \bullet_{\mathsf{Uni}} R) (A \circ (c \bullet_{\mathsf{Info}} R))$$

$$(\delta_{\mathsf{UF}} c A) \bullet_{\mathsf{Uni}} (d, \beta) = (c \bullet_{\mathsf{Uni}} (d, \beta)) \Longrightarrow = [(A \circ (c \bullet_{\mathsf{Info}} (d, \beta))) \longrightarrow d]$$

Composition for ${\sf UF}$

$$_ \bullet_{\mathsf{Uni}} _ : \mathsf{Uni} \ D \to \mathsf{UF} \ C \ D \to \mathsf{Uni} \ C (_ \bullet_{\mathsf{Info}} _) : (c : \mathsf{Uni} \ D) \to (R : \mathsf{UF} \ C \ D) \to \mathsf{Info} \ (c \bullet_{\mathsf{Uni}} R) \to \mathsf{Info} \ c$$

$$\iota_{\mathsf{UF}} \bullet_{\mathsf{Uni}} R = \iota_{\mathsf{UF}}$$

$$(\sigma_{\mathsf{UF}} c A) \bullet_{\mathsf{Uni}} R = \sigma_{\mathsf{UF}} (c \bullet_{\mathsf{Uni}} R) (A \circ (c \bullet_{\mathsf{Info}} R))$$

$$(\delta_{\mathsf{UF}} c A) \bullet_{\mathsf{Uni}} (d, \beta) = (c \bullet_{\mathsf{Uni}} (d, \beta)) \Longrightarrow = [(A \circ (c \bullet_{\mathsf{Info}} (d, \beta))) \longrightarrow d]$$

Theorem.

$$\llbracket (\boldsymbol{c}, \alpha) \bullet \boldsymbol{d} \rrbracket \boldsymbol{Z} = \llbracket \boldsymbol{c} \bullet_{Uni} \boldsymbol{d}, \alpha \circ (\boldsymbol{c} \bullet_{Info} \boldsymbol{d}) \rrbracket \boldsymbol{Z} \cong \llbracket (\boldsymbol{c}, \alpha) \rrbracket (\llbracket \boldsymbol{d} \rrbracket \boldsymbol{Z}).$$

How suitable are uniform codes?

Uniform codes (most likely) capture a smaller class of functors compared to DS.

However all inductive-recursive definitions "in the wild" are already uniform (because coproducts definable).

How suitable are uniform codes?

Uniform codes (most likely) capture a smaller class of functors compared to DS.

However all inductive-recursive definitions "in the wild" are already uniform (because coproducts definable).

Conjecture: UF and DS have the same proof-theoretical strength.

Summary

Uniform codes UF and polynomial codes PN as new, alternative axiomatisations of inductive-recursive definitions.

 $\mathsf{UF} \hookrightarrow \mathsf{DS} \hookrightarrow \mathsf{PN}$

Both UF and PN are closed under composition; DS probably is not.

Existence of initial algebras for UF unproblematic. For PN, need to adjust the DS model slightly (but not much).

Are there other, even more well-behaved axiomatisations?

