Can we formalise type theory intrinsically
without any compromise?

A case study in Cubical Agda

Liang-Ting Chen® Fredrik Nordvall Forsberg? Tzu-Chun Tsail

! Academia Sinica 2 University of Strathclyde

Certified Programs and Proofs 2026, Rennes, France
13 January 2026

Motivation

Formalised metatheory, and more generally metaprogramming, require an internal
representation of the syntax of type theory.

Besides, as a general-purpose foundation of mathematics, type theory should
certainly be able to represent its own syntax.

Goal: A type Tm ' A whose elements are terms of type A in context I', which is
convenient to work with.

Why are intrinsic representations hard?

Why are intrinsic representations hard?

» Dependent types only make sense in context (is Finn a type?).

Why are intrinsic representations hard?

» Dependent types only make sense in context (is Finn a type?).

» Terms depends on types.

Why are intrinsic representations hard?

» Dependent types only make sense in context (is Finn a type?).
» Terms depends on types.
» Types depends on terms.

~> All sorts depend on each other.

Why are intrinsic representations hard?

» Dependent types only make sense in context (is Finn a type?).
» Terms depends on types.
» Types depends on terms.

~> All sorts depend on each other.

» Definitional equality between types (what are terms of type Fin (1 + 1)7).

Why are intrinsic representations hard?

» Dependent types only make sense in context (is Finn a type?).
» Terms depends on types.
» Types depends on terms.
~> All sorts depend on each other.
» Definitional equality between types (what are terms of type Fin (1 + 1)7).
» Substitutions needed for typing rules (e.g. f a: Bla/x]).

~~ Substitutions and reductions in the syntax.

History
McKinna and Pollack [1999] represented Pure Type Systems in Lego.
» Untyped terms later refined by a typing relation (removing “junk” by hand).

History
McKinna and Pollack [1999] represented Pure Type Systems in Lego.
» Untyped terms later refined by a typing relation (removing “junk” by hand).

Danielsson [2007] represented type theory in AgdalLight.

» Explicit equality relation, and proves that all constructions respect it (an
instance of “setoid hell").

History
represented Pure Type Systems in Lego.
» Untyped terms later refined by a typing relation (removing “junk” by hand).

represented type theory in AgdalLight.

» Explicit equality relation, and proves that all constructions respect it (an
instance of “setoid hell").

represented type theory in Agda 2.
» Foundationally more straightforward (“only” inductive-inductive definitions).
» Still an explicit equality relation, with manual proof effort.

History
McKinna and Pollack [1999] represented Pure Type Systems in Lego.
» Untyped terms later refined by a typing relation (removing “junk” by hand).

Danielsson [2007] represented type theory in AgdalLight.

» Explicit equality relation, and proves that all constructions respect it (an
instance of “setoid hell").

Chapman [2009] represented type theory in Agda 2.
» Foundationally more straightforward (“only” inductive-inductive definitions).
» Still an explicit equality relation, with manual proof effort.

Altenkirch and Kaposi [2016] used quotient-inductive-inductive types.
» Definitional equality in object theory is “real” (prop.) equality in host theory.
» All constructions automatically respect object equality.
» Cannot treat internally equal terms differently (a feature!).

The initial Category with Families

One way to understand Altenkirch and Kaposi's construction is as the initial
category with families [Dybjer 1996/, represented as a QIIT.

The initial Category with Families

One way to understand Altenkirch and Kaposi's construction is as the initial
category with families [Dybjer 1996/, represented as a QIIT.

The theory of CwFs is a generalised algebraic theory |Cartmell 1986] and so has
an initial model (say with extensional type theory as metatheory).

The initial Category with Families

One way to understand Altenkirch and Kaposi's construction is as the initial
category with families [Dybjer 1996/, represented as a QIIT.

The theory of CwFs is a generalised algebraic theory |Cartmell 1986] and so has
an initial model (say with extensional type theory as metatheory).

Cubical Agda has support for QIITs (and more), so we could hope to formalise
this construction in it. (Altenkirch and Kaposi's formalisation pre-dates Cubical
Agda, and used Licata's Trick [2011] with postulates in standard Agda.)

The initial CwF, in practice

Some CwF equations are only well typed because of earlier equations, e.g.:

Alid]r = A

t[id]t-: t

where t : TmT A and t[id], : Tm T Afid]+. As a QIIT definition, we turn to
explicit transports:

[id]; : transport(Tm T, [id] 7, t[id];) =Tmra t

The initial CwF, in practice

Some CwF equations are only well typed because of earlier equations, e.g.:

Alid]r = A

t[id]t-: t

where t : TmT A and t[id], : Tm T Afid]+. As a QIIT definition, we turn to
explicit transports:

[id]; : transport(Tm T, [id] 7, t[id];) =Tmra t

Unfortunately, such transports make Cubical Agda (erroneously) reject the
definition as not strictly positive.

The initial CwF, in practice

Some CwF equations are only well typed because of earlier equations, e.g.:

Alid]r = A

t[id]t-: t

where t : TmT A and t[id], : Tm T Afid]+. As a QIIT definition, we turn to
explicit transports:

[id]; : transport(Tm T, [id] 7, t[id];) =Tmra t

Unfortunately, such transports make Cubical Agda (erroneously) reject the
definition as not strictly positive. In this case we could use PathP instead, but
that is rather Cubical Type Theory specific, and hence not satisfactory.

Another attempt

Why do we need transport, in general?
It is because we demand precise types, e.g. in
(0 :SubT A) = (t: TmT (Ao]r)) — SubT (A, A)

we insist that t is of a certain type.

Another attempt
Why do we need transport, in general?
It is because we demand precise types, e.g. in
(0 :SubT'A) — (t: TmT (Alo]r)) — Subl (A, A)
we insist that t is of a certain type. Equivalently, we could ask for
i]:i(o:SubTA) = (t: TmlB) = B=Alo]r — Subl (A, A)

instead — turning (o, transport(Tm T, p, t)) into (o, t:[p]) (without transport!).

Another attempt
Why do we need transport, in general?
It is because we demand precise types, e.g. in
(0 :SubT A) = (t: TmT (Ao]r)) — SubT (A, A)
we insist that t is of a certain type. Equivalently, we could ask for
i]:i(o:SubTA) = (t: TmlB) = B=Alo]r — Subl (A, A)

instead — turning (o, transport(Tm T, p, t)) into (o, t:[p]) (without transport!).

But if we do this everywhere, there is no need to keep the index B locally
anymore; instead we can change the type of Tm to Tm : Ctx — Set, and
introduce a function tyOf : TmI — Tyl to compute the types of terms.

A QIIR representation of the syntax of type theory

We simultaneously define (changes to QIIT definition highlighted)

data Ctx : Type

dataSub : (I : Ctx) — (A : Ctx) — Set
data Ty : (I : Ctx) — Set

data Tm: (T : Ctx) — Set

tyOf : Tm [— Ty T

Since tyOf is defined recursively, this is a quotient-inductive-inductive-recursive
definition. (By saying “: Set”, we mean that we add implicit set truncations,
hence quotients rather than higher types.)

Note: This is reminiscient of Fiore [2012] and Awodey [2016]'s natural models
formulation of CwfFs.

The substitution calculus as a QIIRT

[id]T: A= Alid]r

[id]e : t = t[id],

[ol: : t[r], o], = t[r o o],

0 :(q:tyOf(t[r],) = AlooT]y)

data _where
0 : Ctx
(M Ctx)(A: Tyl — Cix
[17 :(A:TyA)(o : Subl' A) —» TyT
[Je:(t: TmA)(o:Subl A) = TmT = (ot:[pt])or = (oo t[r] :[qt])
0:Subl 0 tyOf (12 {A = A} o) = A[r1 0] 7
[]:(c:SubT A)(t:TmT) — data _where
tyOft = Afo]r — Subl (A,A)

nm o = (71 0,m 0o refl])

id:Subl' T n:o=10

o :SubA®© — Subl A — Subl®© pri:mi(ot:p]) =0

1 ?Subl'(A,A)—>Sub|'A Bz i (q: Alri(o.t:[p])]T = tyOft)
72 : SubT (AA) — TmT —m (o t:[p])=t

ido :idoo=o tyOf (Bmaqi) = qi

tyOf (t[o],) = (tyOft) [o] 7
tyOF ([id]e /) = [id] 7 i
tyOf ([o]¢ i) = [o] 7 i

_od:ogoid=o
assoc: (yoT)oo =~vo(ro0)

[o]T : A[r]T [o]lT = A[roo]T

The substitution calculus as a QIIRT

data _where
0 Ctx
(M Ctx)(A: Tyl — Cix
[17 :(A:TyA)(o : Subl' A) —» TyT
[Je:(t:TmA)(o:SublT'A) - TmT
0 :Subl 0
L] :(oc:SubT A)(t: TmT) —
tyOft = Alo]r — SubT (A A)

What is different?
. tyOf constraint in , [|.
. No transport in [id]; and [o];.

1
2
3. Derivable arguments g in ,o and [».
4

. Interleaving definition of tyOf (7, o).

lidlr : A= Alid]+
[id]e : t = t[id],
[o]e : t[f]t [U]t = t[TOU]t
0 :(q:tyOf(t[r],) = AlooT]T)
— (o t:[pt])or = (oo, t[r],:[qt])
tyOf (m {A = A}o) = A[mio]1
data _where
nm o = (mo,mo:[refl])
nh:o=0
Bri:mi(ot:[p]) =0
Gz : (a1 Al (0.6 p])] = tyOFE)
—m(ot:[p]) =t
tyOf (Braqi) = qi
tOf (t[0],) = (tyOF) [o] 7
tyOf ([id]¢ i) = [id] r i
tOF ([o]: 1) = [e] 7 i

Other type formers

In the same way, we can introduce other type formers such as lN-types, inductive
types such as the Booleans B, and a universe (U, El).

Other type formers

In the same way, we can introduce other type formers such as lN-types, inductive
types such as the Booleans B, and a universe (U, El).

To avoid Cubical Agda complaining about strict positivity problems, we often
found it useful to include “superfluous” tyOf proofs in the definition, rather than
constructing them from other pieces, e.g.

B[], : tyOf (m {I', B}id) = B[r]+

Other type formers

In the same way, we can introduce other type formers such as lN-types, inductive
types such as the Booleans B, and a universe (U, El).

To avoid Cubical Agda complaining about strict positivity problems, we often
found it useful to include “superfluous” tyOf proofs in the definition, rather than
constructing them from other pieces, e.g.

B[], : tyOf (m {I', B}id) = B[r]+

Since Tyl is a set by construction, B[], is equal to the canonical proof of the
same fact anyway.

Elimination principles

As expected, we can use pattern matching to define recursion- and induction
principles, thus witnessing that the syntax is the initial model.

10

Elimination principles

As expected, we can use pattern matching to define recursion- and induction
principles, thus witnessing that the syntax is the initial model.

Annoyingly, we have to mark the definitions as TERMINATING, even though

recursive calls are on structurally smaller arguments — possibly because of the
simultaneous proof

recTyOf : S.tyOf t = B — [tyOf] (recTm t) = recTy B

10

Elimination principles

As expected, we can use pattern matching to define recursion- and induction
principles, thus witnessing that the syntax is the initial model.

Annoyingly, we have to mark the definitions as TERMINATING, even though
recursive calls are on structurally smaller arguments — possibly because of the
simultaneous proof

recTyOf : S.tyOf t = B — [tyOf] (recTm t) = recTy B

Surprisingly, it is actually better to also let users define methods corresponding to
superfluous equality constructors, because this sometimes allows stricter
definitions.

10

Constructing models
Using the elimination principle, we can construct the standard Set model where

[Ctx] = Type
[Ty]T =T — Type
[Sub]TA=T —= A
[Tm|T =(XA: T — Type)((v:T) = A»)
[tyOf] (A, t) = A

if we assume UIP so that [Ty] T is a set.

11

Constructing models
Using the elimination principle, we can construct the standard Set model where

[Ctx] = Type
[Ty]T =T — Type
[Sub]TA=T —= A
[Tm|T =(XA: T — Type)((v:T) = A»)
[tyOf] (A, t) = A

if we assume UIP so that [Ty] I is a set. Similarly we can define the term model

[Ctx] = Cix
[Tyl =Ty

11

Model constructions

NbE was surprisingly easy to implement,
and actually computes in Cubical Agda.

12

Model constructions

NbE was surprisingly easy to implement,
and actually computes in Cubical Agda.

12

Model constructions

Normalisation by Evaluation

NbE was surprisingly easy to implement,
and actually computes in Cubical Agda.

The logical predicates displayed model
interprets types over A as

Ty’ TA=Ty(T,A)

(suitably Kripke-ified).
back to the same transport hell that we
were trying to escape from for TmT A.

This brings us

show how to
strictify the category laws and functor
laws of a given CwF in the QIIT formu-
lation, and similar ideas apply also to our
QIIRT definition.

(Notably, this requires contexts to form a
set, which they do for the syntax.)

12

Model constructions

Normalisation by Evaluation

NbE was surprisingly easy to implement,
and actually computes in Cubical Agda.

The logical predicates displayed model
interprets types over A as

Ty’ TA=Ty(T,A)

(suitably Kripke-ified).
back to the same transport hell that we
were trying to escape from for TmT A.

This brings us

show how to
strictify the category laws and functor
laws of a given CwF in the QIIT formu-
lation, and similar ideas apply also to our
QIIRT definition.

(Notably, this requires contexts to form a
set, which they do for the syntax.)

However, this only makes part of the
model strict, and does not solve e.g. our
logical predicates model issue.

12

Summary and conclusions

We developed a representation of the syntax of type theory in type theory
inspired by natural models, with a typing function tyOf : Tm[l — Tyl

This formulation leads to fewer transports in the definition of the syntax, which in
turns makes it easier for Cubical Agda to accept the definition as strictly positive.

However, many uses of transport have a tendency to come back when defining
concrete models or model constructions.

Can we formalise type theory intrinsically without any compromise? Not yet.

“ Agda formalisation.
https://github.com/L-TChen/TTasQIIRT

13

https://github.com/L-TChen/TTasQIIRT

Summary and conclusions

We developed a representation of the syntax of type theory in type theory
inspired by natural models, with a typing function tyOf : Tm[l — Tyl

This formulation leads to fewer transports in the definition of the syntax, which in
turns makes it easier for Cubical Agda to accept the definition as strictly positive.

N 3]
concrete models or model co Tha N k you I

Can we formalise type theory intrinsically without any compromise? Not yet.

However, many uses of trans . “me back when defining

“ Agda formalisation.
https://github.com/L-TChen/TTasQIIRT

13

https://github.com/L-TChen/TTasQIIRT

References

» Thorsten Altenkirch and Ambrus Kaposi. 2016. “Type theory in type theory using quotient inductive types”. In Principles of
Programming Languages (POPL '16), 18-—29. DOI: 10.1145/2837614.2837638.

P> Steve Awodey. 2016. “Natural models of homotopy type theory”. Mathematical Structures in Computer Science. DOI:
10.1017/50960129516000268.

» James Chapman. 2009. “Type Theory Should Eat Itself’. In Workshop on Mathematically Structured Functional Programming
(MSFP '06), 21-36. DOI: 10.1016/j.entcs.2008.12.114.

P> Nils Anders Danielsson. 2007. “A formalisation of a dependently typed language as an inductive-recursive family”. In Types for
Proofs and Programs (TYPES '06). DOI: 10.1007/978-3-540-74464-1 7.

P> Peter Dybjer. 1996. “Internal type theory”. In Types for Proofs and Programs (TYPES '95). 120--134. DOI:
10.1007/3-540-61780-9 66

» Marcelo Fiore. 2012. “Discrete generalised polynomial functors”. Slides from talk at ICALP '12.
https://www.cl.cam.ac.uk/ mpf23/talks/ICALP2012.pdf

» Ambrus Kaposi and Loic Pujet. 2025. “Type theory in type theory using a strictified syntax”. In International Conference on
Functional Programming (ICFP '25), 855—-885. DOI: 10.1145/3747535.

» Dan Licata. 2011. “Running circles around (in) your proof assistant; or, quotients that compute”.
https://homotopytypetheory.org/2011/04/23/running-circles-around- in-your-proof-assistant/

14

https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.1016/j.entcs.2008.12.114
https://10.1007/978-3-540-74464-1_7
https://doi.org/10.1007/3-540-61780-9_66
https://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf
https://doi.org/10.1145/3747535
https://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/

	Motivation
	The initial Category with Families as a QIIT
	The initial natural model as a QIIRT
	Elimination principles and model constructions
	Summary and conclusions
	References

