Comprehensive parametric polymorphism

Fredrik Nordvall Forsberg
University of Strathclyde, Glasgow
fredrik.nordvall-forsberg@strath.ac.uk

LFCS Seminar, Edinburgh, 3 May 2016
Joint work with...

Neil Ghani (Strathclyde) Alex Simpson (Ljubljana)
Parametric polymorphism [Strachey, 1967]

- A polymorphic program
 \[t : \forall \alpha. A \]

 is parametric if it applies the same uniform algorithm at all instantiations \(t[B] \) of its type parameter.

- Typical example:
 \[\text{reverse} : \forall \alpha. \text{List } \alpha \rightarrow \text{List } \alpha \]
Reynolds insight: relational parametricity [1983]

- Turn the **negative** statement “not distinguishing types” into the **positive** statement “preserves all relations”.

$$\forall \alpha. \text{A is relationally parametric if for all } R \subseteq B \times B', (t[B], t[B']) \in \langle A \rangle (R)$$

where $$\langle A \rangle (R) \subseteq A(B) \times A(B')$$ is the relational interpretation of the type A.
Reynolds insight: relational parametricity [1983]

- Turn the negative statement “not distinguishing types” into the positive statement “preserves all relations”.

- A polymorphic program $t : \forall \alpha. A$ is relationally parametric if for all relations $R \subseteq B \times B'$,

\[
(t[B], t[B']) \in \langle A \rangle(R)
\]

where $\langle A \rangle(R) \subseteq A(B) \times A(B')$ is the relational interpretation of the type A.

- E.g. reverse : $\forall \alpha. \text{List} \ \alpha \rightarrow \text{List} \ \alpha$ is relationally parametric.
Applications of relational parametricity

Relational parametricity enables:

- Reasoning about abstract data types.
- Correctness (universal properties) of encodings of data types.
- ‘Theorems for free!’ [Wadler, 1989].
- Concretely, a specific example: if $t : \forall \alpha. \alpha \rightarrow \alpha$ then $t = \Lambda \alpha. \lambda x. x$.

Usually in the setting of Girard’s/Reynold’s $\lambda 2$ (System F) — serves as a model type theory for (impredicative) polymorphism.
What is the fundamental category-theoretic structure needed to model relational parametricity for λ^2?
What is the fundamental category-theoretic structure needed to model relational parametricity for $\lambda 2$?

- Perhaps surprising that this question does not have an established answer.
What is the fundamental category-theoretic structure needed to model relational parametricity for $\lambda 2$?

- Perhaps surprising that this question does not have an established answer.

- We know the fundamental structure needed for $\lambda 2$ ($\lambda 2$ fibrations [Seely, 1987]).
What is the fundamental category-theoretic structure needed to model relational parametricity for $\lambda 2$?

- Perhaps surprising that this question does not have an established answer.

- We know the fundamental structure needed for $\lambda 2$ ($\lambda 2$ fibrations [Seely, 1987]).

- We also know the fundamental structures used for relational parametricity (reflexive graph categories [Robinson and Rosolini, 1994], parametricity graphs [Dunphy and Reddy, 2004]).
What is the fundamental category-theoretic structure needed to model relational parametricity for λ^2?

- Perhaps surprising that this question does not have an established answer.

- We know the fundamental structure needed for λ^2 (λ^2 fibrations [Seely, 1987]).

- We also know the fundamental structures used for relational parametricity (reflexive graph categories [Robinson and Rosolini, 1994], parametricity graphs [Dunphy and Reddy, 2004]).

- So why not just combine the two?
So why not just combine the two?

- When doing so, the expected consequences of parametricity are only derivable if the underlying category is *well-pointed*.

- **Recall**: A category \(\mathcal{C} \) is well-pointed when \(f = g : A \to B \) in \(\mathcal{C} \) iff \(f \circ e = g \circ e : 1 \to B \) for all global elements \(e : 1 \to A \).

- This rules out many interesting categories, e.g. functor categories.
So why not just combine the two?

- When doing so, the expected consequences of parametricity are only derivable if the underlying category is well-pointed.

 Recall: A category \mathcal{C} is well-pointed when $f = g : A \rightarrow B$ in \mathcal{C} iff $f \circ e = g \circ e : 1 \rightarrow B$ for all global elements $e : 1 \rightarrow A$.

- This rules out many interesting categories, e.g. functor categories.

- Existing solutions (e.g. Birkedal and Møgelberg [2005]) circumvent this by adding significant additional structure to models (enough to model the full logic of Plotkin and Abadi).

- We seek instead a minimal solution still based on the idea of directly combining models of λ^2 with structure for relational parametricity.
A minimal solution

- We achieve this in a perhaps unexpected way: we change the notion of model of λ^2.

- λ^2 fibrations satisfying Lawvere's comprehension property.
A minimal solution

- We achieve this in a perhaps unexpected way: we change the notion of model of $\lambda 2$.

- $\lambda 2$ fibrations satisfying Lawvere’s comprehension property.

- This allows us to combine such comprehensive $\lambda 2$ fibrations with reflexive graph structure to model relational parametricity for $\lambda 2$.

- Validating expected consequences, also for non-well-pointed categories.

- Proof involves novel ingredients due to minimality of structure:
 - definability of direct image relations,
 - arguments without use of equality relations, and
 - only weak forms of graph relations available (‘pseudographs’).
Outline

1. The type theory λ_2

2. Modelling λ_2 using (comprehensive) λ_2 fibrations

3. Modelling relational parametricity using (comprehensive) parametricity graphs

4. Reasoning about parametricity using a type theory λ_2R
The type theory λ^2
The polymorphic lambda calculus λ^2 (System F) [Girard, 1972; Reynolds, 1974]

- Four judgements:

 $\Gamma \text{ ctx}$ \quad Γ is a context

 $\Gamma \vdash A$ type \quad A is a type in context Γ

 $\Gamma \vdash t : A$ \quad term t has type A in context Γ

 $\Gamma \vdash t = s : A$ \quad judgemental equality

- Types and terms generated by grammars

 $A, B ::= \alpha \mid A \to B \mid \forall \alpha. A$ \quad types

 $t, s ::= x \mid \lambda x. t \mid t \ s \mid \Lambda \alpha. t \mid t[B]$ \quad terms

- Equality generated by (β) and (η) for both term and type abstraction.
Only unusual feature of our presentation

- We use a single context with type and term variables interleaved.
- Standard from a dependent types perspective.
- Hence two different context extensions:

\[
\frac{\Gamma \text{ctxt}}{\Gamma, \alpha \text{ctxt}} (\alpha \notin \Gamma)
\]

\[
\frac{\Gamma \text{ctxt}}{\Gamma, x : A \text{ctxt}} (x \notin \Gamma)
\]
Models of λ^2
\(\lambda^2 \) fibrations [Seely, 1987; see also Jacobs, 1999]

Definition (\(\lambda^2 \) fibration)

A \(\lambda^2 \) fibration is a fibration \(p : T \to C \), where the base category \(C \) has finite products, and the fibration:

1. is fibred cartesian closed;
2. has a generic object \(U \) — we write \(\Omega \) for \(pU \);
3. and has fibred-products along projections \(X \times \Omega \to X \) in \(C \).
A \(\lambda^2 \) fibration is a split fibration \(p : \mathcal{T} \to \mathcal{C} \), where the base category \(\mathcal{C} \) has finite products, and the fibration:

1. is fibred cartesian closed;
2. has a split generic object \(U \) — we write \(\Omega \) for \(pU \);
3. and has fibred-products along projections \(X \times \Omega \to X \) in \(\mathcal{C} \).

Moreover, the reindexing functors given by the splitting should preserve the above-specified structure in fibres on the nose.
Structure in detail (i)

- Fibration $p : \mathbb{T} \to \mathbb{C}$, \mathbb{C} has finite products.
 - \mathbb{C} category of type variable contexts and substitutions.
 - Products are context concatenation.

\[\begin{array}{c}
\mathbb{T} \\
\downarrow p \\
\mathbb{C}
\end{array} \]
Structure in detail (i)

- **Fibration** $p : \mathbb{T} \to \mathbb{C}$, \mathbb{C} has finite products.
 - \mathbb{C} category of type variable contexts and substitutions.
 - Products are context concatenation.
 - **Fibre** \mathbb{T}_Γ category of types in context Γ.
Structure in detail (i)

- **Fibration** \(p : \mathbb{T} \to \mathbb{C} \), \(\mathbb{C} \) has finite products.
 - \(\mathbb{C} \) category of type variable contexts and substitutions.
 - Products are context concatenation.
 - Fibre \(\mathbb{T}_\Gamma \) category of types in context \(\Gamma \).
Structure in detail (i)

- **Fibration** \(p : \mathbb{T} \to \mathbb{C} \), \(\mathbb{C} \) has finite products.
 - \(\mathbb{C} \) category of type variable contexts and substitutions.
 - Products are context concatenation.
 - Fibre \(\mathbb{T}_\Gamma \) category of types in context \(\Gamma \).

\[\text{Diagram:} \]

\[\mathbb{T}_\Gamma \quad \sigma \quad \mathbb{T}_{\Gamma'} \]

\[\mathbb{C} \quad \Gamma \quad \Gamma' \]
Structure in detail (i)

- Fibration \(p : \mathbb{T} \to \mathbb{C} \), \(\mathbb{C} \) has finite products.
 - \(\mathbb{C} \) category of type variable contexts and substitutions.
 - Products are context concatenation.
 - Fibre \(\mathbb{T}_\Gamma \) category of types in context \(\Gamma \).
 - Reindexing is substitution.
Structure in detail (ii)

... is fibred cartesian closed;
 ▶ Each fibre is closed under exponentials.
 ▶ Needed for →.

... has a split generic object we write Ω for \mathcal{U};

Every object A in \mathcal{T} arises as $A \sim \sigma^*(\mathcal{U})$ for some σ:

$\mathcal{P}(A) - \Omega$.

Every type arises uniquely by substitution from a generic type.

The generic type \mathcal{U} is a type variable α in context $\Omega = \alpha$.

Needed for type variables.

... and has broad products along projections $\Gamma \times \Omega - \Gamma$ in C.

Each reindexing functor $\pi^*\Omega: \mathcal{T}\Gamma \rightarrow \mathcal{T}\Gamma \times \Omega$ has a right adjoint $\Pi\Omega: \mathcal{T}\Gamma \times \Omega \rightarrow \mathcal{T}\Gamma$.

Needed for \forall.
Structure in detail (ii)

- ... is fibred cartesian closed;
 - Each fibre is closed under exponentials.
 - Needed for \to.

- ... has a split generic object U — we write Ω for pU;
 - Every object A in \mathbb{T} arises as $A \cong \sigma^*(U)$ for some $\sigma : p(A) \to \Omega$.
 - “Every type arises uniquely by substitution from a generic type”.
 - The generic type U is a type variable α in context $\Omega = \alpha$.
 - Needed for type variables.
Structure in detail (ii)

- ... is fibred cartesian closed;
 - Each fibre is closed under exponentials.
 - Needed for \to.

- ... has a split generic object U — we write Ω for pU;
 - Every object A in \mathcal{T} arises as $A \cong \sigma^*(U)$ for some $\sigma : p(A) \to \Omega$.
 - “Every type arises uniquely by substitution from a generic type”.
 - The generic type U is a type variable α in context $\Omega = \alpha$.
 - Needed for type variables.

- ... and has fibred-products along projections $\Gamma \times \Omega \to \Gamma$ in \mathcal{C}.
 - Each reindexing functor $\pi^*_\Omega : \mathcal{T}_\Gamma \to \mathcal{T}_{\Gamma \times \Omega}$ has a right adjoint $\prod_\Omega : \mathcal{T}_{\Gamma \times \Omega} \to \mathcal{T}_\Gamma$.
 - Needed for \forall.
Old-fashioned interpretation

Given context Γ, let $\Theta = \alpha_1, \ldots, \alpha_n$ and $\Delta = x_1 : A_1, \ldots, x_m : A_m$ be the type and term variable components of Γ.
Old-fashioned interpretation

- Given context Γ, let $\Theta = \alpha_1, \ldots, \alpha_n$ and $\Delta = x_1 : A_1, \ldots, x_m : A_m$ be the type and term variable components of Γ.

- Type variable context $\Theta = \alpha_1, \ldots, \alpha_n$ interpreted as $[\Theta] = \Omega^n$ in \mathbb{C}.
Old-fashioned interpretation

- Given context Γ, let $\Theta = \alpha_1, \ldots, \alpha_n$ and $\Delta = x_1 : A_1, \ldots, x_m : A_m$ be the type and term variable components of Γ.

- Type variable context $\Theta = \alpha_1, \ldots, \alpha_n$ interpreted as $[\Theta] = \Omega^n$ in \mathbb{C}.

- Type A in context Θ is interpreted as an object in $T_{[\Theta]}$.
Old-fashioned interpretation

- Given context Γ, let $\Theta = \alpha_1, \ldots, \alpha_n$ and $\Delta = x_1 : A_1, \ldots, x_m : A_m$ be the type and term variable components of Γ.

- Type variable context $\Theta = \alpha_1, \ldots, \alpha_n$ interpreted as $[\Theta] = \Omega^n$ in \mathbb{C}.

- Type A in context Θ is interpreted as an object in $T_{[\Theta]}$.

- Term variable context $\Delta = x_1 : A_1, \ldots, x_m : A_m$ interpreted as $[\Delta] = [A_1] \times \ldots \times [A_m]$ in $T_{[\Theta]}$.
Old-fashioned interpretation

- Given context Γ, let $\Theta = \alpha_1, \ldots, \alpha_n$ and $\Delta = x_1 : A_1, \ldots, x_m : A_m$ be the type and term variable components of Γ.

- Type variable context $\Theta = \alpha_1, \ldots, \alpha_n$ interpreted as $[\Theta] = \Omega^n$ in \mathbb{C}.

- Type A in context Θ is interpreted as an object in $T_{[\Theta]}$.

- Term variable context $\Delta = x_1 : A_1, \ldots, x_m : A_m$ interpreted as $[\Delta] = [A_1] \times \ldots \times [A_m]$ in $T_{[\Theta]}$.

- Term $\Gamma \vdash t : A$ is interpreted as morphism

$$[t]_{\Theta;\Delta} : [\Delta] \to [A] \quad \text{in} \quad T_{[\Theta]}$$
Old-fashioned interpretation

Given context Γ, let $\Theta = \alpha_1, \ldots, \alpha_n$ and $\Delta = x_1 : A_1, \ldots, x_m : A_m$ be the type and term variable components of Γ.

Type variable context $\Theta = \alpha_1, \ldots, \alpha_n$ interpreted as $[[\Theta]] = \Omega^n$ in \mathcal{C}.

Type A in context Θ is interpreted as an object in $T_{[[\Theta]]}$.

Term variable context $\Delta = x_1 : A_1, \ldots, x_m : A_m$ interpreted as $[[\Delta]] = [[A_1]] \times \ldots \times [[A_m]]$ in $T_{[[\Theta]]}$.

Term $\Gamma \vdash t : A$ is interpreted as morphism

$$[[t]]_{\Theta;\Delta} : [[\Delta]] \to [[A]] \quad \text{in} \quad T_{[[\Theta]]}$$

The combined context made things awkward; let’s fix that by modifying the notion of model and giving a new interpretation.
Our modification: one new ingredient

We take inspirations from models of dependent types, where separated contexts are not possible.

Definition (Comprehensive λ2 fibration)

A λ2 fibration $p : \mathbb{T} \to \mathbb{C}$ is comprehensive if it enjoys the comprehension property: the fibred-terminal-object functor $X \mapsto 1_X : \mathbb{C} \to \mathbb{T}$ has a specified right adjoint $K : \mathbb{T} \to \mathbb{C}$.

- Given $A \in \mathbb{T}_\Gamma$, think of $K(A)$ as the extended context $\Gamma, x : A$.
- For $A \in \mathbb{T}_\Gamma$, write $\kappa_A = p(\varepsilon_A) : K(A) \to \Gamma$ for the ‘projection’ map obtained by applying p to the counit $\varepsilon_A : 1_{K(A)} \to A$ in \mathbb{T}.
Interpretation in a comprehensive \(\lambda \) fibration

- Contexts \(\Gamma \) interpreted as object \([\Gamma]\) in \(\mathcal{C} \).
- Type \(\Gamma \vdash A \) type interpreted as object \([A]_\Gamma\) in \(\mathcal{T}_{\Gamma} \).
Interpretation in a comprehensive $\lambda 2$ fibration

- Contexts Γ interpreted as object $[\Gamma]$ in \mathcal{C}.

- Type $\Gamma \vdash A$ type interpreted as object $[A]_{\Gamma}$ in $\mathcal{T}[\Gamma]$.

- Mutually defined, simultaneously with maps $\pi^\alpha_{\Gamma}: [\Gamma] \rightarrow \Omega$ for every context Γ containing α.

$$
\begin{align*}
[\cdot] &= 1 \\
[\Gamma, \alpha] &= [\Gamma] \times \Omega \\
[\Gamma, x : A] &= K[A]_{\Gamma} \\
[\forall \alpha. A] &= \prod_{\Omega} [A]_{\Gamma, \alpha} \\
\pi^\alpha_{\Gamma, \alpha} &= \pi_2 \\
\pi^\alpha_{\Gamma, \beta} &= \pi^\alpha_{\Gamma} \circ \pi_1 (\beta \neq \alpha) \\
\pi^\alpha_{\Gamma, x : A} &= \pi^\alpha_{\Gamma} \circ \kappa [A]_{\Gamma}
\end{align*}
$$
Interpretation in a comprehensive $\lambda 2$ fibration

- Contexts Γ interpreted as object $[\Gamma]$ in C.

- Type $\Gamma \vdash A$ type interpreted as object $[A]_\Gamma$ in $T[\Gamma]$.

- Mutually defined, simultaneously with maps $\pi^\alpha_\Gamma : [\Gamma] \rightarrow \Omega$ for every context Γ containing α.

\[
\begin{align*}
[\cdot] &= 1 \\
[\Gamma, \alpha] &= [\Gamma] \times \Omega \\
[\Gamma, x : A] &= K[A]_\Gamma \\
[\forall \alpha. A] &= \prod_\Omega [A]_\Gamma, \alpha
\end{align*}
\]

\[
\begin{align*}
\pi^\alpha_{\Gamma, \alpha} &= \pi_2 \\
\pi^\alpha_{\Gamma, \beta} &= \pi^\alpha_{\Gamma} \circ \pi_1 (\beta \neq \alpha) \\
\pi^\alpha_{\Gamma, x : A} &= \pi^\alpha_{\Gamma} \circ \kappa[A]_\Gamma
\end{align*}
\]

- Term $\Gamma \vdash t : A$ is interpreted as global element

\[
[t]_\Gamma : 1_{[\Gamma]} \rightarrow [A]_\Gamma \text{ in } T[\Gamma]
\]
For future reference

Compare the interpretation of terms in standard and comprehensive \(\lambda 2 \) fibrations:

- \([t]_{\Theta; \Delta} : [\Delta] \rightarrow [A] \) in \(T_{[\Theta]} \) (old-fashioned, standard)

- versus global element

\[
[t]_\Gamma : 1_{[\Gamma]} \rightarrow [A]_\Gamma \quad \text{in} \quad T_{[\Gamma]}
\]

(comprehensive)
Soundness and completeness

Theorem (Soundness for $\lambda 2$)

If $\Gamma \vdash t_1 = t_2 : A$ then, in every comprehensive $\lambda 2$ fibration, we have $\llbracket t_1 \rrbracket_\Gamma = \llbracket t_2 \rrbracket_\Gamma$.

Theorem (Full completeness for $\lambda 2$)

There exists a comprehensive $\lambda 2$ fibration satisfying:

1. for every type $\Gamma \vdash A$ type, every global point $1_{[\Gamma]} \longrightarrow \llbracket A \rrbracket_\Gamma$ is the denotation $\llbracket t \rrbracket_\Gamma$ of some term $\Gamma \vdash t : A$; and

2. for all terms $\Gamma \vdash t_1, t_2 : A$ satisfying $\llbracket t_1 \rrbracket_\Gamma = \llbracket t_2 \rrbracket_\Gamma$, we have $\Gamma \vdash t_1 = t_2 : A$.
(Comprehensive) parametricity graphs
Incorporating relational parametricity

- These models do not model parametricity.

- In order to do so, we combine with the structure of reflexive graph categories [Ma and Reynolds, 1992; Robinson and Rosolini, 1994; O’Hearn and Tennent, 1995; ...].

- Simple category-theoretic structure for modelling relations.
Reflexive graph categories

- Categories \mathbb{V} and \mathbb{E}, where we think of \mathbb{E} as the category of relations over objects of \mathbb{V}.

- The functors ∇_1, ∇_2 are ‘projection’ functors giving source and target of relations, respectively, and Δ maps an object to its ‘identity relation’.
Reflexive graph categories

- Categories \mathbb{V} and \mathbb{E}, where we think if \mathbb{E} as category of relations over objects of \mathbb{V}.

- The functors ∇_1, ∇_2 are ‘projection’ functors giving source and target of relations, respectively, and Δ maps an object to its ‘identity relation’.

- Notation: $R: A \leftrightarrow B$ means $R \in \mathbb{E}$ and $\nabla_1 R = A$, $\nabla_2 R = B$.

- Similarly, write $f \times g: R \to S$ if there is $h: R \to S$ in \mathbb{E} with $\nabla_1 h = f$ and $\nabla_2 h = g$. (Will soon assume h is unique, if it exists.)
Parametricity graphs [Dunphy, 2002; Dunphy and Reddy, 2004]

We need to add further conditions to ensure that the objects of \mathbb{E} behave sufficiently like relations.
Parametricity graphs [Dunphy, 2002; Dunphy and Reddy, 2004]

We need to add further conditions to ensure that the objects of \mathcal{E} behave sufficiently like relations.

- **Relational** if $\langle \nabla_1, \nabla_2 \rangle : \mathcal{E} \rightarrow \mathcal{V} \times \mathcal{V}$ is faithful. Intuitively, relations are proof-irrelevant.
Parametricity graphs [Dunphy, 2002; Dunphy and Reddy, 2004]

We need to add further conditions to ensure that the objects of E behave sufficiently like relations.

- **Relational** if $\langle \nabla_1, \nabla_2 \rangle : E \rightarrow V \times V$ is faithful. Intuitively, relations are proof-irrelevant.

- **Identity property** if for every $h : \Delta A \rightarrow \Delta B$ in E, it holds that $\nabla_1 h = \nabla_2 h$. Allows one to think of ΔA as an identity relation on A.
Parametricity graphs [Dunphy, 2002; Dunphy and Reddy, 2004]

\[\begin{array}{c}
\nabla_1 \\
\mathbb{E} \\
\Delta \\
\nabla_2 \\
\mathbb{V} \\
\end{array} \]

- We need to add further conditions to ensure that the objects of \(\mathbb{E} \) behave sufficiently like relations.
- **Relational** if \(\langle \nabla_1, \nabla_2 \rangle : \mathbb{E} \to \mathbb{V} \times \mathbb{V} \) is faithful. Intuitively, relations are proof-irrelevant.
- **Identity property** if for every \(h : \Delta A \longrightarrow \Delta B \) in \(\mathbb{E} \), it holds that \(\nabla_1 h = \nabla_2 h \). Allows one to think of \(\Delta A \) as an identity relation on \(A \).
- **Parametricity graph**: relational, with the identity property, and \(\langle \nabla_1, \nabla_2 \rangle : \mathbb{E} \to \mathbb{V} \times \mathbb{V} \) a fibration. Ensures that there are enough relations by supplying inverse image relations.
Combining reflexive graphs and comprehensive λ^2 fibrations
A **comprehensive** $\lambda 2$ **parametricity graph** is a reflexive graph of comprehensive $\lambda 2$ fibrations

\[
\begin{align*}
\mathcal{R}(\mathbb{T}) & \xleftarrow{} \xrightarrow{\nabla_1^T, \Delta^T, \nabla_2^T} \mathbb{T} \\
\mathcal{R}(\mathbb{C}) & \xleftarrow{} \xrightarrow{\nabla_1^C, \Delta^C, \nabla_2^C} \mathbb{C}
\end{align*}
\]

which is “fibrewise” a parametricity graph.
Combining reflexive graphs and comprehensive \(\lambda^2 \) fibrations

Main definition (Comprehensive \(\lambda^2 \) parametricity graph)

A comprehensive \(\lambda^2 \) parametricity graph is a reflexive graph of comprehensive \(\lambda^2 \) fibrations

\[
\begin{align*}
\mathcal{R} & \xleftarrow{} \begin{pmatrix} \nabla^T_1, \Delta^T, \nabla^T_2 \end{pmatrix} T \\
\mathcal{R}(\mathbb{T}) & \xrightarrow{} \begin{pmatrix} \nabla^T_1, \Delta^T, \nabla^T_2 \end{pmatrix} T \\
\mathcal{R}(\mathbb{C}) & \xleftarrow{} \begin{pmatrix} \nabla^C_1, \Delta^C, \nabla^C_2 \end{pmatrix} C \\
\mathbb{C} & \xrightarrow{} \begin{pmatrix} \nabla^C_1, \Delta^C, \nabla^C_2 \end{pmatrix} C
\end{align*}
\]

which is “fibrewise” a parametricity graph.

Note: Recover “broken” definition by dropping comprehensive.
A type theory for reasoning about parametricity
Reasoning in models: a type theory $\lambda 2R$

- We construct a type theory $\lambda 2R$ which is the ‘internal language’ of comprehensive $\lambda 2$ parametricity graphs.

- By proving soundness and completeness, we can work in $\lambda 2R$ instead of directly in the model.

- $\lambda 2R$ is similar in many respects to System R [Abadi, Cardelli and Curien, 1993] and System P [Dunphy, 2002].
We construct a type theory \(\lambda 2R \) which is the ‘internal language’ of comprehensive \(\lambda 2 \) parametricity graphs.

By proving soundness and completeness, we can work in \(\lambda 2R \) instead of directly in the model.

\(\lambda 2R \) is similar in many respects to System R [Abadi, Cardelli and Curien, 1993] and System P [Dunphy, 2002].

Not a conservative extension of \(\lambda 2 \) — parametric models enjoy much stronger properties than arbitrary models (for which \(\lambda 2 \) is internal language).
New judgement forms

\(\lambda 2R \) extends \(\lambda 2 \) with three new judgements:

\[
\begin{align*}
\Theta & \text{ rctxt} & \Theta \text{ is a relational context} \\
\Theta & \vdash A_1 RA_2 \text{ rel} & R \text{ is a relation between types } A_1 \text{ and } A_2 \\
\Theta & \vdash (t_1 : A_1) R (t_2 : A_2) & t_1 : A_1 \text{ is related to } t_2 : A_2 \text{ by the relation } R
\end{align*}
\]
Relation formation rules

\[\Theta \vdash \alpha \rho \beta \text{ rel} \quad (\alpha \rho \beta \in \Theta) \]

\[\Theta \vdash A_1 RA_2 \text{ rel} \quad \Theta \vdash B_1 SB_2 \text{ rel} \]

\[\Theta \vdash (A_1 \rightarrow B_1)(R \rightarrow S)(A_2 \rightarrow B_2) \text{ rel} \]

\[\Theta, \alpha \rho \beta \vdash A_1 RA_2 \text{ rel} \]

\[\Theta \vdash (\forall \alpha. A_1)(\forall \alpha \rho \beta. R)(\forall \beta. A_2) \text{ rel} \]
Relation formation rules

\[\Theta
\vdash \alpha \rho \beta \quad \text{rel} \quad (\alpha \rho \beta \in \Theta) \]

\[\Theta
\vdash A_1 RA_2 \quad \text{rel} \quad \Theta
\vdash B_1 SB_2 \quad \text{rel} \]

\[\Theta
\vdash (A_1 \to B_1)(R \to S)(A_2 \to B_2) \quad \text{rel} \]

\[\Theta, \; \alpha \rho \beta
\vdash A_1 RA_2 \quad \text{rel} \]

\[\Theta
\vdash (\forall \alpha. \; A_1)(\forall \alpha \rho \beta. \; R)(\forall \beta. \; A_2) \quad \text{rel} \]

\[\Theta
\vdash B_1 RB_2 \quad \text{rel} \]

\[(\Theta)_1 \vdash t_1 : A_1 \to B_1 \quad (\Theta)_2 \vdash t_2 : A_2 \to B_2 \]

\[\Theta
\vdash A_1 ([t_1 \times t_2]^{-1} R)A_2 \quad \text{rel} \]

(Will get back to projections \((-)_{i}\) soon.)
Direct image relations

Direct image relations

\[\Theta \vdash A_1 \text{ rel} \quad (\Theta)_1 \vdash t_1 : A_1 \to B_1 \quad (\Theta)_2 \vdash t_2 : A_2 \to B_2 \]

\[\Theta \vdash B_1 ([t_1 \times t_2]! R) B_2 \text{ rel} \]
Direct image relations

Direct image relations

$$\Theta \vdash A_1 RA_2 \text{ rel} \quad (\Theta)_1 \vdash t_1 : A_1 \to B_1 \quad (\Theta)_2 \vdash t_2 : A_2 \to B_2$$

$$\Theta \vdash B_1 ([t_1 \times t_2]! R)B_2 \text{ rel}$$

are definable by the impredicative encoding

$$[t_1 \times t_2]! R := [i_{B_1} \times i_{B_2}]^{-1}(\forall \alpha \rho \beta. ((- \circ t_1) \times (- \circ t_2))^{-1}(R \to \rho)) \to \rho$$

where $$i_B$$ abbreviates $$\lambda b. \lambda \alpha. \lambda t. t b : B \to \forall \alpha. (B \to \alpha) \to \alpha.$$
Direct image relations

$$\Theta \vdash A_1 \text{RA}_2 \rel$$
$$\vdash (\Theta)_1 \vdash t_1 : A_1 \rightarrow B_1$$
$$\vdash (\Theta)_2 \vdash t_2 : A_2 \rightarrow B_2$$
$$\vdash \Theta \vdash B_1 ([t_1 \times t_2]_! R)B_2 \rel$$

are definable by an impredicative encoding.
Direct image relations

\[\Theta \vdash A_1 R A_2 \text{ rel} \quad (\Theta)_1 \vdash t_1 : A_1 \to B_1 \quad (\Theta)_2 \vdash t_2 : A_2 \to B_2 \]

\[\Theta \vdash B_1 ([t_1 \times t_2]! R) B_2 \text{ rel} \]

are definable by an impredicative encoding.

Semantically, this means:

Theorem

In any comprehensive \(\lambda 2 \) parametricity graph, the functors

\[\langle \nabla^T_1, \nabla^T_2 \rangle \upharpoonright \mathcal{R}(T)_W : \mathcal{R}(T)_W \to T_{\nabla^C_1 W} \times T_{\nabla^C_2 W} \]

are also opfibrations (hence bifibrations).
Operations on syntax

- Left and right projections $(\cdot)_1, (\cdot)_2$ from relational contexts to typing contexts.

\[
(\cdot)_i = \cdot \\
(\Theta, \alpha_1 \rho \alpha_2)_i = (\Theta)_i, \alpha_i \\
(\Theta, (x_1 : A_1)R(x_2 : A_2))_i = (\Theta)_i, x_i : A_i
\]
Operations on syntax

- Left and right projections \((\cdot)_1, (\cdot)_2\) from relational contexts to typing contexts.

\[
(\cdot)_i = \cdot \\
(\Theta, \alpha_1 \rho \alpha_2)_i = (\Theta)_i, \alpha_i \\
(\Theta, (x_1 : A_1)R(x_2 : A_2))_i = (\Theta)_i, x_i : A_i
\]

- Conversely, a “doubling” operation takes typing contexts to relational contexts.

- Mutually defined with a “relational interpretation” \(\langle A \rangle\) of types \(A\).

\[
\begin{align*}
\langle \cdot \rangle &= \cdot \\
\langle \Gamma, \alpha \rangle &= \langle \Gamma \rangle, \alpha \rho^\alpha \alpha \\
\langle \Gamma, x : A \rangle &= \langle \Gamma \rangle, (x : A)\langle A \rangle (x : A) \\
\langle A \rightarrow B \rangle &= \langle A \rangle \rightarrow \langle B \rangle \\
\langle \forall \alpha. A \rangle &= \forall \alpha \rho^\alpha \alpha. \langle A \rangle
\end{align*}
\]
Operations on syntax

- Left and right projections $(\cdot)_1, (\cdot)_2$ from relational contexts to typing contexts.

\[(\cdot)_i = \cdot \]

\[(\Theta, \alpha_1 \rho \alpha_2)_i = (\Theta)_i, \alpha_i \]

\[(\Theta, (x_1 : A_1)R(x_2 : A_2))_i = (\Theta)_i, x_i : A_i \]

- Conversely, a “doubling” operation takes typing contexts to relational contexts.

- Mutually defined with a “relational interpretation” $\langle A \rangle$ of types A.

\[\langle \cdot \rangle = \cdot \]

\[\langle \alpha \rangle = \rho^\alpha \]

\[\langle \Gamma, \alpha \rangle = \langle \Gamma \rangle, \alpha \rho^\alpha \alpha \]

\[\langle A \rightarrow B \rangle = \langle A \rangle \rightarrow \langle B \rangle \]

\[\langle \Gamma, x : A \rangle = \langle \Gamma \rangle, (x : A)\langle A \rangle (x : A) \]

\[\langle \forall \alpha. A \rangle = \forall \alpha \rho^\alpha \alpha. \langle A \rangle \]

- **Note:** Left and right hand side treated separately, so e.g. $\alpha \rho^\alpha \alpha$ equivalent to $\alpha \rho \beta$ if everything fresh.
Reflexive graph structure on syntax

Lemma

1. If $\Theta \vdash (t_1 : A_1)R(t_2 : A_2)$ then $(\Theta)_i \vdash t_i : A_i$.
2. If $\Gamma \vdash t : A$ then $\langle \Gamma \rangle \vdash (t : A)\langle A \rangle(t : A)$.

Second item is Reynolds’ Abstraction Theorem in our setting.
Relatedness rules: standard relation formers

\[\Theta \vdash (x_1 : A_1)R(x_2 : A_2) \quad ((x_1 : A_1)R(x_2 : A_2) \in \Theta) \]

\[\Theta, (x_1 : A_1)R(x_2 : A_2) \vdash (t_1 : B_1)S(t_2 : B_2) \]

\[\Theta \vdash (\lambda x_1. t_1 : A_1 \to B_1)(R \to S)(\lambda x_2. t_2 : A_2 \to B_2) \]

\[\Theta \vdash (s_1 : A_1 \to B_1)(R \to S)(s_2 : A_2 \to B_2) \quad \Theta \vdash (t_1 : A_1)R(t_2 : A_2) \]

\[\Theta \vdash (s_1 \ t_1 : B_1)S(s_2 \ t_2 : B_2) \]

\[\Theta, \alpha\rho\beta \vdash (t_1 : A_1)R(t_2 : A_2) \]

\[\Theta \vdash (\wedge \alpha. t_1 : \forall \alpha. A_1)(\forall \alpha\rho\beta. R)(\wedge \beta. t_2 : \forall \beta. A_2) \]

\[\Theta \vdash (t_1 : \forall \alpha. A_1)(\forall \alpha\rho\beta. R)(t_2 : \forall \beta. A_2) \quad \Theta \vdash B_1 SB_2 \text{ rel} \]

\[\Theta \vdash (t_1[B_1] : A_1[\alpha \mapsto B_1])R[\alpha\rho\beta \mapsto B_1 SB_2](t_2[B_2] : A_2[\beta \mapsto B_2]) \]
Relatedness rules: standard relation formers

\[
\Theta \vdash (x_1 : A_1)R(x_2 : A_2) \quad ((x_1 : A_1)R(x_2 : A_2) \in \Theta)
\]

\[
\Theta, (x_1 : A_1)R(x_2 : A_2) \vdash (t_1 : B_1)S(t_2 : B_2)
\]

\[
\Theta \vdash (\lambda x_1. t_1 : A_1 \to B_1)(R \to S)(\lambda x_2. t_2 : A_2 \to B_2)
\]

\[
\Theta \vdash (s_1 : A_1 \to B_1)(R \to S)(s_2 : A_2 \to B_2) \quad \Theta \vdash (t_1 : A_1)R(t_2 : A_2)
\]

\[
\Theta \vdash (s_1 t_1 : B_1)S(s_2 t_2 : B_2)
\]

\[
\Theta, \alpha \rho \beta \vdash (t_1 : A_1)R(t_2 : A_2)
\]

\[
\Theta \vdash (\land \alpha. t_1 : \forall \alpha. A_1)(\forall \alpha \rho \beta. R)(\land \beta. t_2 : \forall \beta. A_2)
\]

\[
\Theta \vdash (t_1 : \forall \alpha. A_1)(\forall \alpha \rho \beta. R)(t_2 : \forall \beta. A_2) \quad \Theta \vdash B_1 SB_2 \text{ rel}
\]

\[
\Theta \vdash (t_1 [B_1] : A_1[\alpha \mapsto B_1])R[\alpha \rho \beta \mapsto B_1 SB_2](t_2[B_2] : A_2[\beta \mapsto B_2])
\]
Relatedness rules: standard relation formers

\[
\Theta \vdash (x_1 : A_1)R(x_2 : A_2) \quad ((x_1 : A_1)R(x_2 : A_2) \in \Theta)
\]

\[
\Theta, (x_1 : A_1)R(x_2 : A_2) \vdash (t_1 : B_1)S(t_2 : B_2)
\]

\[
\Theta \vdash (\lambda x_1 . t_1 : A_1 \to B_1)(R \to S)(\lambda x_2 . t_2 : A_2 \to B_2)
\]

\[
\Theta \vdash (s_1 : A_1 \to B_1)(R \to S)(s_2 : A_2 \to B_2) \quad \Theta \vdash (t_1 : A_1)R(t_2 : A_2)
\]

\[
\Theta \vdash (s_1 t_1 : B_1)S(s_2 t_2 : B_2)
\]

\[
\Theta, \alpha \rho \beta \vdash (t_1 : A_1)R(t_2 : A_2)
\]

\[
\Theta \vdash (\land \alpha . t_1 : \forall \alpha . A_1)(\forall \alpha \rho \beta . R)(\land \beta . t_2 : \forall \beta . A_2)
\]

\[
\Theta \vdash (t_1 : \forall \alpha . A_1)(\forall \alpha \rho \beta . R)(t_2 : \forall \beta . A_2) \quad \Theta \vdash B_1 SB_2 \text{ rel}
\]

\[
\Theta \vdash (t_1 [B_1] : A_1[\alpha \mapsto B_1])R[\alpha \rho \beta \mapsto B_1 SB_2](t_2[B_2] : A_2[\beta \mapsto B_2])
\]
Relatedness rules: inverse image relations and substitution

\[\Theta \vdash (t_1 \ u_1 : B_1) R (t_2 \ u_2 : B_2) \]

\[\Theta \vdash (u_1 : A_1) ([t_1 \times t_2]^{-1} R) (u_2 : A_2) \]

\[\Theta \vdash (t_1 : A_1) R (t_2 : A_2) \quad \Theta_1 \vdash t_1 = s_1 : A_1 \quad \Theta_2 \vdash t_2 = s_2 : A_2 \]

\[\Theta \vdash (s_1 : A_1) R (s_2 : A_2) \]
One more rule: the parametricity rule

- The system get its power from inverse image relations together with the parametricity rule.

- Recall: If $\Gamma \vdash t : A$ then $\langle \Gamma \rangle \vdash (t : A)\langle A \rangle(t : A)$.

- So $\langle A \rangle$ is the equality relation? No! Only in closed contexts.

- In fact, for open types, $\langle \alpha \rangle = \alpha \rho \beta$.
One more rule: the parametricity rule

- The system gets its power from inverse image relations together with the parametricity rule.

- Recall: If $\Gamma \vdash s = t : A$ then $\langle \Gamma \rangle \vdash (s : A)\langle A \rangle(t : A)$.
One more rule: the parametricity rule

- The system get its power from inverse image relations together with the **parametricity rule**.

- Recall: If $\Gamma \vdash s = t : A$ then $\langle \Gamma \rangle \vdash (s : A)\langle A\rangle(t : A)$.

- Parametricity rule states converse:

\[
\frac{\langle \Gamma \rangle \vdash (s : A)\langle A\rangle(t : A)}{\Gamma \vdash s = t : A}
\]
One more rule: the parametricity rule

- The system gets its power from inverse image relations together with the parametricity rule.

- Recall: If $\Gamma \vdash s = t : A$ then $\langle \Gamma \rangle \vdash (s : A)\langle A\rangle (t : A)$.

- Parametricity rule states converse:

$$
\Gamma \vdash (s : A)\langle A\rangle (t : A) \\
\Gamma \vdash s = t : A
$$

- So $\langle A \rangle$ is the equality relation? No! Only in closed contexts.

- In fact, for open types, $\langle A \rangle$ is not even a homogeneous relation, since $\langle \alpha \rangle = \alpha \rho \beta$.
Interpretation in comprehensive $\lambda 2$ parametricity graphs

$\nabla^T_1, \Delta^T, \nabla^T_2$

$\mathcal{R}(\mathbb{T}) \xrightarrow{\nabla^T_1, \Delta^T, \nabla^T_2} \mathbb{T}$

$R \left(\mathcal{R}(\mathbb{T}) \right) \xrightarrow{\nabla^C_1, \Delta^C, \nabla^C_2} \mathcal{R}(\mathbb{C})$

$\lambda 2$ interpreted in p, as before.

Relational context Θ interpreted as an object $[\Theta]$ in $\mathcal{R}(\mathbb{C})$.

Syntactic relation $\Theta \vdash ARB$ rel interpreted as a semantic relation $[R]_\Theta : [A]_{(\Theta)_1} \leftrightarrow [B]_{(\Theta)_2}$ in $\mathcal{R}(\mathbb{T})_{[\Theta]}$ using $\lambda 2$ structure.
Interpretation of inverse image relations

- Inverse-image relation $\Theta \vdash A_1([t_1 \times t_2]^{-1} R)A_2$ rel interpreted using the \textit{fibration} property of the parametricity graph:

- Have

\[
\begin{align*}
[t_1]_{(\Theta)_1} : 1 & \twoheadrightarrow [A_1]_{(\Theta)_1} \Rightarrow [B_1]_{(\Theta)_1} \\
[t_2]_{(\Theta)_2} : 1 & \twoheadrightarrow [A_2]_{(\Theta)_2} \Rightarrow [B_2]_{(\Theta)_2}
\end{align*}
\]
Interpretation of inverse image relations

- Inverse-image relation $\Theta \vdash A_1([t_1 \times t_2]^{-1} R)A_2$ rel interpreted using the *fibration* property of the parametricity graph:

- Have

$$\llbracket t_1 \rrbracket_{(\Theta)_1} : 1 \times \llbracket A_1 \rrbracket_{(\Theta)_1} \longrightarrow \llbracket B_1 \rrbracket_{(\Theta)_1}$$

$$\llbracket t_2 \rrbracket_{(\Theta)_2} : 1 \times \llbracket A_2 \rrbracket_{(\Theta)_2} \longrightarrow \llbracket B_2 \rrbracket_{(\Theta)_2}$$
Interpretation of inverse image relations

- Inverse-image relation $\Theta \vdash A_1([t_1 \times t_2]^{-1} R)A_2$ rel interpreted using the *fibration* property of the parametricity graph:

- Have

$$\llbracket t_1 \rrbracket(\Theta)_1 : \llbracket A_1 \rrbracket(\Theta)_1 \rightarrow \llbracket B_1 \rrbracket(\Theta)_1$$
$$\llbracket t_2 \rrbracket(\Theta)_2 : \llbracket A_2 \rrbracket(\Theta)_2 \rightarrow \llbracket B_2 \rrbracket(\Theta)_2$$
Interpretation of inverse image relations

- Inverse-image relation $\Theta \vdash A_1([t_1 \times t_2]^{-1} R)A_2$ rel interpreted using the \textit{fibration} property of the parametricity graph:

- Have

$$\llbracket t_1 \rrbracket_{\Theta_1} : \llbracket A_1 \rrbracket_{\Theta_1} \rightarrow \llbracket B_1 \rrbracket_{\Theta_1}$$
$$\llbracket t_2 \rrbracket_{\Theta_2} : \llbracket A_2 \rrbracket_{\Theta_2} \rightarrow \llbracket B_2 \rrbracket_{\Theta_2}$$

$$\llbracket R \rrbracket : \llbracket B_1 \rrbracket_{\Theta_1} \leftrightarrow \llbracket B_2 \rrbracket_{\Theta_2}$$
Interpretation of inverse image relations

- Inverse-image relation $\Theta \vdash A_1([t_1 \times t_2]^{-1}R)A_2$ rel interpreted using the fibration property of the parametricity graph:

- Have

\[
\begin{align*}
[t_1](\Theta)_1 : [A_1](\Theta)_1 & \rightarrow [B_1](\Theta)_1 \\
[t_2](\Theta)_2 : [A_2](\Theta)_2 & \rightarrow [B_2](\Theta)_2
\end{align*}
\]

- Reindex $[R] : [B_1](\Theta)_1 \leftrightarrow [B_2](\Theta)_2$ in the fibration along these maps to interpret $[[t_1 \times t_2]^{-1}R] : [A_1](\Theta)_1 \leftrightarrow [A_2](\Theta)_2$.
Why didn’t this work before?

- If we try to replay the interpretation in the old-fashioned semantics without comprehension, we get:

\[
[t_1]' : ([\Delta])_1 \rightarrow ([A_1])_1 \Rightarrow ([B_1])_1 \\
[t_2]' : ([\Delta])_2 \rightarrow ([A_2])_2 \Rightarrow ([B_2])_2
\]
Why didn’t this work before?

If we try to replay the interpretation in the old-fashioned semantics without comprehension, we get:

\[
\begin{align*}
[t_1]': ([\Delta])_1 \times ([A_1])_1 &\rightarrow ([B_1])_1 \\
[t_2]': ([\Delta])_2 \times ([A_2])_2 &\rightarrow ([B_2])_2
\end{align*}
\]
Why didn’t this work before?

- If we try to replay the interpretation in the old-fashioned semantics without comprehension, we get:

\[
\begin{align*}
\llbracket t_1 \rrbracket' : (\llbracket \Delta \rrbracket)_1 & \times (\llbracket A_1 \rrbracket)_1 \rightarrow (\llbracket B_1 \rrbracket)_1 \\
\llbracket t_2 \rrbracket' : (\llbracket \Delta \rrbracket)_2 & \times (\llbracket A_2 \rrbracket)_2 \rightarrow (\llbracket B_2 \rrbracket)_2
\end{align*}
\]

- Reindexing along this does not give a relation \((\llbracket A_1 \rrbracket)_1 \leftrightarrow (\llbracket A_2 \rrbracket)_2\)!
Why didn’t this work before?

- If we try to replay the interpretation in the old-fashioned semantics without comprehension, we get:

\[
\begin{align*}
\llbracket t_1 \rrbracket' : (\llbracket \Delta \rrbracket)_1 \times (\llbracket A_1 \rrbracket)_1 & \rightarrow (\llbracket B_1 \rrbracket)_1 \\
\llbracket t_2 \rrbracket' : (\llbracket \Delta \rrbracket)_2 \times (\llbracket A_2 \rrbracket)_2 & \rightarrow (\llbracket B_2 \rrbracket)_2
\end{align*}
\]

- Reindexing along this does not give a relation \((\llbracket A_1 \rrbracket)_1 \leftrightarrow (\llbracket A_2 \rrbracket)_2\)!

- So things work because in the new semantics, \(\llbracket t_i \rrbracket(\Theta)_i\) are global points. Possible because of use of comprehension.
Theorem (Soundness for \(\lambda 2R \))

In every comprehensive \(\lambda 2 \) parametricity graph:

1. if \(\Gamma \vdash t_1 = t_2 : A \) then \(\llbracket t_1 \rrbracket_\Gamma = \llbracket t_2 \rrbracket_\Gamma \); and
2. if \(\Theta \vdash (t_1 : A_1)R(t_2 : A_2) \) then \(\llbracket t_1 \rrbracket_\Theta_1 \times \llbracket t_2 \rrbracket_\Theta_2 : 1[\Theta] \rightarrow \llbracket R \rrbracket_\Theta \).
Soundness

Theorem (Soundness for $\lambda2R$)

In every comprehensive $\lambda2$ parametricity graph:

1. if $\Gamma \vdash t_1 = t_2 : A$ then $\llbracket t_1 \rrbracket_\Gamma = \llbracket t_2 \rrbracket_\Gamma$; and

2. if $\Theta \vdash (t_1 : A_1) R (t_2 : A_2)$ then $\llbracket t_1 \rrbracket_{(\Theta)_1} \times \llbracket t_2 \rrbracket_{(\Theta)_2} : \mathbf{1}_{[\Theta]} \longrightarrow [R]_\Theta$.

Substitution in relations sound by relational property.

Parametricity rule sound by identity property.

Inverse image rules sound by fibration property.
Theorem (Full completeness for \(\lambda 2R \))

There exists a comprehensive \(\lambda 2 \) parametricity graph satisfying the following.

1. For every type \(\Gamma \vdash A \) type, every global point \(1_{[\Gamma]} \rightarrow [A]_{\Gamma} \) is the denotation \([t]_{\Gamma}\) of some term \(\Gamma \vdash t : A \).

2. For all terms \(\Gamma \vdash t_1, t_2 : A \) satisfying \([t_1]_{\Gamma} = [t_2]_{\Gamma}\), we have \(\Gamma \vdash t_1 = t_2 : A \).

3. For every relation \(\Theta \vdash A_1 RA_2 \) type, every global point \(1_{[\Theta]} \rightarrow [R]_{\Theta} \) arises as \([t_1](\Theta)_1 \times [t_2](\Theta)_2\) for terms \(t_1, t_2 \) such that \(\Theta \vdash (t_1 : A_1)R(t_2 : A_2) \).
Deriving the expected consequences
Warm-up: $\forall \alpha. \alpha \rightarrow \alpha$ is terminal

- Want to prove $\Gamma, z : \forall \alpha. \alpha \rightarrow \alpha \vdash z = \Lambda \alpha. \lambda x. x : \forall \alpha. \alpha \rightarrow \alpha$.
Warm-up: \(\forall \alpha. \alpha \rightarrow \alpha \) is terminal

- Want to prove \(\Gamma, z : \forall \alpha. \alpha \rightarrow \alpha \vdash z = \Lambda \alpha. \lambda x. x : \forall \alpha. \alpha \rightarrow \alpha. \)

- By extensionality, it is enough to show
 \[
 \Gamma, z : \forall \alpha. \alpha \rightarrow \alpha, \alpha, x : \alpha \vdash z[\alpha] x = x : \alpha
 \]
Warm-up: $\forall \alpha. \alpha \to \alpha$ is terminal

- Want to prove $\Gamma, z : \forall \alpha. \alpha \to \alpha \vdash z = \Lambda \alpha. \lambda x. x : \forall \alpha. \alpha \to \alpha$.

- By extensionality, it is enough to show

 \[\Gamma, z : \forall \alpha. \alpha \to \alpha, \alpha, x : \alpha \vdash z[\alpha]x = x : \alpha \]

- Further by the parametricity rule, it is enough to show

 \[\langle \Gamma, z : \forall \alpha. \alpha \to \alpha, \alpha, x : \alpha \rangle \vdash (z[\alpha]x : \alpha)\langle \alpha \rangle(x : \alpha) \]
Warm-up: ∀α. α → α is terminal

- Want to prove Γ, z : ∀α. α → α ⊢ z = Λα. λx. x : ∀α. α → α.

- By extensionality, it is enough to show

 \[\Gamma, z : \forall \alpha. \alpha \rightarrow \alpha, \alpha, x : \alpha \vdash z[\alpha] x = x : \alpha \]

- Further by the parametricity rule, it is enough to show

 \[\langle \Gamma \rangle, z(\forall \alpha \rho \beta. \rho \rightarrow \rho) w, \alpha \rho \beta, (x : \alpha) \rho(y : \beta) \vdash (z[\alpha] x : \alpha) \rho(y : \beta) \]
Warm-up: \(\forall \alpha. \alpha \rightarrow \alpha \) is terminal

- Want to prove \(\Gamma, z : \forall \alpha. \alpha \rightarrow \alpha \vdash z = \Lambda \alpha. \lambda x. x : \forall \alpha. \alpha \rightarrow \alpha. \)

- By extensionality, it is enough to show

\[
\Gamma, z : \forall \alpha. \alpha \rightarrow \alpha, \alpha, x : \alpha \vdash z[\alpha] x = x : \alpha
\]

- Further by the parametricity rule, it is enough to show

\[
\langle \Gamma \rangle, z(\forall \alpha \rho \beta. \rho \rightarrow \rho) w, \alpha \rho \beta, (x : \alpha) \rho(y : \beta) \vdash (z[\alpha] x : \alpha) \rho(y : \beta)
\]

- \((x : \alpha)R(w : \forall \alpha. \alpha \rightarrow \alpha) \) where \(R = ([id \times (\lambda_. y)]^{-1} \rho) \), since \(x \rho y \).
Warm-up: $\forall \alpha. \alpha \rightarrow \alpha$ is terminal

- Want to prove $\Gamma, z : \forall \alpha. \alpha \rightarrow \alpha \vdash z = \Lambda \alpha. \lambda x. x : \forall \alpha. \alpha \rightarrow \alpha$.

- By extensionality, it is enough to show

$$\Gamma, z : \forall \alpha. \alpha \rightarrow \alpha, \alpha, x : \alpha \vdash z[\alpha] x = x : \alpha$$

- Further by the parametricity rule, it is enough to show

$$\langle \Gamma \rangle, z(\forall \alpha \rho \beta. \rho \rightarrow \rho) w, \alpha \rho \beta, (x : \alpha) \rho(y : \beta) \vdash (z[\alpha] x : \alpha) \rho(y : \beta)$$

- $(x : \alpha) R(w : \forall \alpha. \alpha \rightarrow \alpha)$ where $R = ([id \times (\lambda _ . y)]^{-1} \rho)$, since $x \rho y$.

- Since $z(\forall \rho. \rho \rightarrow \rho) w$, by instantiating $\alpha \rho \beta = \alpha R(\forall \beta. \beta \rightarrow \beta)$

$$(z[\alpha])(R \rightarrow R)(w[\forall \beta. \beta \rightarrow \beta])$$
Warm-up: \(\forall \alpha. \alpha \rightarrow \alpha \) is terminal

- Want to prove \(\Gamma, z : \forall \alpha. \alpha \rightarrow \alpha \vdash z = \Lambda \alpha. \lambda x. x : \forall \alpha. \alpha \rightarrow \alpha. \)

- By extensionality, it is enough to show
 \[
 \Gamma, z : \forall \alpha. \alpha \rightarrow \alpha, \alpha, x : \alpha \vdash z[\alpha] \ x = x : \alpha
 \]

- Further by the parametricity rule, it is enough to show
 \[
 \langle \Gamma \rangle, z(\forall \alpha \rho \beta. \rho \rightarrow \rho) \ w, \alpha \rho \beta, (x : \alpha) \rho(y : \beta) \vdash (z[\alpha] \ x : \alpha) \rho(y : \beta)
 \]

- \((x : \alpha)R(w : \forall \alpha. \alpha \rightarrow \alpha)\) where \(R = ([id \times (\lambda__ y)]^{-1} \rho)\), since \(x \rho y\).

- Since \(z(\forall \rho. \rho \rightarrow \rho) \ w\), by instantiating \(\alpha \rho \beta = \alpha R(\forall \beta. \beta \rightarrow \beta)\)
 \[
 (z[\alpha])(R \rightarrow R)(w[\forall \beta. \beta \rightarrow \beta])
 \]
 hence
 \[
 (z[\alpha] \ x)R(w[\forall \beta. \beta \rightarrow \beta] \ w)
 \]
Warm-up: \(\forall \alpha. \alpha \rightarrow \alpha \) is terminal

- Want to prove \(\Gamma, z : \forall \alpha. \alpha \rightarrow \alpha \vdash z = \Lambda \alpha. \lambda x. x : \forall \alpha. \alpha \rightarrow \alpha \).

- By extensionality, it is enough to show
 \[
 \Gamma, z : \forall \alpha. \alpha \rightarrow \alpha, \alpha, x : \alpha \vdash z[\alpha] x = x : \alpha
 \]

- Further by the parametricity rule, it is enough to show
 \[
 \langle \Gamma \rangle, z(\forall \alpha \rho \beta. \rho \rightarrow \rho) w, \alpha \rho \beta, (x : \alpha) \rho(y : \beta) \vdash (z[\alpha] x : \alpha) \rho(y : \beta)
 \]

- \((x : \alpha) R(w : \forall \alpha. \alpha \rightarrow \alpha)\) where \(R = ([id \times (\lambda _. y)]^{-1} \rho) \), since \(x \rho y \).

- Since \(z(\forall \rho. \rho \rightarrow \rho) w \), by instantiating \(\alpha \rho \beta = \alpha R(\forall \beta. \beta \rightarrow \beta) \)
 \[
 (z[\alpha])(R \rightarrow R)(w[\forall \beta. \beta \rightarrow \beta])
 \]
 hence
 \[
 (z[\alpha] x)([id \times (\lambda _. y)]^{-1} \rho)(w[\forall \beta. \beta \rightarrow \beta] w)
 \]
Warm-up: $\forall \alpha. \alpha \to \alpha$ is terminal

- Want to prove $\Gamma, z : \forall \alpha. \alpha \to \alpha \vdash z = \Lambda \alpha. \lambda x. x : \forall \alpha. \alpha \to \alpha$.

- By extensionality, it is enough to show
 $\Gamma, z : \forall \alpha. \alpha \to \alpha, \alpha, x : \alpha \vdash z[\alpha] x = x : \alpha$.

- Further by the parametricity rule, it is enough to show
 $\langle \Gamma \rangle, z(\forall \alpha \rho \beta. \rho \to \rho) w, \alpha \rho \beta, (x : \alpha) \rho(y : \beta) \vdash (z[\alpha] x : \alpha) \rho(y : \beta)$

- $(x : \alpha) R(w : \forall \alpha. \alpha \to \alpha)$ where $R = ([id \times (\lambda_. y)]^{-1} \rho)$, since $x \rho y$.

- Since $z(\forall \rho. \rho \to \rho) w$, by instantiating $\alpha \rho \beta = \alpha R(\forall \beta. \beta \to \beta)$
 $$ (z[\alpha])(R \to R)(w[\forall \beta. \beta \to \beta]) $$

 hence
 $$ (z[\alpha] x)([id \times (\lambda_. y)]^{-1} \rho)(w[\forall \beta. \beta \to \beta] w) $$

 i.e.
 $$ (z[\alpha] x : \alpha) \rho(y : \beta). $$
The expected consequences

Theorem (Consequences of Parametricity)

System $\lambda 2R$ proves:

1. $\forall \alpha. \alpha \rightarrow \alpha$ is 1.

2. $\forall \alpha. (A \rightarrow B \rightarrow \alpha) \rightarrow \alpha$ is $A \times B$.

3. $\forall \alpha. \alpha$ is 0.

4. $\forall \alpha. (A \rightarrow \alpha) \rightarrow (B \rightarrow \alpha) \rightarrow \alpha$ is $A + B$.

5. $\forall \alpha. (\forall \beta. (T(\beta) \rightarrow \alpha)) \rightarrow \alpha$ is $\exists \alpha. T(\alpha)$.

6. The type $\forall \alpha. (T(\alpha) \rightarrow \alpha) \rightarrow \alpha$ is the carrier of the initial T-algebra for all functorial type expressions $T(\alpha)$.

7. The type $\exists \alpha. (\alpha \rightarrow T(\alpha)) \times \alpha$ is the carrier of the final T-coalgebra for all functorial type expressions $T(\alpha)$.

8. Terms of type $\forall \alpha. F(\alpha, \alpha) \rightarrow G(\alpha, \alpha)$ for mixed-variance type expressions F and G are dinatural.
Some comments on the proof

- As usual, relations representing graphs of functions play a key role.
Some comments on the proof

- As usual, relations representing graphs of functions play a key role.

- Two ways to define concrete graphs:

 - $(x : A) gr_*(f) (y : B)$ if $f x = y$.
Some comments on the proof

- As usual, relations representing graphs of functions play a key role.

- Two ways to define concrete graphs:

 - $(x:A) gr_*(f) (y:B)$ if $f \times x = y$.

 - $(x:A) gr!(f)(y:B)$ if there exists $w:A$ such that $x = w$ and $y = f w$.
Some comments on the proof

- As usual, relations representing graphs of functions play a key role.

- Two ways to define concrete graphs:

 - $(x : A) \, gr_*(f) (y : B)$ if $(f \times B) \langle B \rangle (y : B)$.

 - $(x : A) \, gr_!(f) (f \times B)$ if there exists $w : A$ such that $(x : A) \langle A \rangle (w : A)$.

 - Since we only have pseudo-identities, these do not coincide in general.
Some comments on the proof

- As usual, relations representing graphs of functions play a key role.

- Two ways to define concrete graphs:
 - \((x : A) \text{gr}_*(f) (y : B)\) if \((f x : B) (B) (y : B)\).
 - \((x : A) \text{gr}_!(f) (f w : B)\) if there exists \(w : A\) such that \((x : A) (A) (w : A)\).
 - Since we only have pseudo-identities, these do not coincide in general.

- \(\text{gr}_*(f) := [f \times \text{id}]^{-1} (B)\) defined using fibrational structure,
 \(\text{gr}_!(f) := [\text{id} \times f]! (A)\) using derived opfibrational structure.
Some comments on the proof

- As usual, relations representing graphs of functions play a key role.

- Two ways to define concrete graphs:
 - \((x : A) \, gr_*(f) (y : B)\) if \((f \times B) \langle B \rangle (y : B)\).
 - \((x : A) \, gr_f(f) (f \, w : B)\) if there exists \(w : A\) such that \((x : A) \langle A \rangle (w : A)\).
 - Since we only have pseudo-identities, these do not coincide in general.

- \(gr_*(f) := [f \times id]^{-1} \langle B \rangle\) defined using fibrational structure,
 \(gr_f(f) := [id \times f]_! \langle A \rangle\) using derived opfibrational structure.

- Subtlety: initial algebras use inverse image pseudographs, final coalgebras direct image ones.
Summary

- $\lambda 2$ fibrations with comprehension property as natural models of $\lambda 2$ (sound and complete).

- Comprehensive $\lambda 2$ parametricity graphs form good models of relational parametricity for $\lambda 2$, with usual strong consequences.

- Reasoning in the models using a sound and complete type theory $\lambda 2R$, including inverse image relations.

- Proof of consequences of parametricity involves novel ingredients:
 - direct image relations via impredicative encoding,
 - no identity relations available, and
 - two different pseudo-graph relations (using inverse and direct images).

- **Future work**: Extend to e.g. dependent type theory.

Neil Ghani, Fredrik Nordvall Forsberg and Alex Simpson
Comprehensive parametric polymorphism: categorical models and type theory.
FoSSaCS 2016.
Summary

- λ^2 fibrations with comprehension property as natural models of λ^2 (sound and complete).
- Comprehensive λ^2 parametricity graphs form good models of relational parametricity for λ^2, with usual strong consequences.
- Reasoning in the models using a sound and complete type theory $\lambda^2 R$, including inverse image relations.
- Proof of consequences of parametricity involves novel ingredients:
 ▶ direct image relations via impredicative encoding,
 ▶ no identity relations available, and
 ▶ two different pseudo-graph relations (using inverse and direct images).

Future work:

- Extend to e.g. dependent type theory.

Neil Ghani, Fredrik Nordvall Forsberg and Alex Simpson

Comprehensive parametric polymorphism: categorical models and type theory.

FoSSaCS 2016.