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Parametric polymorphism [Strachey, 1967]

A polymorphic program
t : ∀α.A

is parametric if it applies the same uniform algorithm at all
instantiations t[B] of its type parameter.

Typical example:

reverse : ∀α. List α→ List α
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Reynolds insight: relational parametricity [1983]

Turn the negative statement �not distinguishing types� into the
positive statement �preserves all relations�.

A polymorphic program t : ∀α.A is relationally parametric if for all
relations R ⊆ B × B ′,

(t[B], t[B ′]) ∈ 〈A〉(R)

where 〈A〉(R) ⊆ A(B)× A(B ′) is the relational interpretation of the
type A.

E.g. reverse : ∀α. List α→ List α is relationally parametric.
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Applications of relational parametricity

Relational parametricity enables:

Reasoning about abstract data types.

Correctness (universal properties) of encodings of data types.

`Theorems for free!' [Wadler, 1989].

Concretely, a speci�c example: if t : ∀α. α→ α then t = Λα. λx . x .

Usually in the setting of Girard's/Reynold's λ2 (System F) � serves as a
model type theory for (impredicative) polymorphism.
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What is the fundamental category-theoretic structure needed to

model relational parametricity for λ2?
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What is the fundamental category-theoretic structure
needed to model relational parametricity for λ2?

Perhaps surprising that this question does not have an established
answer.

We know the fundamental structure needed for λ2 (λ2 �brations
[Seely, 1987]).

We also know the fundamental structures used for relational
parametricity (re�exive graph categories [Robinson and Rosolini,
1994], parametricity graphs [Dunphy and Reddy, 2004]).

So why not just combine the two?
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So why not just combine the two?

When doing so, the expected consequences of parametricity are only
derivable if the underlying category is well-pointed.

Recall: A category C is well-pointed when f = g : A - B in C i�
f ◦ e = g ◦ e : 1 - B for all global elements e : 1 - A.

This rules out many interesting categories, e.g. functor categories.

Existing solutions (e.g. Birkedal and Møgelberg [2005]) circumvent
this by adding signi�cant additional structure to models (enough to
model the full logic of Plotkin and Abadi).

We seek instead a mininimal solution still based on the idea of directly
combining models of λ2 with structure for relational parametricity.
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A minimal solution

We achieve this in a perhaps unexpected way: we change the notion
of model of λ2.

λ2 �brations satisfying Lawvere's comprehension property.

This allows us to combine such comprehensive λ2 �brations with
re�exive graph structure to model relational parametricity for λ2.

Validating expected consequences, also for non-well-pointed
categories.

Proof involves novel ingredients due to minimality of structure:

I de�nability of direct image relations,

I arguments without use of equality relations, and

I only weak forms of graph relations available ('pseudographs').
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Outline

1 The type theory λ2

2 Modelling λ2 using (comprehensive) λ2 �brations

3 Modelling relational parametricity using (comprehensive) parametricity
graphs

4 Reasoning about parametricity using a type theory λ2R
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The type theoryλ2



The polymorphic lambda calculus λ2 (System F) [Girard,
1972; Reynolds, 1974]

Four judgements:

Γ ctxt Γ is a context

Γ ` A type A is a type in context Γ

Γ ` t : A term t has type A in context Γ

Γ ` t = s : A judgemental equality

Types and terms generated by grammars

A,B ::= α | A→ B | ∀α.A types

t, s ::= x | λx . t |t s | Λα. t | t[B] terms

Equality generated by (β) and (η) for both term and type abstraction.
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Only unusual feature of our presentation

We use a single context with type and term variables interleaved.

Standard from a dependent types perspective.

Hence two di�erent context extensions:

Γ ctxt
Γ, α ctxt

(α /∈ Γ)
Γ ctxt Γ ` A type

Γ, x : A ctxt
(x /∈ Γ)
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Models ofλ2



λ2 �brations [Seely, 1987; see also Jacobs, 1999]

De�nition (λ2 �bration)

A λ2 �bration is a �bration p : T→ C, where the base category C has
�nite products, and the �bration:

1 is �bred cartesian closed;

2 has a generic object U � we write Ω for p U;

3 and has �bred-products along projections X × Ω - X in C.
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λ2 �brations [Seely, 1987; see also Jacobs, 1999]

De�nition (λ2 �bration)

A λ2 �bration is a split �bration p : T→ C, where the base category C has
�nite products, and the �bration:

1 is �bred cartesian closed;

2 has a split generic object U � we write Ω for p U;

3 and has �bred-products along projections X × Ω - X in C.
Moreover, the reindexing functors given by the splitting should preserve the

above-speci�ed structure in �bres on the nose.
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Structure in detail (i)
Fibration p : T→ C, C has �nite products.

I C category of type variable contexts and substitutions.

I Products are context concatenation.

I Fibre TΓ category of types in context Γ.

I Reindexing is substitution.

C

T

p
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Structure in detail (ii)

. . . is �bred cartesian closed;
I Each �bre is closed under exponentials.

I Needed for →.

. . . has a split generic object U � we write Ω for p U;
I Every object A in T arises as A ∼= σ∗(U) for some σ : p(A) - Ω.

I �Every type arises uniquely by substitution from a generic type�.

I The generic type U is a type variable α in context Ω = α.

I Needed for type variables.

. . . and has �bred-products along projections Γ× Ω - Γ in C.
I Each reindexing functor π∗

Ω : TΓ → TΓ×Ω has a right adjoint∏
Ω : TΓ×Ω → TΓ.

I Needed for ∀.
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Old-fashioned interpretation

Given context Γ, let Θ = α1, . . . , αn and ∆ = x1 : A1, . . . , xm : Am be
the type and term variable components of Γ.

Type variable context Θ = α1, . . . , αn interpreted as JΘK = Ωn in C.

Type A in context Θ is interpreted as an object in TJΘK.

Term variable context ∆ = x1 : A1, . . . , xm : Am interpreted as
J∆K = JA1K× . . .× JAmK in TJΘK.

Term Γ ` t : A is interpreted as morphism

JtKΘ;∆ : J∆K→ JAK in TJΘK

The combined context made things awkward; let's �x that by
modifying the notion of model and giving a new interpretation.
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Our modi�cation: one new ingredient

We take inspirations from models of dependent types, where separated
contexts are not possible.

De�nition (Comprehensive λ2 �bration)

A λ2 �bration p : T→ C is comprehensive if it enjoys the comprehension

property: the �bred-terminal-object functor X 7→ 1X : C→ T has a

speci�ed right adjoint K : T→ C.

Given A ∈ TΓ, think of K (A) as the extended context Γ, x : A.

For A ∈ TΓ, write κA = p(εA) : K (A) - Γ for the `projection' map
obtained by applying p to the counit εA : 1K(A)

- A in T.
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Interpretation in a comprehensive λ2 �bration

Contexts Γ interpreted as object JΓK in C.

Type Γ ` A type interpreted as object JAKΓ in TJΓK.

Mutually de�ned, simultaneously with maps παΓ : JΓK - Ω for every
context Γ containing α.

J·K = 1 JαKΓ = (παΓ )∗ U

JΓ, αK = JΓK× Ω JA→ BKΓ = JAKΓ ⇒JΓK JBKΓ

JΓ, x : AK = KJAKΓ J∀α.AK =
∏

Ω
JAKΓ, α

παΓ, α = π2 παΓ, β = παΓ ◦ π1 (β 6=α) παΓ, x :A = παΓ ◦ κJAKΓ

Term Γ ` t : A is interpreted as global element

JtKΓ : 1JΓK - JAKΓ in TJΓK
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For future reference

Compare the interpretation of terms in standard and comprehensive λ2
�brations:

JtKΘ;∆ : J∆K→ JAK in TJΘK (old-fashioned, standard)

versus global element

JtKΓ : 1JΓK - JAKΓ in TJΓK

(comprehensive)
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Soundness and completeness

Theorem (Soundness for λ2)

If Γ ` t1 = t2 : A then, in every comprehensive λ2 �bration, we have

Jt1KΓ = Jt2KΓ.

Theorem (Full completeness for λ2)

There exists a comprehensive λ2 �bration satisfying:

1 for every type Γ ` A type, every global point 1JΓK - JAKΓ is the

denotation JtKΓ of some term Γ ` t : A; and

2 for all terms Γ ` t1, t2 : A satisfying Jt1KΓ = Jt2KΓ, we have

Γ ` t1 = t2 : A.
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(Comprehensive) parametricity
graphs



Incorporating relational parametricity

These models do not model parametricity.

In order to do so, we combine with the structure of re�exive graph
categories [Ma and Reynolds,1992; Robinson and Rosolini, 1994;
O'Hearn and Tennent, 1995; . . . ].

Simple category-theoretic structure for modelling relations.

20



Re�exive graph categories

E
∇1 -

� ∆

∇2

-
V

Categories V and E, where we think if E as category of relations over
objects of V.

The functors ∇1,∇2 are `projection' functors giving source and target
of relations, respectively, and ∆ maps an object to its `identity
relation'.

Notation: R : A↔ B means R ∈ E and ∇1R = A, ∇2R = B .

Similarly, write f × g : R - S if there is h : R - S in E with
∇1h = f and ∇2h = g . (Will soon assume h is unique, if it exists.)
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Parametricity graphs [Dunphy, 2002; Dunphy and Reddy,
2004]

E
∇1 -

� ∆

∇2

-
V

We need to add further conditions to ensure that the objects of E
behave su�ciently like relations.

Relational if 〈∇1,∇2〉 : E→ V× V is faithful. Intuitively, relations are
proof-irrelevant.

Identity property if for every h : ∆A - ∆B in E, it holds that
∇1h = ∇2h. Allows one to think of ∆A as an identity relation on A.

Parametricity graph: relational, with the identity property, and
〈∇1,∇2〉 : E→ V× V a �bration. Ensures that there are enough
relations by supplying inverse image relations.
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Combining re�exive graphs and comprehensive λ2 �brations

Main de�nition (Comprehensive λ2 parametricity graph)

A comprehensive λ2 parametricity graph is a re�exive graph of
comprehensive λ2 �brations

R(T)

∇T
1
, ∆T, ∇T

2-
� - T

R(C)

pR

? -� -

∇C
1
, ∆C, ∇C

2

C

p

?

which is ��brewise� a parametricity graph.

Note: Recover �broken� de�nition by dropping comprehensive.
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A type theory for reasoning about
parametricity



Reasoning in models: a type theory λ2R

We construct a type theory λ2R which is the `internal language' of
comprehensive λ2 parametricity graphs.

By proving soundness and completeness, we can work in λ2R instead
of directly in the model.

λ2R is similar in many respects to System R [Abadi, Cardelli and
Curien, 1993] and System P [Dunphy, 2002].

Not a conservative extension of λ2 � parametric models enjoy much
stronger properties than arbitrary models (for which λ2 is internal
language).
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New judgement forms

λ2R extends λ2 with three new judgements:

Θ rctxt Θ is a relational context

Θ ` A1RA2 rel R is a relation between types A1 and A2

Θ ` (t1 :A1)R(t2 :A2) t1 :A1 is related to t2 :A2 by the relation R

25



Relation formation rules

Θ ` αρβ rel
(αρβ ∈ Θ)

Θ ` A1RA2 rel Θ ` B1SB2 rel

Θ ` (A1 → B1)(R → S)(A2 → B2) rel

Θ, αρβ ` A1RA2 rel

Θ ` (∀α.A1)(∀αρβ.R)(∀β.A2) rel

Θ ` B1RB2 rel (Θ)1 ` t1 : A1 → B1 (Θ)2 ` t2 : A2 → B2

Θ ` A1([t1 × t2]−1R)A2 rel

(Will get back to projections (−)i soon.)
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Direct image relations

Direct image relations

Θ ` A1RA2 rel (Θ)1 ` t1 : A1 → B1 (Θ)2 ` t2 : A2 → B2

Θ ` B1([t1 × t2]!R)B2 rel

are de�nable by impredicative encoding

Semantically, this means:

Theorem

In any comprehensive λ2 parametricity graph, the functors

〈∇T
1 ,∇T

2 〉�R(T)W : R(T)W → T∇C
1
W×T∇C

2
W

are also op�brations (hence bi�brations).
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Operations on syntax

Left and right projections (·)1, (·)2 from relational contexts to typing
contexts.

(·)i = ·
(Θ, α1ρα2)i = (Θ)i , αi

(Θ, (x1 :A1)R(x2 :A2))i = (Θ)i , xi :Ai

Conversely, a �doubling� operation takes typing contexts to relational
contexts.

Mutually de�ned with a �relational interpretation� 〈A〉 of types A.

〈·〉 = · 〈α〉 = ρα

〈Γ, α〉 = 〈Γ〉, α ραα 〈A→ B〉 = 〈A〉 → 〈B〉
〈Γ, x :A〉 = 〈Γ〉, (x :A)〈A〉(x :A) 〈∀α.A〉 = ∀αραα. 〈A〉

Note: Left and right hand side treated separately, so e.g. αραα
equivalent to αρβ if everything fresh.
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Re�exive graph structure on syntax

Lemma

1 If Θ ` (t1 : A1)R(t2 : A2) then (Θ)i ` ti : Ai .

2 If Γ ` t : A then 〈Γ〉 ` (t : A)〈A〉(t : A).

Second item is Reynolds' Abstraction Theorem in our setting.
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Relatedness rules: standard relation formers

Θ ` (x1 : A1)R(x2 : A2)
((x1 : A1)R(x2 : A2) ∈ Θ)

Θ, (x1 : A1)R(x2 : A2) ` (t1 : B1)S(t2 : B2)

Θ ` (λx1. t1 : A1 → B1)(R → S)(λx2. t2 : A2 → B2)

Θ ` (s1 : A1 → B1)(R → S)(s2 : A2 → B2) Θ ` (t1 : A1)R(t2 : A2)

Θ ` (s1 t1 : B1)S(s2 t2 : B2)

Θ, αρβ ` (t1 : A1)R(t2 : A2)

Θ ` (Λα. t1 : ∀α.A1)
(
∀αρβ.R

)
(Λβ. t2 : ∀β.A2)

Θ ` (t1 : ∀α.A1)
(
∀αρβ.R

)
(t2 : ∀β.A2) Θ ` B1SB2 rel

Θ ` (t1[B1] : A1[α 7→ B1])R[αρβ 7→ B1SB2](t2[B2] : A2[β 7→ B2])
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Relatedness rules: inverse image relations and substitution

Θ ` (t1 u1 : B1)R(t2 u2 : B2)

Θ ` (u1 : A1)([t1 × t2]−1R)(u2 : A2)

Θ ` (t1 : A1)R(t2 : A2) Θ1 ` t1 = s1 : A1 Θ2 ` t2 = s2 : A2

Θ ` (s1 : A1)R(s2 : A2)
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One more rule: the parametricity rule

The system get its power from inverse image relations together with
the parametricity rule.

Recall: If Γ ` t : A then 〈Γ〉 ` (t : A)〈A〉(t : A).

Parametricity rule states converse:

〈Γ〉 ` (s : A)〈A〉(t : A)

Γ ` s = t : A

So 〈A〉 is the equality relation? No! Only in closed contexts.

In fact, for open types, 〈A〉 is not even a homogeneous relation, since
〈α〉 = αρβ.
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Interpretation in comprehensive λ2 parametricity graphs

R(T)

∇T
1
, ∆T, ∇T

2-� - T

R(C)

pR

? -� -

∇C
1
, ∆C, ∇C

2

C

p

?

λ2 interpreted in p, as before.

Relational context Θ interpreted as an object JΘK in R(C).

Syntactic relation Θ ` ARB rel interpreted as a semantic relation
JRKΘ : JAK(Θ)1 ↔ JBK(Θ)2 in R(T)JΘK using λ2 structure.
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Interpretation of inverse image relations

Inverse-image relation Θ ` A1([t1 × t2]−1R)A2 rel interpreted using
the �bration property of the parametricity graph:

Have

Jt1K(Θ)1 : 1 - JA1K(Θ)1 ⇒ JB1K(Θ)1

Jt2K(Θ)2 : 1 - JA2K(Θ)2 ⇒ JB2K(Θ)2

Reindex

JRK : JB1K(Θ)1 ↔ JB2K(Θ)2

in the �bration along these maps
to interpret J[t1 × t2]−1RK : JA1K(Θ)1 ↔ JA2K(Θ)2 .
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Why didn't this work before?

If we try to replay the interpretation in the old-fashioned semantics
without comprehension, we get:

Jt1K′ : (J∆K)1 - (JA1K)1 ⇒ (JB1K)1

Jt2K′ : (J∆K)2 - (JA2K)2 ⇒ (JB2K)2

Reindexing along this does not give a relation (JA1K)1 ↔ (JA2K)2!

So things work because in the new semantics, JtiK(Θ)i are global
points. Possible because of use of comprehension.
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Soundness

Theorem (Soundness for λ2R)

In every comprehensive λ2 parametricity graph:

1 if Γ ` t1 = t2 : A then Jt1KΓ = Jt2KΓ; and

2 if Θ ` (t1 :A1)R(t2 :A2) then Jt1K(Θ)1 × Jt2K(Θ)2 : 1JΘK - JRKΘ.

Substitution in relations sound by relational property.

Parametricity rule sound by identity property.

Inverse image rules sound by �bration property.
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. . . and completeness

Theorem (Full completeness for λ2R)

There exists a comprehensive λ2 parametricity graph satisfying the

following.

1 For every type Γ ` A type, every global point 1JΓK - JAKΓ is the

denotation JtKΓ of some term Γ ` t : A.

2 For all terms Γ ` t1, t2 : A satisfying Jt1KΓ = Jt2KΓ, we have

Γ ` t1 = t2 : A.

3 For every relation Θ ` A1RA2 type, every global point

1JΘK - JRKΘ arises as Jt1K(Θ)1 × Jt2K(Θ)2 for terms t1, t2 such that

Θ ` (t1 :A1)R(t2 :A2).
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Deriving the expected consequences



Warm-up: ∀α. α→ α is terminal
Want to prove Γ, z : ∀α. α→ α ` z = Λα. λx . x : ∀α. α→ α.

By extensionality, it is enough to show

Γ, z : ∀α. α→ α, α, x : α ` z [α] x = x : α

Further by the parametricity rule, it is enough to show

` (z [α] x : α)()

(x : α)R(w : ∀α. α→ α) where R =
(
[id× (λ_. y)]−1ρ

)
, since xρy .

Since z
(
∀ρ. ρ→ ρ

)
w , by instantiating αρβ = αR(∀β. β → β)

(z [α])
(
R → R

)
(w [∀β. β → β])

hence
(z [α] x)R(w [∀β. β → β]w)

i.e.
(z [α] x : α)ρ(y : β).
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(x : α)R(w : ∀α. α→ α) where R =
(
[id× (λ_. y)]−1ρ

)
, since xρy .

Since z
(
∀ρ. ρ→ ρ

)
w , by instantiating αρβ = αR(∀β. β → β)

(z [α])
(
R → R

)
(w [∀β. β → β])

hence
(z [α] x)R(w [∀β. β → β]w)

i.e.
(z [α] x : α)ρ(y : β).
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The expected consequences

Theorem (Consequences of Parametricity)

System λ2R proves:

1 ∀α. α→ α is 1.

2 ∀α. (A→ B → α)→ α is A× B .

3 ∀α. α is 0.

4 ∀α. (A→α)→(B→α)→α is A+B .

5 ∀α. (∀β. (T (β)→ α))→ α is ∃α.T (α).

6 The type ∀α. (T (α)→ α)→ α is the carrier of the initial T -algebra

for all functorial type expressions T (α).

7 The type ∃α. (α→ T (α))× α is the carrier of the �nal T -coalgebra

for all functorial type expressions T (α).

8 Terms of type ∀α.F (α, α)→ G (α, α) for mixed-variance type

expressions F and G are dinatural.
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Some comments on the proof

As usual, relations representing graphs of functions play a key role.

Two ways to de�ne concrete graphs:

I (x :A) gr∗(f ) (y :B) if f x = y .

I (x :A)gr!(f )(y :B) if there exists w :A such that x = w and y = f w .

I Since we only have pseudo-identities, these do not coincide in general.

gr∗(f ) := [f × id]−1〈B〉 de�ned using �brational structure,
gr!(f ) := [id× f ]!〈A〉 using derived op�brational structure.

Subtlety: initial algebras use inverse image pseudographs, �nal
coalgebras direct image ones.
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Summary



Summary
λ2 �brations with comprehension property as natural models of λ2
(sound and complete).

Comprehensive λ2 parametricity graphs form good models of
relational parametricity for λ2, with usual strong consequences.

Reasoning in the models using a sound and complete type theory λ2R,
including inverse image relations.

Proof of consequences of parametricity involves novel ingredients:
I direct image relations via impredicative encoding,

I no identity relations available, and

I two di�erent pseudo-graph relations (using inverse and direct images).

Future work: Extend to e.g. dependent type theory.

Neil Ghani, Fredrik Nordvall Forsberg and Alex Simpson
Comprehensive parametric polymorphism: categorical models and
type theory.
FoSSaCS 2016.
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Thanks!
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