Comprehensive parametric polymorphism

Fredrik Nordvall Forsberg
University of Strathclyde, Glasgow
fredrik.nordvall-forsberg@strath.ac.uk

LFCS Seminar, Edinburgh, 3 May 2016

Joint work with...

Neil Ghani (Strathclyde)

Alex Simpson (Ljubljana)

Parametric polymorphism [Strachey, 1967]

- A polymorphic program

$$
t: \forall \alpha . A
$$

is parametric if it applies the same uniform algorithm at all instantiations $t[B]$ of its type parameter.

- Typical example:

$$
\text { reverse : } \forall \alpha \text {. List } \alpha \rightarrow \text { List } \alpha
$$

Reynolds insight: relational parametricity [1983]

- Turn the negative statement "not distinguishing types" into the positive statement "preserves all relations".

Reynolds insight: relational parametricity [1983]

- Turn the negative statement "not distinguishing types" into the positive statement "preserves all relations".
- A polymorphic program $t: \forall \alpha$. A is relationally parametric if for all relations $R \subseteq B \times B^{\prime}$,

$$
\left(t[B], t\left[B^{\prime}\right]\right) \in\langle A\rangle(R)
$$

where $\langle A\rangle(R) \subseteq A(B) \times A\left(B^{\prime}\right)$ is the relational interpretation of the type A.

- E.g. reverse : $\forall \alpha$. List $\alpha \rightarrow$ List α is relationally parametric.

Applications of relational parametricity

Relational parametricity enables:

- Reasoning about abstract data types.
- Correctness (universal properties) of encodings of data types.
- 'Theorems for free!' [Wadler, 1989].
- Concretely, a specific example: if $t: \forall \alpha . \alpha \rightarrow \alpha$ then $t=\Lambda \alpha . \lambda x . x$.

Usually in the setting of Girard's/Reynold's $\lambda \mathbf{2}$ (System F) — serves as a model type theory for (impredicative) polymorphism.

What is the fundamental category-theoretic structure needed to model relational parametricity for $\lambda 2$?

What is the fundamental category-theoretic structure needed to model relational parametricity for $\lambda 2$?

- Perhaps surprising that this question does not have an established answer.

What is the fundamental category-theoretic structure needed to model relational parametricity for $\lambda 2$?

- Perhaps surprising that this question does not have an established answer.
- We know the fundamental structure needed for $\lambda 2$ ($\lambda 2$ fibrations [Seely, 1987]).

What is the fundamental category-theoretic structure needed to model relational parametricity for $\lambda 2$?

- Perhaps surprising that this question does not have an established answer.
- We know the fundamental structure needed for $\lambda 2$ ($\lambda 2$ fibrations [Seely, 1987]).
- We also know the fundamental structures used for relational parametricity (reflexive graph categories [Robinson and Rosolini, 1994], parametricity graphs [Dunphy and Reddy, 2004]).

What is the fundamental category-theoretic structure needed to model relational parametricity for $\lambda 2$?

- Perhaps surprising that this question does not have an established answer.
- We know the fundamental structure needed for $\lambda 2$ ($\lambda 2$ fibrations [Seely, 1987]).
- We also know the fundamental structures used for relational parametricity (reflexive graph categories [Robinson and Rosolini, 1994], parametricity graphs [Dunphy and Reddy, 2004]).
- So why not just combine the two?

So why not just combine the two?

- When doing so, the expected consequences of parametricity are only derivable if the underlying category is well-pointed.
- Recall: A category \mathbb{C} is well-pointed when $f=g: A \longrightarrow B$ in \mathbb{C} if $f \circ e=g \circ e: \mathbf{1} \longrightarrow B$ for all global elements $e: \mathbf{1} \longrightarrow A$.
- This rules out many interesting categories, e.g. functor categories.

So why not just combine the two?

- When doing so, the expected consequences of parametricity are only derivable if the underlying category is well-pointed.
- Recall: A category \mathbb{C} is well-pointed when $f=g: A \longrightarrow B$ in \mathbb{C} iff $f \circ e=g \circ e: \mathbf{1} \longrightarrow B$ for all global elements $e: \mathbf{1} \longrightarrow A$.
- This rules out many interesting categories, e.g. functor categories.
- Existing solutions (e.g. Birkedal and Møgelberg [2005]) circumvent this by adding significant additional structure to models (enough to model the full logic of Plotkin and Abadi).
- We seek instead a mininimal solution still based on the idea of directly combining models of $\lambda 2$ with structure for relational parametricity.

A minimal solution

- We achieve this in a perhaps unexpected way: we change the notion of model of $\lambda 2$.
- $\lambda 2$ fibrations satisfying Lawvere's comprehension property.

A minimal solution

- We achieve this in a perhaps unexpected way: we change the notion of model of $\lambda 2$.
- $\lambda 2$ fibrations satisfying Lawvere's comprehension property.
- This allows us to combine such comprehensive $\lambda 2$ fibrations with reflexive graph structure to model relational parametricity for $\lambda 2$.
- Validating expected consequences, also for non-well-pointed categories.
- Proof involves novel ingredients due to minimality of structure:
- definability of direct image relations,
- arguments without use of equality relations, and
- only weak forms of graph relations available ('pseudographs').

Outline

(1) The type theory $\lambda 2$
(2) Modelling $\lambda 2$ using (comprehensive) $\lambda 2$ fibrations
(3) Modelling relational parametricity using (comprehensive) parametricity graphs
(1) Reasoning about parametricity using a type theory $\lambda 2 \mathrm{R}$

Breton Ciry of Yss the Cornish Land of Lyonesse (impossibly located between Cornvall and the Scilly Isles); the French ine Verte, the Portuguese Itha Verde Cornwallaniants of thislegend. But if what the Egyptian priests really told Solop all arevariantsor thistegen place in the Far West, and that the survivors moven was that the dasasco of Heracles', Atlantis can be easily identified, 'bey and the Pillars of The Atlantians, mentioned by Diodortis Sien
It is the country of the Adlantians, mentioned by Diodorus Siculus (ice page 48) as a most civilised people living to the westward of Lake Tritonis, from 4^{8}) as ambat Amazons, mearing the matriarchal tribes later deserihe th Herodorus, seized their ciry of Cerne. Diodorus's legend cannot be archaen Herodotus, seezed but he makes it precede a Libyan invasion of the Aegean Islandsand Thrace, an evene which cannot have taken place later than the thind Islandsand BC If, then, Allantis was Western Libya, the floods which eantery to disappear may have been due cither to a phenomenal rainfall such as caused the famous Mesopotamian and Ogygian Floods (see pages $138-9$), or to a higb tide with a strong north-westerly gale, such as washed away a large pa

Castor and Polydences, Messenia wirh Jdas and Lynceus, Argoh with Procuu and Acrisius. Tiryns with Heracles and Iphicles, Thebes with Etegeles and Polyneices Greed and cruelty will have been displayed by the Sons of Poser don only after the fall of Cnussus, when commercial integrity declined and the merchant turned pirate.

Prometheus's name, 'forethought', may originate in a Grech misunder standing of the Sanskrit word pramantha, the swasfika, or fire-drill, which he had suppescdly invented, since Zeus Prometheusat Thuru was shown holding a fire-drill. Prometheus, the Indo-European folk-hero, became confused with the Carian hero Palamedes; the inventor or distributor of all civilised arts (under the goddess's inspiration); and with the Babylonian god Ka; who claimed to have crented a splendid man from the blood of Kinga (arsort of Cronus), while the Mather-goddess Aruru created an infermor man from clay. The brothers Pramanthu and Manthu, who occur in the Bhagatuta Puilna, a Sanskrit epic, may be prototypes of Prometheus and Bhagatata Purina, a

The island left in the centre of the lake mentioned by Diodorus (see page 447) was perhaps the Chaamba Bou Rouba in the Sahara. Diodorus seemis to be referring to such a catastrophe when he writes in his account of the Amazons and Atlantians (iui. 55): 'And it is said that, as a result of earthquakes, the parts of Libya towards the ocean engulfed Lake Tritonis, making it disappear! Since Lake Tritonis still existed in his day, what he had probably been told was that 'as a tesult of earthquakes in the Western Mediterranean the sea engulfed part of Libya and formed Lake Tritonis.? The Zuider Zee and the Copuic Lake have now both been reclaimed; and Lake Tritonis, which, according to Scylax, still covered goo square miles in Classical times, has shrunk to the saltmarshes of Chott Melghir and Chott el Jerid. If this was Atlantis, some of the disposscssed agriculturists were driven west to Morocco, others soutifacross the Sahara, others east to Egypt and beyond, taking their story with them; a few remained by the lakeside. Plato's elephants may well have been found in of which rhe though the mountainous coastline of Atlantis belongs to Crete.
The five pairs of Poseidptians knew only by hearsay.
Atlas will have been Poseidon's twin sons who took the oath of allegiance to Cretans. In the Myeepresentatives at Pharos of Keftriu kingdons allied to the Since this was writenacan Age double-sovereignty was the rule: Sparta with 'Since this was written, history has repeated itself disastrously.
frivolous and unseemly behaviour of wives Hisstory of the division of the bull is equally unmythical: a comic anecdote, invented to account for Prometheus's punishment, and for the anomaly of presenting the gods only with the thighbones and fat cut from the sacrificial beast. In Genesis the sancrity of the thighbones is explained by Jacob's lameness which an angel inflicted on him duringa wrestling match. Pandora's jar (notbox) originally contaned winged souls
Greek islanders still carry fire from one place to another in the pith of gait fennel, and Prometheus's enchainment on Mount Caucasus may bea legend picked up by the Hellenes as they migrated to Grecee from the Caspian Seai of a frost-giant, recumberit on the snow of the high peaks, and aitended by a flock of vultures

The Athenians were at pains to deny that their goddess took Prometheus as her lover, which suggests that he had been locally identified with Hephacstus, another fire-god and inventor, of whom the same story was told (see page 98), because he shared a temple with Athene on the Acropolis.
Menoetius ('ruined strength') is a sacred king of the oak cult, the name refers perhaps to his ritual maiming (see pages $\ddagger 8$ and 170).
While the right-handed swastika is a symbol of the sun, the left-handed is 3 symbol of the moon. Among the Ahan uf West Africa, a people of Libyo-Berber ancestry (see introduction, end), it represents the Triple-goddess Ngame.

The polymorphic lambda calculus $\lambda 2$ (System F) [Girard,

 1972; Reynolds, 1974]- Four judgements:

$$
\begin{aligned}
\Gamma \text { ctxt } & \Gamma \text { is a context } \\
\Gamma \vdash A \text { type } & A \text { is a type in context } \Gamma \\
\Gamma \vdash t: A & \text { term } t \text { has type } A \text { in context } \Gamma \\
\Gamma \vdash t=s: A & \text { judgemental equality }
\end{aligned}
$$

- Types and terms generated by grammars

$$
\begin{array}{rlr}
A, B & ::=\alpha|A \rightarrow B| \forall \alpha . A & \text { types } \\
t, s::=x|\lambda x . t| t s|\Lambda \alpha . t| t[B] & \text { terms }
\end{array}
$$

- Equality generated by (β) and (η) for both term and type abstraction.

Only unusual feature of our presentation

- We use a single context with type and term variables interleaved.
- Standard from a dependent types perspective.
- Hence two different context extensions:

$$
\frac{\Gamma \operatorname{ctxt}}{\Gamma, \alpha \operatorname{ctxt}}(\alpha \notin \Gamma) \quad \frac{\Gamma \operatorname{ctxt} \quad \Gamma \vdash A \text { type }}{\Gamma, x: A \operatorname{ctxt}}(x \notin \Gamma)
$$

$\lambda 2$ fibrations [Seely, 1987; see also Jacobs, 1999]

Definition ($\lambda 2$ fibration)

A $\lambda 2$ fibration is a fibration $p: \mathbb{T} \rightarrow \mathbb{C}$, where the base category \mathbb{C} has finite products, and the fibration:
(1) is fibred cartesian closed;
(2) has a generic object U - we write Ω for $p U$;
(3) and has fibred-products along projections $X \times \Omega \longrightarrow X$ in \mathbb{C}.

$\lambda 2$ fibrations [Seely, 1987; see also Jacobs, 1999]

Definition ($\lambda 2$ fibration)

A $\lambda 2$ fibration is a split fibration $p: \mathbb{T} \rightarrow \mathbb{C}$, where the base category \mathbb{C} has finite products, and the fibration:
(1) is fibred cartesian closed;
(2) has a split generic object U - we write Ω for $p U$;
© and has fibred-products along projections $X \times \Omega \longrightarrow X$ in \mathbb{C}.
Moreover, the reindexing functors given by the splitting should preserve the above-specified structure in fibres on the nose.

Structure in detail (i)

- Fibration $p: \mathbb{T} \rightarrow \mathbb{C}, \mathbb{C}$ has finite products.
- \mathbb{C} category of type variable contexts and substitutions.
- Products are context concatenation.

Structure in detail (i)

- Fibration $p: \mathbb{T} \rightarrow \mathbb{C}, \mathbb{C}$ has finite products.
- \mathbb{C} category of type variable contexts and substitutions.
- Products are context concatenation.
- Fibre \mathbb{T}_{Γ} category of types in context Γ.

Structure in detail (i)

- Fibration $p: \mathbb{T} \rightarrow \mathbb{C}, \mathbb{C}$ has finite products.
- \mathbb{C} category of type variable contexts and substitutions.
- Products are context concatenation.
- Fibre \mathbb{T}_{Γ} category of types in context Γ.

Structure in detail (i)

- Fibration $p: \mathbb{T} \rightarrow \mathbb{C}, \mathbb{C}$ has finite products.
- \mathbb{C} category of type variable contexts and substitutions.
- Products are context concatenation.
- Fibre \mathbb{T}_{Γ} category of types in context Γ.

Structure in detail (i)

- Fibration $p: \mathbb{T} \rightarrow \mathbb{C}, \mathbb{C}$ has finite products.
- \mathbb{C} category of type variable contexts and substitutions.
- Products are context concatenation.
- Fibre \mathbb{T}_{Γ} category of types in context Γ.
- Reindexing is substitution.

Structure in detail (ii)

- ... is fibred cartesian closed;
- Each fibre is closed under exponentials.
- Needed for \rightarrow.

Structure in detail (ii)

- ... is fibred cartesian closed;
- Each fibre is closed under exponentials.
- Needed for \rightarrow.
- ... has a split generic object U - we write Ω for $p U$;
- Every object A in \mathbb{T} arises as $A \cong \sigma^{*}(U)$ for some $\sigma: p(A) \longrightarrow \Omega$.
- "Every type arises uniquely by substitution from a generic type".
- The generic type U is a type variable α in context $\Omega=\alpha$.
- Needed for type variables.

Structure in detail (ii)

- ... is fibred cartesian closed;
- Each fibre is closed under exponentials.
- Needed for \rightarrow.
- ... has a split generic object U - we write Ω for $p U$;
- Every object A in \mathbb{T} arises as $A \cong \sigma^{*}(U)$ for some $\sigma: p(A) \longrightarrow \Omega$.
- "Every type arises uniquely by substitution from a generic type".
- The generic type U is a type variable α in context $\Omega=\alpha$.
- Needed for type variables.
- ... and has fibred-products along projections $\Gamma \times \Omega \longrightarrow \Gamma$ in \mathbb{C}.
- Each reindexing functor $\pi_{\Omega}^{*}: \mathbb{T}_{\Gamma} \rightarrow \mathbb{T}_{\Gamma \times \Omega}$ has a right adjoint $\Pi_{\Omega}: \mathbb{T}_{\Gamma \times \Omega} \rightarrow \mathbb{T}_{\Gamma}$.
- Needed for \forall.

Old-fashioned interpretation

- Given context Γ, let $\Theta=\alpha_{1}, \ldots, \alpha_{n}$ and $\Delta=x_{1}: A_{1}, \ldots, x_{m}: A_{m}$ be the type and term variable components of Γ.

Old-fashioned interpretation

- Given context Γ, let $\Theta=\alpha_{1}, \ldots, \alpha_{n}$ and $\Delta=x_{1}: A_{1}, \ldots, x_{m}: A_{m}$ be the type and term variable components of Γ.
- Type variable context $\Theta=\alpha_{1}, \ldots, \alpha_{n}$ interpreted as $\llbracket \Theta \rrbracket=\Omega^{n}$ in \mathbb{C}.

Old-fashioned interpretation

- Given context Γ, let $\Theta=\alpha_{1}, \ldots, \alpha_{n}$ and $\Delta=x_{1}: A_{1}, \ldots, x_{m}: A_{m}$ be the type and term variable components of Γ.
- Type variable context $\Theta=\alpha_{1}, \ldots, \alpha_{n}$ interpreted as $\llbracket \Theta \rrbracket=\Omega^{n}$ in \mathbb{C}.
- Type A in context Θ is interpreted as an object in $\mathbb{T}_{\llbracket \Theta \rrbracket}$.

Old-fashioned interpretation

- Given context Γ, let $\Theta=\alpha_{1}, \ldots, \alpha_{n}$ and $\Delta=x_{1}: A_{1}, \ldots, x_{m}: A_{m}$ be the type and term variable components of Γ.
- Type variable context $\Theta=\alpha_{1}, \ldots, \alpha_{n}$ interpreted as $\llbracket \Theta \rrbracket=\Omega^{n}$ in \mathbb{C}.
- Type A in context Θ is interpreted as an object in $\mathbb{T}_{\llbracket \Theta \rrbracket}$.
- Term variable context $\Delta=x_{1}: A_{1}, \ldots, x_{m}: A_{m}$ interpreted as $\llbracket \Delta \rrbracket=\llbracket A_{1} \rrbracket \times \ldots \times \llbracket A_{m} \rrbracket$ in $\mathbb{T}_{\llbracket \Theta \rrbracket}$.

Old-fashioned interpretation

- Given context Γ, let $\Theta=\alpha_{1}, \ldots, \alpha_{n}$ and $\Delta=x_{1}: A_{1}, \ldots, x_{m}: A_{m}$ be the type and term variable components of Γ.
- Type variable context $\Theta=\alpha_{1}, \ldots, \alpha_{n}$ interpreted as $\llbracket \Theta \rrbracket=\Omega^{n}$ in \mathbb{C}.
- Type A in context Θ is interpreted as an object in $\mathbb{T}_{\llbracket \Theta \rrbracket}$.
- Term variable context $\Delta=x_{1}: A_{1}, \ldots, x_{m}: A_{m}$ interpreted as $\llbracket \Delta \rrbracket=\llbracket A_{1} \rrbracket \times \ldots \times \llbracket A_{m} \rrbracket$ in $\mathbb{T}_{\llbracket \Theta \rrbracket}$.
- Term $\Gamma \vdash t: A$ is interpreted as morphism

$$
\llbracket t \rrbracket_{\Theta ; \Delta}: \llbracket \Delta \rrbracket \rightarrow \llbracket A \rrbracket \quad \text { in } \mathbb{T}_{\llbracket \Theta \rrbracket}
$$

Old-fashioned interpretation

- Given context Γ, let $\Theta=\alpha_{1}, \ldots, \alpha_{n}$ and $\Delta=x_{1}: A_{1}, \ldots, x_{m}: A_{m}$ be the type and term variable components of Γ.
- Type variable context $\Theta=\alpha_{1}, \ldots, \alpha_{n}$ interpreted as $\llbracket \Theta \rrbracket=\Omega^{n}$ in \mathbb{C}.
- Type A in context Θ is interpreted as an object in $\mathbb{T}_{\llbracket \Theta \rrbracket \text {. }}$.
- Term variable context $\Delta=x_{1}: A_{1}, \ldots, x_{m}: A_{m}$ interpreted as $\llbracket \Delta \rrbracket=\llbracket A_{1} \rrbracket \times \ldots \times \llbracket A_{m} \rrbracket$ in $\mathbb{T}_{\llbracket \ominus \rrbracket}$.
- Term $\Gamma \vdash t: A$ is interpreted as morphism

$$
\llbracket t \rrbracket_{\Theta ; \Delta}: \llbracket \Delta \rrbracket \rightarrow \llbracket A \rrbracket \quad \text { in } \mathbb{T}_{\llbracket \Theta \rrbracket}
$$

- The combined context made things awkward; let's fix that by modifying the notion of model and giving a new interpretation.

Our modification: one new ingredient

We take inspirations from models of dependent types, where separated contexts are not possible.

Definition (Comprehensive $\lambda 2$ fibration)

A $\lambda \mathbf{2}$ fibration $p: \mathbb{T} \rightarrow \mathbb{C}$ is comprehensive if it enjoys the comprehension property: the fibred-terminal-object functor $X \mapsto \mathbf{1}_{X}: \mathbb{C} \rightarrow \mathbb{T}$ has a specified right adjoint $K: \mathbb{T} \rightarrow \mathbb{C}$.

- Given $A \in \mathbb{T}_{\Gamma}$, think of $K(A)$ as the extended context $\Gamma, x: A$.
- For $A \in \mathbb{T}_{\Gamma}$, write $\kappa_{A}=p\left(\varepsilon_{A}\right): K(A) \longrightarrow \Gamma$ for the 'projection' map obtained by applying p to the counit $\varepsilon_{A}: \mathbf{1}_{K(A)} \longrightarrow A$ in \mathbb{T}.

Interpretation in a comprehensive $\lambda 2$ fibration

- Contexts Γ interpreted as object $\llbracket\ulcorner\rrbracket$ in \mathbb{C}.
- Type $\Gamma \vdash A$ type interpreted as object $\llbracket A \rrbracket\left\ulcorner\right.$ in $\mathbb{T}_{\llbracket\ulcorner\rrbracket}$.

Interpretation in a comprehensive $\lambda 2$ fibration

- Contexts Γ interpreted as object $\llbracket\ulcorner\rrbracket$ in \mathbb{C}.
- Type $\Gamma \vdash A$ type interpreted as object $\llbracket A \rrbracket\ulcorner$ in $\mathbb{T} \llbracket\ulcorner\rrbracket$.
- Mutually defined, simultaneously with maps $\pi_{\Gamma}^{\alpha}: \llbracket \Gamma \rrbracket \longrightarrow \Omega$ for every context 「 containing α.

$$
\begin{array}{rlrl}
\llbracket \cdot \rrbracket & =1 & \llbracket \alpha \rrbracket_{\Gamma} & =\left(\pi_{\Gamma}^{\alpha}\right)^{*} U \\
\llbracket \Gamma, \alpha \rrbracket & =\llbracket\ulcorner\rrbracket \times \Omega & \llbracket A \rightarrow B \rrbracket\ulcorner & =\llbracket A \rrbracket_{\Gamma} \Rightarrow \llbracket\ulcorner\rrbracket B \rrbracket \rrbracket \\
\llbracket\ulcorner, x: A \rrbracket= & K \llbracket A \rrbracket \Gamma & \llbracket \forall \alpha \cdot A \rrbracket & =\prod_{\Omega} \llbracket A \rrbracket_{\Gamma, \alpha} \\
\pi_{\Gamma, \alpha}^{\alpha}=\pi_{2} & \pi_{\Gamma, \beta}^{\alpha}=\pi_{\Gamma}^{\alpha} \circ \pi_{1}(\beta \neq \alpha) & \pi_{\Gamma, x: A}^{\alpha}=\pi_{\Gamma}^{\alpha} \circ \kappa_{\llbracket A \rrbracket\ulcorner }
\end{array}
$$

Interpretation in a comprehensive $\lambda 2$ fibration

- Contexts Γ interpreted as object $\llbracket\ulcorner\rrbracket$ in \mathbb{C}.
- Type $\Gamma \vdash A$ type interpreted as object $\llbracket A \rrbracket\left\ulcorner\right.$ in $\mathbb{T}_{\llbracket\ulcorner\rrbracket}$.
- Mutually defined, simultaneously with maps $\pi_{\Gamma}^{\alpha}: \llbracket \Gamma \rrbracket \longrightarrow \Omega$ for every context 「 containing α.

$$
\begin{array}{rlrl}
\llbracket \cdot \rrbracket & =\mathbf{1} & \llbracket \alpha \rrbracket_{\Gamma} & =\left(\pi_{\Gamma}^{\alpha}\right)^{*} U \\
\llbracket \Gamma, \alpha \rrbracket & =\llbracket\ulcorner\rrbracket \times \Omega & \llbracket A \rightarrow B \rrbracket\ulcorner & =\llbracket A \rrbracket_{\Gamma} \Rightarrow \llbracket\left\ulcorner\rrbracket B \rrbracket_{\Gamma}\right. \\
\llbracket \Gamma, x: A \rrbracket= & K \llbracket A \rrbracket \Gamma & \llbracket \forall \alpha \cdot A \rrbracket & =\prod_{\Omega} \llbracket A \rrbracket_{\Gamma, \alpha} \\
\pi_{\Gamma, \alpha}^{\alpha}=\pi_{2} & \pi_{\Gamma, \beta}^{\alpha}=\pi_{\Gamma}^{\alpha} \circ \pi_{1}(\beta \neq \alpha) & \pi_{\Gamma, x: A}^{\alpha}=\pi_{\Gamma}^{\alpha} \circ \kappa_{\llbracket A \rrbracket\ulcorner }
\end{array}
$$

- Term $\Gamma \vdash t: A$ is interpreted as global element

$$
\llbracket t \rrbracket_{\Gamma}: \mathbf{1}_{\llbracket\ulcorner\rrbracket} \longrightarrow \llbracket A \rrbracket_{\Gamma} \quad \text { in } \mathbb{T}_{\llbracket \Gamma \rrbracket}
$$

For future reference

Compare the interpretation of terms in standard and comprehensive $\lambda \mathbf{2}$ fibrations:
$-\llbracket t \rrbracket_{\Theta ; \Delta}: \llbracket \Delta \rrbracket \rightarrow \llbracket A \rrbracket$ in $\mathbb{T}_{\llbracket \ominus \rrbracket}$ (old-fashioned, standard)

- versus global element

$$
\llbracket t \rrbracket_{\Gamma}: \mathbf{1}_{\llbracket\ulcorner\rrbracket} \longrightarrow \llbracket A \rrbracket_{\Gamma} \quad \text { in } \mathbb{T}_{\llbracket \Gamma \rrbracket}
$$

(comprehensive)

Soundness and completeness

Theorem (Soundness for $\lambda 2$)
If $\Gamma \vdash t_{1}=t_{2}: A$ then, in every comprehensive $\lambda 2$ fibration, we have $\llbracket t_{1} \rrbracket_{\Gamma}=\llbracket t_{2} \rrbracket_{\Gamma}$.

Theorem (Full completeness for $\lambda 2$)
There exists a comprehensive $\lambda 2$ fibration satisfying:
(1) for every type $\Gamma \vdash A$ type, every global point $\mathbf{1}_{\llbracket \Gamma \rrbracket} \longrightarrow \llbracket A \rrbracket \Gamma$ is the denotation $\llbracket t \rrbracket \Gamma$ of some term $\Gamma \vdash t: A$; and
(0) for all terms $\Gamma \vdash t_{1}, t_{2}: A$ satisfying $\llbracket t_{1} \rrbracket_{\Gamma}=\llbracket t_{2} \rrbracket_{\Gamma}$, we have $\Gamma \vdash t_{1}=t_{2}: A$.
(Comprehensive) parametricity graphs

Incorporating relational parametricity

- These models do not model parametricity.
- In order to do so, we combine with the structure of reflexive graph categories [Ma and Reynolds,1992; Robinson and Rosolini, 1994; O'Hearn and Tennent, 1995; ...].
- Simple category-theoretic structure for modelling relations.

Reflexive graph categories

- Categories \mathbb{V} and \mathbb{E}, where we think if \mathbb{E} as category of relations over objects of \mathbb{V}.
- The functors ∇_{1}, ∇_{2} are 'projection' functors giving source and target of relations, respectively, and Δ maps an object to its 'identity relation'.

Reflexive graph categories

- Categories \mathbb{V} and \mathbb{E}, where we think if \mathbb{E} as category of relations over objects of \mathbb{V}.
- The functors ∇_{1}, ∇_{2} are 'projection' functors giving source and target of relations, respectively, and Δ maps an object to its 'identity relation'.
- Notation: $R: A \leftrightarrow B$ means $R \in \mathbb{E}$ and $\nabla_{1} R=A, \nabla_{2} R=B$.
- Similarly, write $f \times g: R \longrightarrow S$ if there is $h: R \longrightarrow S$ in \mathbb{E} with $\nabla_{1} h=f$ and $\nabla_{2} h=g$. (Will soon assume h is unique, if it exists.)

Parametricity graphs [Dunphy, 2002; Dunphy and Reddy, 2004]

- We need to add further conditions to ensure that the objects of \mathbb{E} behave sufficiently like relations.

Parametricity graphs [Dunphy, 2002; Dunphy and Reddy, 2004]

- We need to add further conditions to ensure that the objects of \mathbb{E} behave sufficiently like relations.
- Relational if $\left\langle\nabla_{1}, \nabla_{2}\right\rangle: \mathbb{E} \rightarrow \mathbb{V} \times \mathbb{V}$ is faithful. Intuitively, relations are proof-irrelevant.

Parametricity graphs [Dunphy, 2002; Dunphy and Reddy, 2004]

- We need to add further conditions to ensure that the objects of \mathbb{E} behave sufficiently like relations.
- Relational if $\left\langle\nabla_{1}, \nabla_{2}\right\rangle: \mathbb{E} \rightarrow \mathbb{V} \times \mathbb{V}$ is faithful. Intuitively, relations are proof-irrelevant.
- Identity property if for every $h: \Delta A \longrightarrow \Delta B$ in \mathbb{E}, it holds that $\nabla_{1} h=\nabla_{2} h$. Allows one to think of ΔA as an identity relation on A.

Parametricity graphs [Dunphy, 2002; Dunphy and Reddy, 2004]

- We need to add further conditions to ensure that the objects of \mathbb{E} behave sufficiently like relations.
- Relational if $\left\langle\nabla_{1}, \nabla_{2}\right\rangle: \mathbb{E} \rightarrow \mathbb{V} \times \mathbb{V}$ is faithful. Intuitively, relations are proof-irrelevant.
- Identity property if for every $h: \Delta A \longrightarrow \Delta B$ in \mathbb{E}, it holds that $\nabla_{1} h=\nabla_{2} h$. Allows one to think of ΔA as an identity relation on A.
- Parametricity graph: relational, with the identity property, and $\left\langle\nabla_{1}, \nabla_{2}\right\rangle: \mathbb{E} \rightarrow \mathbb{V} \times \mathbb{V}$ a fibration. Ensures that there are enough relations by supplying inverse image relations.

Combining reflexive graphs and comprehensive $\lambda 2$ fibrations

Combining reflexive graphs and comprehensive $\lambda 2$ fibrations

Main definition (Comprehensive $\lambda 2$ parametricity graph)

A comprehensive $\lambda 2$ parametricity graph is a reflexive graph of comprehensive $\lambda 2$ fibrations

which is "fibrewise" a parametricity graph.

Combining reflexive graphs and comprehensive $\lambda 2$ fibrations

Main definition (Comprehensive $\lambda 2$ parametricity graph)

A comprehensive $\lambda 2$ parametricity graph is a reflexive graph of comprehensive $\lambda 2$ fibrations

which is "fibrewise" a parametricity graph.

Note: Recover "broken" definition by dropping comprehensive.

Reasoning in models: a type theory $\lambda 2 \mathrm{R}$

- We construct a type theory $\lambda 2 \mathrm{R}$ which is the 'internal language' of comprehensive $\lambda 2$ parametricity graphs.
- By proving soundness and completeness, we can work in $\lambda 2 \mathrm{R}$ instead of directly in the model.
- $\lambda \mathbf{2 R}$ is similar in many respects to System R [Abadi, Cardelli and Curien, 1993] and System P [Dunphy, 2002].

Reasoning in models: a type theory $\lambda 2 R$

- We construct a type theory $\lambda 2 \mathrm{R}$ which is the 'internal language' of comprehensive $\lambda 2$ parametricity graphs.
- By proving soundness and completeness, we can work in $\lambda 2 \mathrm{R}$ instead of directly in the model.
- $\lambda \mathbf{2 R}$ is similar in many respects to System R [Abadi, Cardelli and Curien, 1993] and System P [Dunphy, 2002].
- Not a conservative extension of $\lambda \mathbf{2}$ - parametric models enjoy much stronger properties than arbitrary models (for which $\lambda 2$ is internal language).

New judgement forms

$\lambda 2 \mathrm{R}$ extends $\lambda \mathbf{2}$ with three new judgements:

$$
\begin{aligned}
\Theta \text { rctxt } & \Theta \text { is a relational context } \\
\Theta \vdash A_{1} R A_{2} \text { rel } & R \text { is a relation between types } A_{1} \text { and } A_{2} \\
\Theta \vdash\left(t_{1}: A_{1}\right) R\left(t_{2}: A_{2}\right) & t_{1}: A_{1} \text { is related to } t_{2}: A_{2} \text { by the relation } R
\end{aligned}
$$

Relation formation rules

$$
\begin{gathered}
\frac{\Theta \vdash \alpha \rho \beta \text { rel }}{}(\alpha \rho \beta \in \Theta) \quad \frac{\Theta \vdash A_{1} R A_{2} \text { rel } \Theta \vdash B_{1} S B_{2} \text { rel }}{\Theta \vdash\left(A_{1} \rightarrow B_{1}\right)(R \rightarrow S)\left(A_{2} \rightarrow B_{2}\right) \text { rel }} \\
\frac{\Theta, \alpha \rho \beta \vdash A_{1} R A_{2} \text { rel }}{\Theta \vdash\left(\forall \alpha . A_{1}\right)(\forall \alpha \rho \beta \cdot R)\left(\forall \beta . A_{2}\right) \text { rel }}
\end{gathered}
$$

Relation formation rules

$$
\begin{gathered}
\frac{\Theta \vdash \alpha \rho \beta \text { rel }}{}(\alpha \rho \beta \in \Theta) \quad \frac{\Theta \vdash A_{1} R A_{2} \text { rel } \quad \Theta \vdash B_{1} S B_{2} \text { rel }}{\Theta \vdash\left(A_{1} \rightarrow B_{1}\right)(R \rightarrow S)\left(A_{2} \rightarrow B_{2}\right) \text { rel }} \\
\frac{\Theta, \alpha \rho \beta \vdash A_{1} R A_{2} \text { rel }}{\Theta \vdash\left(\forall \alpha \cdot A_{1}\right)(\forall \alpha \rho \beta \cdot R)\left(\forall \beta . A_{2}\right) \text { rel }} \\
\frac{\Theta \vdash B_{1} R B_{2} \text { rel } \quad(\Theta)_{1} \vdash t_{1}: A_{1} \rightarrow B_{1} \quad(\Theta)_{2} \vdash t_{2}: A_{2} \rightarrow B_{2}}{\Theta \vdash A_{1}\left(\left[t_{1} \times t_{2}\right]^{-1} R\right) A_{2} \text { rel }}
\end{gathered}
$$

(Will get back to projections $(-)_{i}$ soon.)

Direct image relations

Direct image relations

$$
\frac{\Theta \vdash A_{1} R A_{2} \text { rel } \quad(\Theta)_{1} \vdash t_{1}: A_{1} \rightarrow B_{1} \quad(\Theta)_{2} \vdash t_{2}: A_{2} \rightarrow B_{2}}{\Theta \vdash B_{1}\left(\left[t_{1} \times t_{2}\right]_{!} R\right) B_{2} \text { rel }}
$$

Direct image relations

Direct image relations

$$
\frac{\Theta \vdash A_{1} R A_{2} \text { rel } \quad(\Theta)_{1} \vdash t_{1}: A_{1} \rightarrow B_{1} \quad(\Theta)_{2} \vdash t_{2}: A_{2} \rightarrow B_{2}}{\Theta \vdash B_{1}\left(\left[t_{1} \times t_{2}\right]_{!} R\right) B_{2} \text { rel }}
$$

are definable by the impredicative encoding

$$
\left[t_{1} \times t_{2}\right]_{!} R:=\left[i_{B_{1}} \times i_{B_{2}}\right]^{-1}\left(\forall \alpha \rho \beta .\left(\left[\left(-\circ t_{1}\right) \times\left(-\circ t_{2}\right)\right]^{-1}(R \rightarrow \rho)\right) \rightarrow \rho\right)
$$

where i_{B} abbreviates $\lambda b . \Lambda \alpha . \lambda t . t b: B \rightarrow \forall \alpha .(B \rightarrow \alpha) \rightarrow \alpha$.

Direct image relations

Direct image relations

$$
\frac{\Theta \vdash A_{1} R A_{2} \text { rel } \quad(\Theta)_{1} \vdash t_{1}: A_{1} \rightarrow B_{1} \quad(\Theta)_{2} \vdash t_{2}: A_{2} \rightarrow B_{2}}{\Theta \vdash B_{1}\left(\left[t_{1} \times t_{2}\right]_{!} R\right) B_{2} \text { rel }}
$$

are definable by an impredicative encoding.

Direct image relations

Direct image relations

$$
\frac{\Theta \vdash A_{1} R A_{2} \text { rel } \quad(\Theta)_{1} \vdash t_{1}: A_{1} \rightarrow B_{1} \quad(\Theta)_{2} \vdash t_{2}: A_{2} \rightarrow B_{2}}{\Theta \vdash B_{1}\left(\left[t_{1} \times t_{2}\right]!R\right) B_{2} \text { rel }}
$$

are definable by an impredicative encoding.
Semantically, this means:

Theorem

In any comprehensive $\lambda 2$ parametricity graph, the functors

$$
\left\langle\nabla_{1}^{\mathbb{T}}, \nabla_{2}^{\mathbb{T}}\right\rangle_{\Gamma_{\mathcal{R}(\mathbb{T}) w}}: \mathcal{R}(\mathbb{T})_{w} \rightarrow \mathbb{T}_{\nabla_{1}^{c} w} \times \mathbb{T}_{\nabla_{2}^{c} w}
$$

are also opfibrations (hence bifibrations).

Operations on syntax

- Left and right projections $(\cdot)_{1},(\cdot)_{2}$ from relational contexts to typing contexts.

$$
\begin{aligned}
(\cdot)_{i} & = \\
\left(\Theta, \alpha_{1} \rho \alpha_{2}\right)_{i} & =(\Theta)_{i}, \alpha_{i} \\
\left(\Theta,\left(x_{1}: A_{1}\right) R\left(x_{2}: A_{2}\right)\right)_{i} & =(\Theta)_{i}, x_{i}: A_{i}
\end{aligned}
$$

Operations on syntax

- Left and right projections $(\cdot)_{1},(\cdot)_{2}$ from relational contexts to typing contexts.

$$
\begin{aligned}
(\cdot)_{i} & = \\
\left(\Theta, \alpha_{1} \rho \alpha_{2}\right)_{i} & =(\Theta)_{i}, \alpha_{i} \\
\left(\Theta,\left(x_{1}: A_{1}\right) R\left(x_{2}: A_{2}\right)\right)_{i} & =(\Theta)_{i}, x_{i}: A_{i}
\end{aligned}
$$

- Conversely, a "doubling" operation takes typing contexts to relational contexts.
- Mutually defined with a "relational interpretation" $\langle A\rangle$ of types A.

$$
\begin{aligned}
\langle\cdot\rangle & =\cdot & \langle\alpha\rangle & =\rho^{\alpha} \\
\langle\Gamma, \alpha\rangle & =\langle\Gamma\rangle, \alpha \rho^{\alpha} \alpha & \langle A \rightarrow B\rangle & =\langle A\rangle \rightarrow\langle B\rangle \\
\langle\Gamma, x: A\rangle & =\langle\Gamma\rangle,(x: A)\langle A\rangle(x: A) & \langle\forall \alpha . A\rangle & =\forall \alpha \rho^{\alpha} \alpha \cdot\langle A\rangle
\end{aligned}
$$

Operations on syntax

- Left and right projections $(\cdot)_{1},(\cdot)_{2}$ from relational contexts to typing contexts.

$$
\begin{aligned}
(\cdot)_{i} & = \\
\left(\Theta, \alpha_{1} \rho \alpha_{2}\right)_{i} & =(\Theta)_{i}, \alpha_{i} \\
\left(\Theta,\left(x_{1}: A_{1}\right) R\left(x_{2}: A_{2}\right)\right)_{i} & =(\Theta)_{i}, x_{i}: A_{i}
\end{aligned}
$$

- Conversely, a "doubling" operation takes typing contexts to relational contexts.
- Mutually defined with a "relational interpretation" $\langle A\rangle$ of types A.

$$
\begin{aligned}
\langle\cdot\rangle & =\cdot & \langle\alpha\rangle & =\rho^{\alpha} \\
\langle\Gamma, \alpha\rangle & =\langle\Gamma\rangle, \alpha \rho^{\alpha} \alpha & \langle A \rightarrow B\rangle & =\langle A\rangle \rightarrow\langle B\rangle \\
\langle\Gamma, x: A\rangle & =\langle\Gamma\rangle,(x: A)\langle A\rangle(x: A) & \langle\forall \alpha . A\rangle & =\forall \alpha \rho^{\alpha} \alpha \cdot\langle A\rangle
\end{aligned}
$$

- Note: Left and right hand side treated separately, so e.g. $\alpha \rho^{\alpha} \alpha$ equivalent to $\alpha \rho \beta$ if everything fresh.

Reflexive graph structure on syntax

Lemma

(1) If $\Theta \vdash\left(t_{1}: A_{1}\right) R\left(t_{2}: A_{2}\right)$ then $(\Theta)_{i} \vdash t_{i}: A_{i}$.
(0) If $\Gamma \vdash t: A$ then $\langle\Gamma\rangle \vdash(t: A)\langle A\rangle(t: A)$.

Second item is Reynolds' Abstraction Theorem in our setting.

Relatedness rules: standard relation formers

$$
\begin{gathered}
\frac{\Theta \vdash\left(x_{1}: A_{1}\right) R\left(x_{2}: A_{2}\right)}{}\left(\left(x_{1}: A_{1}\right) R\left(x_{2}: A_{2}\right) \in \Theta\right) \\
\frac{\Theta,\left(x_{1}: A_{1}\right) R\left(x_{2}: A_{2}\right) \vdash\left(t_{1}: B_{1}\right) S\left(t_{2}: B_{2}\right)}{\Theta \vdash\left(\lambda x_{1} \cdot t_{1}: A_{1} \rightarrow B_{1}\right)(R \rightarrow S)\left(\lambda x_{2} \cdot t_{2}: A_{2} \rightarrow B_{2}\right)} \\
\frac{\Theta \vdash\left(s_{1}: A_{1} \rightarrow B_{1}\right)(R \rightarrow S)\left(s_{2}: A_{2} \rightarrow B_{2}\right) \quad \Theta \vdash\left(t_{1}: A_{1}\right) R\left(t_{2}: A_{2}\right)}{\Theta \vdash\left(s_{1} t_{1}: B_{1}\right) S\left(s_{2} t_{2}: B_{2}\right)} \\
\frac{\Theta, \alpha \rho \beta \vdash\left(t_{1}: A_{1}\right) R\left(t_{2}: A_{2}\right)}{\Theta \vdash\left(\Lambda \alpha \cdot t_{1}: \forall \alpha \cdot A_{1}\right)(\forall \alpha \rho \beta \cdot R)\left(\wedge \beta \cdot t_{2}: \forall \beta \cdot A_{2}\right)} \\
\Theta \vdash \vdash\left(t_{1}: \forall \alpha \cdot A_{1}\right)(\forall \alpha \rho \beta \cdot R)\left(t_{2}: \forall \beta \cdot A_{2}\right) \quad \Theta \vdash B_{1} S B_{2} \text { rel } \\
\left.\left.\Theta \vdash B_{1}\right]: A_{1}\left[\alpha \mapsto B_{1}\right]\right) R\left[\alpha \rho \beta \mapsto B_{1} S B_{2}\right]\left(t_{2}\left[B_{2}\right]: A_{2}\left[\beta \mapsto B_{2}\right]\right)
\end{gathered}
$$

Relatedness rules: standard relation formers

Relatedness rules: standard relation formers

$$
\Theta \vdash\left(s_{1} t_{1}: B_{1}\right) S\left(s_{2} t_{2}: B_{2}\right)
$$

\square

$$
\frac{\Theta \vdash\left(t_{1}: \forall \alpha . A_{1}\right)(\forall \alpha \rho \beta . R)\left(t_{2}: \forall \beta . A_{2}\right) \quad \Theta \vdash B_{1} S B_{2} \text { rel }}{\Theta \vdash\left(t_{1}\left[B_{1}\right]: A_{1}\left[\alpha \mapsto B_{1}\right]\right) R\left[\alpha \rho \beta \mapsto B_{1} S B_{2}\right]\left(t_{2}\left[B_{2}\right]: A_{2}\left[\beta \mapsto B_{2}\right]\right)}
$$

Relatedness rules: inverse image relations and substitution

$$
\begin{gathered}
\frac{\Theta \vdash\left(t_{1} u_{1}: B_{1}\right) R\left(t_{2} u_{2}: B_{2}\right)}{\Theta \vdash\left(u_{1}: A_{1}\right)\left(\left[t_{1} \times t_{2}\right]^{-1} R\right)\left(u_{2}: A_{2}\right)} \\
\frac{\Theta \vdash\left(t_{1}: A_{1}\right) R\left(t_{2}: A_{2}\right) \quad \Theta_{1} \vdash t_{1}=s_{1}: A_{1} \quad \Theta_{2} \vdash t_{2}=s_{2}: A_{2}}{\Theta \vdash\left(s_{1}: A_{1}\right) R\left(s_{2}: A_{2}\right)}
\end{gathered}
$$

One more rule: the parametricity rule

- The system get its power from inverse image relations together with the parametricity rule.
- Recall: If $\Gamma \vdash t: A$ then $\langle\Gamma\rangle \vdash(t: A)\langle A\rangle(t: A)$.

One more rule: the parametricity rule

- The system get its power from inverse image relations together with the parametricity rule.
- Recall: If $\Gamma \vdash s=t: A$ then $\langle\Gamma\rangle \vdash(s: A)\langle A\rangle(t: A)$.

One more rule: the parametricity rule

- The system get its power from inverse image relations together with the parametricity rule.
- Recall: If $\Gamma \vdash s=t: A$ then $\langle\Gamma\rangle \vdash(s: A)\langle A\rangle(t: A)$.
- Parametricity rule states converse:

$$
\frac{\langle\Gamma\rangle \vdash(s: A)\langle A\rangle(t: A)}{\Gamma \vdash s=t: A}
$$

One more rule: the parametricity rule

- The system get its power from inverse image relations together with the parametricity rule.
- Recall: If $\Gamma \vdash s=t: A$ then $\langle\Gamma\rangle \vdash(s: A)\langle A\rangle(t: A)$.
- Parametricity rule states converse:

$$
\frac{\langle\Gamma\rangle \vdash(s: A)\langle A\rangle(t: A)}{\Gamma \vdash s=t: A}
$$

- So $\langle A\rangle$ is the equality relation? No! Only in closed contexts.
- In fact, for open types, $\langle A\rangle$ is not even a homogeneous relation, since $\langle\alpha\rangle=\alpha \rho \beta$.

Interpretation in comprehensive $\lambda 2$ parametricity graphs

- $\lambda 2$ interpreted in p, as before.
- Relational context Θ interpreted as an object $\llbracket \Theta \rrbracket$ in $\mathcal{R}(\mathbb{C})$.
- Syntactic relation $\Theta \vdash A R B$ rel interpreted as a semantic relation $\llbracket R \rrbracket_{\Theta}: \llbracket A \rrbracket_{(\Theta)_{1}} \leftrightarrow \llbracket B \rrbracket_{(\Theta)_{2}}$ in $\mathcal{R}(\mathbb{T})_{\llbracket \Theta \rrbracket}$ using $\lambda 2$ structure.

Interpretation of inverse image relations

- Inverse-image relation $\Theta \vdash A_{1}\left(\left[t_{1} \times t_{2}\right]^{-1} R\right) A_{2}$ rel interpreted using the fibration property of the parametricity graph:
- Have

$$
\begin{aligned}
& \llbracket t_{1} \rrbracket_{(\Theta)_{1}}: \mathbf{1} \longrightarrow \llbracket A_{1} \rrbracket_{(\Theta)_{1}} \Rightarrow \llbracket B_{1} \rrbracket_{(\Theta)_{1}} \\
& \llbracket t_{2} \rrbracket_{(\Theta)_{2}}: \mathbf{1} \longrightarrow \llbracket A_{2} \rrbracket_{(\Theta)_{2}} \Rightarrow \llbracket B_{2} \rrbracket_{(\Theta)_{2}}
\end{aligned}
$$

Interpretation of inverse image relations

- Inverse-image relation $\Theta \vdash A_{1}\left(\left[t_{1} \times t_{2}\right]^{-1} R\right) A_{2}$ rel interpreted using the fibration property of the parametricity graph:
- Have

$$
\begin{aligned}
& \llbracket t_{1} \rrbracket_{(\Theta)_{1}}: \mathbf{1} \times \llbracket A_{1} \rrbracket_{(\Theta)_{1}} \longrightarrow \llbracket B_{1} \rrbracket_{(\Theta)_{1}} \\
& \llbracket t_{2} \rrbracket_{(\Theta)_{2}}: \mathbf{1} \times \llbracket A_{2} \rrbracket_{(\Theta)_{2}} \longrightarrow \llbracket B_{2} \rrbracket_{(\Theta)_{2}}
\end{aligned}
$$

Interpretation of inverse image relations

- Inverse-image relation $\Theta \vdash A_{1}\left(\left[t_{1} \times t_{2}\right]^{-1} R\right) A_{2}$ rel interpreted using the fibration property of the parametricity graph:
- Have

$$
\begin{aligned}
& \llbracket t_{1} \rrbracket_{(\Theta)_{1}}: \llbracket A_{1} \rrbracket_{(\Theta)_{1}} \longrightarrow \llbracket B_{1} \rrbracket_{(\Theta)_{1}} \\
& \llbracket t_{2} \rrbracket_{(\Theta)_{2}}: \llbracket A_{2} \rrbracket_{(\Theta)_{2}} \longrightarrow \llbracket B_{2} \rrbracket_{(\Theta)_{2}}
\end{aligned}
$$

Interpretation of inverse image relations

- Inverse-image relation $\Theta \vdash A_{1}\left(\left[t_{1} \times t_{2}\right]^{-1} R\right) A_{2}$ rel interpreted using the fibration property of the parametricity graph:
- Have

$$
\begin{aligned}
& \llbracket t_{1} \rrbracket_{(\Theta)_{1}}: \llbracket A_{1} \rrbracket_{(\Theta)_{1}} \longrightarrow \llbracket B_{1} \rrbracket_{(\Theta)_{1}} \\
& \llbracket t_{2} \rrbracket_{(\Theta)_{2}}: \llbracket A_{2} \rrbracket_{(\Theta)_{2}} \longrightarrow \llbracket B_{2} \rrbracket(\Theta)_{2} \\
& \llbracket R \rrbracket: \llbracket B_{1} \rrbracket_{(\Theta)_{1}} \leftrightarrow \llbracket B_{2} \rrbracket_{(\Theta)_{2}}
\end{aligned}
$$

Interpretation of inverse image relations

- Inverse-image relation $\Theta \vdash A_{1}\left(\left[t_{1} \times t_{2}\right]^{-1} R\right) A_{2}$ rel interpreted using the fibration property of the parametricity graph:
- Have

$$
\begin{aligned}
& \llbracket t_{1} \rrbracket_{(\Theta)_{1}}: \llbracket A_{1} \rrbracket_{(\Theta)_{1}} \longrightarrow \llbracket B_{1} \rrbracket_{(\Theta)_{1}} \\
& \llbracket t_{2} \rrbracket_{(\Theta)_{2}}: \llbracket A_{2} \rrbracket_{(\Theta)_{2}} \longrightarrow \llbracket B_{2} \rrbracket_{(\Theta)_{2}}
\end{aligned}
$$

- Reindex $\llbracket R \rrbracket: \llbracket B_{1} \rrbracket_{(\Theta)_{1}} \leftrightarrow \llbracket B_{2} \rrbracket_{(\Theta)_{2}}$ in the fibration along these maps to interpret $\llbracket\left[t_{1} \times t_{2}\right]^{-1} R \rrbracket: \llbracket A_{1} \rrbracket_{(\Theta)_{1}} \leftrightarrow \llbracket A_{2} \rrbracket_{(\Theta)_{2}}$.

Why didn't this work before?

- If we try to replay the interpretation in the old-fashioned semantics without comprehension, we get:

$$
\begin{aligned}
& \llbracket t_{1} \rrbracket^{\prime}:(\llbracket \Delta \rrbracket)_{1} \longrightarrow\left(\llbracket A_{1} \rrbracket\right)_{1} \Rightarrow\left(\llbracket B_{1} \rrbracket\right)_{1} \\
& \llbracket t_{2} \rrbracket^{\prime}:(\llbracket \Delta \rrbracket)_{2} \longrightarrow\left(\llbracket A_{2} \rrbracket\right)_{2} \Rightarrow\left(\llbracket B_{2} \rrbracket\right)_{2}
\end{aligned}
$$

Why didn't this work before?

- If we try to replay the interpretation in the old-fashioned semantics without comprehension, we get:

$$
\begin{aligned}
& \llbracket t_{1} \rrbracket^{\prime}:(\llbracket \Delta \rrbracket)_{1} \times\left(\llbracket A_{1} \rrbracket\right)_{1} \longrightarrow\left(\llbracket B_{1} \rrbracket\right)_{1} \\
& \llbracket t_{2} \rrbracket^{\prime}:(\llbracket \Delta \rrbracket)_{2} \times\left(\llbracket A_{2} \rrbracket\right)_{2} \longrightarrow\left(\llbracket B_{2} \rrbracket\right)_{2}
\end{aligned}
$$

Why didn't this work before?

- If we try to replay the interpretation in the old-fashioned semantics without comprehension, we get:

$$
\begin{aligned}
& \llbracket t_{1} \rrbracket^{\prime}:(\llbracket \Delta \rrbracket)_{1} \times\left(\llbracket A_{1} \rrbracket\right)_{1} \longrightarrow\left(\llbracket B_{1} \rrbracket\right)_{1} \\
& \llbracket t_{2} \rrbracket^{\prime}:(\llbracket \Delta \rrbracket)_{2} \times\left(\llbracket A_{2} \rrbracket\right)_{2} \longrightarrow\left(\llbracket B_{2} \rrbracket\right)_{2}
\end{aligned}
$$

- Reindexing along this does not give a relation $\left(\llbracket A_{1} \rrbracket\right)_{1} \leftrightarrow\left(\llbracket A_{2} \rrbracket\right)_{2}$!

Why didn't this work before?

- If we try to replay the interpretation in the old-fashioned semantics without comprehension, we get:

$$
\begin{aligned}
& \llbracket t_{1} \rrbracket^{\prime}:(\llbracket \Delta \rrbracket)_{1} \times\left(\llbracket A_{1} \rrbracket\right)_{1} \longrightarrow\left(\llbracket B_{1} \rrbracket\right)_{1} \\
& \llbracket t_{2} \rrbracket^{\prime}:(\llbracket \Delta \rrbracket)_{2} \times\left(\llbracket A_{2} \rrbracket\right)_{2} \longrightarrow\left(\left[B_{2} \rrbracket\right)_{2}\right.
\end{aligned}
$$

- Reindexing along this does not give a relation $\left(\llbracket A_{1} \rrbracket\right)_{1} \leftrightarrow\left(\llbracket A_{2} \rrbracket\right)_{2}$!
- So things work because in the new semantics, $\llbracket t_{i} \rrbracket_{(\Theta)_{i}}$ are global points. Possible because of use of comprehension.

Soundness

Theorem (Soundness for $\lambda 2 \mathrm{R}$)
In every comprehensive $\lambda \mathbf{2}$ parametricity graph:
(1) if $\Gamma \vdash t_{1}=t_{2}: A$ then $\llbracket t_{1} \rrbracket_{\Gamma}=\llbracket t_{2} \rrbracket_{\Gamma}$; and
(2) if $\Theta \vdash\left(t_{1}: A_{1}\right) R\left(t_{2}: A_{2}\right)$ then $\llbracket t_{1} \rrbracket_{(\Theta)_{1}} \times \llbracket t_{2} \rrbracket_{(\Theta)_{2}}: \mathbf{1}_{\llbracket \Theta \rrbracket} \longrightarrow \llbracket R \rrbracket_{\Theta}$.

Soundness

Theorem (Soundness for $\lambda 2 \mathrm{R}$)
In every comprehensive $\lambda \mathbf{2}$ parametricity graph:
(1) if $\Gamma \vdash t_{1}=t_{2}: A$ then $\llbracket t_{1} \rrbracket_{\Gamma}=\llbracket t_{2} \rrbracket_{\Gamma}$; and
(2) if $\Theta \vdash\left(t_{1}: A_{1}\right) R\left(t_{2}: A_{2}\right)$ then $\llbracket t_{1} \rrbracket_{(\Theta)_{1}} \times \llbracket t_{2} \rrbracket_{(\Theta)_{2}}: \mathbf{1}_{\llbracket \Theta \rrbracket} \longrightarrow \llbracket R \rrbracket_{\Theta}$.

Substitution in relations sound by relational property.
Parametricity rule sound by identity property.
Inverse image rules sound by fibration property.

and completeness

Theorem (Full completeness for $\lambda 2 \mathrm{R}$)

There exists a comprehensive $\lambda \mathbf{2}$ parametricity graph satisfying the following.
(1) For every type $\Gamma \vdash A$ type, every global point $\mathbf{1}_{\llbracket\lceil\rrbracket} \longrightarrow \llbracket A \rrbracket \Gamma$ is the denotation $\llbracket t \rrbracket \Gamma$ of some term $\Gamma \vdash t: A$.
(2) For all terms $\Gamma \vdash t_{1}, t_{2}: A$ satisfying $\llbracket t_{1} \rrbracket \Gamma=\llbracket t_{2} \rrbracket \Gamma$, we have $\Gamma \vdash t_{1}=t_{2}: A$.
(3) For every relation $\Theta \vdash A_{1} R A_{2}$ type, every global point $\mathbf{1}_{\llbracket \Theta \rrbracket} \longrightarrow \llbracket R \rrbracket_{\Theta}$ arises as $\llbracket t_{1} \rrbracket_{(\Theta)_{1}} \times \llbracket t_{2} \rrbracket_{(\Theta)_{2}}$ for terms t_{1}, t_{2} such that $\Theta \vdash\left(t_{1}: A_{1}\right) R\left(t_{2}: A_{2}\right)$.

Warm-up: $\forall \alpha . \alpha \rightarrow \alpha$ is terminal

- Want to prove $\Gamma, z: \forall \alpha . \alpha \rightarrow \alpha \vdash z=\Lambda \alpha . \lambda x \cdot x: \forall \alpha . \alpha \rightarrow \alpha$.

Warm-up: $\forall \alpha . \alpha \rightarrow \alpha$ is terminal

- Want to prove $\Gamma, z: \forall \alpha . \alpha \rightarrow \alpha \vdash z=\Lambda \alpha . \lambda x . x: \forall \alpha . \alpha \rightarrow \alpha$.
- By extensionality, it is enough to show

$$
\ulcorner, z: \forall \alpha . \alpha \rightarrow \alpha, \alpha, x: \alpha \vdash z[\alpha] x=x: \alpha
$$

Warm-up: $\forall \alpha . \alpha \rightarrow \alpha$ is terminal

- Want to prove「, $z: \forall \alpha . \alpha \rightarrow \alpha \vdash z=\Lambda \alpha . \lambda x \cdot x: \forall \alpha . \alpha \rightarrow \alpha$.
- By extensionality, it is enough to show

$$
\ulcorner, z: \forall \alpha . \alpha \rightarrow \alpha, \alpha, x: \alpha \vdash z[\alpha] x=x: \alpha
$$

- Further by the parametricity rule, it is enough to show

$$
\langle\Gamma, z: \forall \alpha . \alpha \rightarrow \alpha, \alpha, x: \alpha\rangle \vdash(z[\alpha] x: \alpha)\langle\alpha\rangle(x: \alpha)
$$

Warm-up: $\forall \alpha . \alpha \rightarrow \alpha$ is terminal

- Want to prove「, $z: \forall \alpha . \alpha \rightarrow \alpha \vdash z=\Lambda \alpha . \lambda x \cdot x: \forall \alpha . \alpha \rightarrow \alpha$.
- By extensionality, it is enough to show

$$
\ulcorner, z: \forall \alpha . \alpha \rightarrow \alpha, \alpha, x: \alpha \vdash z[\alpha] x=x: \alpha
$$

- Further by the parametricity rule, it is enough to show

$$
\langle\Gamma\rangle, z(\forall \alpha \rho \beta \cdot \rho \rightarrow \rho) w, \alpha \rho \beta,(x: \alpha) \rho(y: \beta) \vdash(z[\alpha] x: \alpha) \rho(y: \beta)
$$

Warm-up: $\forall \alpha . \alpha \rightarrow \alpha$ is terminal

- Want to prove「, $z: \forall \alpha . \alpha \rightarrow \alpha \vdash z=\Lambda \alpha . \lambda x \cdot x: \forall \alpha . \alpha \rightarrow \alpha$.
- By extensionality, it is enough to show

$$
\ulcorner, z: \forall \alpha . \alpha \rightarrow \alpha, \alpha, x: \alpha \vdash z[\alpha] x=x: \alpha
$$

- Further by the parametricity rule, it is enough to show

$$
\langle\Gamma\rangle, z(\forall \alpha \rho \beta \cdot \rho \rightarrow \rho) w, \alpha \rho \beta,(x: \alpha) \rho(y: \beta) \vdash(z[\alpha] x: \alpha) \rho(y: \beta)
$$

- $(x: \alpha) R(w: \forall \alpha . \alpha \rightarrow \alpha)$ where $R=\left(\left[i d \times\left(\lambda_{-} . y\right)\right]^{-1} \rho\right)$, since $x \rho y$.

Warm-up: $\forall \alpha . \alpha \rightarrow \alpha$ is terminal

- Want to prove「, $z: \forall \alpha . \alpha \rightarrow \alpha \vdash z=\Lambda \alpha . \lambda x \cdot x: \forall \alpha . \alpha \rightarrow \alpha$.
- By extensionality, it is enough to show

$$
\ulcorner, z: \forall \alpha . \alpha \rightarrow \alpha, \alpha, x: \alpha \vdash z[\alpha] x=x: \alpha
$$

- Further by the parametricity rule, it is enough to show

$$
\langle\Gamma\rangle, z(\forall \alpha \rho \beta \cdot \rho \rightarrow \rho) w, \alpha \rho \beta,(x: \alpha) \rho(y: \beta) \vdash(z[\alpha] x: \alpha) \rho(y: \beta)
$$

- $(x: \alpha) R(w: \forall \alpha . \alpha \rightarrow \alpha)$ where $R=\left(\left[i d \times\left(\lambda_{-} . y\right)\right]^{-1} \rho\right)$, since $x \rho y$.
- Since $z(\forall \rho . \rho \rightarrow \rho) w$, by instantiating $\alpha \rho \beta=\alpha R(\forall \beta . \beta \rightarrow \beta)$

$$
(z[\alpha])(R \rightarrow R)(w[\forall \beta . \beta \rightarrow \beta])
$$

Warm-up: $\forall \alpha . \alpha \rightarrow \alpha$ is terminal

- Want to prove「, $z: \forall \alpha . \alpha \rightarrow \alpha \vdash z=\Lambda \alpha . \lambda x \cdot x: \forall \alpha . \alpha \rightarrow \alpha$.
- By extensionality, it is enough to show

$$
\ulcorner, z: \forall \alpha . \alpha \rightarrow \alpha, \alpha, x: \alpha \vdash z[\alpha] x=x: \alpha
$$

- Further by the parametricity rule, it is enough to show

$$
\langle\Gamma\rangle, z(\forall \alpha \rho \beta \cdot \rho \rightarrow \rho) w, \alpha \rho \beta,(x: \alpha) \rho(y: \beta) \vdash(z[\alpha] x: \alpha) \rho(y: \beta)
$$

- $(x: \alpha) R(w: \forall \alpha . \alpha \rightarrow \alpha)$ where $R=\left(\left[i d \times\left(\lambda_{-} . y\right)\right]^{-1} \rho\right)$, since $x \rho y$.
- Since $z(\forall \rho . \rho \rightarrow \rho) w$, by instantiating $\alpha \rho \beta=\alpha R(\forall \beta . \beta \rightarrow \beta)$

$$
(z[\alpha])(R \rightarrow R)(w[\forall \beta . \beta \rightarrow \beta])
$$

hence

$$
(z[\alpha] x) R(w[\forall \beta . \beta \rightarrow \beta] w)
$$

Warm-up: $\forall \alpha . \alpha \rightarrow \alpha$ is terminal

- Want to prove「, $z: \forall \alpha . \alpha \rightarrow \alpha \vdash z=\Lambda \alpha . \lambda x \cdot x: \forall \alpha . \alpha \rightarrow \alpha$.
- By extensionality, it is enough to show

$$
\ulcorner, z: \forall \alpha . \alpha \rightarrow \alpha, \alpha, x: \alpha \vdash z[\alpha] x=x: \alpha
$$

- Further by the parametricity rule, it is enough to show

$$
\langle\Gamma\rangle, z(\forall \alpha \rho \beta \cdot \rho \rightarrow \rho) w, \alpha \rho \beta,(x: \alpha) \rho(y: \beta) \vdash(z[\alpha] x: \alpha) \rho(y: \beta)
$$

- $(x: \alpha) R(w: \forall \alpha . \alpha \rightarrow \alpha)$ where $R=\left(\left[i d \times\left(\lambda_{-} . y\right)\right]^{-1} \rho\right)$, since $x \rho y$.
- Since $z(\forall \rho . \rho \rightarrow \rho) w$, by instantiating $\alpha \rho \beta=\alpha R(\forall \beta . \beta \rightarrow \beta)$

$$
(z[\alpha])(R \rightarrow R)(w[\forall \beta . \beta \rightarrow \beta])
$$

hence

$$
(z[\alpha] x)\left(\left[i d \times\left(\lambda_{-} \cdot y\right)\right]^{-1} \rho\right)(w[\forall \beta . \beta \rightarrow \beta] w)
$$

Warm-up: $\forall \alpha . \alpha \rightarrow \alpha$ is terminal

- Want to prove $\Gamma, z: \forall \alpha . \alpha \rightarrow \alpha \vdash z=\Lambda \alpha . \lambda x \cdot x: \forall \alpha . \alpha \rightarrow \alpha$.
- By extensionality, it is enough to show

$$
\ulcorner, z: \forall \alpha . \alpha \rightarrow \alpha, \alpha, x: \alpha \vdash z[\alpha] x=x: \alpha
$$

- Further by the parametricity rule, it is enough to show

$$
\langle\Gamma\rangle, z(\forall \alpha \rho \beta \cdot \rho \rightarrow \rho) w, \alpha \rho \beta,(x: \alpha) \rho(y: \beta) \vdash(z[\alpha] x: \alpha) \rho(y: \beta)
$$

- $(x: \alpha) R(w: \forall \alpha . \alpha \rightarrow \alpha)$ where $R=\left(\left[\text { id } \times\left(\lambda_{-} \cdot y\right)\right]^{-1} \rho\right)$, since $x \rho y$.
- Since $z(\forall \rho . \rho \rightarrow \rho) w$, by instantiating $\alpha \rho \beta=\alpha R(\forall \beta . \beta \rightarrow \beta)$

$$
(z[\alpha])(R \rightarrow R)(w[\forall \beta . \beta \rightarrow \beta])
$$

hence

$$
(z[\alpha] x)\left(\left[i d \times\left(\lambda_{-} \cdot y\right)\right]^{-1} \rho\right)(w[\forall \beta \cdot \beta \rightarrow \beta] w)
$$

i.e.

$$
(z[\alpha] x: \alpha) \rho(y: \beta)
$$

The expected consequences

Theorem (Consequences of Parametricity)

System $\lambda 2 \mathrm{R}$ proves:
(1) $\forall \alpha . \alpha \rightarrow \alpha$ is 1 .
(2) $\forall \alpha .(A \rightarrow B \rightarrow \alpha) \rightarrow \alpha$ is $A \times B$.
(3) $\forall \alpha . \alpha$ is 0 .
(2) $\forall \alpha .(A \rightarrow \alpha) \rightarrow(B \rightarrow \alpha) \rightarrow \alpha$ is $A+B$.
(0) $\forall \alpha .(\forall \beta \cdot(T(\beta) \rightarrow \alpha)) \rightarrow \alpha$ is $\exists \alpha . T(\alpha)$.
(0) The type $\forall \alpha .(T(\alpha) \rightarrow \alpha) \rightarrow \alpha$ is the carrier of the initial T-algebra for all functorial type expressions $T(\alpha)$.
(- The type $\exists \alpha$. $(\alpha \rightarrow T(\alpha)) \times \alpha$ is the carrier of the final T-coalgebra for all functorial type expressions $T(\alpha)$.
(3) Terms of type $\forall \alpha . F(\alpha, \alpha) \rightarrow G(\alpha, \alpha)$ for mixed-variance type expressions F and G are dinatural.

Some comments on the proof

- As usual, relations representing graphs of functions play a key role.

Some comments on the proof

- As usual, relations representing graphs of functions play a key role.
- Two ways to define concrete graphs:
- $(x: A) g r_{*}(f)(y: B)$ if $f x=y$.

Some comments on the proof

- As usual, relations representing graphs of functions play a key role.
- Two ways to define concrete graphs:
- $(x: A) g r_{*}(f)(y: B)$ if $f x=y$.
- $(x: A) g r_{!}(f)(y: B)$ if there exists $w: A$ such that $x=w$ and $y=f w$.

Some comments on the proof

- As usual, relations representing graphs of functions play a key role.
- Two ways to define concrete graphs:
- $(x: A) g r_{*}(f)(y: B)$ if $(f x: B)\langle B\rangle(y: B)$.
- $(x: A) g r_{!}(f)(f w: B)$ if there exists $w: A$ such that $(x: A)\langle A\rangle(w: A)$.
- Since we only have pseudo-identities, these do not coincide in general.

Some comments on the proof

- As usual, relations representing graphs of functions play a key role.
- Two ways to define concrete graphs:
- $(x: A) g r_{*}(f)(y: B)$ if $(f x: B)\langle B\rangle(y: B)$.
- $(x: A) g r_{!}(f)(f w: B)$ if there exists $w: A$ such that $(x: A)\langle A\rangle(w: A)$.
- Since we only have pseudo-identities, these do not coincide in general.
- $g r_{*}(f):=[f \times \mathrm{id}]^{-1}\langle B\rangle$ defined using fibrational structure, $g r_{!}(f):=[\mathrm{id} \times f]_{!}\langle A\rangle$ using derived opfibrational structure.

Some comments on the proof

- As usual, relations representing graphs of functions play a key role.
- Two ways to define concrete graphs:
- $(x: A) g r_{*}(f)(y: B)$ if $(f x: B)\langle B\rangle(y: B)$.
- $(x: A) g r_{!}(f)(f w: B)$ if there exists $w: A$ such that $(x: A)\langle A\rangle(w: A)$.
- Since we only have pseudo-identities, these do not coincide in general.
- $g r_{*}(f):=[f \times \mathrm{id}]^{-1}\langle B\rangle$ defined using fibrational structure, $g r_{!}(f):=[\mathrm{id} \times f]_{!}\langle A\rangle$ using derived opfibrational structure.
- Subtlety: initial algebras use inverse image pseudographs, final coalgebras direct image ones.

Summary

- $\lambda 2$ fibrations with comprehension property as natural models of $\lambda 2$ (sound and complete).
- Comprehensive $\lambda 2$ parametricity graphs form good models of relational parametricity for $\lambda 2$, with usual strong consequences.
- Reasoning in the models using a sound and complete type theory $\lambda \mathbf{2 R}$, including inverse image relations.
- Proof of consequences of parametricity involves novel ingredients:
- direct image relations via impredicative encoding,
- no identity relations available, and
- two different pseudo-graph relations (using inverse and direct images).
- Future work: Extend to e.g. dependent type theory.

Neil Ghani, Fredrik Nordvall Forsberg and Alex Simpson
Comprehensive parametric polymorphism: categorical models and type theory.
FoSSaCS 2016.

Summary

 (soun Thanks!

- Comp relati
- Reas inclus
- Proof
-

Comprementive parameatic porymorpinsin. categontar mddels and type theory.
FoSSaCS 2016.

