
Ordinal notation systems
for ordinals below ε0 in modern type theories

Fredrik Nordvall Forsberg
University of Strathclyde, Glasgow

Joint work with Chuangjie Xu and Nicolai Kraus

LFCS seminar
Edinburgh, 4 February 2020

Ordinals, classically in set theory

Definition
A set α is an ordinal if it is transitive and ∈ is well-founded on α:
I x ∈ α→ x ⊆ α,
I Every nonempty X ⊆ α has an ∈-least element.

(Obviously too strong constructively!)

This makes ∈ a strict total order on α; we often write < for ∈.

Important property: there cannot be an infinitely descending
sequence of ordinals

α0 > α1 > α2 > . . .

E.g. already Turing [1949] used ordinals to prove termination of
programs.

1

Ordinals, classically in set theory

Definition
A set α is an ordinal if it is transitive and ∈ is well-founded on α:
I x ∈ α→ x ⊆ α,
I Every nonempty X ⊆ α has an ∈-least element.

(Obviously too strong constructively!)

This makes ∈ a strict total order on α; we often write < for ∈.

Important property: there cannot be an infinitely descending
sequence of ordinals

α0 > α1 > α2 > . . .

E.g. already Turing [1949] used ordinals to prove termination of
programs.

1

Ordinals, classically in set theory

Definition
A set α is an ordinal if it is transitive and ∈ is well-founded on α:
I x ∈ α→ x ⊆ α,
I Every nonempty X ⊆ α has an ∈-least element.

(Obviously too strong constructively!)

This makes ∈ a strict total order on α; we often write < for ∈.

Important property: there cannot be an infinitely descending
sequence of ordinals

α0 > α1 > α2 > . . .

E.g. already Turing [1949] used ordinals to prove termination of
programs.

1

Ordinals, classically in set theory

Definition
A set α is an ordinal if it is transitive and ∈ is well-founded on α:
I x ∈ α→ x ⊆ α,
I Every nonempty X ⊆ α has an ∈-least element.

(Obviously too strong constructively!)

This makes ∈ a strict total order on α; we often write < for ∈.

Important property: there cannot be an infinitely descending
sequence of ordinals

α0 > α1 > α2 > . . .

E.g. already Turing [1949] used ordinals to prove termination of
programs.

1

Building ordinals

I 0 = ∅ is an ordinal;

I 1 = 0 ∪ {0} is an ordinal;

I 2 = 1 ∪ {1} is an ordinal (classically);

I 3, 4, 5, . . . are ordinals.

I ω =
⋃

n∈N n is an ordinal.

I ω + 1 = ω ∪ {ω} is an ordinal;

I ω + 2, ω + 3, . . . are ordinals;

I ω · 2 =
⋃

n<ω (ω + n) is an ordinal.

2

Building ordinals

I 0 = ∅ is an ordinal;

I 1 = 0 ∪ {0} is an ordinal;

I 2 = 1 ∪ {1} is an ordinal (classically);

I 3, 4, 5, . . . are ordinals.

I ω =
⋃

n∈N n is an ordinal.

I ω + 1 = ω ∪ {ω} is an ordinal;

I ω + 2, ω + 3, . . . are ordinals;

I ω · 2 =
⋃

n<ω (ω + n) is an ordinal.

2

Building ordinals

I 0 = ∅ is an ordinal;

I 1 = 0 ∪ {0} is an ordinal;

I 2 = 1 ∪ {1} is an ordinal (classically);

I 3, 4, 5, . . . are ordinals.

I ω =
⋃

n∈N n is an ordinal.

I ω + 1 = ω ∪ {ω} is an ordinal;

I ω + 2, ω + 3, . . . are ordinals;

I ω · 2 =
⋃

n<ω (ω + n) is an ordinal.

2

Building ordinals

I 0 = ∅ is an ordinal;

I 1 = 0 ∪ {0} is an ordinal;

I 2 = 1 ∪ {1} is an ordinal (classically);

I 3, 4, 5, . . . are ordinals.

I ω =
⋃

n∈N n is an ordinal.

I ω + 1 = ω ∪ {ω} is an ordinal;

I ω + 2, ω + 3, . . . are ordinals;

I ω · 2 =
⋃

n<ω (ω + n) is an ordinal.

2

Building ordinals

I 0 = ∅ is an ordinal;

I 1 = 0 ∪ {0} is an ordinal;

I 2 = 1 ∪ {1} is an ordinal (classically);

I 3, 4, 5, . . . are ordinals.

I ω =
⋃

n∈N n is an ordinal.

I ω + 1 = ω ∪ {ω} is an ordinal;

I ω + 2, ω + 3, . . . are ordinals;

I ω · 2 =
⋃

n<ω (ω + n) is an ordinal.

2

Building ordinals

I 0 = ∅ is an ordinal;

I 1 = 0 ∪ {0} is an ordinal;

I 2 = 1 ∪ {1} is an ordinal (classically);

I 3, 4, 5, . . . are ordinals.

I ω =
⋃

n∈N n is an ordinal.

I ω + 1 = ω ∪ {ω} is an ordinal;

I ω + 2, ω + 3, . . . are ordinals;

I ω · 2 =
⋃

n<ω (ω + n) is an ordinal.

2

Building ordinals

I 0 = ∅ is an ordinal;

I 1 = 0 ∪ {0} is an ordinal;

I 2 = 1 ∪ {1} is an ordinal (classically);

I 3, 4, 5, . . . are ordinals.

I ω =
⋃

n∈N n is an ordinal.

I ω + 1 = ω ∪ {ω} is an ordinal;

I ω + 2, ω + 3, . . . are ordinals;

I ω · 2 =
⋃

n<ω (ω + n) is an ordinal.

2

Building ordinals

I 0 = ∅ is an ordinal;

I 1 = 0 ∪ {0} is an ordinal;

I 2 = 1 ∪ {1} is an ordinal (classically);

I 3, 4, 5, . . . are ordinals.

I ω =
⋃

n∈N n is an ordinal.

I ω + 1 = ω ∪ {ω} is an ordinal;

I ω + 2, ω + 3, . . . are ordinals;

I ω · 2 =
⋃

n<ω (ω + n) is an ordinal.

2

Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.

3

Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.

3

Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.

3

Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.

3

Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.

3

Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.

3

Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.

3

Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.

3

Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.
3

Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I ε0 =
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.
3

Cantor Normal Form

ε0 is the least solution to the equation α = ωα.

Fact
Every ordinal α can be written uniquely as

α = ωβ1 + ωβ2 + · · ·+ ωβn

for some β1 ≥ β2 ≥ · · · ≥ βn.

In particular, ε0 = ωε0 , so we can take β1 = ε0.

But, for α < ε0, we have βi < α for every i .

Hence if we compute the Cantor Normal Form

βi = ωγ1 + ωγ2 + · · ·+ ωγm

and so on, we get decreasing sequences

α > βi > γj > . . .

which must terminate.

This gives a finite representation of α!

4

Cantor Normal Form
ε0 is the least solution to the equation α = ωα.

Fact
Every ordinal α can be written uniquely as

α = ωβ1 + ωβ2 + · · ·+ ωβn

for some β1 ≥ β2 ≥ · · · ≥ βn.

In particular, ε0 = ωε0 , so we can take β1 = ε0.

But, for α < ε0, we have βi < α for every i .

Hence if we compute the Cantor Normal Form

βi = ωγ1 + ωγ2 + · · ·+ ωγm

and so on, we get decreasing sequences

α > βi > γj > . . .

which must terminate.

This gives a finite representation of α!

4

Cantor Normal Form
ε0 is the least solution to the equation α = ωα.

Fact
Every ordinal α can be written uniquely as

α = ωβ1 + ωβ2 + · · ·+ ωβn

for some β1 ≥ β2 ≥ · · · ≥ βn.

In particular, ε0 = ωε0 , so we can take β1 = ε0.

But, for α < ε0, we have βi < α for every i .

Hence if we compute the Cantor Normal Form

βi = ωγ1 + ωγ2 + · · ·+ ωγm

and so on, we get decreasing sequences

α > βi > γj > . . .

which must terminate.

This gives a finite representation of α!

4

Cantor Normal Form
ε0 is the least solution to the equation α = ωα.

Fact
Every ordinal α can be written uniquely as

α = ωβ1 + ωβ2 + · · ·+ ωβn

for some β1 ≥ β2 ≥ · · · ≥ βn.

In particular, ε0 = ωε0 , so we can take β1 = ε0.

But, for α < ε0, we have βi < α for every i .

Hence if we compute the Cantor Normal Form

βi = ωγ1 + ωγ2 + · · ·+ ωγm

and so on, we get decreasing sequences

α > βi > γj > . . .

which must terminate.

This gives a finite representation of α!

4

Cantor Normal Form
ε0 is the least solution to the equation α = ωα.

Fact
Every ordinal α can be written uniquely as

α = ωβ1 + ωβ2 + · · ·+ ωβn

for some β1 ≥ β2 ≥ · · · ≥ βn.

In particular, ε0 = ωε0 , so we can take β1 = ε0.

But, for α < ε0, we have βi < α for every i .

Hence if we compute the Cantor Normal Form

βi = ωγ1 + ωγ2 + · · ·+ ωγm

and so on, we get decreasing sequences

α > βi > γj > . . .

which must terminate.

This gives a finite representation of α!

4

Cantor Normal Form
ε0 is the least solution to the equation α = ωα.

Fact
Every ordinal α can be written uniquely as

α = ωβ1 + ωβ2 + · · ·+ ωβn

for some β1 ≥ β2 ≥ · · · ≥ βn.

In particular, ε0 = ωε0 , so we can take β1 = ε0.

But, for α < ε0, we have βi < α for every i .

Hence if we compute the Cantor Normal Form

βi = ωγ1 + ωγ2 + · · ·+ ωγm

and so on, we get decreasing sequences

α > βi > γj > . . .

which must terminate.

This gives a finite representation of α!

4

Cantor Normal Form
ε0 is the least solution to the equation α = ωα.

Fact
Every ordinal α can be written uniquely as

α = ωβ1 + ωβ2 + · · ·+ ωβn

for some β1 ≥ β2 ≥ · · · ≥ βn.

In particular, ε0 = ωε0 , so we can take β1 = ε0.

But, for α < ε0, we have βi < α for every i .

Hence if we compute the Cantor Normal Form

βi = ωγ1 + ωγ2 + · · ·+ ωγm

and so on, we get decreasing sequences

α > βi > γj > . . .

which must terminate. This gives a finite representation of α!
4

Ordinal notation systems for ordinals below ε0

Cantor Normal Form gives a finite and simple notation for ordinals
α below ε0:

I α is either 0, or

I represented by two ordinals α = ωβ1 + γ2.

Simply binary trees! [Dershowitz 1993]

0 β1 γ2

But: uniqueness of representation has been lost. How can we
recover this?

5

Ordinal notation systems for ordinals below ε0

Cantor Normal Form gives a finite and simple notation for ordinals
α below ε0:

I α is either 0, or

I represented by two ordinals α = ωβ1 + γ2.

Simply binary trees! [Dershowitz 1993]

0 β1 γ2

But: uniqueness of representation has been lost. How can we
recover this?

5

Ordinal notation systems for ordinals below ε0

Cantor Normal Form gives a finite and simple notation for ordinals
α below ε0:

I α is either 0, or

I represented by two ordinals α = ωβ1 + γ2.

Simply binary trees! [Dershowitz 1993]

0 β1 γ2

But: uniqueness of representation has been lost. How can we
recover this?

5

Ordinal notation systems for ordinals below ε0

Cantor Normal Form gives a finite and simple notation for ordinals
α below ε0:

I α is either 0, or

I represented by two ordinals α = ωβ1 + γ2.

Simply binary trees! [Dershowitz 1993]

0 β1 γ2

But: uniqueness of representation has been lost. How can we
recover this?

5

Ordinal notation systems for ordinals below ε0

Cantor Normal Form gives a finite and simple notation for ordinals
α below ε0:

I α is either 0, or

I represented by two ordinals α = ωβ1 + γ2.

Simply binary trees! [Dershowitz 1993]

0 β1 γ2

But: uniqueness of representation has been lost. How can we
recover this?

5

Recovering uniqueness of representation
Three different approaches to recover uniqueness, using features of
cubical Agda [Vezzosi, Mörtberg and Abel 2019]:

I A subset approach

I A mutual approach

I A higher inductive approach

Previous work representing ordinals in theorem provers: Manolios
and Vroon [2005]; Castéran and Contejean [2006]; Grimm [2013];
Blanchette, Popescu and Traytel [2014]; Blanchette, Fleury and
Traytel [2017]; Schmitt [2017]; . . .

Why care?

Unique representatives make the ordinal notations
behave like ordinals.

Why cubical?

Want a univalence principle which computes, and
higher inductive types.

6

Recovering uniqueness of representation
Three different approaches to recover uniqueness, using features of
cubical Agda [Vezzosi, Mörtberg and Abel 2019]:

I A subset approach

I A mutual approach

I A higher inductive approach

Previous work representing ordinals in theorem provers: Manolios
and Vroon [2005]; Castéran and Contejean [2006]; Grimm [2013];
Blanchette, Popescu and Traytel [2014]; Blanchette, Fleury and
Traytel [2017]; Schmitt [2017]; . . .

Why care?

Unique representatives make the ordinal notations
behave like ordinals.

Why cubical?

Want a univalence principle which computes, and
higher inductive types.

6

Recovering uniqueness of representation
Three different approaches to recover uniqueness, using features of
cubical Agda [Vezzosi, Mörtberg and Abel 2019]:

I A subset approach

I A mutual approach

I A higher inductive approach

Previous work representing ordinals in theorem provers: Manolios
and Vroon [2005]; Castéran and Contejean [2006]; Grimm [2013];
Blanchette, Popescu and Traytel [2014]; Blanchette, Fleury and
Traytel [2017]; Schmitt [2017]; . . .

Why care?

Unique representatives make the ordinal notations
behave like ordinals.

Why cubical?

Want a univalence principle which computes, and
higher inductive types.

6

Recovering uniqueness of representation
Three different approaches to recover uniqueness, using features of
cubical Agda [Vezzosi, Mörtberg and Abel 2019]:

I A subset approach

I A mutual approach

I A higher inductive approach

Previous work representing ordinals in theorem provers: Manolios
and Vroon [2005]; Castéran and Contejean [2006]; Grimm [2013];
Blanchette, Popescu and Traytel [2014]; Blanchette, Fleury and
Traytel [2017]; Schmitt [2017]; . . .

Why care?

Unique representatives make the ordinal notations
behave like ordinals.

Why cubical?

Want a univalence principle which computes, and
higher inductive types.

6

Recovering uniqueness of representation
Three different approaches to recover uniqueness, using features of
cubical Agda [Vezzosi, Mörtberg and Abel 2019]:

I A subset approach

I A mutual approach

I A higher inductive approach

Previous work representing ordinals in theorem provers: Manolios
and Vroon [2005]; Castéran and Contejean [2006]; Grimm [2013];
Blanchette, Popescu and Traytel [2014]; Blanchette, Fleury and
Traytel [2017]; Schmitt [2017]; . . .

Why care? Unique representatives make the ordinal notations
behave like ordinals.

Why cubical?

Want a univalence principle which computes, and
higher inductive types.

6

Recovering uniqueness of representation
Three different approaches to recover uniqueness, using features of
cubical Agda [Vezzosi, Mörtberg and Abel 2019]:

I A subset approach

I A mutual approach

I A higher inductive approach

Previous work representing ordinals in theorem provers: Manolios
and Vroon [2005]; Castéran and Contejean [2006]; Grimm [2013];
Blanchette, Popescu and Traytel [2014]; Blanchette, Fleury and
Traytel [2017]; Schmitt [2017]; . . .

Why care? Unique representatives make the ordinal notations
behave like ordinals.

Why cubical?

Want a univalence principle which computes, and
higher inductive types.

6

Recovering uniqueness of representation
Three different approaches to recover uniqueness, using features of
cubical Agda [Vezzosi, Mörtberg and Abel 2019]:

I A subset approach

I A mutual approach

I A higher inductive approach

Previous work representing ordinals in theorem provers: Manolios
and Vroon [2005]; Castéran and Contejean [2006]; Grimm [2013];
Blanchette, Popescu and Traytel [2014]; Blanchette, Fleury and
Traytel [2017]; Schmitt [2017]; . . .

Why care? Unique representatives make the ordinal notations
behave like ordinals.

Why cubical? Want a univalence principle which computes, and
higher inductive types.

6

A subset approach
See e.g. Buchholz [1991]

data Tree : Type0 where
0 : Tree
ω^_+_ : Tree → Tree → Tree

We single out the trees in Cantor Normal Form:

data isCNF : Tree → Type0 where
0IsCNF : isCNF 0
ω^+IsCNF : isCNF a → isCNF b → a ≥ fst b

→ isCNF (ω^ a + b)

This uses _≥_ : Tree→Tree→Type0 (defined inductively), and

fst : Tree → Tree
fst 0 = 0
fst (ω^ a + _) = a

7

A subset approach
See e.g. Buchholz [1991]

data Tree : Type0 where
0 : Tree
ω^_+_ : Tree → Tree → Tree

We single out the trees in Cantor Normal Form:

data isCNF : Tree → Type0 where
0IsCNF : isCNF 0
ω^+IsCNF : isCNF a → isCNF b → a ≥ fst b

→ isCNF (ω^ a + b)

This uses _≥_ : Tree→Tree→Type0 (defined inductively), and

fst : Tree → Tree
fst 0 = 0
fst (ω^ a + _) = a

7

A subset approach
See e.g. Buchholz [1991]

data Tree : Type0 where
0 : Tree
ω^_+_ : Tree → Tree → Tree

We single out the trees in Cantor Normal Form:

data isCNF : Tree → Type0 where
0IsCNF : isCNF 0
ω^+IsCNF : isCNF a → isCNF b → a ≥ fst b

→ isCNF (ω^ a + b)

This uses _≥_ : Tree→Tree→Type0 (defined inductively), and

fst : Tree → Tree
fst 0 = 0
fst (ω^ a + _) = a

7

A subset approach
See e.g. Buchholz [1991]

data Tree : Type0 where
0 : Tree
ω^_+_ : Tree → Tree → Tree

We single out the trees in Cantor Normal Form:

data isCNF : Tree → Type0 where
0IsCNF : isCNF 0
ω^+IsCNF : isCNF a → isCNF b → a ≥ fst b

→ isCNF (ω^ a + b)

This uses _≥_ : Tree→Tree→Type0 (defined inductively), and

fst : Tree → Tree
fst 0 = 0
fst (ω^ a + _) = a

7

SigmaOrd

SigmaOrd : Type0
SigmaOrd = Σ \(a : Tree) → isCNF a

This is a “subset” of Tree in the sense that isCNF a is
proof-irrelevant:

isCNFIsPropValued : isProp (isCNF a)

Pro: Not requiring any fancy features.

Con: “Junk terms”. Code duplication.

8

SigmaOrd

SigmaOrd : Type0
SigmaOrd = Σ \(a : Tree) → isCNF a

This is a “subset” of Tree in the sense that isCNF a is
proof-irrelevant:

isCNFIsPropValued : isProp (isCNF a)

Pro: Not requiring any fancy features.

Con: “Junk terms”. Code duplication.

8

SigmaOrd

SigmaOrd : Type0
SigmaOrd = Σ \(a : Tree) → isCNF a

This is a “subset” of Tree in the sense that isCNF a is
proof-irrelevant:

isCNFIsPropValued : isProp (isCNF a)

x ≡ y for any x , y : isCNF a

Pro: Not requiring any fancy features.

Con: “Junk terms”. Code duplication.

8

SigmaOrd

SigmaOrd : Type0
SigmaOrd = Σ \(a : Tree) → isCNF a

This is a “subset” of Tree in the sense that isCNF a is
proof-irrelevant:

isCNFIsPropValued : isProp (isCNF a)

x ≡ y for any x , y : isCNF a

Pro: Not requiring any fancy features.

Con: “Junk terms”. Code duplication.

8

Amutual approach

Intrinsically Cantor Normal Form ordinals

By using mutual definitions, we get correct-by-construction ordinals
in Cantor Normal Form.

We simultaneously define

data MutualOrd : Type0
data _<_ : MutualOrd → MutualOrd → Type0
fst : MutualOrd → MutualOrd

by induction-induction-recursion [N.-F. 2014].

9

Intrinsically Cantor Normal Form ordinals

By using mutual definitions, we get correct-by-construction ordinals
in Cantor Normal Form.

We simultaneously define

data MutualOrd : Type0
data _<_ : MutualOrd → MutualOrd → Type0
fst : MutualOrd → MutualOrd

by induction-induction-recursion [N.-F. 2014].

9

MutualOrd
data MutualOrd where

0 : MutualOrd
ω^_+_[_] : (a b : MutualOrd) → a ≥ fst b → MutualOrd

where a ≥ b = a > b] a ≡ b.

data _<_ where
<1 : 0 < ω^ a + b [r]
<2 : a < c → ω^ a + b [r] < ω^ c + d [s]
<3 : a ≡ c → b < d → ω^ a + b [r] < ω^ c + d [s]

fst 0 = 0
fst (ω^ a + _ [_]) = a

Remark: there is an equivalent non-inductive-recursive definition
where we define the graph of fst inductively.

10

MutualOrd
data MutualOrd where

0 : MutualOrd
ω^_+_[_] : (a b : MutualOrd) → a ≥ fst b → MutualOrd

where a ≥ b = a > b] a ≡ b.

data _<_ where
<1 : 0 < ω^ a + b [r]
<2 : a < c → ω^ a + b [r] < ω^ c + d [s]
<3 : a ≡ c → b < d → ω^ a + b [r] < ω^ c + d [s]

fst 0 = 0
fst (ω^ a + _ [_]) = a

Remark: there is an equivalent non-inductive-recursive definition
where we define the graph of fst inductively.

10

MutualOrd
data MutualOrd where

0 : MutualOrd
ω^_+_[_] : (a b : MutualOrd) → a ≥ fst b → MutualOrd

where a ≥ b = a > b] a ≡ b.

data _<_ where
<1 : 0 < ω^ a + b [r]
<2 : a < c → ω^ a + b [r] < ω^ c + d [s]
<3 : a ≡ c → b < d → ω^ a + b [r] < ω^ c + d [s]

fst 0 = 0
fst (ω^ a + _ [_]) = a

Remark: there is an equivalent non-inductive-recursive definition
where we define the graph of fst inductively.

10

MutualOrd
data MutualOrd where

0 : MutualOrd
ω^_+_[_] : (a b : MutualOrd) → a ≥ fst b → MutualOrd

where a ≥ b = a > b] a ≡ b.

data _<_ where
<1 : 0 < ω^ a + b [r]
<2 : a < c → ω^ a + b [r] < ω^ c + d [s]
<3 : a ≡ c → b < d → ω^ a + b [r] < ω^ c + d [s]

fst 0 = 0
fst (ω^ a + _ [_]) = a

Remark: there is an equivalent non-inductive-recursive definition
where we define the graph of fst inductively.

10

MutualOrd
data MutualOrd where

0 : MutualOrd
ω^_+_[_] : (a b : MutualOrd) → a ≥ fst b → MutualOrd

where a ≥ b = a > b] a ≡ b.

data _<_ where
<1 : 0 < ω^ a + b [r]
<2 : a < c → ω^ a + b [r] < ω^ c + d [s]
<3 : a ≡ c → b < d → ω^ a + b [r] < ω^ c + d [s]

fst 0 = 0
fst (ω^ a + _ [_]) = a

Remark: there is an equivalent non-inductive-recursive definition
where we define the graph of fst inductively.

10

Examples

I 0

I 1 = ω^ 0 + 0 [inj2 refl]

I ω = ω^ 1 + 0 [inj1 <1]

I ω^〈 a 〉 = ω^ a + 0 [≥0]

11

Basic properties

Proposition
< is proof-irrelevant, i.e. p ≡ q for any p, q : a < b.

Proposition
< is trichotomous, i.e. we can define

<-tri : (a b : MutualOrd) → a < b] a ≥ b

Theorem
Transfinite induction holds for MutualOrd, i.e. there is a proof

MTI : (P : MutualOrd → Type `)
→ (∀ x → (∀ y → y < x → P y) → P x)
→ ∀ x → P x

Not provable without unique representation!

12

Basic properties

Proposition
< is proof-irrelevant, i.e. p ≡ q for any p, q : a < b.

Proposition
< is trichotomous, i.e. we can define

<-tri : (a b : MutualOrd) → a < b] a ≥ b

Theorem
Transfinite induction holds for MutualOrd, i.e. there is a proof

MTI : (P : MutualOrd → Type `)
→ (∀ x → (∀ y → y < x → P y) → P x)
→ ∀ x → P x

Not provable without unique representation!

12

Basic properties

Proposition
< is proof-irrelevant, i.e. p ≡ q for any p, q : a < b.

Proposition
< is trichotomous, i.e. we can define

<-tri : (a b : MutualOrd) → a < b] a ≥ b

Theorem
Transfinite induction holds for MutualOrd, i.e. there is a proof

MTI : (P : MutualOrd → Type `)
→ (∀ x → (∀ y → y < x → P y) → P x)
→ ∀ x → P x

Not provable without unique representation!

12

Ordinal addition

Addition on ordinals is famously non-commutative

1+ ω = ω < ω + 1

In general, if γ < ωβ then γ + ωβ = ωβ .

In particular, if α < β then ωα < ωβ , hence ωα + ωβ = ωβ .

We now want to implement addition on MutualOrd. We
simultaneously define

+ : MutualOrd → MutualOrd → MutualOrd
≥fst+ : {a : MutualOrd} (b c : MutualOrd)

→ a ≥ fst b → a ≥ fst c → a ≥ fst (b + c)

13

Ordinal addition

Addition on ordinals is famously non-commutative:

1+ ω = ω

< ω + 1

In general, if γ < ωβ then γ + ωβ = ωβ .

In particular, if α < β then ωα < ωβ , hence ωα + ωβ = ωβ .

We now want to implement addition on MutualOrd. We
simultaneously define

+ : MutualOrd → MutualOrd → MutualOrd
≥fst+ : {a : MutualOrd} (b c : MutualOrd)

→ a ≥ fst b → a ≥ fst c → a ≥ fst (b + c)

13

Ordinal addition

Addition on ordinals is famously non-commutative:

1+ ω = ω < ω + 1

In general, if γ < ωβ then γ + ωβ = ωβ .

In particular, if α < β then ωα < ωβ , hence ωα + ωβ = ωβ .

We now want to implement addition on MutualOrd. We
simultaneously define

+ : MutualOrd → MutualOrd → MutualOrd
≥fst+ : {a : MutualOrd} (b c : MutualOrd)

→ a ≥ fst b → a ≥ fst c → a ≥ fst (b + c)

13

Ordinal addition

Addition on ordinals is famously non-commutative:

1+ ω = ω < ω + 1

In general, if γ < ωβ then γ + ωβ = ωβ .

In particular, if α < β then ωα < ωβ , hence ωα + ωβ = ωβ .

We now want to implement addition on MutualOrd. We
simultaneously define

+ : MutualOrd → MutualOrd → MutualOrd
≥fst+ : {a : MutualOrd} (b c : MutualOrd)

→ a ≥ fst b → a ≥ fst c → a ≥ fst (b + c)

13

Ordinal addition

Addition on ordinals is famously non-commutative:

1+ ω = ω < ω + 1

In general, if γ < ωβ then γ + ωβ = ωβ .

In particular, if α < β then ωα < ωβ , hence ωα + ωβ = ωβ .

We now want to implement addition on MutualOrd. We
simultaneously define

+ : MutualOrd → MutualOrd → MutualOrd
≥fst+ : {a : MutualOrd} (b c : MutualOrd)

→ a ≥ fst b → a ≥ fst c → a ≥ fst (b + c)

13

Ordinal addition

Addition on ordinals is famously non-commutative:

1+ ω = ω < ω + 1

In general, if γ < ωβ then γ + ωβ = ωβ .

In particular, if α < β then ωα < ωβ , hence ωα + ωβ = ωβ .

We now want to implement addition on MutualOrd. We
simultaneously define

+ : MutualOrd → MutualOrd → MutualOrd
≥fst+ : {a : MutualOrd} (b c : MutualOrd)

→ a ≥ fst b → a ≥ fst c → a ≥ fst (b + c)

13

Addition on MutualOrd

Remember: if α < β then ωα + ωβ = ωβ .

0 + b = {?0 : MutualOrd}
a + 0 = {?1 : MutualOrd}
(ω^ a + c [r]) + (ω^ b + d [s]) = {?2 : MutualOrd}

≥fst+ 0 _ r s = s
≥fst+ (ω^ _ + _ [_]) 0 r s = r
≥fst+ (ω^ b + _ [_]) (ω^ c + _ [_]) r s with <-tri b c
... | inj1 b<c = s
... | inj2 b≥c = r

14

Addition on MutualOrd

Remember: if α < β then ωα + ωβ = ωβ .

0 + b = {?0 : MutualOrd}
a + 0 = {?1 : MutualOrd}
(ω^ a + c [r]) + (ω^ b + d [s]) = {?2 : MutualOrd}

≥fst+ 0 _ r s = s
≥fst+ (ω^ _ + _ [_]) 0 r s = r
≥fst+ (ω^ b + _ [_]) (ω^ c + _ [_]) r s with <-tri b c
... | inj1 b<c = s
... | inj2 b≥c = r

14

Addition on MutualOrd

Remember: if α < β then ωα + ωβ = ωβ .

0 + b = b
a + 0 = {?1 : MutualOrd}
(ω^ a + c [r]) + (ω^ b + d [s]) = {?2 : MutualOrd}

≥fst+ 0 _ r s = s
≥fst+ (ω^ _ + _ [_]) 0 r s = r
≥fst+ (ω^ b + _ [_]) (ω^ c + _ [_]) r s with <-tri b c
... | inj1 b<c = s
... | inj2 b≥c = r

14

Addition on MutualOrd

Remember: if α < β then ωα + ωβ = ωβ .

0 + b = b
a + 0 = a
(ω^ a + c [r]) + (ω^ b + d [s]) = {?2 : MutualOrd}

≥fst+ 0 _ r s = s
≥fst+ (ω^ _ + _ [_]) 0 r s = r
≥fst+ (ω^ b + _ [_]) (ω^ c + _ [_]) r s with <-tri b c
... | inj1 b<c = s
... | inj2 b≥c = r

14

Addition on MutualOrd

Remember: if α < β then ωα + ωβ = ωβ .

0 + b = b
a + 0 = a
(ω^ a + c [r]) + (ω^ b + d [s]) with <-tri a b
... | inj1 a<b = {?2 : MutualOrd}
... | inj2 a≥b = {?3 : MutualOrd}

≥fst+ 0 _ r s = s
≥fst+ (ω^ _ + _ [_]) 0 r s = r
≥fst+ (ω^ b + _ [_]) (ω^ c + _ [_]) r s with <-tri b c
... | inj1 b<c = s
... | inj2 b≥c = r

14

Addition on MutualOrd

Remember: if α < β then ωα + ωβ = ωβ .

0 + b = b
a + 0 = a
(ω^ a + c [r]) + (ω^ b + d [s]) with <-tri a b
... | inj1 a<b = ω^ b + d [s]
... | inj2 a≥b = {?3 : MutualOrd}

≥fst+ 0 _ r s = s
≥fst+ (ω^ _ + _ [_]) 0 r s = r
≥fst+ (ω^ b + _ [_]) (ω^ c + _ [_]) r s with <-tri b c
... | inj1 b<c = s
... | inj2 b≥c = r

14

Addition on MutualOrd

Remember: if α < β then ωα + ωβ = ωβ .

0 + b = b
a + 0 = a
(ω^ a + c [r]) + (ω^ b + d [s]) with <-tri a b
... | inj1 a<b = ω^ b + d [s]
... | inj2 a≥b = ω^ a + (c + ω^ b + d [s]) [{?4 : a≥fst(c+ω^b+ . . .)}]

≥fst+ 0 _ r s = s
≥fst+ (ω^ _ + _ [_]) 0 r s = r
≥fst+ (ω^ b + _ [_]) (ω^ c + _ [_]) r s with <-tri b c
... | inj1 b<c = s
... | inj2 b≥c = r

14

Addition on MutualOrd

Remember: if α < β then ωα + ωβ = ωβ .

0 + b = b
a + 0 = a
(ω^ a + c [r]) + (ω^ b + d [s]) with <-tri a b
... | inj1 a<b = ω^ b + d [s]
... | inj2 a≥b = ω^ a + (c + ω^ b + d [s]) [≥fst+ c _ r a≥b]

≥fst+ 0 _ r s = s
≥fst+ (ω^ _ + _ [_]) 0 r s = r
≥fst+ (ω^ b + _ [_]) (ω^ c + _ [_]) r s with <-tri b c
... | inj1 b<c = s
... | inj2 b≥c = r

14

Addition on MutualOrd

Remember: if α < β then ωα + ωβ = ωβ .

0 + b = b
a + 0 = a
(ω^ a + c [r]) + (ω^ b + d [s]) with <-tri a b
... | inj1 a<b = ω^ b + d [s]
... | inj2 a≥b = ω^ a + (c + ω^ b + d [s]) [≥fst+ c _ r a≥b]

≥fst+ 0 _ r s = s
≥fst+ (ω^ _ + _ [_]) 0 r s = r
≥fst+ (ω^ b + _ [_]) (ω^ c + _ [_]) r s with <-tri b c
... | inj1 b<c = s
... | inj2 b≥c = r

14

Multiplication on MutualOrd

· : MutualOrd → MutualOrd → MutualOrd
0 · b = 0
a · 0 = 0
a · (ω^ 0 + d [r]) = a + a · d
(ω^ a + c [r]) · (ω^ b + d [s]) =
M.ω^〈 a + b 〉 + (ω^ a + c [r] · d)

Note: All in terms of previous operations, so no simultaneous
lemma needed.

15

Multiplication on MutualOrd

· : MutualOrd → MutualOrd → MutualOrd
0 · b = 0
a · 0 = 0
a · (ω^ 0 + d [r]) = a + a · d
(ω^ a + c [r]) · (ω^ b + d [s]) =
M.ω^〈 a + b 〉 + (ω^ a + c [r] · d)

Note: All in terms of previous operations, so no simultaneous
lemma needed.

15

Ahigher inductive approach

Uniqueness by making things the same

We want to avoid redundant representations of ordinals

α = ωβ1 + ωβ2 + · · ·+ ωβn

With a mutual approach, we could require β1 ≥ β2 ≥ . . . ≥ βn,
hence ensuring uniqueness of the list [β1, . . . , βn].

Another option: quotient out the difference by identifying different
permutations of the exponents

ωβ1 ⊕ ωβ2 ≡ ωβ2 ⊕ ωβ1

Cubical Agda allows this via higher inductive types [Lumsdaine and
Shulman 2019].

16

Uniqueness by making things the same

We want to avoid redundant representations of ordinals

α = ωβ1 + ωβ2 + · · ·+ ωβn

With a mutual approach, we could require β1 ≥ β2 ≥ . . . ≥ βn,
hence ensuring uniqueness of the list [β1, . . . , βn].

Another option: quotient out the difference by identifying different
permutations of the exponents

ωβ1 ⊕ ωβ2 ≡ ωβ2 ⊕ ωβ1

Cubical Agda allows this via higher inductive types [Lumsdaine and
Shulman 2019].

16

Uniqueness by making things the same

We want to avoid redundant representations of ordinals

α = ωβ1 + ωβ2 + · · ·+ ωβn

With a mutual approach, we could require β1 ≥ β2 ≥ . . . ≥ βn,
hence ensuring uniqueness of the list [β1, . . . , βn].

Another option: quotient out the difference by identifying different
permutations of the exponents

ωβ1 ⊕ ωβ2 ≡ ωβ2 ⊕ ωβ1

Cubical Agda allows this via higher inductive types [Lumsdaine and
Shulman 2019].

16

Uniqueness by making things the same

We want to avoid redundant representations of ordinals

α = ωβ1 + ωβ2 + · · ·+ ωβn

With a mutual approach, we could require β1 ≥ β2 ≥ . . . ≥ βn,
hence ensuring uniqueness of the list [β1, . . . , βn].

Another option: quotient out the difference by identifying different
permutations of the exponents

ωβ1 ⊕ ωβ2 ≡ ωβ2 ⊕ ωβ1

Cubical Agda allows this via higher inductive types [Lumsdaine and
Shulman 2019].

16

A higher inductive approach
Inspired by Licata’s [2014] encoding of finite multisets [Blanchette, Fleury and Traytel
2017] as a HIT

A Higher Inductive Type also allows constructors targetting
equalities between elements (and between equalities, equalities
between equalities, . . .).

Soundness: has a model in cubical sets [Coquand, Huber and
Mörtberg 2018].

We define:
data HITOrd : Type0 where

0 : HITOrd
ω^_⊕_ : HITOrd → HITOrd → HITOrd
swap : ∀ a b c → ω^ a ⊕ ω^ b ⊕ c ≡ ω^ b ⊕ ω^ a ⊕ c
trunc : isSet HITOrd

17

A higher inductive approach
Inspired by Licata’s [2014] encoding of finite multisets [Blanchette, Fleury and Traytel
2017] as a HIT

A Higher Inductive Type also allows constructors targetting
equalities between elements (and between equalities, equalities
between equalities, . . .).

Soundness: has a model in cubical sets [Coquand, Huber and
Mörtberg 2018].

We define:
data HITOrd : Type0 where

0 : HITOrd
ω^_⊕_ : HITOrd → HITOrd → HITOrd
swap : ∀ a b c → ω^ a ⊕ ω^ b ⊕ c ≡ ω^ b ⊕ ω^ a ⊕ c
trunc : isSet HITOrd

17

A higher inductive approach
Inspired by Licata’s [2014] encoding of finite multisets [Blanchette, Fleury and Traytel
2017] as a HIT

A Higher Inductive Type also allows constructors targetting
equalities between elements (and between equalities, equalities
between equalities, . . .).

Soundness: has a model in cubical sets [Coquand, Huber and
Mörtberg 2018].

We define:
data HITOrd : Type0 where

0 : HITOrd
ω^_⊕_ : HITOrd → HITOrd → HITOrd
swap : ∀ a b c → ω^ a ⊕ ω^ b ⊕ c ≡ ω^ b ⊕ ω^ a ⊕ c
trunc : isSet HITOrd

17

A higher inductive approach
Inspired by Licata’s [2014] encoding of finite multisets [Blanchette, Fleury and Traytel
2017] as a HIT

A Higher Inductive Type also allows constructors targetting
equalities between elements (and between equalities, equalities
between equalities, . . .).

Soundness: has a model in cubical sets [Coquand, Huber and
Mörtberg 2018].

We define:
data HITOrd : Type0 where

0 : HITOrd
ω^_⊕_ : HITOrd → HITOrd → HITOrd
swap : ∀ a b c → ω^ a ⊕ ω^ b ⊕ c ≡ ω^ b ⊕ ω^ a ⊕ c
trunc : isSet HITOrd

p ≡ q for all p, q : a ≡HITOrd b
17

Example

example : (a b c : HITOrd)
→ ω^ a ⊕ ω^ b ⊕ ω^ c ⊕ 0 ≡ ω^ c ⊕ ω^ b ⊕ ω^ a ⊕ 0

example a b c = begin
ω^ a ⊕ ω^ b ⊕ ω^ c ⊕ 0 ≡〈 swap a b _ 〉
ω^ b ⊕ ω^ a ⊕ ω^ c ⊕ 0 ≡〈 cong (ω^ b ⊕_) (swap a c _) 〉
ω^ b ⊕ ω^ c ⊕ ω^ a ⊕ 0 ≡〈 swap b c _ 〉
ω^ c ⊕ ω^ b ⊕ ω^ a ⊕ 0

18

Pattern matching on HITOrd

Pattern matching on HITOrd requires all functions f to respect
swap: must show

f (ω^ a ⊕ ω^ b ⊕ c) ≡ f (ω^ b ⊕ ω^ a ⊕ c)

Hence it is convenient to define commutative operations on
HITOrd.

For arithmetic, these are the so-called Hessenberg sum and
product [Hessenberg, 1906].

19

Pattern matching on HITOrd

Pattern matching on HITOrd requires all functions f to respect
swap: must show

f (ω^ a ⊕ ω^ b ⊕ c) ≡ f (ω^ b ⊕ ω^ a ⊕ c)

Hence it is convenient to define commutative operations on
HITOrd.

For arithmetic, these are the so-called Hessenberg sum and
product [Hessenberg, 1906].

19

Pattern matching on HITOrd

Pattern matching on HITOrd requires all functions f to respect
swap: must show

f (ω^ a ⊕ ω^ b ⊕ c) ≡ f (ω^ b ⊕ ω^ a ⊕ c)

Hence it is convenient to define commutative operations on
HITOrd.

For arithmetic, these are the so-called Hessenberg sum and
product [Hessenberg, 1906].

19

Hessenberg sum

⊕ : HITOrd → HITOrd → HITOrd
x ⊕ y = {?0 : HITOrd}

In the swap case, we have to prove

?2 : ω^ a ⊕ ω^ b ⊕ (c ⊕ y) ≡ ω^ b ⊕ ω^ a ⊕ (c ⊕ y)

Proposition
⊕ is commutative.

20

Hessenberg sum

⊕ : HITOrd → HITOrd → HITOrd
0 ⊕ y = {?0 : HITOrd}
(ω^ a ⊕ b) ⊕ y = {?1 : HITOrd}
(swap a b c i) ⊕ y = {?2 : . . .≡ . . .} i

(trunc p q i j) ⊕ y = {?3 : . . .≡...≡... . . .} i j

In the swap case, we have to prove

?2 : ω^ a ⊕ ω^ b ⊕ (c ⊕ y) ≡ ω^ b ⊕ ω^ a ⊕ (c ⊕ y)

Proposition
⊕ is commutative.

20

Hessenberg sum

⊕ : HITOrd → HITOrd → HITOrd
0 ⊕ y = y
(ω^ a ⊕ b) ⊕ y = {?1 : HITOrd}
(swap a b c i) ⊕ y = {?2 : . . .≡ . . .} i

(trunc p q i j) ⊕ y = {?3 : . . .≡...≡... . . .} i j

In the swap case, we have to prove

?2 : ω^ a ⊕ ω^ b ⊕ (c ⊕ y) ≡ ω^ b ⊕ ω^ a ⊕ (c ⊕ y)

Proposition
⊕ is commutative.

20

Hessenberg sum

⊕ : HITOrd → HITOrd → HITOrd
0 ⊕ y = y
(ω^ a ⊕ b) ⊕ y = ω^ a ⊕ (b ⊕ y)
(swap a b c i) ⊕ y = {?2 : . . .≡ . . .} i

(trunc p q i j) ⊕ y = {?3 : . . .≡...≡... . . .} i j

In the swap case, we have to prove

?2 : ω^ a ⊕ ω^ b ⊕ (c ⊕ y) ≡ ω^ b ⊕ ω^ a ⊕ (c ⊕ y)

Proposition
⊕ is commutative.

20

Hessenberg sum

⊕ : HITOrd → HITOrd → HITOrd
0 ⊕ y = y
(ω^ a ⊕ b) ⊕ y = ω^ a ⊕ (b ⊕ y)
(swap a b c i) ⊕ y = {?2 : . . .≡ . . .} i

(trunc p q i j) ⊕ y = {?3 : . . .≡...≡... . . .} i j

In the swap case, we have to prove

?2 : ω^ a ⊕ ω^ b ⊕ (c ⊕ y) ≡ ω^ b ⊕ ω^ a ⊕ (c ⊕ y)

Proposition
⊕ is commutative.

20

Hessenberg sum

⊕ : HITOrd → HITOrd → HITOrd
0 ⊕ y = y
(ω^ a ⊕ b) ⊕ y = ω^ a ⊕ (b ⊕ y)
(swap a b c i) ⊕ y = swap a b (c ⊕ y) i
(trunc p q i j) ⊕ y = {?3 : . . .≡...≡... . . .} i j

In the swap case, we have to prove

?2 : ω^ a ⊕ ω^ b ⊕ (c ⊕ y) ≡ ω^ b ⊕ ω^ a ⊕ (c ⊕ y)

Proposition
⊕ is commutative.

20

Hessenberg sum

⊕ : HITOrd → HITOrd → HITOrd
0 ⊕ y = y
(ω^ a ⊕ b) ⊕ y = ω^ a ⊕ (b ⊕ y)
(swap a b c i) ⊕ y = swap a b (c ⊕ y) i
(trunc p q i j) ⊕ y = trunc (cong (_⊕ y) p) (cong (_⊕ y) q) i j

In the swap case, we have to prove

?2 : ω^ a ⊕ ω^ b ⊕ (c ⊕ y) ≡ ω^ b ⊕ ω^ a ⊕ (c ⊕ y)

Proposition
⊕ is commutative.

20

Hessenberg sum

⊕ : HITOrd → HITOrd → HITOrd
0 ⊕ y = y
(ω^ a ⊕ b) ⊕ y = ω^ a ⊕ (b ⊕ y)
(swap a b c i) ⊕ y = swap a b (c ⊕ y) i
(trunc p q i j) ⊕ y = trunc (cong (_⊕ y) p) (cong (_⊕ y) q) i j

In the swap case, we have to prove

?2 : ω^ a ⊕ ω^ b ⊕ (c ⊕ y) ≡ ω^ b ⊕ ω^ a ⊕ (c ⊕ y)

Proposition
⊕ is commutative.

20

Which approach is better?

All of them!

Depending on the application, e.g. the mutual approach for
properties of the order, the HIT approach for commutative
operations.

Even better:

Theorem
SigmaOrd, MutualOrd and HITOrd are equivalent.

Using the univalance principle [Voevodsky 2010] (which computes
in cubical Agda), equivalent types are identical:

Corollary
SigmaOrd, MutualOrd and HITOrd are identical.

21

Which approach is better?

All of them!

Depending on the application, e.g. the mutual approach for
properties of the order, the HIT approach for commutative
operations.

Even better:

Theorem
SigmaOrd, MutualOrd and HITOrd are equivalent.

Using the univalance principle [Voevodsky 2010] (which computes
in cubical Agda), equivalent types are identical:

Corollary
SigmaOrd, MutualOrd and HITOrd are identical.

21

Which approach is better?

All of them!

Depending on the application, e.g. the mutual approach for
properties of the order, the HIT approach for commutative
operations.

Even better:

Theorem
SigmaOrd, MutualOrd and HITOrd are equivalent.

Using the univalance principle [Voevodsky 2010] (which computes
in cubical Agda), equivalent types are identical:

Corollary
SigmaOrd, MutualOrd and HITOrd are identical.

21

Which approach is better?

All of them!

Depending on the application, e.g. the mutual approach for
properties of the order, the HIT approach for commutative
operations.

Even better:

Theorem
SigmaOrd, MutualOrd and HITOrd are equivalent.

Using the univalance principle [Voevodsky 2010] (which computes
in cubical Agda), equivalent types are identical:

Corollary
SigmaOrd, MutualOrd and HITOrd are identical.

21

Which approach is better?

All of them!

Depending on the application, e.g. the mutual approach for
properties of the order, the HIT approach for commutative
operations.

Even better:

Theorem
SigmaOrd, MutualOrd and HITOrd are equivalent.

Using the univalance principle [Voevodsky 2010] (which computes
in cubical Agda), equivalent types are identical:

Corollary
SigmaOrd, MutualOrd and HITOrd are identical.

21

MutualOrd and HITOrd are equivalent

MutualOrd HITOrd

M≡H:MutualOrd≡HITOrd

22

MutualOrd and HITOrd are equivalent

MutualOrd HITOrd

“forget order”

M≡H:MutualOrd≡HITOrd

22

MutualOrd and HITOrd are equivalent

MutualOrd HITOrd

“insert”

“forget order”

M≡H:MutualOrd≡HITOrd

22

MutualOrd and HITOrd are equivalent

MutualOrd HITOrd

“insert”

“forget order”

M≡H:MutualOrd≡HITOrd

22

Operations via univalence

By using univalence, we can transport operations and proofs
between MutualOrd and HITOrd.

<H : HITOrd → HITOrd → Type0
<H = transport (λ i → M≡H i → M≡H i → Type0) _<_

⊕M : MutualOrd → MutualOrd → MutualOrd
⊕M = transport (λ i → H≡M i → H≡M i → H≡M i) _⊕_

23

Operations via univalence

By using univalence, we can transport operations and proofs
between MutualOrd and HITOrd.

<H : HITOrd → HITOrd → Type0
<H = transport (λ i → M≡H i → M≡H i → Type0) _<_

⊕M : MutualOrd → MutualOrd → MutualOrd
⊕M = transport (λ i → H≡M i → H≡M i → H≡M i) _⊕_

23

Operations via univalence

By using univalence, we can transport operations and proofs
between MutualOrd and HITOrd.

<H : HITOrd → HITOrd → Type0
<H = transport (λ i → M≡H i → M≡H i → Type0) _<_

⊕M : MutualOrd → MutualOrd → MutualOrd
⊕M = transport (λ i → H≡M i → H≡M i → H≡M i) _⊕_

23

Transporting proofs

We can also transport properties. For instance: define

Dec : (A : Type `) → (A → A → Type `’) → Type (` t `’)
Dec A _<_ = (x y : A) → x < y] ¬ x < y

We can easily prove
<-dec : Dec MutualOrd _<_

Hence we can construct
<H-dec : Dec HITOrd _<H_
<H-dec = transport (λ i → Dec (M≡H i) (<Path i)) <-dec

where
<Path : PathP (λ i → M≡H i → M≡H i → Type0) _<_ _<H_

is a dependent equality (“path”) between _<_ and _<H_.

24

Transporting proofs

We can also transport properties. For instance: define

Dec : (A : Type `) → (A → A → Type `’) → Type (` t `’)
Dec A _<_ = (x y : A) → x < y] ¬ x < y

We can easily prove
<-dec : Dec MutualOrd _<_

Hence we can construct
<H-dec : Dec HITOrd _<H_
<H-dec = transport (λ i → Dec (M≡H i) (<Path i)) <-dec

where
<Path : PathP (λ i → M≡H i → M≡H i → Type0) _<_ _<H_

is a dependent equality (“path”) between _<_ and _<H_.

24

Transporting proofs

We can also transport properties. For instance: define

Dec : (A : Type `) → (A → A → Type `’) → Type (` t `’)
Dec A _<_ = (x y : A) → x < y] ¬ x < y

We can easily prove
<-dec : Dec MutualOrd _<_

Hence we can construct
<H-dec : Dec HITOrd _<H_
<H-dec = transport (λ i → Dec (M≡H i) (<Path i)) <-dec

where
<Path : PathP (λ i → M≡H i → M≡H i → Type0) _<_ _<H_

is a dependent equality (“path”) between _<_ and _<H_.

24

It computes!
Define

lt : HITOrd → HITOrd → Bool
lt a b = isLeft (<H-dec a b)

for convenience.

Ex[<H-decComp] :
lt 0 0 ≡ false

× lt H.ω ((H.1 ⊕ H.1) ⊗ H.ω) ≡ true
× lt (H.ω^〈 H.ω 〉) (H.ω^〈 H.1 +H H.ω 〉) ≡ false
× lt (H.ω^〈 H.ω 〉) (H.ω^〈 H.1 ⊕ H.ω 〉) ≡ true

Ex[<H-decComp] = (refl , refl , refl , refl)

Ex[⊕MComp] : M.1 ⊕M M.ω ≡ M.ω + M.1
Ex[⊕MComp] = refl

25

It computes!
Define

lt : HITOrd → HITOrd → Bool
lt a b = isLeft (<H-dec a b)

for convenience.

Ex[<H-decComp] :
lt 0 0 ≡ false

× lt H.ω ((H.1 ⊕ H.1) ⊗ H.ω) ≡ true
× lt (H.ω^〈 H.ω 〉) (H.ω^〈 H.1 +H H.ω 〉) ≡ false
× lt (H.ω^〈 H.ω 〉) (H.ω^〈 H.1 ⊕ H.ω 〉) ≡ true

Ex[<H-decComp] = (refl , refl , refl , refl)

Ex[⊕MComp] : M.1 ⊕M M.ω ≡ M.ω + M.1
Ex[⊕MComp] = refl

25

It computes!
Define

lt : HITOrd → HITOrd → Bool
lt a b = isLeft (<H-dec a b)

for convenience.

Ex[<H-decComp] :
lt 0 0 ≡ false

× lt H.ω ((H.1 ⊕ H.1) ⊗ H.ω) ≡ true
× lt (H.ω^〈 H.ω 〉) (H.ω^〈 H.1 +H H.ω 〉) ≡ false
× lt (H.ω^〈 H.ω 〉) (H.ω^〈 H.1 ⊕ H.ω 〉) ≡ true

Ex[<H-decComp] = (refl , refl , refl , refl)

Ex[⊕MComp] : M.1 ⊕M M.ω ≡ M.ω + M.1
Ex[⊕MComp] = refl

25

Summary and outlook

Conclusions

I Summary: Using mutual definitions and higher inductive types
to faithfully represent ordinals in cubical Agda.

I Moral: Define operations on the data structure that is suited
for the operation (then transport across with univalence).

I Future work: Going beyond ε0 using a higher inductive type of
Brouwer ordinals.

Chuangjie Xu, Fredrik Nordvall Forsberg and Neil Ghani
Three equivalent ordinal notation systems in cubical Agda
CPP 2020, New Orleans, USA.

Fredrik Nordvall Forsberg Ordinal notation systems for ordinals below ε0 in modern type theories

Conclusions

I Summary: Using mutual definitions and higher inductive types
to faithfully represent ordinals in cubical Agda.

I Moral: Define operations on the data structure that is suited
for the operation (then transport across with univalence).

I Future work: Going beyond ε0 using a higher inductive type of
Brouwer ordinals.

Chuangjie Xu, Fredrik Nordvall Forsberg and Neil Ghani
Three equivalent ordinal notation systems in cubical Agda
CPP 2020, New Orleans, USA.

Fredrik Nordvall Forsberg Ordinal notation systems for ordinals below ε0 in modern type theories

Conclusions

I Summary: Using mutual definitions and higher inductive types
to faithfully represent ordinals in cubical Agda.

I Moral: Define operations on the data structure that is suited
for the operation (then transport across with univalence).

I Future work: Going beyond ε0 using a higher inductive type of
Brouwer ordinals.

Chuangjie Xu, Fredrik Nordvall Forsberg and Neil Ghani
Three equivalent ordinal notation systems in cubical Agda
CPP 2020, New Orleans, USA.

Fredrik Nordvall Forsberg Ordinal notation systems for ordinals below ε0 in modern type theories

Conclusions

I Summary: Using mutual definitions and higher inductive types
to faithfully represent ordinals in cubical Agda.

I Moral: Define operations on the data structure that is suited
for the operation (then transport across with univalence).

I Future work: Going beyond ε0 using a higher inductive type of
Brouwer ordinals.

Chuangjie Xu, Fredrik Nordvall Forsberg and Neil Ghani
Three equivalent ordinal notation systems in cubical Agda
CPP 2020, New Orleans, USA.

Fredrik Nordvall Forsberg Ordinal notation systems for ordinals below ε0 in modern type theories

Conclusions

I Summary: Using mutual definitions and higher inductive types
to faithfully represent ordinals in cubical Agda.

I Moral: Define operations on the data structure that is suited
for the operation (then transport across with univalence).

I Future work: Going beyond ε0 using a higher inductive type of
Brouwer ordinals.

Chuangjie Xu, Fredrik Nordvall Forsberg and Neil Ghani
Three equivalent ordinal notation systems in cubical Agda
CPP 2020, New Orleans, USA.

Fredrik Nordvall Forsberg Ordinal notation systems for ordinals below ε0 in modern type theories

Thanks!

References I

Jasmin Christian Blanchette, Mathias Fleury, and Dmitriy Traytel.
Nested multisets, hereditary multisets, and syntactic ordinals in Isabelle/HOL.
In Dale Miller, editor, Formal Structures for Computation and Deduction, volume 84 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 11:1–11:18, Dagstuhl, Germany, 2017.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel.
Cardinals in Isabelle/HOL.
In Gerwin Klein and Ruben Gamboa, editors, Interactive Theorem Proving, volume 8558 of
Lecture Notes in Computer Science, pages 111–127, Heidelberg, Germany, 2014. Springer.

Wilfried Buchholz.
Notation systems for infinitary derivations.
Archive for Mathematical Logic, 30:227–296, 1991.

Pierre Castéran and Evelyne Contejean.
On ordinal notations.
Available at http://coq.inria.fr/V8.2pl1/contribs/Cantor.html, 2006.

Thierry Coquand, Simon Huber, and Anders Mörtberg.
On higher inductive types in cubical type theory.
In Logic in Computer Science, pages 255–264, New York, USA, 2018. ACM.

Nachum Dershowitz.
Trees, ordinals and termination.
In Marie-Claude Gaudel and Jean-Pierre Jouannaud, editors, Theory and Practice of Software
Development, volume 668 of Lecture Notes in Computer Science, pages 243–250, Heidelberg,
Germany, 1993. Springer.

http://coq.inria.fr/V8.2pl1/contribs/Cantor.html

References II
José Grimm.
Implementation of three types of ordinals in Coq.
Technical Report RR-8407, INRIA, 2013.
Available at https://hal.inria.fr/hal-00911710.

Gerhard Hessenberg.
Grundbegriffe der Mengenlehre, volume 1.
Vandenhoeck & Ruprecht, Göttingen, Germany, 1906.

Dan Licata.
What is homotopy type theory?, 2014.
Invited talk at Coq Workshop 2014. Slides available at
http://dlicata.web.wesleyan.edu/pubs/l14coq/l14coq.pdf.

Peter Lefanu Lumsdaine and Michael Shulman.
Semantics of higher inductive types.
Mathematical Proceedings of the Cambridge Philosophical Society, pages 1–50, 2019.

Panagiotis Manolios and Daron Vroon.
Ordinal arithmetic: algorithms and mechanization.
Journal of Automated Reasoning, 34(4):387–423, 2005.

Fredrik Nordvall Forsberg.
Inductive-inductive definitions.
PhD thesis, Swansea University, 2014.

Peter H. Schmitt.
A mechanizable first-order theory of ordinals.
In Renate Schmidt and Cláudia Nalon, editors, Automated Reasoning with Analytic Tableaux and
Related Methods, volume 10501 of Lecture Notes in Computer Science, pages 331–346,
Heidelberg, Germany, 2017. Springer.

https://hal.inria.fr/hal-00911710
http://dlicata.web.wesleyan.edu/pubs/l14coq/l14coq.pdf

References III

Alan Turing.
Checking a large routine.
In Report of a Conference on High Speed Automatic Calculating Machines, pages 67–69,
Cambridge, UK, 1949. University Mathematical Laboratory.

Andrea Vezzosi, Anders Mörtberg, and Andreas Abel.
Cubical Agda: a dependently typed programming language with univalence and higher inductive
types.
Proceedings of the ACM on Programming Languages, 3(ICFP):87:1–87:29, 2019.

Vladimir Voevodsky.
The equivalence axiom and univalent models of type theory.
arXiv 1402.5556, 2010.

	Introduction
	Ordinals classically

	A subset approach
	The mutual approach
	Definition
	Arithmetic

	The HIT approach
	Definition
	Arithmetic

	All three approaches are equivalent
	Summary and outlook
	References

