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The usefulness of ordinals
▶ Classically, ordinals are sets with an order with no infinitely descending chains.

▶ Powerful applications as tools for e.g. establishing consistency of logical theories,
proving termination of processes, and justifying induction and recursion.

▶ The Hydra game [Kirby & Paris, 1982]:

Proof of termination makes use of ordinal arithmetic, in particular exponentiation.
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Ordinals in Homotopy Type Theory

▶ An ordinal is a type α with a binary proposition-valued relation < on α that is
transitive, extensional and wellfounded.

Extensionality says that two elements are equal if and only if they have the same
predecessors: x = y if and only if ∀(u : α).u < x ↔ u < y .
Wellfoundedness is defined via an inductive accessibility predicate but is
equivalent to transfinite induction: for any type family P over α, we have that
∀(x : α).

(
(∀(y : α). y < x → P y) → P x

)
implies ∀(x : α).P x .

▶ Examples: 0, 1, N and the type List<(α) of decreasing lists over any ordinal α.

▶ Many other more specialised (and well behaved) notions of ordinals [Martin-Löf
1970; Taylor 1996; Coquand, Lombardi and Neuwirth 2023, ...] , but here we
focus on the most general notion.
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The ordinal of (small) ordinals
▶ A fundamental fact is that for any ordinal α and a : α, the initial segment

α ↓ a :≡ Σ(x : α). x < a

is again an ordinal.

Key idea: characterize ordinals by describing their initial segments.

▶ Setting
α < β :≡ Σ(b : β). α = β ↓ b

makes the type Ord of (small) ordinals into an ordinal itself.

Proving that < is extensional makes crucial use of the univalence axiom.

▶ Moreover, Ord is a poset with

α ≤ β :≡ Σ(f : α → β). ∀(a : A). α ↓ a = β ↓ f a.
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Suprema of ordinals

▶ Ord is closed under suprema of (small) families of ordinals sup : (I → Ord) → Ord.

▶ We construct sup F• := (Σ(i : I). Fi)/∼ where (i , x) ∼ (j , x ′) if Fi ↓ x = Fj ↓ x ′.

▶ In particular we have maps [i , −] : Fi ≤ sup F• such that for any y : sup F•

there exists i : I and x : Fi with

y = [i , x ] and sup F• ↓ y = Fi ↓ x .
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Natural number arithmetic

α + 0 = α

α + (β + 1) = (α + β) + 1

α + sup γi = sup(α + γi) (if index set I inhabited)

α × 0 = 0
α × (β + 1) = (α × β) + α

α × sup γi = sup(α × γi)

α0 = 1
αβ+1 = αβ × α

αsup γi = sup(αγi ) (if I inhabited, and α ̸= 0)

0β = 0 (if β ̸= 0)

Not a definition, constructively! But a good specification.
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Addition and multiplication

▶ For addition and multiplication, there are well known explicit constructions:

⟨α + β⟩ :≡ ⟨α⟩ + ⟨β⟩

with inl a ≺ inr b, and
⟨α × β⟩ :≡ ⟨α⟩ × ⟨β⟩

ordered reverse lexicographically:

(a, b) ≺ (a′, b′) :≡
(
b ≺ b′) +

(
(b = b′) × (a ≺ a′)

)
.

▶ Thm (2, 2). (well known) The operations α + β and α × β satisfy the
specifications for addition and multiplication, respectively.
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Exponentiation?

α0 = 1 0β = 0 (if β ̸= 0)
αβ+1 = αβ × α αsupi :I γi = sup

i :I
αγi (if I inhabited, and α ̸= 0)

▶ Surprisingly, there is no nice geometric construction of ordinal exponentiation.

▶ Even going back to Cantor [1897], addition and multiplication are defined
“explicitly”, whereas exponentiation is defined by case distinction.

▶ Thm (2). There is e : Ord → Ord → Ord satisfying the specification for ordinal
exponentiation if and only if Excluded Middle holds.

Proof. (⇒) If such an e exists, it is continuous, hence it is monotone.
Let P : Prop be given. We have

1 = e (P + 1) 0 ≤ e (P + 1) 1 = P + 1
and P or ¬P holds depending on if f (⋆) = inl p or f (⋆) = inr ⋆ for f : 1 ≤ P + 1.

7/19
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Exponentiation
▶ Working constructively in HoTT, we construct two well behaved ordinal

exponentiation functions α(−) with a minor condition on the base ordinal α:

▶ The first construction is abstract, uses suprema of ordinals, and is motivated by
the expected equations.
It is well defined whenever α ≥ 1, i.e. whenever α has a least element.

▶ The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpiński [1958] based on functions with finite support.
It is well defined whenever α has a trichotomous least element, i.e., a least element
⊥ such that for all x : α either ⊥ < x or ⊥ = x .

▶ We show that our two constructions agree (whenever the base ordinal has a
trichotomous least element).

▶ We use this equivalence together with univalence (representation
independence) to prove algebraic laws and decidability properties.
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A stronger specification
▶ Inspired by the classical definition (and the no-go theorem), we now wish to

construct, for α ≥ 1, an operation α(−) satisfying the specification:

α0 = 1
αβ+1 = αβ × α

αsupi :I Fi = sup
i :I

(αFi ) (if I is inhabited)

▶ Since we assume α ≥ 1, we can also consider a stronger specification combining
the 0 and sup cases:

αβ+1 = αβ × α

αsupi :I Fi = 1 ∨ sup
i :I

(αFi )

▶ We recover α0 = 1 ∨ 0 and αsupi :I Fi = supi :I(αFi ) for inhabited I, since αFi ≥ 1.
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Abstract exponentiation

▶ Lemma (2). For every ordinal β we have β = supb:β
(
(β ↓ b) + 1

)
.

▶ Idea: If we had αβ, then

αβ = αsupb:β
(

(β↓b) + 1
)

= 1 ∨ sup
b:β

α(β↓b) + 1 = 1 ∨ sup
b:β

(
αβ↓b × α

)
.

▶ Def. (2) Define abstract exponentiation αβ by transfinite induction on β as

αβ :≡ sup
x :1+β

{
inl ⋆ 7→ 1
inr b 7→ αβ↓b × α

10/19
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Properties of abstract exponentiation

▶ Def. (repeated) Abstract exponentiation αβ is given by transfinite induction on β:

αβ :≡ sup
x :1+β

{
inl ⋆ 7→ 1
inr b 7→ αβ↓b × α

▶ Thm (2, 2, 2). αβ satisfies the specification for α ≥ 1, as well as

αβ+γ = αβ × αγ and αβ×γ =
(
αβ

)γ
.

▶ Lemma (2). Using the characterization of initial segments of suprema and
products, we have for a : α, b : β and e : αβ↓b that

αβ ↓ [inr b, (e, a)] = αβ↓b × (α ↓ a) + (αβ↓b ↓ e).
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Functions with finite support

▶ Sierpiński [1958] constructs, for α with a least element ⊥ : α, the exponential αβ

as
Σ(f : β → α). supp(f ) finite

where supp(f ) :≡ Σ(x : β).(f x > ⊥).

▶ The order is defined by
f ≺ g :≡ f (b∗) ≺α g(b∗),

where b∗ is the largest element x such that f (x) ̸= g(x) — such b∗ exists by the
finite support assumption.

▶ This is. . . problematic, constructively!
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Concrete exponentiation
▶ Constructively well behaved version: represent a function with finite support as a

list of (output, input) pairs, ordered decreasingly in the input-component to
ensure uniqueness of the representation.

The least element ⊥ : α should not be an output, so we consider

α>⊥ :≡ Σ(a : α). a > ⊥

and define concrete exponentiation as

exp(α, β) :≡ Σ(ℓ : List(α>⊥ × β)). ℓ is decreasing in the β-component.

▶ Lemma (2). Excluded Middle holds iff α>⊥ is an ordinal for all α.

▶ Grayson [1978, 1982] suggested a variation of this construction, unfortunately
with a subtle mistake, similar to assuming that α>⊥ always is an ordinal.

13/19
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Concrete exponentiation for bases with a trichotomous least element
▶ Lemma (2). The following are equivalent:

(i) α has a trichotomous least element ⊥, i.e., ∀x : α. (⊥ < x) + (⊥ = x).
(ii) α has a least and trichotomous element ⊥, i.e., ∀x : α. ⊥ ≤ x and

∀x : α. (⊥ < x) + (⊥ = x) + (⊥ > x).
(iii) α = 1 + α′ for some (necessarily unique) ordinal α′. If this happens, then α′ = α>⊥.

▶ Examples. ω = 1 + ω and 17 = 1 + 16 have trichotomous least elements.

▶ Thm (2). For α with a trichotomous least element, the lexicographic order on
lists makes concrete exponentiation

exp(α, β) :≡ Σ(ℓ : List(α>⊥ × β)). ℓ is decreasing in the β-component.

an ordinal.

▶ Remark. In general, the lexicographic order on List(α) is not wellfounded, but it is
for decreasing lists.

▶ Thm (2). For α with a trich. least element, exp α β satisfies the specification.
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Properties of concrete exponentiation

▶ Thm (2). For ordinals α, β and γ with α having a trichotomous least element,
we have exp(α, β + γ) = exp(α, β) × exp(α, γ).

Other expected equations such as exp(α, β × γ) = exp(exp(α, β), γ) proved too
tedious to establish directly.

▶ Thm (2). Concrete exponentiation preserves decidability properties, e.g. if α
and β have decidable equality, then so does exp (α, β).

This is not at all obvious for abstract exponentiation.
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Relating abstract and concrete exponentiation
▶ Thm (2). Abstract and concrete exponentiation agree whenever it makes sense

to ask the question.

▶ The key idea is to characterize initial segments.

▶ Recall that αβ ↓ [inr b, (e, a)] = αβ↓b × (α ↓ a) + (αβ↓b ↓ e).

▶ For concrete exponentiation we can prove

exp (α, β) ↓ ((a, b) :: ιb ℓ) = exp (α, β ↓ b) × (α ↓ a) + exp (α, β ↓ b) ↓ ℓ

where ιb : exp (α, β ↓ b) ↪→ exp (α, β) is the obvious inclusion.
Notice the similarity to the above equation!

▶ A proof by transfinite induction in Ord on β then shows:

Thm (2). For α with a trichotomous least element we have exp (α, β) = αβ.
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Consequences

▶ Cor (2). Suppose that α has a trichotomous least element. If α and β have
decidable equality, then so does αβ.

▶ Cor (2). Suppose α has a least element. If α and β are trichotomous, then so is
αβ.

▶ Cor (2). For ordinals α, β and γ with α having a trichotomous least element, we
have exp (α, β × γ) = exp (exp (α, β), γ).
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Constructive taboos

▶ Many properties of exponentiation can be proven constructively, e.g. monotonicity
in the exponent or algebraic laws.

▶ However, other properties are inherently classical.

▶ Thm (2). Exponentiation is monotone in the base if and only if Excluded Middle
holds. In fact, already α < β → αγ ≤ βγ , even for γ = 2, implies EM. α = 2, β = 3 + P

▶ Lemma (2). For any proposition P we have 2P = 1 + P.

▶ Thm (2). The following are equivalent:
(i) for all ordinals β, we have β ≤ 2β ; β = P + 1

(ii) for all ordinals β and α > 1, we have β ≤ αβ ;
(iii) Excluded Middle.
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Wrapping up
▶ We presented two constructively well behaved ordinal exponentiation functions for

base ordinals with a least element, and showed them to be equivalent in case the
base ordinal has a trichotomous least element.

▶ Thanks to univalence we can transfer various results, such as algebraic laws and
decidability properties, from one construction to the other.

▶ Future work: Ordinal subtraction, division and logarithms are also not
constructively available in general — what can be done there?

Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg and Chuangjie Xu
Ordinal Exponentiation in Homotopy Type Theory
To appear at LICS 2025 (arXiv:2501.14542)

Fully formalised in Agda.
Building on Escardó’s TypeTopology development. Click on 2 in paper and slides!
www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.Exponentiation.Paper.html
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Wrapping up
▶ We presented two constructively well behaved ordinal exponentiation functions for

base ordinals with a least element, and showed them to be equivalent in case the
base ordinal has a trichotomous least element.

▶ Thanks to univalence we can transfer various results, such as algebraic laws and
decidability properties, from one construction to the other.

▶ Future work: Ordinal subtraction, division and logarithms are also not
constructively available in general — what can be done there?
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